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INTRODUCTION

HE importance of the discrete-symmetry trans-
formations in a relativistic local-quantum-field

theory is well-known; their possibilities beyond the
limitations of that theory are increasingly recognized. '
Particularly, since the discovery of the TC(P theorem,
a large number of papers have been published on this
subject; however, little attention has been given to the
explicit representation of these symmetry operators
which is so helpful from the point of view of a
systematic study of the subject.

The purpose of this paper is to consider the discrete-
symmetry operators of the free fields from the point
of view of their explicit representation in terms of
creation operators (CO's) and annihilation operators
(AO's) of the fields in question; an attempt is made to
clarify certain aspects that have not been carefully
treated in the literature.

The phrase "discrete transformation" implies that
it cannot be generated continuously from the identity;
however, note that this is no longer the case, if one
admits complex transformations. ' The TC(P trans-
formation or strong reflection (as Pauli calls it) is such
a discrete transformation, invariance under which of
the local-quantum-field theory is assured if one assumes
Lorentz invariance (the inhomogeneous Lorentz group)
and the connection between spin and statistics (the
Tt'6' theorem). Under a strong reflection trans-
formation, one replaces an interaction referred to a
left-hand frame by the one referred to a right-hand
frame together with the interchange of particles and
antiparticles and the reversal of spins and the order of
events in the original interaction. For electromagnetic
and strong interactions, one can look upon strong
reflection as a product of time reversal (T), space
inversion ((p), and particle conjugation (t'); the last
two of these do not hold seperately for systems of
lower symmetry (weak interactions), but only their
product does. The various possible discrete-symmetry
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'See in this connection the proof of T6(P theorem in the
8-matrix approach, H. P. Stapp, Phys. Rev. (to be published).' See, e.g., R. Jost, Helv. Phys. Acta BO, 409, 1957.
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operators obtained from the products of T, 6, 6' and
their effect on observables —charge (used in the
generalized sense, includes electrically neutral particies
such as K mesons), and linear and angular momenta-
are summarized in Table I. Together with the identity,
these are in all eight: (P, 8, (R, and 8 are linear, unitary
operators, while T, W, I, and S are antilinear, unitary
operators. In literature, only the representations for
6', t', and T have been considered. In early attempts, ' '
the phase factors have been generally disregarded,
%atanabe's' work being an exception. There is also
a recent paper by Kaempfkr, r toho emPloys certain
singular operators; the algebra of these operators is
however rot clear @md leads to comtradi ctumors. Representa-
tions have also been treated by Federbush' and
Sudarshan. '

TABLE I. Definitions of discrete-symmetry operators in terms
of their effect on coordinates (x,t), charge (Q), and linear (P) and
angular momenta (J).

U x' t' P' Q' J'

1. Identity 8
2. Space inversion 6'
3. Particle conjugation 6
4. Reflection (R
5. Time reversal T
6. Inversion I
7. Weak reflection W
8. Strong reflection S

+x +t +P +Q +J—x +t —P +Q +J
+x +t +P —Q +J—x +t —P —Q +J
+x —t —P +Q —J-x -t +P +Q
+x —t —P —Q —J—x —t +P —Q —J

' R. G. Sachs, Phys. Rev. 87, 1100 (1952): Representations of
(P and T for the Klein-Gordon (K-G) field in angular momentum
expansion.' L. Wolfenstein and D. Ravenhall, Phys. Rev. 88, 279 (1952):
Representation of t for the K-G and Dirac fields.

' B. P. Nigam and L. L. Foldy, Phys. Rev. 102, 1410 (1956):
Representation of 6 for the K-G and Dirac fields.

S. Watanabe, Revs. Modern Phys. 27, 40 (1955):Representa-
tion of P, C, and T for various fields.

r F. A. Kaempffer, Can. J. Phys. 59, 22 (1961):Representation
of P, C, and T for the K-G and Dirac fields. The reader is warned
against drawing certain conclusions from this paper: (1) Spin
changes sign under charge conjugation; (2) eigenvalue of an
antilinear time reversal operator can be uniquely defined; (3) the
previous works e s e on representations of DST's is incorrect; (4)
P', T', are c numbers for the Dirac field.

P. G. Federbush and M. T. Grisaru, Nuovo cimento 9, 890
(1958).

' E. C. G. Sudarshan, Proc. Indian Acad. Sci. 49, 66 (1959).
See also R. E. Marshak and E. C. G. Sudarshan, Introduction to
Etemerttary Parte'cle Physt'cs (Interscience tracts on Phys. and Ast.
No. 11 (1961).
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The subject matter considered - in this paper is
divided into two sections. In the first section, the
formalism and notation for the Klein-Gordon (K-G),
Dirac, and electromagnetic fields are summarized, and
the transformation properties of the field functions
and the corresponding AO's under various discrete-
symmetry transformations (DST) are tabulated; the
conditions on the phase factors introduced under DST's
are also summarized in a table. In deriving the trans-
formation properties of AO's of the Dirac field, it has
been possible to avoid an explicit representation of
the Dirac matrices or spinor functions. In Sec. II, the
representations of all the discrete-symmetry operators
are given for the K-G, Dirac, and electromagnetic fields.

I. FORMALISM AND NOTATION

%e wish to find representation of all discrete-
symmetry operators in terms of creation operators
(CO's) and annihilation operators (AO's) of the free
fields in question. For this purpose, the free-field
function is expanded in terms of a certain complete set
of orthonormal functions with constant coefficients
which, on quantization, become CO's and AO's. The
operators thus introduced on quantization are referred
to as q numbers. Unless otherwise stated, the field
functions will always be expanded in discrete-linear-
momentum representation in a cubic box of volume V.

For the non-Hermitian K-G field, the expansion is"

alid

P=P krtk(r),
k, r

Q= p (rtk(1) —rtk(2)).
k, r

%e recalV' that the important physical quantity in
quantum mechanics is the square of the absolute value
of a scalar product, which has a meaning independent
of the observer. Those transformations that leave the
scalar product unchanged also preserve the absolute
value; these are linear unitary transformations.
However, there are nonlinear transformations which
transform a scalar product into its complex conjugate,
so that the absolute value is again preserved; such
nonlinear transformations are called antilinear, unitary,
or simply antiunitary transformations. Explicity, the
antiunitary transformations are expressed by

where f'k is an arbitrary-phase factor. The Hermitian
conjugate of a ket is a bra"; since the operators for
observables are Hermitian, the theory is symmetrical
in bet's and bra's. The arbitrariness of phase in the
representation of b and

I ) will be of importance when
considering antilinear transformations. The observ-
ables, Hamiltonian (H) linear momentum and charge
(the word charge is used in a generalized sense), are
given by .

H= Q P cokbk" (r)bk(r) =P coknk(r),

where

g(x, t) =P — (bk(1)e"'+bkt(2)e '"") (1.1)
(2VcoA)r

(f,g) ~ (g',f') = (f',g')*

(f,ABg) —+ (A'B'g', f') = (g', B'tA'r f')

(1.10a)

Itx=k x—cot, co= cok=+ (ks+ms)' or, in Dirac notation,

and Itk(r), bkt(r) are, respectively, annihilation and
creation operators of particles (r=1) and antiparticles
(r= 2), and obey the commutation relations

Lbk(r), f'k (r') j=&kk &„, (1 3)

and all other commutators —=0. Accordingly, the
representation for bk is written as a direct product,
arbitrary up to a phase factor $:

hk 5k )k(1X1X1 X 1XhX 1 ), (1.4)

where b occurs at the eth position in the direct product.
The vacuum is defined as

(fig& (g'If'&= (f'I g'» &1 1ob)

(fl ABI g& ~ &g'I (A'B') lf'&= (f'I A'*B'*I q'&,

where the bar on f and g indicates the complex con-
jugate vectors, and the primed and unprimed quantities
are related by linear unitary transformations. It is
apparent from (1.10) that one can represent the
antilinear operation in two alternate mays:

(1) antiunitary nr ——unitary operator (U)
Xcomplex conjugation (I),

(2) antiunitary ns ——transposition (E)
Xunitary operator (V= Us).

bk(r) IO)=0,

and is written as a direct product

Thus,
nr (AB)nrt = UA*B "Ut =ArBr, (1.11a)

(AB) t=E(VABVr)K '=Br"Art; (1.11b)

l0&=II III0.( )&; Io ( ))=f : ( ), (1 6)
k r k

' The following notation is used throughout: *=complex
c'onjugate, ~= transposed, +=complex conjugate-transposed
=Hermitian conjugate, subscript T=transposed of spinors and
y„matrices only, superscript T= transformed operator or vector.
Units have been so chosen that A=c=1.

"However, note that bras and kets cannot be added together;
see P. A. M. Dirac; The Principles of Quantum Mechanics (Oxford
University Press, New York, 1958), 4th edition, pp. 26—28.

"For discussion in this paragraph, see: E. Wigner, Gottinger
Nach. Bl, 546 (1932&; or Group Theory (Academic Press Inc. ,
New York, 1959), revised edition; J. Schwinger, Phys. Rev. 82,
914 (1951); G. Grawert, G. Luders, and H. Rollnik, Fortschr.
Physik?, 291—328 (1959).See also reference 11.
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the state vectors transform as

(1.12a)

n2I )=XV
I
)= (I*U = (Ul)*)'. (1.12b)

rttrr ——Prtr associated with the unitary Ur is doubly
arbitrary. In case of Hermitian fields, where gv is real,
the phase factor zttrr ——&P will still be arbitrary.

A superposition of antiparticle states may be
written as

On account of the reverse of factor in (1.11b), az is
called antiautomorphism. " It is clear that the two
representations are related by Hermitian conjugation.
It can be seen that howsoever one defines the antilinear
operator, the concept of an eigenvalue for an antilinear
operator makes no sense. Furthermore, under an
arbitrary unitary transformation P, the unitary factor
U of the antiunitary n transforms as PUP* '= U',
so that even if one chooses a particular representation
as real, the eigenvalues thus obtained for an antiunitary
n will not be invariant under a unitary transformation.
We are now ready to consider the time-reversal trans-
formation. If one attempts to define the time-reversal
transformation by

—bkt (2)e '"*
I
0)= Q (x,t)

I
0). (1.16a)

a (2V(op)t

Under particle conjugation, the above state should be
transformed into a superposition of particle states:

1
P ——bkt(1)e '" IO)=@'(x,t) IO); (1.16b)
a (2V(oy)'*

this yields the definition of particle conjugation as

{1.16c)

where T is a linear (see Appendix) unitary operator,
one obtains, on using the development (1.1), Angular Momentum Representation

The transformation properties of P(x, t) and ba(r) under
(1.13a) various DST s are summarized in Table II; it is easily

checked that these obey the definitions in Table I.

Tbg(1)T"=ztrbt a(2)) (1.13b)

which contradicts the commutation relations (1.3). The
following three, entirely equivalent ways are used to
remedy the situation:

(a) T=unitary (Ur) Xcomplex conjugation (1.),
then,

In angular momentum representation, Q(x, t) is
expanded in a sphere of radius R

+~ g)AlxI
P(x, t) =Q Q Q (b(k, l,m, 1)yp(x)e—'"'

k L On~= L(=2)t—
+b" (k, !,zzz, 2)yp*(x) '"'), (1.17)

and (1.14)
yP(x) = (—1)'yp( —«) = (—1) y ™(x)(1.18)

(b) 8=transposition (K)&(unitary (Vz=Ur*), and
time reversal is defined as

(1.15a)

are spherical harmonics, satisfying

yP*(x)y~ "'(x)dQ(x) =8 b~~,

(1.18a,)It follows that

and
8ba(1)8t=rtg*bt a(1)

P y&"(8, y)y& "'*(8',v') =8(cos8' —cos8)8(p' —p),
(1.15b)

8$(x,t)qV(x', t')8t=@(x', —t')$( , xt) (1.15c)— .

(c) The equation (1.15c) suggests the following
prescription for expressions of the type PqV that occur
so often in all operator expressions (e.g. , commutation
relations and Lagrangian): Replace t by t and read-
all operator relations from right to left. From (1.14)
or (1.15b), we see that

gi a I
x

I

= (zrkl I
x

I R) '~ ~+-. (k I
x

I ), (1.19)

g~i I
x

I
a«' I

x
I I

x
I

'd
I

x
I

= -8(k k') = bkA' (1 19a)
R

J~+,. being half-integral Bessel functions, are normalized
in a sphere of large radius R(kR»1):

8''E.
b&(r) = P (—i)'b(k, l,m, r)y& (k). (1.20)

"This use is due to E. C. G. Sudarshan (private cornmuni-
cation). We recall that in modern algebra, a (biunique) cor-
respondence A ~ A', B~ B' is called automorphism if (A+B)'
=A +B and (AB) =A B and antiautpmprphism If (A+B)
=A'+B' but (AB)I=B'A1. The operation of transppsitipn and
reading from right to left are clearly antiautomorphisms.

Urb„(1)Utr = Prtrb g(1), (1.14a)
bk(r) and b(k, l,m, r) are connected by the relations

where ] is the arbitrary factor associated with the
representation of ba (see 1.4); thus, the phase factor

The commutation relations are

Lb(k, l,zzz, r),bt (k', l', m', r')] = 8 br' b~& 8„, (1.21)
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Unlike bi, (r), b(k, t,m, r) cannot be chosen real; in fact

b*(k,l,m, r) = (—1)'"+'b(k,l, —m, r). (1.22)

The transformation properties of b(k, t,m, r) under
various DST's are sumlnarized in Table II.

(y„B„+m)/=0

may be developed as

(1.23)

2 1
iP(x, t) =Q Q — Lai, (s,1)ui, (s)e'"'

i .=i (Va)&
+ai,t(s,2)vk(s)e '~*]; (1.24a)

the adjoint equation is

iP(x, t) =inst(x, t)y4 ——P ——[ai,t(s, 1)uk(s)e '"*
&, & (VM)'

+ak(s, 2)Bi, (s)e'"*]. (1.24b)

The normalization has been so chosen that the spinors
tt and n and the creation and annihilation operators
a i, (s,r), ai, (s,r) are dimensionless; the latter satisfy the

anticommutation relations:

[a i, (s,r),ai, ( 'sr')]~=8 i ib„b„, . (1.25)

The index s denotes spin; however, independently of a
more specific interpretation, u and e must satisfy

P, ~,.(s).„(s)= S (ik,y„+m], (1.26a)

The normalization 6 may be taken to be —1(2~, so that

g, (ui, (s)ui, (s)—vi, (s)8i, (s)) = —2h. m=mj~ (1.26b)

and
ui, (s)ttk(s') = —vk(s)haik(s') = (m/&u)5„. (1.26c)

In (24—25), (as,ir) is the annihilation operator of a
particle (r=1) or an antiparticle (r=2) of spin +2
(s= 1) or —~~ (s= 2) in the direction ka. One could also
use the representation in which the spin is taken parallel
and antiparallel to the direction k. The development
of iP(x, t) in this case is

1
lt (x,t) = p ——(a, (X,1)u, p, )e".*

i, i=tg (p'~)'*
+ai,t (X,2)n, P,)e *" ), (1—.24c)

where ui, (X) and tii, (X) are spinors with momentum k
and spin parallel (7i= f) and antfparallel ('A= 4) to k
and momentum —k and spin parallel (X= g) and
antiparallel (X= t) to —k, respectively. The two
representations are connected by the unitary trans-
formation

A = exp( ——',i&3') exp( ', io28) =——,(1.27a)
p

Dirac Field

The field function iP (x, t) of the four-component-spinor
field satisfying the Dirac equation
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where op, op are Pauli spin matrices and n=cos(28) antiparticle state
Xexp( —',i-)p), P=sin(-', q) exp(-2irp), so that

p exp( —ikx)vk(s)a"k(s, 2) l0)=f(x,t) l0)

and

(ak(1,1)) )rak(g, i)

)s, )2,1)) )a.,(),1))

/uk(1)) (uk(t))

(uk(2)I (uk(g)))

(1.27b)

e k imp—y4y k
(1.28)

the spinors uk(s), vk(s) are not the eigenstates of the
operator a.3, this is connected with the fact that e and
0-3 are not constants of the motion. One can, however,
define an operator X, such that X k=e k and uk(s),
vk(s) are the eigenstates of Zp. This may be achieved
by noting that since

uk(g, i)uk(g)+ak(g, i)uk(g)
=uk(1, 1)uk(1)+ak(2, 1)uk(2). (1.27c)

Obviously, the two representations coincide for
=k2=0. It may be remarked in passing that in the
unquantized theory, while the spinors uk(X), vk(X) are
the eigenstates of the operator

k, s

into the particle state

p exp( —ikx)vk(s)utk(s, i)
l 0)=1t,(x,t) l 0),

k, s

Vpttt V jt p1 (1.35)

As y„are always taken Hermitian, so as to obtain
proper normalization of spinor functions, C~, C, K are
chosen unitary. Since

(y,B„+m) P uk(s) exp(ikx) =0,
k, s

(1.36a)

under space inversion, one obtains on multiplying
(1.36a) by p4 and changing k to —k

so that

po(x, t) = ep(x, t)e—'=qcC&r(x, t) =rtcCi1tr (x,t). (1.33)

The time reversal is analogously defined as

TP(x, t) T '= r)r KiP (x, t), — (1.34)

where the skew-symmetric matrix V'=C~&5 transforms
pp as

one can write
(ik„y„+m)uk 0, —— (1.23') (rpBp+m)r4 Q u—k(s) exp(ikx) =0; (1.36b)

f k y fo)+m))*
rtuk ——

l
1+i

l l
uk

~+m &2m i

similarly,

2o) )l ' 1+y4
u

) ~+mi 2

2o) ~ 1 r4
rv, =l

&~+m

(1.29a)

(1.29b)

The unitary transformation F then transforms e into

comparing

also,
uk(s) =p4u k(s), vk(s) = —y4v k(s); (1.37)

u—k(~) &74uk(&')) v k(X) =i|'4vkp '), (1.38)

whence

~4(~.)~ '=n. [))'t(—~.)Vp]r,

ypuk(1) = vk(2);

V'u k(s) = (—1)'uk*(s').

(1.39)

(1.40)

(1.41)

where XQX'. To fix the phase between u and v, for
sos', we set in the strong-reflection transformation

x =e+r [2/o) (o)+m) ]ly&& k.
Alternately, since

t&.30~

vk Ciuk C(&k) (1.31)

In the c-number theory, X may be looked upon as
mean spin. '4

Irrespective of the representation chosen, I and v are
connected by the relation and

(e k/lkl)uk/)=exp(i7r5&q)uk(X),

(e k/l kl)vkp) =exp(ivt)&p)vk(X),

(iy k —kpy4+m)uk(X) =0,
(—iy k+koy4+m)vk(X) =0.

(1.42)

(1.43)

where the symmetric matrix C& ———p4C, and the skew-
symmetric matrix C transform the p„as follows: One obtains on combining these two

and
Ciy„*Ci ' p„exp (iv.t)„4)——

C *C—1

(1.32a)

(1.32b)

—(ko+ m~4/lkl)&~uk(X) =—', exp(izaak&)uk(X),
—(ko+my4/lkl)vk(X) =

p exp(iv)5kt)ypvk(X);

The relation (1.31) is in agreement with the concept of
charge conjugation as an operation that transforms an

"See, e.g., L. L. Foldy and S. A. Wouthuysen, Phys. Rev, 78,
29 (1950).

comparison yields,

ypukP ) =n exp(iv5ki)vk(X'), (1.44)

where XPX' and n is a phase factor which we choose
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TAHI. K III. Phase factors introduced by the DST's, operating on the field functions of the
non-nermitian, Klein-Gordon (K-G) field and the Dirac field, '

K-G field
Dirac field

gS
7/C

'QP QC '/PIC QCgT
QC 'AT

'fIC rIT

K-G field
Dirac field

fjP 7/C

'QC fJT
/~AT
UPS C'rlT

'/PIC 'gZ'

'QP'VC gT
'QP 'gCQT

5P /AT

K-G field
Dirac field

QP
'QP

2
QW

2
QW

g2

a The phase factors for the Hermitian fields are necessarily real.

equal to unity. A simple calculation then gives

V'ug(X) = i exp(i~i), g)u"' g(X).

Analogously, for the Dirac spinor held, we have

(1 4~) &k,r, sl = (k 1,1l (—k, 1, 1l (+k, 1, 2l (—k, 1, 2l

For spin in the direction of s axis, one similarly obtains
(1.40) and (1.41).

The knowledge of the transformation properties of
I and v enables one to find the transformation proper-
ties of a's under various DST's; the transformation
properties of e~(s,r) are summarized in Table II.

The observables, momentum, charge, and spin, are
given by

&-»» 2
I &»2, 21&—k, 2, 1

l &k, 2,1l. (1.48)

The corresponding symmetry operators are

P= P kg q(s, r)aq(s, r)= P kYv(s, r), (1.46'I

g, s, r g, s, r

Q=E ('V. (s, i) —-V (s»))
k, s

(1.47)

&3=-~~P (1Vq(i,r) —lVq(2, r)) (kq=k2 ——0), (1.48a)

exp(orb)g) lVxP p).
), , k, r

(1.48b) (1.49)

0 1) tti Oq

oi I,o ii
('IZl = (k, i l (—k, 1

l (—k, 2
l &k, 2J, (1.46)

Since a many-particle state is a direct product «and their products, where
one-particle states, a general n-particle state in the
case of the K-6 held can be written as

(1.50)

where r = 1, 2 are, respectively, particle and antiparticle
labels. The operators 0', 6, T may then be represented
in the form

The phase factors for the squares of these operators
and of products of (P, e, T are summarized in Table III.

Eleetromagnetie Field

Qc
~ lg

nI
ny'

We assume that the fourth component A4 of the
electromagnetic 4-potentials A„ is quantized with in-
dehnite metric, ' so that all the four components are
Hermitian (Ao=iA4 is skew-Hermitian). A„may be

, L (1.47).
Qxc

~

g
0

"I"his procedure was originally introduced by Suraj Gupta,
Proc. Phys. Soc. {London) 63, 681, (1950); we here use the
convention of K. Bleuler and W. Heitler, Prog. Theoret. Phys.
(Kyoto) 5, 600 {1950).
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expanded as

4 e„(s,k)
A„(x„)=PP (bg(s) exp(ikx)

(2(o V)'

(2.1) in conjunction with the operator identities

JAB,C7 =A/B, C7 +PA, C7 B
=A fB,C)~ fA—,C7+B

(2.2)

+b'~(s) exp( i—kx)), (1.51)

e„(j,k) = (e(j,k),0), j= 1, 2, 3

e„(4,k) = (0,1)

(1.52)

are assumed real, and satisfy the relations

e„(s,k) e„(s',k) = 8,„
g, e„(s,k) e„(s,k) =8„„

e„(s,k).k„=0 for s=1, 2 -. .
fol s= 3

=i~ for s=4.

(1.53)

where co=
~

k
~

and the polarization vectors

LB,,b,7 = —b, , P,=—PB„Bt,7 =&„—& „, (2.3)

[+k)bk7 — bk) Lnk, mtg7 =0. (2.4)

enable us to construct the appropriate Q.
The simplest case is the Hermitian K-4 field, for

which particle and antiparticle are alike Lreplace b~(1),
bq(2) by bk, and b„by 1 in (1.1—1.9)7; here, one has
four operators .'bk, b k, b~k, b ~ k, which give four
bilinears; bk', bkb k, Bk——b~kb k, and nk = blkbk. The
unitary transformations constructed from the first two
transform a CO into a linear combination of CO's and
AO's, and are, therefore, not useful for our purpose
(see Appendix); on the other hand, ek, B~ have the
following properties

The commutation relations are

Lb~(s)b'~ (s')7=b.* b~~' (1.54)

Note that kg=a(blab q), (b~b q)t7=1+n~+e ~, so that

P=Q'k kP, and H=P'g (v~(h„—1), (2.5)

Physically, it is more instructive to consider the so-
called circular components of the transverse field;
these are defined by

e(k,L) = (e(1,k)+ie(2,k))/v2= e*(k,R),

b~(L) = (b~(1)—ib~(2))/v2 = b~*(R).
(1.55)

The transformation properties of the field functions
and creation and annihilation operators are summarized
in Table II; for the calculation of the latter, the
convention

e„(s,k) = (—1)'e„(s, —k)

where the prime on g denotes summation over half
the k space only (say ks) 0).

A Hermitian 0 constructed from ek's is a generator
of unitary phase transformations and space-time dis-
placements, and gives rise to the so-called multiplicative
quantum numbers. "An operator exp(iQ) constructed
from Bk's transforms bk into b k up to a phase trans-
formation, and is, therefore, essentially a generator of
DST. The maximum number of such bilinears depends
upon the number of DST's possible, and these are
enumerated in the following:

1 K-6 Hermitian: 1;

has been adopted.

II. REPRESENTATION OF SYMMETRY OPERATORS

~k b kb—k) +k bt kbk

2. K-6 non-Hermitian: 3;

(2.6)

Since symmetry operators are unitary (or have
unitary factors in case of antiunitary operators), the
representations are constructed in the form U =exp (inQ),
where n is a real number and the generator 0 is
Hermitian and is bilinear in creation and annihilation
operators analogous to the observables momentum,
charge, etc. ; under this transformation, an operator
P transforms as

UPUt = Q (—1)" Ltl, ,„,P7
(2e)!

+' E (-1)" Lfl.-. ,~7, (2.1)
(2m+1)!

where, for example, LO&,P7=LflL&, P7 7 etc. Equation

Bq(r) =btk(r)b q(r)
Ag ——bg(1)bt g(2)
Cg ——btg(2)bg(1)

ng(r) = btg(r)bg(r)

(2.7)

3. Dirac field: 7;

Bg(s,r) =a&k(s,r)a „(s,r)
Pk(r) =at~(1,r)a g(2,r)
C~(s) = at~(s, 1)a~(s,2)
Aq(s) =atq(s, 1)a q(s, 2)
Dg(r) =atg(2', r)ag(1, r)
Gz(r) =atq(1, r)a k(2,r')
Fk(s) =atg(s, 1)a~(s', 2)

Xk(s,r) =at~(s, r) ak(s, r)

(2.8)

'6 Compare, E. C. G. Sudarhan, Proc. Ind. Acad. Sci. 49, 66
(1959); G. I'einherg and S. steinberg, Nuovo cimento 14, 571
(1959).
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Thus, there can be a maximum of 2' —1=7 DST's
corresponding to 3 observables: linear momentum,
charge, and spin. The representations of various DST's
for the K-G, the electromagnetic, and the Dirac fields
are given in the following (note: prime on the sum-
mation g~»~ in the following indicates summation
over half the k space only, i.e., k»0).

(ii) Particle Conj Ngation: 8

a. exp[i' Qk nk(1)]
Xexp[-,'v- Q» (rlo*C» —goCt»)],

b. exp[iv. Qk n»(2)]
Xexp[-'v. 2» (goC'» nc—*C»)], (2 12)

c. exp{-,'v. Q» [—nk(1) —q»(2)+goC k+go*C»]).

(a)

(b)

(c)

Hermitian K-6 Field

1. SPace Inversion: P

exp (iv. Q'k n») exp{—7r p'k q (Bt»—B»)}
exp(i7r Q'» n k) exp{2v Q'» g„(B» B k)) (2.9)

epx{-,'nr Q'»( —n» —n k+gvB»+g„B»)).

These are also the representations for the unitary
factor U,. of strong reQection, if we replace pz by pU&,
note, however, that unlike 6', 5' is not a unit operator.
Even if one assumes qs real, rlrr8 ——geP will still be
arbitrary.

(iii) Reflection: (R

Z. Unitary Factor of Time Reversal: Uz

Though gr is real for a Hermitian 6eld, pre expib
——=P—

is not real because of the arbitrariness of the phase of
b» [see Eq. (1.5)].

(a) exp[i(v- —28) Q'»n» ]
Xexp[-,'v. p'k (JUT B k 'gUTB»)]

(b) exp[i(v- 25) Q—'»n k]
Xexp[-', ~ 2'» (nUrB» gvr*B'»)]-

(c) exp[~iv p'k (rlorB»+QLTr B k)]
Xexp[i(-', v- —2b) Pk n, ].

a. exp[i~ gk n»(1)]
Xexp[2i~ Z» (nzA'» gz*A k—)],

b. exp[iv Qk nk(2)]
Xexp[-,'v. p» (q~"A» —veAtk)], (2.13)

c. exp[-,'i~ Zk (nk(1)+nk(2)+VzA "+V *A.)].

These are also the representations for the unitary
factor of weak reAection; the phase factor gp~ is
arbitra, ry even if W' is required to be a unit operator.

(iv) Inversion: I

mon-Hermitian K-6 Field; Linear-Momentum
Representation

(i) Unitary Factor of Time Reversal:

Ur(expi&=~vs, v, gi=q, q2=q )

a. exp[i(~ —2&) P' (—1)"+'n»(r)]

The representation of the unitary factor Vl is given
by any operator of phase transformation; the phase
factors OUI and pl are both arbitrary, for I' is an
identity operator.

Non-Herrnitian K-6 Field, Angular-Momentum
Representation

Xexp{-';v- 2' ( 1)"[VBk(r) q~*B»( )])

b. exp[i(v. —28) p' (—1)"+'n»(r)]

Xexp{-',vr p' (—1)'[q,B» (r) —q,*B»(r)]},
(2.11)

The transformation properties of b(k, l,m, r) are given
in Table II; however, representations can be consider-
ably simplified by noting that

b*(k,l,nv, r) = (—1)~+'b(k, l, —ns, r);

the representations then are

c. exp{~iv p [rlUTB»(r)+nUT B»(r)]) exp[i P n( —1) n(k, l,ns, r)],

Xexp{-iv. p n»(r)) exp{2ib p (—1)"nk(r)).

The above expressions are also representations for P,
if one puts g~y=g„= W1.

where,

a= pp+ln. ,

=prrr+hr,

=pvr,

exp(zP p) = vf p for (p

exp(iPUr) =q~r for Ur

exp (ip~r) = rl err for Uz .
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and, (ii)

a. expgi7r Q n„n(k, l, rn, r)]
k, l,m, r

Xexp —P [q*C(k,l,m) —gC (k,l,rn)]
2 k, L,m

7r

b. exp i —P—Pn(k, l,rn, r)
2 k, l,m, r

&&exp i P— [g*C(k,l,m)+qCt(k, l,rn)],
2 k, l,m

(2.15)

These show that the spin of photon is all in the direction
of momentum. The representations of DST's are:

(i) (P= exp i Pn—g(X)
2 k, x

)&exp i P—btq(X)b A, (X'), (2.19)
2 k, 'h

(v
(ii) Ur=exp ii ———P

~
P nq(X)

where

C(k, l,rn) = bt(k, l,m, 2)b(k, l,m, l);
&(exp i P—btq(X)b q(X), (2.20)

2 k, x

ng=P=1, n2=0 for e, U~

ni ——l+1, P= 2l+1, n2 ! f——or S., Uw,

fm
(iii) Us=exp il ———p I 2 n~(Z)

These representations can also be obtained from those
in linear momentum by direct substitution of Eq. (1.20). )(exp i Pbtk(X)—bg() '), (2.21)

2 k, x

Electromagnetic Field where exp (ip) = $ is the arbitrary phase factor associated
with the antiunitarity of 7 and S.The operators (R, W, I

In terms of bl, (s) (s=1,2,3,4) the rePresentations may be obtained from the above 3 respectively by
are multiplying them with

(i) exp(im Q' ng(s))
k, s

8=exp(iv Q ng(X)). (2.22)

Xexp —P' nLP*Btq(s) —PB~(s)]
k, s

where

Bg(s)=b 1, (s)b |,(s); ng(s)=b ), (s)bg(s);

n=+exp(imb, 2) for P, Uz',

exp(iv—h, 2) for-R, Uw

p=+1 for (P, (R; real, arbitrary for Uz, Uw.

exp(nQ) = 1+0'(1—cosn)+0 sinn. (2.23)

The representations are as follows:

V. Dirac Field

Here, because of anticommutation relations squares
(2.16) of CO's and AO's vanish, so that one can obtain

exp(nQ) in the form 1+G; in fact in cases of interest,
one obtains O'= Qn, 0 n ~n, ~n~ ~~n

(ii) exp(in P n|, (s)),
k, s (i) SPace Inversion P: (expib=gi=g„; g2 ——g„)

(2.17) a. expLi(25 —v) Q' (—1)"lV&(s,r)]where

n=vr, n.+p, p
k, r, s

for 6, U„UI, respectively;
expip= $,

Xexp —P' (—1)"Lq,B~(s,r) q„*Bt|,(s,r)]—
2 k, r, s

The DST's for s=1, 2, when expressed in circular
components (X= p, &), clearly bring out the spin
property of the photon. The transformation properties b. g' (1—X (s,r) —X (s,r)+ (1—„*')lV (s,r)

(2.24)

are:
&b.(t)~'=b .(4)-
Tbg($)(pt= b g(1')
Sb, (g)S&= —b, (g)

(2.18)

k, s, r

&&~.(, )-(-»',*LB.(...)+B .(...)»,
where the prime on g indicates product over half the
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k space only. The representation for 6" is

6"= g' {1+(rt„'—1)[tV (s,r)+lV ~(s,r)]
k, s, r

+ (rt„s—1)'A g(s,r)lV g(s,r)) (2.25)

k, r

+ (v„*'+1)1Vs(1,r).V~(2,r)

= g' {1—2[)V~(s,r) —sV ~(s,r)]s) for ri„=&i
k, s, r

(vi) Unitary Factor of Weak Reft'ection:

W(rtl rtvw 92 )

and identity for g„=%1.

(ii) Unitary Factor of Time Reversal:
Ur (re rtv v =——rts* expih)——

a. g {1—tV (1,r) —lV (2,r)
k, r

a. exp —Q [rt„Gs(r) rt„*Gt—q(r)]
2 k, r

b. g {1—Vq(l, r) —.V s(2,r')
k, r

+2Ãq(l, r).~V s(2,r')+rt„Gs(r) —rt„*G"q(r)).

(2.30)

+(1—ri„*')lV~(1,r)tV ~(2,r)

b. exp{2i8 P (—1)"&Vs(1,r))
k, r

(2.26)

(vii) Unitary Factor of Strong Reflection: Us

a. exp[i' g Ãg(s, 1)]
k, s

Xexp —P [rt,Ps(r) rt,*P'I (—r)] .
2 k, r

(iii) Particle Conjugation: 6

Xexp —P (—1)'[rtvs*Fst (s) rtvsFr, (s)]—
2 k, s

b. j$ {1—)Vq(s, 1)—lVq(s', 2)
k, s

+ ( 1)'[nvs*F—~'(s)+gvsFk(s)])

(2.31)

a. exp[i' P tVg(s, 1)]
k, s

Equation (2.25) also gives representations of W' and S'
if one replaces p~ by —ig~* and qz*, respectively.

Xexp —g [ri,*Cts(s) —rt,Cs(s)], (2.27)
2 k. s

CONCLUDING REMARKS

b. g {1—3'k(s)1) —.Vs(s, 2)
k, s

+rt,Cs (s) +g,*C"g (s)) .

(iv) Reflection: (R

a. exp —P [rig*A "g(s)—rtsAs(s)),
2 k, s

b. g {1—Xg(s 1)—"V g(s 2)+2iVg(s 1)V „(s2)
k, s

+rtn*At g(s) rtsA k(s) ) . —

(v) Unitary Factor of Inversion:
I (rtq = rtvl =rts*= expi5)

a. exp[2ib P (—1)"E~(1,r)]
k, r

An examination of Table III reveals that for the
non-Hermitian fields, the phase factors due to the
squares of the operators 6, R, T, I are independent of
the phase factors due to the operators themselves;
these latter phases are therefore unmeasurable. An
analogous conclusion is obtained by Feinberg and
Weinberg' from the point of view of multiplicative
operators; squares of DST's are examples of such
operators. This unmeasurability is connected with the
existence of more than one interacting Hamiltonian

(2 2g) corresponding to the same set of observables. ""
Unlike the generators of some continuous symmetry

transformations (such as space time translations)"
that give rise to additive quantum numbers, there
does not exist an obvious physical interpretation of
the generators of DST's (or their unitary factors).
One can however decompose every DST into suitable
factors, whose generators can be separately interpreted.
The representations factored for the non-Hermitian
K-G and Dirac fields are given in Table IV. We make
the following remarks.

(2.29)

' W. Pauli, Nuovo cimento 6, 204 (1957). D. Purvey, ibid. 6,
266 (1957).

"See, e.g. , M. A. Melvin, Revs. Modern Phys. 32, 477, (1960).
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TABLE IV. Representations of the discrete symmetry
transformations of the K-G and Dirac fields. ""

U Klein-Gordon field

(P ei (ir/2)Ope —i (x/2)ne —iapQ

ei(n/2)Ope —i (n /2)ne —iaRQ

ei (7r!2)Oce
—i (7r/2) re—iac Q

7J& ei (~/2)Qpe —i (~/2)ne —iaUTQ

U~ ei (~/2)ORe —i (n/2)ne —iaUg Q

~l Any phase transformation
U' ei (~/2)OCe —i(7r/2)re —iaU8Q

Dirac field

ei (n /2)Ope —i (n /2) Qe
—iapQ

ei(&/»ORe i('ir/»Qe iaRQ

e (~/2)Ore —i(~/2)&e —iarQ

ei (ir/2)OTeis 83e—iaUZ Q

ei(~/2)Owei~88e-iaUWQ

ei(~/2)Olei7c83e —i(7r/2)A'ei f(m'~2) aUI1Q

ei (rr/2)O8ei ir8Se—i (~/2) Vei [(s'/2) —aU8] Q

a The operators O for K-G field and O and $3 for the Dirac field are
given by Eqs. (1.9), (1.47), and (1.48), respectively.

b e and N are, respectively, total particle number operators of the K-G
and Dirac fields.

& For the K-6 field Op, OR, Oc are, respectively, the bilinears B, A, C of
(2,7) summed over all k and r; for the Dirac field Qp, QR, Oc, Qr, Qw, Qr, Qs
are the bilinears B, A, C, P, G, D, F, of (2.8) summed over all k, s, i'.

(1) There is a factor e' &@ in every DST and is
responsible for, in general, the complex phase factor
gU=e' i'; for Hermitian fields, Q=O, and gp is real.
The multiplicative operators such as (P' have Q for
their generators.

(2) A factor e' s' (Sq spin in s direction) occurs for
every antilinear DST of a spin nonzero field; this
is associated with the change of sign of spin in an
antilinear DST.

(3) In the representation of the operators (P, Q., Ui,
Uq of the Dirac field, the factor e""")~of the cor-
responding operators of the K-G field is replaced by
the factor e" /') @; this is because the parities of particle
and antiparticle are opposite for the Dirac field.

(4) Apart from these there is a factor e'&~i2&"&—the
discrete factor of the transformation U (QU=—discrete
generator), which is different for every DST U, unless
one or more of the observables (P, Q, S3 vanish; i.e. ,

every discrete symmetry operator has a characteristic
discrete generator, or what is the same thing —a bilinear
in CO's and AO's. Also there are in general, cor-
responding to the three observables P, Q, J, 2' —1
= seven DST's and the same number of unitary
operators. Thus for the Dirac field there are eight
distinct bilinears. In the absence of spin one obtains
2' distinct bilinears and therefore only three distinct
discrete factors; the antiunitary DST's in this case
diGer from the unitary ones only by a possible phase
transformation and the factor of complex conjugation;
this is the case for non-Hermitian K-G field. For
Hermitian K-G field, since Q=S3——0, there are 2'

distinct bilinears and therefore only one discrete
generator. The connection between the bilinears that
are generators of the discrete factors of DST's U and
the observables that change sign under U is also
contained in equations like (2.3) and (2.5).

R.egarding eigenstates of QU, we remark that since
Qp consists of bilinears that annihilate a particle with
one physical property and create it with the opposite
physical property, only those one-particle states that
are superpositions of states with opposite physical

properties in question will be its eigenstates. Thus if
Q, =gx, , b x(r)b v(~'), its eigenstates are

ix, &=
b'~(4)+b'-~(2) b'i(1) —b"-~(2)

v2 V2

with eigenvalues +1, —1, respectively. If we identify

~

K'),
~

E') with bt&(r) ~0), for r=1, 2, respectively, we
see that during the production of E' by the strong
interaction such as 8+m —+ A'+K',

~

E') is the eigen-
state of Q; but during the latter's weak decay we get
the eigenstates ~Ei) and ~K2) of Qc (this example is
due to Grawert").

APPENDIX

In case of a Hermitian K-6 field, one can write a
general, Hermitian, operator bilinear in creation and
annihilation operators as

Q=Q n;,bi„bti„+Q (p,,b.g„.bg.,+p,, btk, .btg, .), (A1)
i17

where n,,=n, , and p,; are c-number coefficients; then,
exp(iQ) transforms bk as

Vb„„& =p, (&,„bg,+73;„b k,). .(A2)

The terms in b~& on the right are due essentially to the
second member of Q (i.e., in the parantheses). A free-
particle Hamiltonian Ho under this transformation
takes the form analogous to 0; conversely, a general
Hamiltonian II of the form 0 can be diagonalized by a
unitary transformation of the type exp(iQ). The
transformed Hamiltonian thus obtained represents the
same interaction as before, provided the eigenstates
also undergo the same transformation. In case of
perturbation calculations, one expands exp (iQ) to
obtain approximate states.

However, it may be remarked that transformation
of the type exp(iQ) does not transform a creation
operator into an annihilation operator or vice versa;
i.e., a unitary transformation (1.13) is not possible.
This has to do with unitary invariance of the theory
and antilinear nature of the time-reversal trans-
formation, the latter being connected with the positive
definiteness of energy. However, if one admits non-
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unitary transformations, e.g. , Hermitian h= exp(nQ)
(rr real and 0 Hermitian), one can construct representa-
tions that leave the commutation relations unchanged;
for example,

h, = exp(-,'~ P, Lgb, '+ st*be, ]) (3)

transforms bt~ into —stab~ and std into —(1+n~); the
commutation relations are preserved, but one obtains

Lhr, H$+= Qt, rot ht, Lhg, P$+=0; (4)

products. " The general transformation may then be
written as Q, =gq Aq. The prescription then is that 8
operates on all b~ and bra's while Q,~ operates on b~k

and ket's; this operation should be followed by reading
all expressions from right to left. The appropriate
representation of A is:

0 0 0 0 0

0 0 0 0 0 0

furthermore, the vacuum state is no longer unchanged.
Disregard of such bilinears in constructions of symmetry
operators is thus justified.

We remark that one can construct an operator a,
such that an't =ba; in fact, a is symmetric and has
matrix elements

(1& *

&2)
0 0 0 0 0

0 0 0 0
3)

—
(t +p —2) —-'*

8 8$ + ]
hatt —1j 0 0 0 0 0

0 0 0
tr4) s

0
&si

0 0 0 0
(Sq

'*

L6)

A~b~= b, bA =bt

at/O)= /0), (0/a=(0/.

( )
0 0 0 0 0

(7)

One can thus construct A& by the method of direct

it does not seem possible, however, to construct an
inverse c=a ', as the equation btc=cb seems dificult
to satisfy simultaneously with (5), though it would

appear from the theorem of po' lya" that there exist
infinitely many left and right inverses.

Finally, it is interesting to mention that there exist
a nonunitary, non-Hermitian operator A such that t6~

(7i

"See: R. G. Cooke, InfEnite Matrices and Sequence Spaces
(Macmillan and Company, Ltd. , London, England, 1950).

s' F. D. Murnagham, Theory of Group Representations (Johns
Hopkins Press, Baltimore, Maryland, 1938).


