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INTRODUCTION

HE importance of the discrete-symmetry trans-

formations in a relativistic local-quantum-field
theory is well-known; their possibilities beyond the
limitations of that theory are increasingly recognized.!
Particularly, since the discovery of the 7C® theorem,
a large number of papers have been published on this
subject ; however, little attention has been given to the
explicit representation of these symmetry operators
which is so helpful from the point of view of a
systematic study of the subject.

The purpose of this paper is to consider the discrete-
symmetry operators of the free fields from the point
of view of their explicit representation in terms of
creation operators (CO’s) and annihilation operators
(AO’s) of the fields in question; an attempt is made to
clarify certain aspects that have not been carefully
treated in the literature.

The phrase “discrete transformation” implies that
it cannot be generated continuously from the identity;
however, note that this is no longer the case, if one
admits complex transformations.? The 7TC® trans-
formation or strong reflection (as Pauli calls it) is such
a discrete transformation, invariance under which of
the local-quantum-field theory is assured if one assumes
Lorentz invariance (the inhomogeneous Lorentz group)
and the connection between spin and statistics (the
Te® theorem). Under a strong reflection trans-
formation, one replaces an interaction referred to a
left-hand frame by the one referred to a right-hand
frame together with the interchange of particles and
antiparticles and the reversal of spins and the order of
events in the original interaction. For electromagnetic
and strong interactions, one can look upon strong
reflection as a product of time reversal (7), space
inversion (®), and particle conjugation (@); the last
two of these do not hold seperately for systems of
lower symmetry (weak interactions), but only their
product does. The various possible discrete-symmetry
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1See in this connection the proof of T@® theorem in the
S-matrix approach, H. P. Stapp, Phys. Rev. (to be published).

2 See, e.g., R. Jost, Helv. Phys. Acta 30, 409, 1957.

operators obtained from the products of T, €, ® and
their effect on observables—charge (used in the
generalized sense, includes electrically neutral particles
such as K mesons), and linear and angular momenta—
are summarized in Table I. Together with the identity,
these are in all eight: @, €, ®, and & are linear, unitary
operators, while T', W, I, and .S are antilinear, unitary
operators. In literature, only the representations for
@, C, and T have been considered. In early attempts,>*
the phase factors have been generally disregarded,
Watanabe’s® work being an exception. There is also
a recent paper by Kaempfier,” who employs certain
singular operators; the algebra of these operators is
however not clear and leads to contradictions. Representa-
tions have also been treated by Federbush® and
Sudarshan.?

TABLE I. Definitions of discrete-symmetry operators in terms
of their effect on coordinates (x,t), charge (Q), and linear (P) and
angular momenta (J).

U x/ tl PI QI J’
1. Identity & +x 4+t +P 40 +J
2. Space inversion ® —-x 4+t —P 40 +J
3. Particle conjugation ¢ +x +¢ +P —Q +J
4. Reflection ® —-x +t —P —Q0 +J
5. Time reversal T +4x —t —-P 40 -J
6. Inversion I —x —t +P +4+Q -J
7. Weak reflection w +x —t —P —-Q -=J
8. Strong reflection S —x —t +P —-Q -J

3R. G. Sachs, Phys. Rev. 87, 1100 (1952): Representations of
@ and T for the Klein-Gordon (K-G) field in angular momentum
expansion.

* L. Wolfenstein and D. Ravenhall, Phys. Rev. 88, 279 (1952):
Representation of € for the K-G and Dirac fields.

8 B. P. Nigam and L. L. Foldy, Phys. Rev. 102, 1410 (1956):
Representation of @ for the K-G and Dirac fields.

¢S. Watanabe, Revs. Modern Phys. 27, 40 (1955): Representa-
tion of P, C, and T for various fields.

"F. A. Kaempffer, Can. J. Phys. 39, 22 (1961): Representation
of P, C, and T for the K-G and Dirac fields. The reader is warned
against drawing certain conclusions from this paper: (1) Spin
changes sign under charge conjugation; (2) eigenvalue of an
antilinear time reversal operator can be uniquely defined; (3) the
previous work3=6:89 on representations of DST’s is incorrect; (4)
P2, T2, are ¢ numbers for the Dirac field.

(135%) G. Federbush and M. T. Grisaru, Nuovo cimento 9, 890

9E. C. G. Sudarshan, Proc. Indian Acad. Sci. 49, 66 (1959).
See also R. E. Marshak and E. C. G. Sudarshan, Introduction to
Elementary Particle Physics (Interscience tracts on Phys. and Ast.
No. 11 (1961).
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The subject matter considered in this paper is
divided into two sections. In the first section, the
formalism and notation for the Klein-Gordon (K-G),
Dirac, and electromagnetic fields are summarized, and
the transformation properties of the field functions
and the corresponding AO’s under various discrete-
symmetry transformations (DST) are tabulated; the
conditions on the phase factors introduced under DST’s
are also summarized in a table. In deriving the trans-
formation properties of AO’s of the Dirac field, it has
been possible to avoid an explicit representation of
the Dirac matrices or spinor functions. In Sec. II, the
representations of all the discrete-symmetry operators
are given for the K-G, Dirac, and electromagnetic fields.

I. FORMALISM AND NOTATION

We wish to find representation of all discrete-
symmetry operators in terms of creation operators
(CO’s) and annihilation operators (AQ’s) of the free
fields in question. For this purpose, the free-field
function is expanded in terms of a certain complete set
of orthonormal functions with constant coefficients
which, on quantization, become CO’s and AO’s. The
operators thus introduced on quantization are referred
to as ¢ numbers. Unless otherwise stated, the field
functions will always be expanded in discrete-linear-
momentum representation in a cubic box of volume V.

For the non-Hermitian K-G field, the expansion is'

1
d(x,)=2_ -(bx(De**+bi (2)e*+), (1.1)
k (W)
where
kx=k-x—owt, w=w=-+ (K+m?)} (1.2)

and bk(7), bix'(r) are, respectively, annihilation and
creation operators of particles (r=1) and antiparticles
(r=2), and obey the commutation relations

[bk (f),ka' (1”)]= 6kk'57‘7"7

and all other commutators =0. Accordingly, the
representation for by is written as a direct product,
arbitrary up to a phase factor £:

bx=bx, =& (1X1X1-- -XleXl‘ =)

(1.3)

(1.4)

where b occurs at the #th position in the direct product.
The vacuum is defined as

by (r)|0)=0, (1.5)

and is written as a direct product

=TI 0t)=5(!) 0, 19

10 The following notation is used throughout: *=complex

conjugate, ~=transposed, -+=complex conjugate-transposed
=Hermitian conjugate, subscript 7 =transposed of spinors and
v, matrices only, superscript 7" =transformed operator or vector.
Units have been so chosen that z=c=1.
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where { is an arbitrary-phase factor. The Hermitian
conjugate of a ket is a bra'; since the operators for
observables are Hermitian, the theory is symmetrical
in ket’s and bra’s. The arbitrariness of phase in the
representation of 4 and | ) will be of importance when
considering antilinear transformations. The observ-
ables, Hamiltonian (H) linear momentum and charge
(the word charge is used in a generalized sense), are
given by .

H=Z Z wkbkf(r)bk(r)=z wknk(r), (17)
P=3" knk(r), (1.8)

and ,
Q=§ (n(1) =1 (2)). (1.9)

We recall’? that the important physical quantity in
quantum mechanics is the square of the absolute value
of a scalar product, which has a meaning independent
of the observer. Those transformations that leave the
scalar product unchanged also preserve the absolute
value; these are linear unitary transformations.
However, there are nonlinear transformations which
transform a scalar product into its complex conjugate,
so that the absolute value is again preserved; such
nonlinear transformations are called antilinear, unitary,
or simply antiunitary transformations. Explicity, the
antiunitary transformations are expressed by

. (f,8) = &.1)=(fg)* (1.10a)
an
(f,ABg) — (A'B'¢".f)=(¢',B"TA"f")
or, in Dirac notation,
(fley— &1 /)=<F"19", (1.10b)

(flABg)— (g'| (A'B))" | f)=(F'|A"™*B™*|q),

where the bar on f and g indicates the complex con-
jugate vectors, and the primed and unprimed quantities
are related by linear unitary transformations. It is
apparent from (1.10) that one can represent the
antilinear operation in two alternate ways:

(1) antiunitary e;=unitary operator (U)
X complex conjugation (L),
(2) antiunitary ap,= transposition (K)
Xunitary operator (V=U%*).
Thus,

ar(AB)ayt=UA*B*Ut=ATB?,  (1.11a)

ax(AB)ast=K(VABVHK-1=BT A" (1.11b)

11 However, note that bras and kets cannot be added together;
see P. A. M. Dirac; The Principles of Quantum Mechanics (Oxford
University Press, New York, 1958), 4th edition, pp. 26-28.

12 For discussion in this paragraph, see: E. Wigner, Gottinger
Nach. 31, 546 (1932); or Group Theory (Academic Press Inc.,
New York, 1959), revised edition; J. Schwinger, Phys. Rev. 82,
914 (1951); G. Grawert, G. Liiders, and H. Rollnik, Fortschr.
Physik 7, 291-328 (1959). See also reference 11.
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the state vectors transform as

ar)=U[y*=1)", (1.12a)

and
| )=KV[)=(|*Ut=(U])"".  (1.12b)

On account of the reverse of factor in (1.11b), as is
called antiautomorphism.’® It is clear that the two
representations are related by Hermitian conjugation.
It can be seen that howsoever one defines the antilinear
operator, the concept of an eigenvalue for an antilinear
operator makes no sense. Furthermore, under an

arbitrary unitary transformation 8, the unitary factor .

U of the antiunitary « transforms as BUB*1=U",
so that even if one chooses a particular representation
as real, the eigenvalues thus obtained for an antiunitary
a will not be invariant under a unitary transformation.
We are now ready to consider the time-reversal trans-
formation. If one attempts to define the time-reversal
transformation by

To(x,) T =nr¢(x, —1),

where T is a linear (see Appendix) unitary operator,
one obtains, on using the development (1.1),

Tox ()T =n2b"_x(2),

which contradicts the commutation relations (1.3). The
following three, entirely equivalent ways are used to
remedy the situation:

(1.13a)

(1.13b)

(a) T=unitary (Ur)Xcomplex conjugation (L),
then,
Td’(x;t) Tt= nr¢ (x) - t) ’
Tbk(l)T*=nTb_k(l).

(b) 6=transposition (K)Xunitary (Ve=Ur*), and
time reversal is defined as

and (1.14)

0 (x,1)07 =40 (x, —1). (1.15a)
It follows that
Obk(1)0T=7)o*bT_k(1) (115b)
and
0o (x,1)¢" (X' ,1)0 = (x', —1")p(x, —1). (1.15¢)

(c) The equation (1.15c) suggests the following
prescription for expressions of the type ¢¢ that occur
so often in all operator expressions (e.g., commutation
relations and Lagrangian): Replace ¢ by —¢ and read
all operator relations from right to left. From (1.14)
or (1.15b), we see that

UTbk(l)UTT= 52"7'1'17—1:(1),

where £ is the arbitrary factor associated with the
representation of dx (see 1.4); thus, the phase factor

(1.14a)

18 This use is due to E. C. G. Sudarshan (private communi-
cation). We recall that in modern algebra, a (biunique) cor-
respondence 4 < Al, B <> B! is called automorphism if (4+4B)t
=A'4+B! and (AB)}'=A4!B!, and antiautomorphism if (4+B)!
=A+4B!, but (4B)'=B'4L The operation of transposition and
reading from right to left are clearly antiautomorphisms.
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nur=Eqr associated with the unitary Uy is doubly
arbitrary. In case of Hermitian fields, where 57 is real,
the phase factor nur= £ £ will still be arbitrary.

A superposition of antiparticle states may be
written as

1
> ———bi (2)e**[0) = (x,) | 0).

1.16
k (ZVwk)’ ( a)

Under particle conjugation, the above state should be
transformed into a superposition of particle states:

1
2 b/ (1)em*[0)=¢"(x,1)[0); (1.16b)
v (W)t |
this yields the definition of particle conjugation as
Co(x,))CT=nce" (x,0). (1.16¢)

The transformation properties of ¢(x,f) and by () under
various DST’s are summarized in Table IT; it is easily
checked that these obey the definitions in Table I.

Angular Momentum Representation

In angular momentum representation, ¢(x,) is
expanded in a sphere of radius R

o+l g x|

b N=TF ¥
(20)!

k=0 m=—I
+0" (&, m,2)ym* (x)e=1),

(b (kyl7m71)ylm (x)e_iwt

(1.17)

where
yr(X)= (—=Dlym(—x)= (=Dmy*(x) (1.18)

are spherical harmonics, satisfying
fylm*(x)yp’"’(x)dﬂ(x)=6mm»6w,

2y (0,0)y1™*(0',¢") =8 (cost’ — cost)s (¢ — ¢),
lm

(1.18a)

and

gue|x| = (wk/| x| R)} T 1y (k|x]),

J 144 being half-integral Bessel functions, are normalized
in a sphere of large radius R(ER>1):

(1.19)

E ™
/glklxlgzk/|x|lx[2d|x|=—R—8(k—k’)=6kk» (1.19a)
0

bk (r) and b(k,l,m,r) are connected by the relations

8m2R\
bk(7)=<—V~];) > (—=D)w(klmyr)ym(k). (1.20)

The commutation relations are

Lok, bym,r), bt (k' 1 m’ #") 1= 8pumrdrirdiaedrr (1.21)
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where ¢, ¢; are Pauli spin matrices and a=cos(36)
Xexp(—3ig), B=sin(3¢) exp(zi¢), so that

G Clan)

) (T) (1.27b)

Uk Uk

(uk(Z))z 4 <uk(¢))

and

ax(t, Do (D) +ax(d, D)
=ak(1,1)uk(1)—l—ak(2,l)uk(2). (127C)

Obviously, the two representations coincide for k&
=ky=0. It may be remarked in passing that in the
unquantized theory, while the spinors #x (), vx(\) are
the eigenstates of the operator

U"k_‘*i’Ys’Y4'Y'k
k| (K|

the spinors #(s), vx(s) are not the eigenstates of the
operator o3; this is connected with the fact that ¢ and
a3 are not constants of the motion. One can, however,
define an operator X, such that £-k=¢-k and u(s),
vx(s) are the eigenstates of Z;. This may be achieved
by noting that since

. (1.28)

(tk vy utm)ux=0, (1.23%)
one can write
k-y \ fo+m\}
I‘fuk= (1+l )( ) Uk
w+m 2w
2(4) 3 1+’Y4
=( ) ue;  (1.292)
w+m 2
similarly,
2w ¥ 1—’)’4
I‘vk=( ) — Vg (1.29b)
w-+m 2

The unitary transformation I' then transforms e into
E=04T[2/w(w+m) iy Xk. (1.30)

In the c¢-number theory, £ may be looked upon as
mean spin.!

Irrespective of the representation chosen, % and v are
connected by the relation

ve=Ciu*=C (Ty) ", (1.31)

where the symmetric matrix C;= —v.C, and the skew-
symmetric matrix C transform the v, as follows:

Cry *Cil=7, exp (1w 4a) (1.32a)
and

Cy,*Cl=—v,. (1.32b)
The relation (1.31) is in agreement with the concept of
charge conjugation as an operation that transforms an

14 See, e.g., L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78,
29 (1950).
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antiparticle state
2_ exp(—ikx)vk(s)ati(s,2) [0)=¢(x,)|0)
k,s
into the particle state
2_ exp(—ikx)vi(s)a’e(s,1)|0)=y.(x,1) |0),
k,s
so that
Ye(x)=CY(x,1)C =ncCr(x,t) =ncCrlr' (x,). (1.33)
The time reversal is analogously defined as
TY(x)T =nr TY(x, —1), (1.34)

where the skew-symmetric matrix 7=C%y; transforms
Yu as

Ty, T1=7,. (1.35)

As v, are always taken Hermitian, so as to obtain
proper normalization of spinor functions, Cy, C, T are
chosen unitary. Since

(vu0utm) 3 ui(s) exp(ikx)=0, (1.36a)

under space inversion, one obtains on multiplying
(1.36a) by 74 and changing k to —k

(Vudutm)va 20 u_i(s) exp(ikx)=0; (1.36b)

comparing

u(s) =varu—x(s), ve(s)=—va_i(s); (1.37)
also,

U_x ()\) =iv4uk ()\,), v_k()\)=i'y4vk()\’), (138)

where AFN. To fix the phase between # and », for
s¥s’, we set in the strong-reflection transformation

SY(2.) S =n[Y" (—x,)ys ], (1.39)
yste(1) =11 (2); (1.40)
whence
Tu_x(s)= (—1)*u*(s"). (1.41)
Alternately, since
(0-k/[k|)ux(N\)=exp (1:1r5x¢)uk(>\), (1.42)
(0-k/ |k|)ve(N) = exp (imdnt) v (M),
and,
(i - k—koystm)ux(\)=0, - (1.43)

(—iy-k+k0'y4-l—m)vk()\)=0.
One obtains on combining these two

— (kotmys/ | k| yysux(\) =5 exp (iwdn)ux(N),
— (kot+mys/ | K| )ox(\) =% exp (imdnt)vsv(N)
comparison yields,
vsux(\) = exp(imdn)v(N'), (1.44)

where A#=)" and « is a phase factor which we choose
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Tarre II1. Phase factors introduced by the DST's, operating on the field functions of the
non-Hermitian, Klein-Gordon (K-G) field and the Dirac field.»

U

® 4 w
N ee ce or T® er Te
K-G field np*nc nene e np*nr nenr nc*nr*
Dxrg.\csﬁeld —np*ne nenc nenT np*nr nenr nc*nr*
1\ eTe Tee eoeT Tee Per ere
K-G field e nc*nr™ np*nc*nr* npnenT npncnr™ np*nenr np*nenr
Dirac field —np*nctnr* np*nc*nr* npnenT —nenctnr* —np*nenr np*nemr
U
AN ®2 e? T2 ®? r w2 52
K-G field m? +1 +1 +1 +1 w’ 75*
Dirac field np? +1 -1 -1 -1 —nw? 72
s The phase factors for the Hermitian fields are necessarily real.
equal to unity. A simple calculation then gives Analogously, for the Dirac spinor field, we have
Tux(N) =1 exp(imdn )u*_x(N). (145)  (ky,s|=(k1,1|(—k, 1, 1][(+k 1, 2](—k, 1, 2|

For spin in the direction of z axis, one similarly obtains
(1.40) and (1.41).

The knowledge of the transformation properties of
u and v enables one to find the transformation proper-
ties of a’s under various DST’s; the transformation
properties of ax(s,) are summarized in Table II.

The observables, momentum, charge, and spin, are
given by

P= 3 ka'k(s,r)ax(s,r)= 2 kVi(sr), (1.46)
Q:Z (‘Vk(sal)—A\Tk(s;Z))y (147)

Sy=1 3 (Nu(1,r)—Ni(27)) (k1=£k:=0), (1.48a)
k,»

Il

k
1 Y explimdn)—Ni(\p). (1.48b)
Nk, [Kk|

S

Since a many-particle state is a direct product of
one-particle states, a general n-particle state in the
case of the K-G field can be written as

where =1, 2 are, respectively, particle and antiparticle
labels. The operators @, €, 7" may then be represented
in the form

Ne Np
: )

N o o Comt

(1.47)

The corresponding symmetry operators are

_ M
. 0
e= - 75*5 ’7. ’
16
77115 .
P= 70 -
—1"6 < ’
“7171*5
- _—T’ug
T=9.0 . . .
”. R+ 2 (1.49)
1.%8

and their products, where

(o) =G )

The phase factors for the squares of these operators
and of products of @, €, T are summarized in Table ITI.

(1.50)

Electromagnetic Field

We assume that the fourth component A4, of the
electromagnetic 4-potentials 4, is quantized with in-
definite metric,*® so that all the four components are
Hermitian (4o=14, is skew-Hermitian). 4, may be

15 This procedure was originally introduced by Suraj Gupta,
Proc. Phys. Soc. (London) 63, 681, (1950); we here use the
convention of K. Bleuler and W. Heitler, Prog. Theoret. Phys.
(Kyoto) 5, 600 (1950).
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expanded as

4 eu(s)k)
A) =% ¥ 2
k =1 (2uV)}

+FB7(s) exp(—ik),

(bx(s) exp(tkx)

(1.51)

where w= | k| and the polarization vectors

Ell(jyk) = (8(j,k>,0), j= 17 2) 3
eu(4k)=(0,1)

(1.52)

are assumed real, and satisfy the relations

(ke (s k)=6
2 e,,(s,k)e.,(s,k) =0y
e.(s,k) . ky=0 for s=1,2;.
=w for s=3
=iw for s=4.

(1.53)

The commutation relations are

[0k (5)b i (s") J= 8ssBicicr-

Physically, it is more instructive to consider the so-
called circular components of the transverse field;
these are defined by

(1.54)

e(k,L)= (e(1,k)+ie(2k))/V2=*(k,R),

1.55
be(L)= Bl —ib@)AZ=br®).
The transformation properties of the field functions
and creation and annihilation operators are summarized
in Table II; for the calculation of the latter, the
convention

s}t(s)k)': (_ 1)’3“(5, - k)

has been adopted.

(1.56)

II. REPRESENTATION OF SYMMETRY OPERATORS

Since symmetry operators are unitary (or have
unitary factors in case of antiunitary operators), the
representationsare constructed in the form U = exp (ie2),
where o is a real number and the generator @ is
Hermitian and is bilinear in creation and annihilation
operators analogous to the observables momentum,
charge, etc.; under this transformation, an operator
B transforms as

2
© 2n

UBU'=3"

n=0

{ (— 1) [szgn,ﬁj}

(2n)!

0 a2n+1
7 — 1) — Qony1, , (21
+ ;[( L a]| 2.1)

where, for example, [(,8]=[Q[2,8]-]- etc. Equation
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(2.1) in conjunction with the operator identities

[4B,C]-=A[B,C] +[4,C]-B

—A[BCY—[achs  *P

enable us to construct the appropriate Q.

The simplest case is the Hermitian K-G field, for
which particle and antiparticle are alike [replace bk (1),
bx(2) by by, and 8,~ by 1 in (1.1-1.9)7; here, one has
four operators: by, b_x, bfx, bdi_x, which give four
bilinears; by?, bxb_x, Bx=0b%b_x, and nx=>1xby. The
unitary transformations constructed from the first two
transform a CO into a linear combination of CO’s and
AQ’s, and are, therefore, not useful for our purpose
(see Appendix); on the other hand, ny, By have the
following properties

[Bibxl =—b_x, px=[Bi,Bh] =nx—n_x, (2.3)
(A ] = — by, [n,nte]-=0. (2.4)
Note that Ax=[ (bxb_x), (bxb—x)!|=14+nx+n_y, so that
P=3"'vkpx and H=3'rwi(hx—1), (2.5)

where the prime on ) denotes summation over half
the % space only (say k;>0).

A Hermitian Q@ constructed from #y’s is a generator
of unitary phase transformations and space-time dis-
placements, and gives rise to the so-called multiplicative
quantum numbers.’® An operator exp(«Q) constructed
from By’s transforms by into b_x up to a phase trans-
formation, and is, therefore, essentially a generator of
DST. The maximum number of such bilinears depends
upon the number of DST’s possible, and these are
enumerated in the following :

1. K-G Hermitian: 1;
Bk=b1kb—k, Nie=01xby

(2.6)
2. K-G non-Hermitian: 3;

By (r)=btu(r)b_x(r)
Ax=0bx(1)d1_x(2)
Cr="b"(2)bx(1)

ng(r)=blx(r)bx(r)

3. Dirac field: 7;

(2.7)

Bk(sir) = di(S,f)d_k(S,f’) )
Br(r)=ate(1,r)a_x(2,7)
Cr(s)=a'k(s,1)ax(s,2)
4 k(s) = di(S,l)a_k(S,Z)
Dy(r)=a"(2,r)ax(1,r)
Gk(r) =di(1,1’)d_k(2,7,)
Fy(s)=atk(s,1)ax(s",2)

Ni(s,r)=ate(s,7)ax(s,r)

(2.8)

16 Compare, E. C. G. Sudarhan, Proc. Ind. Acad. Sci. 49, 66
(1959); G. Feinberg and S. Weinberg, Nuovo cimento 14, 571
(1959).
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Thus, there can be a maximum of 2°—1=7 DST’s
corresponding to 3 observables: linear momentum,
charge, and spin. The representations of various DST’s
for the K-G, the electromagnetic, and the Dirac fields
are given in the following (note: prime on the sum-
mation Y in the following indicates summation
over half the k space only, i.e., k3> 0).

Hermitian K-G Field
1. Space Inversion: ®
(a)  exp(ir X'k ni) exp{3T 2. « 1o (B'e— By)}

(b)  exp(ir Z'xnx) exp{im L'k np(Bx— B’} (2.9)
(©) exp{Fir Xx(—nx—n_xt+n,Betn,BN)}.

2. Unitary Factor of Time Reversal: Ur

Though 57 is real for a Hermitian field, nyr= expid= £
is not real because of the arbitrariness of the phase of

by [see Eq. (1.5)].
(a) exp[i(r—26) 2 wni |
Xexp[3m 2"« (qur*B'x—nurBi) ]

(b) eXpD,(’TI'— 25) Z,k n_k]
Xexp[3m 2/« (urBx—nur*B')]  (2.10)

(c) exp[Fir X'« (nurBixtnur*Bly)]
Xexp[i(§m—28) L .

Non-Hermitian K-G Field; Linear-Momentum
Representation

(i) Unitary Factor of Time Reversal:
Ur(expid=nur; n-m=mn, n2=n")
a. eXPD(W—Zﬁ)kZ’ (—D)rting(r) ]
Xexp{ir 2" (= 1) [n:-Bi(r)—ny*B'(r) 1},
Kk,
b. exp[(m—25) kZ’ (=D (r)]
, (2.11)
Xexp{3m kZ' (=B’ (1) —n*Bk(r) 1},
c. exp{¥ir 2 [nurBx(r)+nur*Bk(r)]}

Xexp{zir 2 nx(r)} exp{2i6 3 (—1)"nk(r)}.
k,r k,r

The above expressions are also representations for P,
if one puts nur=7,=F1.
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(%) Particle Conjugation: @
a. explir 2k nik(1)]
Xexp[%w 2k (nC*Ck_"ICCTk)],

b. exp[ir 2ok nx(2) ]
Xexp[3m 2k (ncCe—nc*Cy) ],

c. exp{3m 2 [—nx(1) —nx(2)+ncCletnc*Cil}.

(2.12)

These are also the representations for the unitary
factor U, of strong reflection, if we replace n¢ by nus;
note, however, that unlike @, S? is not a unit operator.
Even if one assumes 75 real, nyps=ng& will still be
arbitrary.

(#31) Reflection: ®
a. explir Xk nx(1)]
Xexplzim 2« (neAx—nr*4x)],

b. exp[ir >« nx(2)]
Xexp[3m 2« (nme*Ax—nrA'y)],

c. exp[iir Yok (nk(1)+nk(24)+7IRATk+77R*Ak)]-

(2.13)

These are also the representations for the unitary
factor of weak reflection; the phase factor nyw is
arbitrary even if W? is required to be a unit operator.

(1v) Inversion: I

The representation of the unitary factor Uy is given
by any operator of phase transformation; the phase
factors nur and n; are both arbitrary, for I? is an
identity operator.

Non-Hermitian K-G Field, Angular-Momentum
Representation

The transformation properties of b(k,/,m,r) are given
in Table IT; however, representations can be consider-
ably simplified by noting that

b*(k,l,m,r)= (_1)m+lb(k’l, —m,r) 5

the representations then are

@ expli X a(—=V)m(klmr)],
k,lom,r
where,
a=Bp+lr, exp(iBp)=npr for @ (2.19)
=Bur+ir, exp(iBur)=nyr for Up
=Bur, exp(iBur)=nur for Ur)
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and, (ii)
a. explir X amn(kilmr)] )

k,l,m,r

Xexp[g Z I:"I*C(kyl;m)—nc (k:lym):l}y

k,lm

= pnlkim |

k,lym,r

b [T
. €X 11—
L%

T r. (2.15)
><exp|i5 > [n*C(k,l,m)+nC*(k,l,M)]},

k. Lm
where

C(k,lm)="0"(k,l,m,2)b(kIm1);
e, Us
®, Uw

Q= 0 fOI‘

B=21+1,

G’1=ﬂ= 1,
a1=l+1,

a=! for

These representations can also be obtained from those
in linear momentum by direct substitution of Eq. (1.20).

Electromagnetic Field

In terms of bx(s) (s=1,2,3,4) the representations
are :

(i) exp{im kZ’ nk(s)} A

X exp EZ' o[ B*Bt(s)—BBx(s)]},
k,s

where

Bi(s)=b"()b-x(s); nu(s)=0"x(s)bx(s);

a=-+exp(ind,) for P, Ur;
—exp(imdss) for R, Uw

B=-+1 for ®, ®; real, arbitrary for Ur, Uw

(ii) exp (ia kz nx(s)),

L (2.16)

S

where . (217)

a=m,7m+B,8 for @, U, Uy, respectively;

expif=§£ |

The DST’s for s=1,2, when expressed in circular
components (A=4,}), clearly bring out the spin
property of the photon. The transformation properties
are:

The (D)@ =b_x(1)
Sbx(P)ST=—bx(})

Co(H)PT=b_x(}) }
. (2.18)
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These show that the spin of photon is all in the direction
of momentum. The representations of DST’s are:

(i) (P=exp[iI > nk()\)]
2 &\
mmwzmwmww(m%
2 k2
(ii) UT=exp| —i(g—ﬁ) :% nk()\)}
mm%zmmumLam)
PR
(iii) Us=exp{ —i(;—r—ﬂ) kzxnk()\)}

MW%ZNQMWW<MU
k,\

where exp (¢8) = £ is the arbitrary phase factor associated
with the antiunitarity of 7 and S. The operators &, W, 1
may be obtained from the above 3 respectively by
multiplying them with
C=exp{ir 3 nx(\)}. (2.22)
PR

V. Dirac Field

Here, because of anticommutation relations squares
of CO’s and AO’s vanish, so that one can obtain
exp(aQ) in the form 14-G; in fact in cases of interest,
one obtains = —Q,, B2,=Q,, 2,0=00,=0

exp () =14+02(1— cosa) 4+ sina. (2.23)

The representations are as follows:

(1) Space Inversion ®: (expid=m1=1np; 12=1,")

a. exp[i(26—7) X' (—1)"N(s,r)]

xexp|” 5 (—1>f[:mBk<s,r>—n,*Bfk@,r)]}
h (2.24)
b TI' (1= Ni(5) = Vs (5)+ (L= )N s (5)

XNi(s,r)= (= 1), [ Bu(s,r)+B'x(s,) 1},

where the prime on IJ indicates product over half the
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k space only. The representation for @2 is b. IT {1—=Nw(1,7)—N_x(2,7)
k,7
®2=[T" {1+ (12— D[N(s,9)+N_i(s,7)] + 0+ )N (1,1)Ni(2,7)
k,s,7

+ @ =1 Ni(s,)N-x(s,r)}  (2.25) +n,[Dx(r) = D' (r) 1}

= JT' {1—=2[N(s,r)—N_x(s,7) P} for n,=F1 (vi) Unitary Factor of Weak Reflection:
koo W (m=nuw=15%)

and identity for n,==F1. ™
y » a. exp EZ [:Gx(r) —0,*G ()] },
k,r
(#) Unitary Factor of Time Reversal: (2.30)

U (m=nur=ns*= expi) b IT 1= Vi) = Nos(2)

)

= Ne(1r)—N_x(2,7) + 2N (1,7 Vi (2,") .G (1) — 1, GT i (1))

k,r
+ (1= N(1,7)N (2,7
. (1) (viz) Unitary Factor of Strong Reflection: U g

+0, B () —B:" () 1}, 226 a. exp[im kZ’S Ni(s,1)]
b. exp{2i6 >~ (—1)"Nx(1,r)}
' Xexp g? (—=1)*[nus*Fi' (s)=nusFx(s)]t,

™ ,
XeXp{E E [nrﬁk(r)—nr*ﬂfk(r)]]- | | (2.31)
b. II {1—1\71;(3,1)—1\71((5/,2)

(#1) Particle Conjugation: C +(=1)*[nus*Fi’ () +nusFi(s)]}-
a. explir ¥ Ni(s,1)] Equation (2.25) also gives representations of W? and $*
k,s - if one replaces 1, by —inw™ and 5s*, respectively.
™
XCXP{E :E [75CT(s) —nC k(S)]}, (2.27) CONCLUDING REMARKS
An examination of Table IIT reveals that for the
b. IT {1=Nu(s5,1)— Ny (s,2) non-Hermitian fields, the phase factors due to the
k,s squares of the operators C, ®, T, I are independent of
F+1.Cx () +0.5Cli(s))}. the phase factors due to the operators themselves;

these latter phases are therefore unmeasurable. An
analogous conclusion is obtained by Feinberg and

(i) Reflection: & Weinberg'® from the point of view of multiplicative
r operators; squares of DST’s are examples of such
a. expi— 3 [ne* AT (s)—nrdx(s)]}, operators. This unmeasurability is connected with the
2 ks existence of more than one interacting Hamiltonian
(2.28)  corresponding to the same set of observables.1617
b. IT {1—Nw(s,1)— N_x(5,2) + 2N (5,1) N_x(s,2) Unlike the generators of some continuous symmetry
k,s transformations (such as space time translations)'®
+ 0¥ AT (s) —nrAk(s)}. that give rise to additive quantum numbers, there

does not exist an obvious physical interpretation of
the generators of DST’s (or their unitary factors).

(v) Unitary Faclor of Inversion: One can however decompose every DST into suitable

I(m=nur=n"=expid) factors, whose generators can be separately interpreted.
. , The representations factored for the non-Hermitian
a. exp[ 2id kz’; (=D)Vx(1n)] K-G and Dirac fields are given in Table IV. We make
the following remarks.
m S —
Xexpi— 2 [ank(r)~—mn*D*k(r)]}, 17 W. Pauli, Nuovo cimento 6, 204 (1957). D. Pursey, bid. 6,
2 k,r 266 (1957).

(2.29) 18 See, e.g., M. A. Melvin, Revs. Modern Phys. 32, 477, (1960).
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TasLE IV. Representations of the discrete symmetry
transformations of the K-G and Dirac fields.®:-

Dirac field
£i(@/)Rp i (x/2)Qg—iapQ
i (12pg—i(7/2)Qg—iarQ
&' (112 Qg g—i(x2)N g—iaGQ

U Klein-Gordon field

® ei(nIZ)QPe‘i(ﬂﬂ)ne—ia}'Q

R @Dpei(n/2ng—iarQ
e e g—iw/2mgiacQ
Up e@2pg-itx/ng—iayrQ
Uw
Ur Any phase transformation
US ei(7r/2)9(:e~'i(v/2)ne‘fnt;.sQ

ei () ginssg—iayrQ
i@/ Qpgi(n/Dng—iaywQ i (r12)w gimssg—iauwQ
01 (112 gimsse—i(m/2)N i [(r2)—ay1]Q

et (12 sginsag—i (/DN gi [(7/2)~ar 5]Q

a The operators Q for K-G field and Q and S3 for the Dirac field are
given by Eqgs. (1.9), (1.47), and (1.48), respectively.

by and N are, respectively, total particle number operators of the K-G
and Dirac fields.

¢ For the K-G field Qp, Qr, Qc are, respectively, the bilinears B, A, C of
(2.7) summed over all k and 7; for the Dirac field Qp, Oz, Qc, Qr, Qw, Q1, Q8
are the bilinears B, A, C, 8, G, D, F, of (2.8) summed over all k, s, 7.

(1) There is a factor eU? in every DST and is
responsible for, in general, the complex phase factor
nu=e¢U; for Hermitian fields, Q=0, and 5y is real.
The multiplicative operators such as ®* have Q for
their generators.

(2) A factor €i"S3 (S; spin in 2 direction) occurs for
every antilinear DST of a spin nonzero field; this
is associated with the change of sign of spin in an
antilinear DST.

(3) In the representation of the operators ®, ®, Uy,
Ugs of the Dirac field, the factor ¢!"»¥ of the cor-
responding operators of the K-G field is replaced by
the factor ¥/ 2; this is because the parities of particle
and antiparticle are opposite for the Dirac field.

(4) Apart from these there is a factor ("% —the
discrete factor of the transformation U (Qu=discrete
generator), which is different for every DST U, unless
one or more of the observables @, Q, S; vanish; i.e.,
every discrete symmetry operator has a characteristic
discrete generator, or what is the same thing—a bilinear
in CO’s and AO’s. Also there are in general, cor-
responding to the three observables P, Q, J, 28—1
=seven DST’s and the same number of unitary
operators. Thus for the Dirac field there are eight
distinct bilinears. In the absence of spin one obtains
2% distinct bilinears and therefore only three distinct
discrete factors; the antiunitary DST’s in this case
differ from the unitary ones only by a possible phase
transformation and the factor of complex conjugation;
this is the case for non-Hermitian K-G field. For
Hermitian K-G field, since Q=S3=0, there are 2!
distinct bilinears and therefore only one discrete
generator. The connection between the bilinears that
are generators of the discrete factors of DST’s U and
the observables that change sign under U is also
contained in equations like (2.3) and (2.5).

Regarding eigenstates of Qy, we remark that since
Qu consists of bilinears that annihilate a particle with
one.physical property and create it with the opposite
physical property, only those one-particle states that
are superpositions of states with opposite physical
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properties in question will be its eigenstates. Thus if
Qe=Yk.r b1 (r)b_i(#'), its eigenstates are

bt (4) 40"k (2) (1) —b"_k(2)
——0), K=
vz v

|K1)=

10)

with eigenvalues 41, —1, respectively. If we identify
| K0), | K°) with b'(r)|0), for r=1, 2, respectively, we
see that during the production of K° by the strong
interaction such as P+~ — A+ K?, | K°) is the eigen-
state of Q; but during the latter’s weak decay we get
the eigenstates |K;) and | K3:) of Q¢ (this example is
due to Grawert!2).
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APPENDIX

In case of a Hermitian K-G field, one can write a
general, Hermitian, operator bilinear in creation and
annihilation operators as

Q=3 @b ;T2 (Bibrbi;+Bi*0 kb x;), (A1)
07 i

where a;;=0a;; and B;; are c-number coefficients; then,
exp (1) transforms by as

karVT=Zi (Airbki—*‘Birkai)'

The terms in by on the right are due essentially to the
second member of @ (i.e., in the parantheses). A free-
particle Hamiltonian H, under this transformation
takes the form analogous to Q; conversely, a general
Hamiltonian H of the form © can be diagonalized by a
unitary transformation of the type exp(iQ). The
transformed Hamiltonian thus obtained represents the
same interaction as before, provided the eigenstates
also undergo the same transformation. In case of
perturbation calculations, one expands exp(iQ) to
obtain approximate states.

However, it may be remarked that transformation
of the type exp(iQ) does not transform a creation
operator into an annihilation operator or vice versa;
l.e., a unitary transformation (1.13) is not possible.
This has to do with unitary invariance of the theory
and antilinear nature of the time-reversal trans-
formation, the latter being connected with the positive
definiteness of energy. However, if one admits non-

(A2)
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unitary transformations, e.g., Hermitian Az=exp(aQ)
(a real and © Hermitian), one can construct representa-
tions that leave the commutation relations unchanged;
for example,

hi=exp{37 2_« (b0 2+7*0"2 ]} ©)

transforms by into —»*by and #y into — (1+ny); the
commutation relations are preserved, but one obtains

[hy,H] =2« wihy, [h,P1,=0; 4)

furthermore, the vacuum state is no longer unchanged.
Disregard of such bilinears in constructions of symmetry
operators is thus justified.

We remark that one can construct an operator a,
such that ab'=ba; in fact, a is symmetric and has
matrix elements

utv—2\7}
aﬁw:l:< )] a1, ptr—1; (5)
u—1

it does not seem possible, however, to construct an
inverse c=a"!, as the equation bc=cb seems difficult
to satisfy simultaneously with (5), though it would
appear from the theorem of po’ lya' that there exist
infinitely many left and right inverses.

Finally, it is interesting to mention that there exist
a nonunitary, non-Hermitian operator 4 such that

Atbt=b, bA=0b' (6)
and

AT10)=10), (0]4=0]. )

One can thus construct Ax by the method of direct

¥ See: R. G. Cooke, Infinite Maitrices and Sequence Spaces
(Macmillan and Company, Ltd., London, England, 1950).
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products.?? The general transformation may then be
written as @=]]x Ax. The prescription then is that @
operates on all by and bra’s while G operates on by
and ket’s; this operation should be followed by reading
all expressions from right to left. The appropriate
representation of 4 is:

, L ()
4\ 3
0 0 0 (—) 0 0
5
5\ %
0 0 0 0 (—) 0
6
6\
0 0 0 0 0 <—)
7
L . . . . . . . . -J

2 T, D. Murnagham, Theory of Group Representations (Johns
Hopkins Press, Baltimore, Maryland, 1938).



