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and theoretical investigations over the last fifty years.
On the other hand, research on the properties of He'
has been handicapped by the fact that the concentration
of He' in natural helium gas is at most of the order of
one part per million. ' Only in recent years has He' been
produced artificially and become available in large
amounts from the P decay of tritium H'.

Sydoriak, Grilly, and Hammel2 were the first to
liquify (97% pure) He'. Using 20 cm' (NTP) of arti-
ficially produced He' gas, they were able to determine
the critical constants of He' vapor pressure and density
of the liquid.

The attractive interactions between a pair of helium
atoms are so weak (at most of the order of 10'K) that
neither isotope forms diatomic molecules' or solidifies
under its own vapor pressure. In fact, an appreciable
external pressure (of the order of 25 atm for He' and
30 atm for He') is required in order to solidify the liquid
at the lowest temperatures.

One point of interest in the bulk properties of He' is
that, having a nuclear spin of ~, it represents the
simplest known system of interacting identical fermions,
and hence it displays the inRuence of the interactions on
properties such as specific heat and magnetic suscepti-
bility. It is interesting also in He to contrast its prop-
erties with those of He', which has zero nuclear spin.
From the point of view of the many-body problem, the
essential difference between the two isotopes is that
He' is a boson, whereas He' is a fermion. Since the
interactions between two He' atoms or two He' atoms
are the same, these isotopes offer the possibility of
studying the effects of statistics on the macroscopic
properties of a system. The difference in atomic masses
is not very important and can be regarded simply as a
multiplicative factor in the strength of interaction
t.Eq (4)3.

Fortunately, the strength of the attractive interac-
tions between helium atoms is not strong enough to
bind either isotope to a lattice. Otherwise, helium would
solidify under its own vapor pressure, and the difference
in statistics would not lead to any strikingly different
properties between the two isotopes. As a matter of

I. INTRODUCTION
' For a review of the early work on liquid He', see J. G, Daunt,

Phil. Mag. S|zppl. 1, 209 (1932).
ELIUM has two stable isotopes, IIe3 and He'. The 'S. G. Sydoriak, E. R. Grilly, and E. F. Hammel, Phys. Rev.

75, 303 (1949); E. R. Grilly, E. F. Hammel, and S. G. Sydoriak,
~ - ~ ~ macroscopic properties of He are very interest g, ,$;d 7g |$03 ~]9
and they have been the subject of many experimental ' N. Bernardes and H. Primakoff, J. Chem. Phys. 30, 69j. (j959).
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fact, the attractive interactions are so weak that in the
early days some authors4 conjectured that He' might
not condense into a liquid. However, de Boer and
Lunbeck, "by extrapolating the critical constants of
the other inert gases, made theoretical predictions re-
garding the critical constants of He', and in a short time
their predictions were fully verified by the experiments
of Sydoriak, Grilly, and Hammel. '

In this review, we discuss the available experimental
data as well as the current theoretical situation for both
liquid and solid He'. %e place the emphasis on basic
facts and ideas, rather than on an exhaustive presenta-
tion of the existing literature. Some aspects of the
properties of He' are mentioned only brieQy, and we
refer the reader to the original papers. A list of books
and review papers can be found at the end of this paper.

II. STATEMENT OF THE THEORETICAL
PROBLEMS

1. Quantum-Mechanical Equations of Motion

According to the theorem of Born-Oppenheimer, an
approximate quantum-mechanical description of a
system of E helium atoms can be given in terms of a
Schrodinger equation for the motion of S interacting
nuclei,

V (r,,) = sr(r, ,/rs)= sv(x, ,),—

and hence, Eq. (1) can be written as

(3)

atom Schrodinger equation. To neglect the many-body
forces is equivalent to neglecting the inQuence of the
medium (i.e., of the remaining X-2 atoms) on the motion
of the four electrons in question, which simplifies the
problem considerably.

An analysis of the gas-phase experimental data of all
the inert gases shows that the theoretical, two-body,
interatomic potentials obtained in the way described in
the foregoing give only a fair description of the electronic
interations and, hence, of a macroscopic system of
atoms. A better description of the gas-phase data can
be obtained by introducting slight empirical modifica-
tions in the theoretical, two-body, interatomic po-
tentials. ' For the heavier inert gases, the same phe-
nomenological interatomic potential is capable of
describing the properties of both the gaseous and solid
phases, and this may be taken as an indication of the
unimportance of many-body (density-dependent) forces.

Among the variety of analytical forms proposed by
different authors, the simplest satisfactory form of the
empirical interatomic potential involves two phenome-
nological constants, which can be taken as: (1) the
minimum value —e of the interatomic potential, and
(2) the interatomic distance rs at this minimum. Any of
these two-body interatomic potentials can be written as

&&4 (r,~)=&4 (r ~) (1)

where m is the nuclear mass, the r's and e's the position
and spin coordinates of the E nuclei regarded as fixed,
and h(r; e) is the lowest electronic-energy eigenvalue
which depends on the positions r and e of the X nuclei.
8 also includes the Coulomb repulsions among all nuclei.
Since the ionization potential of a helium atom is su%-
ciently large compared to the average Coulomb inter-
action between the constituents of neighboring helium
atoms (except at extremely high pressures), the elec-
tronic-energy eigenvalue h(r;e) can be written, to a
good approximation, as a superposition of central and
spin-independent "two-body potentials, "

(2)

Equation (2) corresponds to neglecting the so-called
many-body forces.

According to this separation the two-body potential
V(r;,) should be obtained from the solution of a two-

4I'". London and 0. K. Rice, Phys. Rev. 73, 1188 (1948);
L. Tisza, Phys. Today 1, 26 (1948).' J. de Boer and R. J. Lunbeck, Physica 14, 318 (1948); 14, 510
(1948); 14, 520 (1948).' J. de Boer, in Progress in I.om Temperature Physics, edited by
C. J. Gorter (North-Holland Publishing Company, Amsterdam,
Netherlands, 1957), Vol. II.

where X'—=A'/2nzsrs 6' is now the Laplacian with
respect to x;, and E is measured in units of e. Despite
the many different analytical forms used by different
authors, the value of the constant ) is rather insensitive
to the particular form of v,;. A typical interatomic po-
tential is the so-called 12-6 Mie-Lennard-Jones potential

z(x;,) = (x,,—"—2x,;—'),

with parameters e and rp as adjusted for helium by
de Boer,"

e= 10.2'K, rp= 2.87 A,

for which P =0.269 for He4 and ) =0.310 for He'.
Even though the results of theoretical calculations

which "start from the origin" are sensitive to the de-
tailed behavior of the interatomic potential at short
interatomic distances, we may expect a 12-6 potential
to provide a fair description of the bulk properties of
either helium isotope. For gross estimates of the effects
of the interatomic forces, one may use nonsingular
potentials which 6t the 12-6 potential near rp, for
instance a Morse potential,

~ In many instances, we use units such that Boltzmann's con-
stant k is equal to unity. In this case, energies are measured in 'K.
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For a system of He' atoms, one is interested only in
the antisymmetric solutions of Eq. (4), i.e. , those that
change their sign when the coordinates r and e of any
two atoms are interchanged.

There are two main difhculties in obtaining approxi-
mate solutions of Eq. (4) in the case of helium. First,
the strong singularity of the interatomic potential at
the origin rules out any approximation based on an
independent-particle model with overlapping wave
functions. Second, the relatively large value of X for
helium, which implies large zero-point motion, enhances
the importance of correlations between neighboring
atoms.

If one includes in Eq. (4) terms corresponding to
external interactions (such as an external pressure
exerted by the walls of a container or an external mag-
netic field), one should be able to answer questions such
as: the nature (gas, liquid, or solid) of the system at
p=0 and T=O, the volume, cohesive energy, compressi-
bility, specific heat, and nuclear-magnetic susceptibility
as functions of pressure, etc. Unfortunately, theorists
have not had much success with this difficult task, and,
for the liquid, we only know one serious attempt to nu-
merically calculate these properties from first principles. '

The simplest theoretical approach consists of dis-
regarding completely the interactions among helium
atoms and treating the (liquid) system of X He' atoms
as an ideal Fermi-Dirac gas. For purpose of reference,
we summarize in the next section the properties result-
ing from such a simple model.

2. Ideal Fermi-Dirac Gas Model for the Liquid

According to this model, the energy, E is purely
kinetic and, hence, positive, and at T=O'K. it can be
written as

E= (3/5)ÃkT p,

where the Fermi temperature Tp is given by

k T p (fi'/2m) (3m'1V/——V) &.

Substituting the numerical values, we obtain

Tp 5(VO/V) "K, — (10)

where Vo ——V~;~(p=0) =36.7 cm'/mole. ' Therefore, the
energy, pressure, and compressibility at O'K are
given by

8=3(VO/V) Wk, (11)

corresponding to an average potential, to the right-hand
side of Eq. (11) would not have much value since the
ideal Fermi-Dirac (F-D) gas model does not provide a
way of calculating this (negative) energy as a function
of V and T. According to Eq. (11) the zero-point energy
of the liquid at O'K and V= Vo is equal to 3'K/atom.
Since the maximum interaction between two helium
atoms at a distance 1.7rp (corresponding to the average
interatomic separation 5 A in the liquid at p=0 and
T=O) is of the order of —0.8'K, even a coordination
number as large as 8 will make the liquid only barely
bound (3—3.2= —0.2'K/atom). The experimental value
for the latent heat at O'K is, on the other hand, 2.5'K/
atom. '

Again at O'K and V= Vp, Eq. (13) gives a compressi-
bility K=13% atm ', compared to measured values of
about 3.7% atm '. The velocity of sound is proportional
to E ', and hence the theoretical velocity is smaller than
the experimental value by a factor of about 2. At O'K
and V= Vo, the actual liquid has a zero pressure while

Eq. (12) gives p(VO)=5 atm.
According to the ideal F-D gas model, the specific

heat Cz at sufficiently low temperatures is linear in T,
and is given by

Cv/&=5 (T/T p),

which for U= Uo gives

Cv=2T cal/mole'K,

(14)

(15)

given by
n~ =V '(BV/BT)~, —

n„=yEC./V,

where K is the compressibility and

y= —d lnTp/d lnV= —', .

From Eqs. (10), (13), and (16), we may write

contrasted to an experimental value, below 0.1'K, of
about 5T cal/mole'K. The equations above also show
that, at very low temperatures, Cv 'fBCv/Bp jr = —&%
atm ' according to the ideal F-D gas model, while
experimental values are about +1% atm '. At higher
temperatures, the specific heat of an ideal F-D gas tends
smoothly to (3/2)E, while the specific heat of liquid
He' above 0.5'K is quite complex. (See Fig. 10.j

The ideal F-D gas model also predicts a positive
thermal-expansion coeKcient,

p =2 Vo '(Vo/V)'~'1Vk, — (12) n„= (1/5) ( /VV)+o'T' K', (17)

E= (3/10) Vp(VO/V) "'/1Vk. (13)

Equation (11) obviously cannot represent the latent
heat of the liquid at O'K. Adding a negative energy,

'K. A. Brueckner and J. I.. Ctamniel, Phys. Rev. 109, 1040
(&958'.

9 Some experimental values are quoted in this section without
reference to the original papers which can be found in Chaps.
III and IV.

which, for V=VO, gives n„=0.2T/'K, compared to
experimental values n„'of the order of —0.1T/'K.

According to the theory of the magnetic properties
of an ideal F-D gas,"one expects the ground state to
have a zero total spin; i.e., we expect the liquid not to
show spontaneous nuclear magnetization. All the experi-
mental data on the nuclear-magnetic susceptibility

& A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, England, 1954).
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where p is the nuclear-magnetic moment of a He'
nucleus, $= Tp/T, a prime denotes differentiation, and

e*—&+I

According to Eqs. (18) and (19), the low- and high-
temperature limits of the susceptibility are given,
respectively, by

(20)X(0)= (3.&VIi'/2kTi),
and by

X(~)=Nlrb'/kT, (21)

down to 0.02'K confirm this prediction. The theory of
the ideal F-D gas predicts, furthermore, a value for the
small paramagnetic-spin susceptibility y, which at con-
stant volume is given by

x(T) = (NI"/kT)F .'(5)/-F'. (&), -

mass of about 10. Hence, the specific-hea, t data show
that the e(k) spectrum is quite unusual and that the
fit to the magnetic-susceptibility data is only fortuitous.
Therefore, not much meaning should be attached to the
magnetic value 10 for m*/m. Thus, we may conclude
that an effective mass is not a useful concept, except as
a quick guide to certain experimental data.

Strictly speaking, one cannot make theoretical pre-
dictions about transport properties (such as thermal
conductivity x, viscosity rl, and self-diffusion D) on the
basis of the ideal F-D gas model, since interparticle
scattering is an essential factor determining these
properties. Nevertheless, this simple model is capable
of giving the temperature dependence of these prop-
erties. Only a detailed knowledge of the scattering and
interatomic forces would allow one to calculate the
numerical constants involved. ""The qualitative pre-
dictions of the ideal F-D gas Inodel for very low tem-
peratures are" '4

I x(T)kTINw'7r=rz&ous=s~ (22)

the latter coinciding with the classical value given by
Curie's law. From Eqs. (20) and (21), we can see that
x(0)/y(oo) assumes a value equal to —,

' at T—Tr, (0)/3;
1.e.)

and
D~ T 2

(23)

(24)

(25)

where Tp(0) = Ts (T=O).
Hence, according to the ideal F-D gas model, we may

expect strong deviations ( 50 j~) from Curie's law at
temperatures as high as 2'K. Early experiments"
showed that, within a few percent, Ty(T) is independent
of T down to 1.2'K, and subsequent experiments"
showed that the nuclear-magnetic susceptibility of
liquid He' under its own saturated x7apor pressure is
such that Eq. (22) is satisfied for T=0.2'K, indicating
a value of Tp(0)=0.6'K, or ten times smaller than the
one given by the ideal F-D gas model

I
see Eq. (10)7.

One might expect that the predictions from the ideal
F-D gas model can be improved by introducing an
effective mass m*. It is very easy to see that such a
concept does not improve the situation at all. In fact,
the values of m*/m necessary to make the predictions
of the ideal F-D gas model fit the experimental data
should be, approximately, 2.5 from Cz, 0.3 from E or
e„,„d, and 10 from y. Furthermore, each of these
effective masses should have quite different temperature
and pressure dependence.

Another important feature of the experimental data
is that the specific heat of liquid He' above 0.5'K
(see Fig. 10) does not resemble, even qualitatively, the
specific heat of an ideal F-D gas, whereas the magnetic
susceptibility up to 2'K can be described" by Eq. (18)
with an empirical, temperature-independent, effective

"W. M. Fairbank, W. B.Ard, H. G. Dehmelt, W. Gordy, and
S. R. Williams, Phys. Rev. 92, 208 (1953).

"A. A. Abrikosov and I. M. Khalatnikov, J. Exptl. Theoret.
Phys. (U. S. S. R.) 32, 1084 (1957) Ltranslation, Soviet Phys. —
JETP 5, 745 (1957)j.

~3 W. M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev.
95, 566 (1954).

To some extent, Eqs. (23)—(25) agree with experi-
mental data, but we postpone a discussion for Secs.
III.9, 10, and 14.

where + refers to "spin-up, " —to "spin-down, " and
n~(k) is equal to 1 or 0, depending on whether or not
the state k is present in the determinant. y(k) is the
Fourier transform of the interatomic potential,

y(k) =—(N/V) e""'V(r)dr. (27)

If all states k+ up to a certain k+~, and no other, are
present in the determinant, the summations in Eq. (26)
can be restricted to k~&k~", and the e~ taken equal
to 1, where

( /34) r( 7~~k/ )2's= N~/V. (28)

'A. A. Abrikosov and I. M. Khalatnikov, Repts. Prog. in
Phys. 22, 329 (1959).

5 S. Tomonaga, Z. Physik 110, 573 (1938); K. S. Singwi and
L. S. Kothari, Phys. Rev. 76, 305 (1949); R. A; Buckingham and
H. N. V. Temperley, ibid 78, 482 (1950); I. I. . Pomeranchuk,
J. Exptl. Theoret. Phys. (U. S. S. R.) 20, 919 (1950).

3. Inhuence of the Interactions on the
Properties of the Liquid

The simplest way to include the effects of interactions
is given by first-order perturbation theory. For a single
Slater determinant of plane waves, the energy 8 in first
order is given by

E= (k'/2m)gg Ln+(k)+ n (k)7k'+ -', Nys
—(I/2N)pk pa n+(k)n+(k')y(k —k')
—(I/2N)ga Pa n (k)n (k')y(k —k'), (26)
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E*(ll) =(1/2N)L(1~'/4)+ (N'/4)3vo, (33)

and, hence

Ile kg

FIG. i. Two possibk relations between the Fourier transform
y of the interatomic potential and the Fermi momentum.

J~(k)=—(1/21V)ps as~(k')y(k —k'), (30)

If N(k) is replaced by a Fermi-Dirac distribution func-
tion, E represents the thermodynamic average energy,
and we may write

E(U, T) = ', 1Wyp(V)+-Pg rs+(k)LTs —J~(k)]
+E~ ~-(k)P'.—J-(k)], (29)

where TI,= k'k'/2m —and

Thus, if &0 is su%ciently large and positive, we have
E(l$)= (3/5)Ep($$) —E,($$)(E(gJ,), which means
that the ground state will be ferromagnetic in spite of
the increase in kinetic energy. If &0(0 the antiferro-
magnetic ground state is likely to be favored.

On the other hand, if o))k p ' Lsee Fig. 1(b)], we have
E,(&&) F,(&—&) Nyp/—4(kpo)', and the decrease in
kinetic energy will favor an antiferromagnetic ground
state, independently of the sign of yo.

In the case of liquid He', we have kp(IJ, )—2/o, and
hence we expect the ground state to be antiferromag-
netic, as in fact it is.

From the experimental values for Cy, one can infer
the behavior of e(k) near kp. In fact, since m*(Cv)
=2.5m, we may conclude that

(dJ~/dk) i.=pp—k'k p'/4m —4'K A. (35)

Equations (29) and (30) allow us to predict the be-
havior of the magnetic susceptibility and, hence, to
understand the reasons for the large difference in

effective masses $m"'(Cv) —2.5, and m*(x)—10], as
follows.

In order to calculate the magnetic susceptibility, one
has to calculate N+ —N —= 2v as a function of the ex-

ternal, applied magnetic 6eld H, where

the so-called exchange energy, depends on volume,
temperature, and total magnetization.

Equations (29) and (30) do not include any correla-
tion between di6erent particles, and the y's are meaning-
less for a singular interatomic potential like the one in
Eq. (5). In this case, one has either to include an arbi-
trary cutoff" in the interatomic potential or to replace
it by a nonsingular potent. ial like the one in Eq. (7).
Cutoff factors have the disadvantage that they are
useful only in o posteriori theories. On the other hand,
replacing a singular interatomic potential by one in
which the singularity has been removed does not intro-
duce any extra parameter into the theory, and a priori
calculations are still possible. Nevertheless, in the
present case, even a soft potential like the Morse
potential retains much interatomic repulsion, and the
term —',Nyp will dominate the right-hand side of Eq. (29),
which will be positive. Hence, we may expect that the
effects of correlation are important for a calculation of
the cohesive energy.

A qualitative discussion of the effects of the exchange
energy on the specific heat (effective mass or density
of states) and magnetic susceptibility can be given as
follows. If the ground state is ferromagnetic (N+ ——N,
and N =0), the Fermi momentum kp($$) will be
larger than k p(11) for the antiferromagnetic state
(1V+——N =1V/2) by a factor of 2'; i.e.,

N+ ——Q„is+(k), N =+I, n (k), iV++N =N,

and for an antiferromagnetic ground state and weak
magnetic fields N+—N —N/2. Since J~(k) depend on

rs~(k), we see that J~(k) will depend on the external
magnetic field or, more precisely, on the magnetization
3E=xII. If N& ———,'N~&v, we may write

J,(1,1,p) =J,Lk,k, (-;Nw v)]
-=J~Lk,kp(N)]~(aJ/ak p)Akp(v). (36)

From Eq. (30), we have

BJ U 8
= (2s.)

—'— y(k —k,)dki
Bkg 2.iV BkP' j7g1( kJ

f T 3y(kp —k)
+Ol =, (37)

Tp* 4kp

where ~kp~ (k p, and where the factor ss was introduced
for convenience only. Above Tp*/10, the terms
0 (T/T p*) are not negligible and, hence, our final

results, Eq. (45), are applicable only below 0.2'K. Since
Dkp(v)/kp= (v/3)/(N/2), we obtain from Eqs. (36)
and (37),

k p(1l) = 2*kp(fl), and Ep(TI) = 2*Ep(tl). (31)

If the range of the repulsive forces 0 is much smaller
than 1/kp, as shown in Fig. 1(a), then the exchange
energies E, will be independent of kp, and they will
be rou hlg

E,(1l)= (1/2N)Nsyo (32) J~(k, v) =J~(k,0)a (v/21V)y(kp —k). (38)

"l. . Goldstein and M. Goldstein, J.Chem. Phys. 18, 538 (1950). Therefore, we may write, in the presence of a magnetic



LIQUID AND SOL I D H e'

field B,
E(H) =-', 1Vyo+Pk Ln+(k)e+(k, v)+n (k)e (k, v) j,
where

(39)

e~ (k, v) = e*(k)+As = fi'1s'/2'
—J~(k) W (v/2$)y(ko —k) W pH, (40)

As=—(v/2X)y(ko —k)+pH.

The magnetization M is given by

(41)

1—(v/4&u') x*
(45)

At very low temperatures (T«0.2'K) )see Eq. (20)j,
x*/21VIJ, ' = s Tv*, and, hence, from Eq. (45)

x*(T)
x**(T)= —(T«T,*). (46)

1—3~/8kT, *(O)

Since Cz data indicate that Tp* may be as small as
1.5'K, and since the susceptibility remains finite at all
temperatures, we may conclude that

(47)

An estimate of y can be obtained from specific-heat and
magnetic-susceptibility data. From susceptibility data,
xo"*/xo=9, from Cv data xo'/xo ——Tv/Tv* —2.4~0.4;
and hence from Eq. (46)

1—3y/8kTv* —0.31, or since Tv" 1.7'K, —
we may conclude that at zero pressure

~—-3.7')0. (48)

At temperatures above 0.2'K, Eq. (45) is not ex-
pected to apply to liquid He' because of the terms
neglected in Eq. (28).

Since no interatomic potential appropriate to the gas
phase would give such a small value for p, we may con-

M = (IV~ cy —)p =p, P, t n(c" (k) —as) —n(e*(k)+Dr)]
2@ =A (k) (r)/r) ev*)Q s nLe*(k) j+0(v'/Ã), (42)

where the term O(v'/E) is completely negligible for
usual magnetic fields. When the effects of exchange are
partially neglected, we have 6&=@II, and

M =2usH(r)/Bev*)gg nLe*(k)]=x"'H, (43)

where y* is the ideal F-D gas susceptibility, given by
Eq. (18), except. that t'since J(k) is included in e*(k) of
Eq. (42)] the Fermi energy ev* is the one given by the
specific-heat data.

If the effects of exchange are taken into account, both
in e*(k) as well as in h~, then A(k) = (v/2N)y+lsH, and
Eq. (42) become, in view of Eq. (43),

M =g*(H+ vy/2Xlj, ), (44)

or, since 2' =M, and M=—g"'*H,

elude that the effects of correlations are very important,
and that y(k) should be regarded as the Fourier trans-
form of some effective (softer) interatomic potential
instead of the actual interatomic potential appropriate
to the gaseous phase.

4. Theories of the Liquid Phase

Many authors have discussed the inhuence of particle
interaction on the properties of liquid He'.

Goldstein'7 assumed that these interactions do not
destroy the relation

~=~ »2Lx(T)/xo(T) j (49)

between the magnetic susceptibility and entropy of an
ideal F-D gas," where xo is the ideal paramagnetic
Langevin susceptibility. Goldstein assumes that Eq.
(49) gives not the total entropy of the liquid but only
the "partial spin-entropy, " and that to obtain the total
entropy one should add a "nonspin entropy, " about
which this theory does not make any assertion. Despite
its interesting features and consequences, this theory
rests on a basis of questionable assumptions, viz. , (1)
that the entropy of the liquid can be separated into
spin and nonspin parts, and (2) that the spin entropy is
related to the magnetic susceptibility by the ideal F-D
gas relation of Eq. (49). Even though Eq. (49) may be
quite general, the entropy-separation hypothesis is
rather vague.

Landau" " proposed a phenomenological theory of
the properties of liquid He' that contains a phenomeno-
logical interaction function f(k,k', o,o'). lf the energy of
an excitation, when the system is characterized by a
distribution function n(k), is given by eo(k, o), then
Landau assumed that the energy of this excitation when
the distribution is altered by an amount characterized
by be is given by

e(k,o) = eo(k, rr)+ 3n(k', o') f(k,k', o,o')d(k', a'), (50)

which is a generalization of Eq. (29).
Equation (50) is quite general. The only restriction

on its applicability to a real system is that the width 6
of the level e(k, o) has to be sufficiently small compared

.to the spread kT of the derivative of the Fermi distribu-
tion. If one assumes that the lifetime 7 (—A/A) is of the
order of the relaxation time for thermal conductivity or
diffusion, one then. expects Eq. (50) to be applicable at

'" L. Goldstein, Phys. Rev. 96, 1455 (1954); 102, 1205 (1956);
112, 1465 (1958); 112, 1483 (1958); 117, 375 (1960); Ann. Phys.
8, 390 (1959).

's F. Bloch, Z. Physiit 53, 216 (1929);L. Goldstein, Phys. Rev.
96, 1455 (1954).

L. D. Landau, J. Exptl. Theoret. Phys. (U. S. S. R.) 30, 1058
(1956) Ltranslation Soviet Phys. —JETP 3, 920 (1957)g."L. D. Landau, J. Exptl. Theoret. Phys. (U. S. S. R.) 32,
59 (1957) Ltranslation, Soviet Phys. —JETP 5, 101 (1957)j."L. D. Landau, J. Exptl. Theoret. Phys. (U. S. S. R.) BS,
(1958) Ltranslation Soviet Phys. —JETP 35, 70 (1959)j.
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temperatures such that T)&A/kr(T). Thermal-conduc-
tivit, y data (see Eq. (64)j give r(T)=6X10 'T ' sec.
Hence, we expect Landau's theory to be applicable only
well below 0.1'K.

From Cy and g data, Landau was able to infer some
of the features of the interaction function f Th. e results
of this theory are essentially the same as the ones given
by the simple-exchange model discussed in the fore-
going, if f(k,k',e,o') is taken to be proportional to
-&(k,k')(1+o e'). The generality of Landau's theory
resides in the unspecified interaction function f Desp. ite
its generality, this theory serves only as an a posteriori
theory, since the function f cannot be simply calculated
from first principles, and even its rough features can
only be inferred from C& and p experimental data. The
most interesting and the unique feature of Landau's
work is in regard to the propagation of sound in liquid
He . This is discussed at the end of this section.

The only serious attempt to numerically calculate the
properties of liquid He' from first principles has been the
work of Brueckner and Gammel. s Their results contain
the same qualitative features as those of Landa, u's

theory or of the simple-exchange model. However, no
phenomenological parameters are introduced in their
calculations which start from a Schrodinger equation
with a given interatomic potential. Even though these
interatomic potentials may be singular, Brueckner and
Gammel's method of calculation removes the singularity
by the use of a reaction matrix. Hence, these authors
were able to calculate the ground-state energy as a func-
tion of volume and, thus, the density as a function of
pressure, cohesive energy, and compressibility at O'K.
Two interatomic potentials,

V(r) = VOL(~/r)" —(~/r)'3,
Up=40. 88 K, E=2.55 A,

V(r) = Vo 1200e 4'8~"—
1.24 1.89

r6

Up=7250'K, r in A,

(51a)

(51b)

were used in the calculations. Even though the po-
tentials of Eqs. (51a, b) are almost identical, except near
the origin, the results were found to be very sensitive to
the behavior of V(r) near the origin. Brueckner and
Gammel also calculated Cy and y for the potential of
Eq. (51b), which gives a cohesive energy —1'K,
compressibility =5.3% atm, (m*/m) ov—1.84 and
(nt~/rn) ~

—12. The reason for the large apparent rn„* is
the same as explained by the simple-exchange model.
Brueckner and Atkins'-' extended the calculations of
Brueckner and Gammel, and calculated the thermal-
expansion coefficient n„of the liquid at low temperatures
which depends on dm*/d V. All the results on the basis

"K. A. Brueckner and K. R. Atkins, Phys. Rev. Letters 1,
315 (1958).

of this theory are applicable only below 0.1'K, and the
theory does not offer any explanation for the properties
of the liquid above 0.1'K.

As mentioned in the foregoing, the most interesting
result of Landau's theory concerns the propagation of
sound in liquid He'. At sufficiently low temperatures
(T(0.05'K, see Sec. III.9), both the relaxation time
and the mean free path of excitations near the Fermi sur-
face will increase as T '. Therefore, at suKciently low
temperatures, the relaxation time r (or mean free path
t vrr)—is much larger than the period T—u&

' (or
wavelength X= v, /v=vr/co), and a steady state cannot
be reached within a period of oscillation (or within a,

wave's length). Consequently, an ordinary, compres-
sional sound wave cannot propagate in liquid He' if
co~)&i. In this case, a different kind of disturbance
propagates through the liquid, as discussed in the
following.

If we consider a small disturbance be proportional to
expi(k r &ot) of th—e equilibrium distribution no, under
conditions of long relaxation time 7 and high frequency
cv, ~r))1, we obtain from Boltzmann's transport equa-
tion an integral equation for be,""viz. ,

BSp
(k v —~)8n=k v ftin'd (k',e), (52)

where Piv= gradqe(k).
Taking the direction of propagation k for polar axis

and defining c=~/k (the velocity of sound) and s= c/v,
we may write Eq. (52) as

BSp
(s cosg)bn—= cosg fbn'd(k', o').

86
(53)

If Eqs. (52) or (53) have a solution, we see that the
disturbance is confined to the Fermi surface )since from
Eqs. (52) or (53) on (Bno/Be)]. Landau has given the
name zero sound to this peculiar disturbance.

In the simple case that f is independent of angles and
spins, we have

cos8 Bnoi
!be

s cosa Be I
(54)

Hence, the disturbance is confined to the Fermi surface
and, if f)0, mainly in the forward direction as con-
trasted to a compressional sound wave, in which case
be cos9, which means a rigid displacement of the Fermi
surface. In order that Eq. (53) have a real solution, i.e.,
s real, f(0) (which is similar to our —yo$ must be
positive, which seems to be the case for liquid He.
Landau" has shown that, for a nearly ideal F-D gas, as
f(0) —+0, s~ 1, and hence, c —+ vr —+3lv, . Since the
condition co7))1 is not easily met, there has been no
experimental verification of these ideas. Since
r—6&(10 "T ' sec, we can expect that zero sound of
10 Mc/sec will be observed only below 0.002'K.
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S. Suyer6uid Phase Transition

Different authors" have expressed various opinions
on the question of whether or not Bose-Einstein sta-
tistics are an essential factor for the superQuidity of
liquid He'. Therefore, the existence or nonexistence of
superfluidity (a,s we know it for He') in liquid He' would
clarify the role played by the statistics in this phe-
nomenon. Early experiments"' did not reveal any sign
of superQuidity in liquid He' down to 0.5'K, and the

specific heat having become linear'4 in T below 0.1'K
seemed to show that He' behaved qualitatively like a
system of free fermions.

However, the phenomenon of superconductivity
shows that a system of nearly free fermions may undergo
a different kind of phase transition at sufficiently low
temperatures.

Based on the ideas leading to the superconductivity
theory by Bardeen, Cooper, and Schrieffer, "Cooper,
Mills, and Sessler" were the first to suggest that below
a certain critical temperature Tp the properties of the
liquid might be remarkably different from those above
Tp. Lately, other authors'7" have discussed the possi-
bility of such a phase transition in liquid He' at very
low temperatures.

Since the viscosity of this low-temperature phase is
expected to decrease with T (instead of increasing as
T ', appropriate to a normal Fermi liquid), the word
superAuid has been used in reference to this abnormal
low-temperature phase. The existence of weak attractive
interactions between He atoms is a size qlu non in-

gredient for this transition. However, this superfluid
phase transition of He' is expected to be quite different
from the superfiuid X transition of He'. According to the
several authors, 2S the thermal properties of this transi-
tion of He' should be more similar to a superconducting
phase transition, and, for instance, the specific heat
should suffer only a finite jump across Tp.

Since, in the case of He', the s-wave phase shift is
negative" and the d-wave phase shift is positive, one

ss F. London, SuPsr Jlgids (John Wiley 8r Sons, Inc. , New York,
1954); L. Tisza, Nature 141, 913 (1938); Phys. Rev. 72, 838
(1947); L. D. Landau, J. Phys. (U. S. S. R.) 5, 71 (1941);11, 91
(1947); R. P. Feynman, in Progress in Low TemPerature Physics,
edited by C. J. Gorter (North-Holland Publishing Company,
Amsterdam, Netherlands, 1955), Vol, 1.

'3'B. M. Abraham, D. %. Osborne, and B. Weinstock, Phys.
Rev. 80, 366 (1950).

~D. F. Brewer, A. K. Sreedhar, H. R. Kramers, and J. G.
Daunt, Phys. Rev. 110, 282 (1958)."J.Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

L. N. Cooper, R. L. Mills, and A. M. Sessler, Phys. Rev.
114, 1377 (1959).' K, A. Brueckner, T. Soda, P. %. Anderson, and P. Morel,
Phys. Rev. 118, 1442 (1960); V. J. Emery and A. M. Sessler,
ibid. 119, 43 (1960). L. P. Pitaevskii, J, Exptl. Theoret. Phys.
(U. S. S. R.) 37, 1794 (1959); Soviet Phys. —JETP 37, 10, 1267
(1960); P. W. Anderson and P. Morel, Phys. Rev. Letters 5,
136 (1960).

'8 For a review, see A. M. Sessler, in Helium Three, edited by
J. G. Daunt (The Ohio State University Press, Columbus, Ohio,
1960), p. 81."J.de Boer, J. Van Kranendonk, and K. Compaand, Physica
16, 545 (1950).

may expect the energy gap (for excitation of single
particles near the Fermi surface) for He' to be strongly
angle-dependent and to vanish for certain momentum
directions. "This anisotropy is expected to give rise to an
unusual structure for the liquid. For instance, the liquid
is expected to break up in small domains having dimen-
sions comparable to the (superfluid) correlation length
which has been estimated to be 2&&10' A. Since the
correlation function is anisotropic, the liquid may have
a small, net angular momentum, which may be thought
of as arising from a noncancellation, near the walls, of
weak, circulating currents. "

The transition temperature Tp is given by

Ts=Tp* exp(Ts"'/V),

where V is an a,ppropriate (nega, tive) inferacfion mafrix
element at the Fermi surface. Estimates of V give
Tp—0.1'K at zero pressure, and it should increase with
pressure. "Nevertheless, small variations of Tg* and V
have a large effect on T„and a factor of e in the ex-
ponent of Eq. (55) will reduce Ts by a factor of about
(20)" '. Bardasis and Schrieffer" estimated that the
finite lifetime of the Fermi excitations may reduce Tp by
a factor of 60. But, according to a recent" revision of
their calculations, these authors believe that these
effects should reduce Tp by a factor of about 3 only.

Possibly either specific-heat, magnetic-susceptibility,
or viscosity experiments shouM reveal this phase transi-
tion. Existing data for Cy and x, for T as low as
0.005'K have not yet shown any sign of this phase
transition. Recent measurements of the sound velocity"
v„have shown a large discontinuity in v, at high pres-
sures, but it should not be related to the superAuid
phase transition, since the ratio of the compressibilities
at 0 K (and hence of v,s) of the two phases should be
at most (1—Ts/Tp) and hence very close to unity,
unless Ts is unexpectedly large. (However, see note
added in proof. )

0. Solid Phase

The question of whether or not liquid He' will solidify
under its own vapor pressure at very low temperatures
(V~;a—36 cm'/mole) can be discussed as follows.
Neglecting any volume change across the melting curve,
the volume per atom V/X would be about 60 As. Hence,
each atom would occupy a sphere of radius Re=2.5 A,
and the nearest-neighbor distance would be 2Rs—5 A.
At this interatomic distance, the potential energy of
interaction of two He atoms is about 0.4'K/atom, and,
hence, even a close-packed lattice would have a (static)
cohesive energy of about 5'K/atom. If the solid is to
be stable with respect to the liquid at zero pressure, one

' A. Bardasis and J. R. Schrieffer, Phys. Rev. Letters 7, 79
(1961).

"A. Bardasis and J. R. Schrieffer, Phys. Rev. Letters 7, 472
(1961).

"W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev.
Letters 7, 299 (1961).
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must have E(sol) = —5'K+E,, p(E(liq) = —2.5'K/
atom. Hence, the zero-point energy E„of the solid
(or its Debye temperature) should be less than
2.5'K/atom. Neglecting anharmonic corrections, we

Inay conclude that the average kinetic energy in the
solid should be about (-',E,~) 1.2'K/atom; hence, each
atom should have an rms deviation 8 from its lattice site
of the order of 3 A (3A'/4m5s(1. 2'K), which is about
60% the average interparticle separation. Therefore, we

may expect that such necessarily large 8 will prevent the
liquid from freezing at zero pressure.

Actually, the liquid at T&0.5 K solidifies under an
external pressure of the order of 30 atm. At thispressure,
the volume of the liquid is 26 cm'/mole, and that of the
solid is 25 cm'/mole. The cohesive energy of the solid
can be estimated as follows. The work 8' to compress
the 1iquid to the melting pressure can be taken as
W—(1/2) X30X (36—26) atm cm'/mole —1.7'K/atom;
hence, the cohesive energy of the liquid at T=O'K and
p=30 atm, is about 0.8'K/atom. At T=O'K, the solid
will have a cohesive energy of 0.8'K/atom —30X (26—25)
atm cm'/mole=0. 5'K/atom. For this volume of 25
cm'/mole, a solid He' lattice will have static potential
energy of about —12'K/atom.

From the preceding argument, we may conclude that
the zero-point energy in solid He' (or its Debye tem-
perature), at 30 atm, will be about 11.5'K/atom, of
which one-half (6'K) may be taken as kinetic energy.
Hence, the rms displacement of an atom from its lattice
site should be about 1.4 A, which is about 30% of the
average distance between particles.

If one neglects zero-point motion in a solid, one can
assume the atoms to be more or less bound to lattice
sites, and, hence, they are almost distinguishable. In
other words, the proper symmetry of the nuclear wave-
function is not very important for a solid. An example
of a solid in which the nuclear spins have, for instance,
any effect on the lattice-vibration spectrum is not
known. The phonon wavefunction (which is symmetric
with respect to normal-mode coordinates) does not have
any definite symmetry with respect to interchange of the
coordinates of two atoms.

Pomeranchuck, "in his paper on liquid He', assumed
that the He' atoms in the solid are rigidly bound to
definite lattice sites, and, therefore, that the nuclear
spin system will behave classically. Thus, the suscepti-
bility of the solid should be given by Curie's law down to
a temperature To below which the nuclear magnetic
dipole-dipole interaction (kTs=p'/R') would tend to
align the spins in some kind of antiparallel arrangement.
For low pressures, one can estimate TO=10 ~ 'K for
solid He'. According to these ideas, the entropy of the
nuclear-spin system, in the absence of an external mag-
netic field, should be R ln2 and independent of T down
to To= 10 ~, below which it would drop to zero in an
unspecified manner. Except for a numerical factor of the
order of unity, which accounts for effects such as m*,
8S/Bp, and O'S/BT', the entropy of the liquid is

roughly ET. Consequently, Pomeranchuk concluded
that above T=ln2=0. 7'K, Sq;~)S„~, and that, below
0.7'K, Sijq&Ssp) Thus Pomeranchuk concluded that
(unless U~;~—V,.~ changes its sign at the same T) the
melting curve (dP /dT =AS/0 V) should have a mini-
mum around 0.7'K. Taking AU=1 cm'/mole and in-
dependent of T, one can estimate d'P/dT'=R/AV—
80 atm 'K '; hence, at very low T, P should rise about
20 atm below its minimum value at 0.7'K. Therefore,
the effect is quite large, and it should be easily detected.
Early melting-curve data" down to 0.16'K failed to
show any rise in P, and the data indicated dP /dT =0
for 0.16'K&T&0.4'K, which, if taken literally, would
imply S&;~——S,» (and, hence, S„&(R ln2, or equivalent,
large deviations from Curie's law) in this temperature
range. However, Sydoriak pointed out that the tradi-
tional, blocked-capillary, experimental set-up used in
the determination of the melting curve of helium wouM
not reveal a minimum in P; the Qat portion of the
melting curve would be meaningless.

PrimakofP used a tight-binding approximation to
estimate the exchange energy in the solid, and he con-
cluded that it was of the order of 0.3'K/atom and thereby
much larger than the magnetic dipole-dipole interaction
energy. Bernardes and Primakoff3' discussed the prop-
erties of the solid phase on basis of a Heitler-I. ondon
localized, single-particle wavefunction. According to
their results, the exchange energy —Tz at 30 atm is
about —0.1'K/atom and favors antiferromagnetic con-
figurations. According to their calculations, " the solid
should show anomalies in Cy, x, and n„near 0.1 K.
None of these results have been confirmed by experi-
ment, which seems to indicate that T~ is about ten
times smaller than the theoretical estimate of
0.1'K/atom. In this case, the anomalies in C~, y, and a„
should occur at about 0.01'K instead of 0.1'K. Accord-
ing to their original calculations, the minimum in the
melting curve should occur at 0.37', as compared to an
experimental value of 0.325%0.05'K.

The disagreement in the value of T|.- is not surprising
due to the many approximations in the theory. How-
ever, the disagreement regarding the temperature of the
minimum in the melting curve deserves some attention,
and it seems to indicate that the experimental values
for the entropy of the liquid under pressure are too
small by about 10% (see Sec. III.8).

According to Bernardes and Primakoff, the entropy
of the antiferromagnetic solid at very low temperatures
is given by A (T/Tc) s, whereas the entropy of the liquid
(in the absence of a, superfluid transition) is linear in T.
Therefore, at sufficiently low temperatures, the entropy
of the solid will again be less than that of the liquid, and
a maximum is then to be expected in the melting pres-

3'B. Weinstock, B. M. Abraham, and D. W. Osborne, Phys.
Rev. 82, 263 (1951);85, 158 (1952).

'4 H. PrimakofF, Bull. Am. Phys. Soc. 2, 63 (19S7).
35N. Bernardes and H. Primakof7, Phys. Rev. Letters 2, 290

(1959);3, 144 (1959);Phys. Rev. 119, 968 (1960).
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sure. According to their calculations, " this maximum
should occur at 0.08 K. However, this maximum has not
been found down to 0.06'K. If T~ is smaller than the
theoretical value by a factor of ten, the temperature of
the maximum should be smaller by a factor of 10'*=4.6
and the maximum should occur near 0.01'K.

The large-mean-square deviation is the essential
reason why the exchange energy (—0.01—0.1'K/atom)
is much larger than the magnetic dipole-dipole inter-
action. A simple estimate of the relations between
mean-square deviation and exchange energy has been
given by Bernardes, 36 who concludes that, for all inert
gases except for solid He', the dipole-dipole magnetic
interaction is predominant. In solid hydrogen (HD), the
exchange energy is slightly larger than the dipole-dipole
energy, but is still too small (or the order of 10 ' 'K/
atom) to affect the classical Curie susceptibility. ""

Saunders" estimated the exchange integral J for a
pair of He' atoms in an anisotropic harmonic potential
and found a tendency for parallel spin alignment. How-
ever, he also found that the effect of nearest neighbors
is such as to make the antiparallel spin state have. the
lower energy.

Goldstein" also discussed the properties of solid He'
(along the melting curve). His results are presented in
conjunction with the experimental data in Sec. IV.

One of the unusual features of solid He' is its crystal-
lographic structure. The heavy inert gases, Ne, A, Kr,
and Xe, solidify at low pressures in a face-centered cubic
lattice. Solid He' shows at least one phase transition, "
but for pressures less than 1500 atm it has a hexagonal
close-packed lattice, "except possibly for a small region
near the melting curve" where it may be body-centered
cubic. On the other hand, He' for pressures between
30 and 100—150 atm solidifies in a bcc lattice, and for
pressures between 150—1800 atm it solidifies in a hcp
lattice. 4' 4' For pressures larger than 1800, a transition
to an fcc lattice occurs4' 44" similar to solid He'.

The reasons why He' at low pressures solidifies in a
bcc lattice rather than in a close-packed lattice are not
understood. "In order to appreciate the delicate energy
balance, we observe that the difference in free energy at

"N. Bernardes, in HeHnm Three, edited by J. G. Daunt (The
Ohio State University Press, Columbus, Ohio, 1960), p. 115.

37 D. C. Freeman, Jr., in Proceedings of the UIIth. International
Conference on Lore Temperature Physics, edited by G. M. Graham
and A. C. Hollis Hallet (The University of Toronto Press, Toronto,
Ontario, Canada, 1961)."E,M. Saunders, Bull.~Am. Phys. Soc. 6, 121 {1961)."J.S. Dugdale and 1'. E. Simon, Proc. Roy. Soc. (London)
A218, 291 (1953).

R.L. Mills and A. F.Schuch, Phys. Rev. Letters 6, 263 (1961).
J. H. Vignos and H. A. Fairbank, Phys. Rev, Letters 6,

265 (1961).
4' A. F. Schuch, E. R. Grilly, and R. L. Mills, Phys. Rev. 110,

775 {1958).
4'A. F. Schuch and R. L. Mills, Phys. Rev, Letters 6, 596

(1961)
44 J. P. Franck, Phys. Rev. Letters 7, 435 {1961).
4' N. Bernardes, U. S. Atomic Energy Commission repor t

lS-285 (1961) (unpublished).
4 N. Bernardes, Phys. Rev. 120, 1927 (1960).

O'K, AFe p——AV, is about 100 atmX0. 1 cm'/mole4"'
—0.1'K/atom and, hence, is much less than the zero-
point energy (30'K/atom) of either phase. 44 Therefore,
the zero-point energies will have to be calculated with
an a,ccuracy better than 0.3% in order to provide a
meaningful answer to the question of the relative
stability of the two phases.

Bernardes and Primakoff35 suggested that this crystal-
lographic phase transition may be accompanied by a
magnetic transition related to a change in sign of the
exchange integral. There is no experimental evidence
for this magnetic transition; if it occurs, it does not seem
to contribute to the latent heat (see Sec. IV.5).

One interesting feature of these phase transitions is
that they occur at molar volumes which are about the
same for both He' and He', hence, they seem to be due
mainly to a volume effect."

Unfortunately, only a small amount of experimental
data is available for the solid phase. A more detailed
presentation and discussion of these data is given in
Sec. IV.

V. He'-He4 Mixtures

Prior to the time that He' was artificially produced
from the P decay of tritium, all the experiments were
done with very dilute (less than 1%) solutions of He'
in He4 obtained from successive enrichments of natural-
helium gas. ' Daunt and collaborators' in 1947 observed
that the small amount of He' contained in natural
helium did not partake of the superRuid motion of the
liquid through a porous plug. They were able to filter
the He' from the solution and obtain solutions enriched
with He'. Many authors'4' have investigated this phe-
nomenon as a possible means of He' enrichment.
Nevertheless, isotope separation by this method is
possible only below the A, point of the solution; this is the
main limitation of the method. Many authors have
investigated the temperature of the A. point as a function
of He' concentration" as well as the phase separation
of mixtures. ' The results, shown schematically in Fig. 2,
are very complex. They can be roughly described by
the equations

~.(c)=»(0)(1—)

for the X point Tq of the solution, and

(56)

T, (c)= L0.8—4(c—0.5)']'K (57)

for the temperature T, below which phase separation
occurs for a solution of mole fraction

c=.V (He')/L1V (He') +X(He') ].
4" E. R. Grilly and R. L. Mills, Ann. Phys. 8, 1 (1959).
47 J. G. Daunt, R. E. Probst, and H. L. Johnston, J. Chem.

Phys. 15. 759 (1947);J. G. Daunt, R. E. Probst, H. L. Johnston,
L. T. Aldrich, and Alfred O. Nier, Phys. Rev. 72, 502 (1947).

48 For a discussion of the problem of enrichment, see the review
by V. P. Peshkov and K. N. Zinov'eva, Repts. Prog. Phys. 22,
504 (1959).

4~ Helium Three, edited by J. G. Daunt (The Ohio State Univer-
sity Press, Columbus, Ohio, 1960).



25 T.=3.33'K and p, =0.0413 g/cm'. Using an optical
method, Peshkov" obtained T,=3.38&0.03'K, p. =930
&20 mm Hg, and p, =0.041+0.001 g/cm".
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2. Latent Heat of Evaporation

The latent heat of evaporation I- has been determined
both by direct measurement and from the Clausius-
Clapeyron equation

I-= T(V.—V() (dp/dT), (58)

0.5

EPARATION

0O 0.4 06 ~ 0.8
MOLE FRACTION

He ~He

Other properties of He' —He4 solutions, such as
specific heat, zero-sound velocity, vapor pressure, etc.,
have been measured. We refer the reader to other
reviews '4' "

FIG. 2. Phase-separation line and X line for He' —He' mixtures. ""

where dp/dT is the slope of the vapor-pressure curve.
The latter calculations are likely to give less accurate
results than direct measurements, because of the uncer-
tainties in the temperature scale and in the second virial
coefficient.

The only direct measurements of latent heat are due
to Weinstock, Abraham, and Osborne. '4 In Fig. 4, a
comparison is made between the direct measurements
(considered to be accurate to 0.2%) and the calculations
from the vapor pressure. ' """The latter are about 1%
higher at 1.2'K and 0.5% lower at 2.1'K. Precise
measurements of the latent heat are important inasmuch

IOOO

III. LIQUID PHASE: EXPERIMENTAL DATA

1. Vapor Pressure and Critical Constants

The first liquefaction of He' was carried out in 1948
by Sydoriak, Grilly, and Hammel. ' Their measurements
of vapor pressure and critical constants confirmed the
prediction of de Boer and Lunbeck' that He' would
liquefy under its own vapor pressure in spite of its large
zero-point energy. More precise measurements were
made soon afterwards by Abraham, Osborne, and
Weinstock" in the temperature range 1.0' to about
3.35'K., and were extended down to 0.45'K by Sydoriak
and Roberts. ~' In Fig. 3, the vapor pressure of liquid
He' is compared with that of He4 as a function of tem-
perature. From a practical point of view, a useful
feature of liquid He' is its relatively much higher vapor
pressure which enables constant temperaturebaths using
liquid He' to reach about 0.3'K without difhculty,
particularly since a superfiuid film is absent. For com-
parison, liquid He' baths cannot be used much below
1'K. Several references to He'-cryostat design have been
given recently by Peshkov and Zinov'eva. 4'

The normal boiling point as recalculated by Sydoriak
and Roberts' from the data of Abraham et u/. " is
T=3.19'K. Critical pressures determined by Sydoriak
et ul. ' and by Abraham et a3. give an average of 875
mm Hg. The critical temperature and density are

'OProceedings of the VIIth. International Conference on Low
Temperature Physics, edited by G. M. Graham and A. C. Hollis
Hallet (The University of Toronto Press, Toronto, Ontario,
Canada, 1961).

~~B. M. Abraham, D. W. Osborne, and B. Weinstock, Phys.
Rev. 80, 366 (1950).

'2 S. G. Sydoriak and T. R. Roberts, Phys. Rev. 106, 175 (1957).
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FIG. 3. Vapor pressures of He' and He'.

"V. P. Peshkov, J. Exptl. Theoret. Phys. (U. S. S. R.) 33,
833 (1947); Soviet Phys. —JETP 6, 645 (1947).

~4 B. M. Abraham, D. W. Osborne, and B.Weinstock, Physica
24, S-132 (1958)."E.C. Kerr, Phys. Rev. 96, 551 (1954)."T.R. Roberts and G. S. Sydoriak, Phys. Rev. 98, 1672 (1955).
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as they can be used to calculate the entropy of the
liquid, as was done by Weinstock, Abraham, and
Osborne. '4 The extrapolated latent heat of vaporization
at O'K is Ls—5 cal/mol.

3. Density

Soon after their first liquefaction of He', Grilly,
Hammel, and Sydoriak2 measured the saturated liquid
and vapor densities by an indirect method. Since then,
several authors have measured the normal liquid density
using a variety of methods. Kerr" and Ptukha" (who
also determined densities of He' —Het solutions) used a
pyknometer in the temperature range of about 1.3' to
3.2 K, measuring the amount of gas needed to fill the
pyknometer with liquid up to a known volume. The
early results of Grilly, Hammel, and Sydoriak' and those
of Kerr are shown in Fig. 5. By using a liquid He bath,
Taylor and Kerr" were able to extend the temperature
range down to 0.29'K, and, with a small adaptation for
adiabatic demagnetization, to about 0.21 K. The varia-
tion of density with temperature was determined opti-
cally by Peshkov, "who counted the passage of fringes
of equal optical thickness between a glass wedge during
a series of operations to fill the wedge with liquid at
2.00'K. Hence, the change in refractive index was found,
and, using Kerr's value of the density at this tempera-
ture, the molar polarization A was calculated, gave
2 =0.123 cm'/mole. Using this value and by counting
the passage of fringes as the temperature changed,
Peshkov determined the change in density with tem-
perature between 1.4 and 3.2'K.

Other investigations have been carried out by Sher-
man and Edeskuty59 and by Lee and Fairbank. ""The
former have made an extensive investigation of the
PVT relations of the liquid up to the melting pressure

I PIlia t t t t f t I I I
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Fio. 5. Vapor and liquid densities above 1'K,

between 0.98' and 3.32'K, from which they also calcu-
lated expansion coefficients, compressibilities, and
changes in entropy and specific heat on compression. It
shouM be noted that these authors have made a re-
determination of their liquid cell volume, which neces-
sitates a decrease in the published values of molar
volumes and entropies by 0.3% and an increase in the
expansion coefficients and compressibilities by 0.3%.
Lee, Fairbank, and Walker'" evaluated the density from
measurements of the dielectric constant at various
pressures, and Walters and Fairbank" measured the
relative densities at 1.2'K by measurement of the
nuclear susceptibility as a function of pressure. The
above measurements of molar volumes near 1'K are
in good agreement with each other, generally within 1%.

The density of the liquid is discussed further in the
sections on the compressibility and on the thermal-
expansion coeScient.
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FIG. 4. Latent heat of evaporation" ' of liquid He'.

"T.P. Ptukha, J. Exptl. Theoret. Phys. (U. S. S. R.) 34, 33
(1958};Soviet Phys. —JETP 7, 22 (1958}.

"' R. D. Taylor and E. C. Kerr, Physica 24, S133 (1958).
tt R. H. Sherman and F. J. Edesknty, Ann, Phys. 9, 522 (1960).
0 D. M. Lee and H. A. Fairbank, Phys. Fluids 2, 581 (1959).
' D. M, Lee and H. A. Fairbank, Phys. Rev. 116, 1359 (1959).

4. Thermal Expansion CoefBcient

Interest in the molar volumes of liquid He' below
1'K was stimulated by the possibility of a negative
expansion coeScient at low enough temperatures. The
suggestion that a density maximum might occur has
been made by a number of authors, probably first by
Tien Chi Chen and London. "Brueckner and Atkins~
have calculated the limiting (negative) slope of the
expansion coeKcient as T —+ 0, on the basis of Brueckner
and Gammel's theory of He', and Goldstein'7 has
recently evaluated the course of the expansion coeScient
as a function of temperature. An experimental indica-
tion of a negative expansion coeKcient near 0.5'K was

' D. M. Lee, H. A. Fairbank, and E. J. Walker, Phys. Rev.
Letters 5, 276 (1960).

"W. M. Fairbank, and G. K. Walters, Phys. Rev. 103, 263
(1956)."T.C. Chen and I'". London, Phys. Rev. 89, 1038 (1953).
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I zG. 6. Thermal expansion coefficient and compressibility of
liquid He' at melting pressures for p&50 atm. 46'

discovered in the onset of convective heat transport
observed by Lee and Fairbank" in thermal-conductivity
measurements at low temperatures. Abraham, Osborne,
and Weinstock showed by analysis and extrapolation
of experimental thermal data that the expansion coeffi-
cient at constant pressure ~„should become zero at
some temperature above 0.4'K. Direct confirmation of
a negative expansion coeAicient was found almost
simultaneously in the experiments of Taylor and Kerr, "
of Lee and Fairbank, "and of Brewer and Daunt, " the
latter by measurement of the change in temperature
on adiabatic expansion of the liquid at various pressures
and temperatures.

Lee, Fairbank, and Walker'""measured the dielectric
constant at pressures between 0.2 and 29 atm, and from
the Clausius-Mossotti equation obtained values of the
density, thermal expansion coefficient, and entropy of
compression. Kerr and Taylor""' measured molar
volumes directly, and found a minimum in the molar
volume of 36.713 cm'/mole at 0.506'K. This tempera-
ture should be compared with the values 0.50'K
(Brewer and Daunt" ) and 0.48'K (Lee et al.")obtained
by indirect methods. Recently, Rives and Meyer""
measured the thermal expansion coefFicient n„down to
0.045 K and for pressures up to 28 atm. At 0.18 atm
and below 0.1'K, their results can be expressed by
n„= —(0.12+0.02) T, in qualitative agreement with
theoretical calculations. "

At higher pressures, the thermal expansion coefficient
becomes zero at temperatures which increase with
pressure. There is a fair agreement between the results

ss D. F. Brewer and J. G. Daunt, Phys. Rev. 115, 843 (1959)."J.E. Rives and H. Meyer, Phys. Rev. Letters 7, 217 (1961).
'VNotice that their results above j.5 atm give a„&0 for

T(0.05'I, in disagreement with the results of Brewer and
Keyston. ISee reference 82 below. )
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'A. C. Anderson, G. L. Salinger, W. A. Steyert, and J. C.
Wheatley, Phys. Rev. Letters 7, 295 (1961).

S. G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters 4, 495 (j.960).

from diferent groups"" "; they show that the tem-
perature where the maximum density occurs increases
from about 0.5'K at zero pressure to 1.3'K at the melt-
ing pressure LP (1.35'K) =49 atm).

From this discussion, it follows that the thermal ex-
pansion coefficient becomes negative below 0.5'K at
zero pressure, and below higher temperatures at higher
pressures (below 1.3'K at 50 atm). The experiments
of Brewer and Daunt" also show that below 22 atm
the expansion coefficient goes through a minimum at
about 0.2'K at all pressures, " in agreement with the
thermodynamic requirement that the minimum should
occur above the temperature of crossover of the C~ vs T
isobars (0.16'K, see Fig. 12). Goldstein, "using the con-
cept of spin and nonspin entropies (Sec. II.4), has
derived values of the spin expansion coefficient which
follow quite closely the low-temperature experimental
values in particular showing a minimum at about 0.2'K.

In the region where the specific heat and entropy
vary linearly with temperature, o.„ is, to a good ap-
proximation, also a linear function of T, in accordance
with the relation (r)5/r)p)r= —(r)V/r)T)„The lim. iting
value of o.„at zero pressure has been calculated by
Brueckner and Atkins ' who found o.„=—0.076T'K '
The measurements by Brewer and Daunt" give e~=
—(0.1&0.02) T'K ', those by Anderson et al. ,

ss

—0.08T'K ', and those by Rives and Meyer" give
n„= —(0.12+0.02)T'K '.

Above 50 atm, the expansion coefficient is always
positive, '" as shown in Fig. 6. Sherman and Edeskuty"
measured n~ between 1' and 2.1'K for pressures up to
the melting pressures (35 and 80 a.tm, respectively).
Grilly, Sydoriak, and Millse extended the measure-
ments along the melting curve to temperatures as low
as 0.4'K. Their results are shown in Fig. 7, which also
includes computed values of e~ for the solid. At melting
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pressures, the expansion coefficient exhibits the same
general features as at lower pressures, in passing through
zero (at a temperature of 1.2'K) and becoming negative.
In detail, the behavior is somewhat different; for ex-
ample, the minimum in o, „occurs at a fairly high tem-
perature, about 0.6'K. Although the data do not extend
to temperatures low enough, Sydoriak et al."concluded
that both rr and Brr/BT along the melting curve are
equal to zero at 0.32'K, the temperature where the
melting curve shows a minimum (see Sec. IV.4). Such
behavior differs from that at lower pressures, and would
imply a, curious variation of the specific heat with p
and T at the melting pressures. It is clearly desirable,
though difficult, to continue these experimental observa-
tions to temperatures below the minimum in the melting
curve.

S. Compressibility

The isothermal compressibility Er= —V '(BV/BP) r
of liquid He' was calculated by Sherman and Edeskuty"
from their measurements up to the melting pressure
between 0.98' and 3.2'K. Peshkov's results, "using the
optical method outlined in the foregoing, are about 10%
lower than these. The adiabatic compressibility has been
computed from measurements of the velocity of sound
(see Sec. III.6) by Laquer, Sydoriak, and Roberts"
(0.36 to 3.14'K) and by Atkins and Flickerr' (1.2' to
3.2'K). The extrapolated results at zero pressure and
O'K give Es 4'/l~ atm ', as compared —with a theoretical
value' of 5.3% atm '.

400
0

4s 500-
E &ELO|'ITY OF SOUND

IN LIQUID He

(T&O.I4K FOR P +29 atm)

200-O
y(P= 0) = 182:4+ 0.6 m/sec

creasingly attenuated as the temperature is reduced,
until in the Fermi-liquid region (T(0.05 K) it is re-
placed by "zero sound" (Sec. II.4). The velocity of
sound has been measured by Laquer, Sydoriak, and
Roberts"' (5 Mc/sec) at the vapor pressure between
0.34 and 3.14'K, and by Atkins and Flickerr' (14
Mc/sec) in the range 1.2' to 3.2'K as a function of
pressure, and in the gas above the critical point.

The velocity of sound at the saturation vapor pressure
is plotted in Fig. 8 (from the paper of Laquer ei uL);
Atkins and Flicker agree with these results within
experimental error. Comparison with the He' velocities
in the figure shows the two curves to be roughly parallel,
except for the intervention of the X transition in He'.

More recently, Abel, Anderson, and Wheatley"
measured both the velocity of sound (5 and 15 Mc/sec)
and the attenuation coefficient for temperatures as low
as 0.02'K and pressures up to 30.9 atm. Their results,
shown in Fig. 9, agree very well with the previous
ones where they overlap, and at p=0 and T=O'K
r, =183 m/sec.

Abel, Anderson, and 9/heatley" observed that, for
pressures up to 29.5 atm, the propagation of sound is
normal. For instance, the velocity of sound below 1'K
seems to be independent of temperature, and the ab-
sorption (attenuation) coefficient decreases with tem-
perature. In this range of pressures and below 0.1'K, the
measured absorption is proportional to T ' and can be
explained in terms of viscosity only. ~' On the other
hand, when the pressure (under which the warm liquid
was frozen) is changed from 29.6 atm to 30 atm, the
velocity of sound increases (practically in a discontinu-
ous fashion) by about 25%. At the same time, the at-
tenuation coefficient increases with temperature, which
is opposite to the low-pressure behavior. This anomaly,
if genuine, seems to indicate the existence of a new phase
of some kind. "It is interesting to notice that, at about
this same pressure, Cv/RT or m*/m also show a be-
havior" which may be qualified as anomalous when

6. Velocity of Sound IO 20
I

'Zo
P min

Propagation of sound in liquid He' is particularly
interesting in view of the prediction by Landau" that
ordinary sound of a given frequency will become in-

' H. I . I aquer, G. S. Sydoriak and T. R. Roberts, Phys. Rev.
115, 417 (1959}."K. R. Atkirts attd H. Flicker, Phys. Rev. 115, 959 (1959).

P(atm)

I'"rG. 9. Sound velocity in liquid He3 as a function
of pressure below 29 atm. v~

"W.R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev.
Letters 7, 299 (1961).

7'A. C. Anderson, G. I,. Salinger, W. A. Steyert, and J. C.
Wheatley, Phys. Rev. Letters 7, 295 (1961).
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FIG. 10. Specific heatv' 76 of liquid He'. For an explanation
of curves A —D, see text.

compared to the behavior at lower pressures. The
nuclear-magnetic susceptibility (Sec. 12), also shows an
anomalous discontinuity at about the same pressure. It
is, however, possible that all these anomalies may not
be real, but only manifestations of experimental difB-
culties in cooling the compressed liquid. (However see
the note added in proof at the end of this paper. )

'4 G. de Vries and J. G. Daunt, Phys. Rev. 92, 1572 (1953);
93, 631 (1954).

5T. R. Roberts and S. G. Sydoriak, Phys. Rev. 93, 1418
(1954); 98, 1672 (1955).

76 B. M. Abraham, D. W. Osborne, and B. Weinstock, Phys.
Rev. 98, 551 (1955).

7. SpeciQc Heat

Specihc-heat measurements are of particular im-
portance for determining the nature of the thermal
excitations in the liquid. In He, the special interest
lay in determining whether the liquid behaves similarly
to a perfect Fermi gas, or whether the interactions
present would modify the behavior in a fundamental
manner.

The erst specific-heat measurements on liquid He'
were carried out by de Vries and Daunt'4 using a very
small quantity of liquid (about 19 mm', 96% He',
4% He4) between 2.3' and 0.52'K. They were followed

by Roberts and Sydoriak ' and by Osborne, Abraham,
and Weinstock'6 who reduced the temperature to 0.37
and 0.23'K, respectively, and who used larger quantities
of liquid (up to 0.5 cm'). lt was concluded from the
experiments that no specific-heat anomaly occurred
within the range of measurement, and that the behavior
could not be described by a simple Fermi-gas model.
The results are shown in Fig. 10, curve A. Curve C in
Fig. 10 gives CI for a perfect Fermi-Dirac gas of the
same particle mass and density as liquid He'(degeneracy
temperature 5'K); curve 8 is the same calculated with
a degeneracy temperature as derived from nuclear-
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7' I. M. Khalatnikov and A. A. Abrikosov, J. I'".xptl, Theoret.
Phys. 32, 915 (1957) Ltranslation, Soviet Phys. —JETP 5, 'I45
(1957)j.

7 D. F. Brewer, A. K. Sreedhar, H. C. Kramers, and J. G.
Daunt, Phys. Rev. 110, 282 (1958).' D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev.
115, 836 (1959). D. O. Edwards, J. L. Baum, D. S. Brewer, J. G.
Gaunt, and A. S. MacWilliams, reference 49, p. 126.

susceptibility measurements (0.45'K, see reference 12).
In an attempt to clarify the nature of the thermal excita-
tions, Abraham et al. ' divided the specific heat empiri-
cally into two contributions, one due to nuclear spins
and the other due to the remaining excitations. The
latter is given by curve D, an extrapolation of the high-
temperature specihc heat, where statistics and spin may
be supposed to be unimportant. Curve E represents the
"spin" specific heat which is obtained by subtracting
curve D from the total specihc heat, curve A. The
validity of such a division into spin and nonspin con-
tributions has been strongly criticized. However, Gold-
stein" has carried out extensive calculations of thermo-
dynamic properties with this assumption, often agreeing
closely with experiment. All the above experiments
determined C,,t, the specific heat of the saturated liquid
along the vapor pressure curve. From them, Goldstein"
has calculated values of C, and Cy at the saturated
vapor pressure.

The general variation of the specific heat up to 1'K
follows roughly that calculated by Khalatnikov and
Abrikosov, 7~ but does not agree in detail.

Brewer et a/. "measured C~ to 0.085'K, for P=6—14
cm Hg, and Brewer, Daunt, and Sreedhar" measured
C, down to 0.07'K for pressures up to the melting
pressures. The results of Brewer, Daunt, and Sreedhar,
estimated to be accurate to within ~0.01 cal mole '
deg ', are shown in Figs. 11 and 12. They agree satis-
factorily with previous measurements above 0.23'K
(also shown in Fig. 11),and showed (a) that no anomaly
occurs down to 0.085'K, and (b) that below about
0.1'K the specific heat appeared to tend linearly to
zero at the absolute zero with a slope of 4.00~0.1 cal
mole ' 'K '. The linear behavior seemed to provide
evidence for regarding liquid He' below 0.1'K as a
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lim (C/ET) = [2.8+0.03p]-K—', (59)

m'"/m = L2.8+0.08p], (60)

where p is the pressure in atm.
The results for p & p;„—29 atm appear anomalously

low. For p& 29 atm in Fig. 14, p means the pressure to
which the warm ( 1'K) liquid was submitted before
cooling. Since the compressed liquid mill first freeze upon
cooling and then melt upon further cooling, it is very
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Fro. 12. Specific heat C„of liquid He' as a function of
temperature for different pressures. "

' A. C. Anderson, G. L. Salinger, W. A. Steyert, and J. C.
Wheatley, Phys. Rev. Letters 6, 331 (1961).

' M. Strongin, G. O. Zimmerman, and H. A. Fairbank, Phys.
Rev. Letters 6, 404 (1961)."D.F. Brewer and J. R. G. Keyston, Nature 191, 1261 (1961).

degenerate Fermi Quid with approximately constant
effective mass, in agreement with the theories of Landau
and of Brueckner and Gammel. If the ratio of effective
mass to true mass is defined as m*/m=C/Cs (where C
is the observed specific heat in the linear region, Cp the
ideal Fermi specific heat for particles of the He' atomic
mass m, and the same density as liquid He'), then,
experimentally, 7' r' m*/m =2.00+0.05, agreeing within

7%%u~ with Brueckner and Gammel's theoretical value.
The authors" point out that their accuracy does not rule
out the possibility of a small amount of curvature re-
maining even at the lowest temperature of measure-
ment, which would increase the limiting slope of the
specific heat at O'K. In fact, more-recent measure-
ments ~ 2 at temperatures as low as 0.005'K give a
value for m*/m as large as 2.8&0.3, and hence the
previous agreement with theory is partially destroyed.

Anderson et al."measured Cy at 0.12 atm down to
0.005'K, but their temperature calibration needs cor-
rection. "The low-pressure results from different groups
are shown in Fig. 13. It seems that Cy becomes linear
only below 0.03'K. Anderson et al." extended their
Cy measurements to pressures up to the melting pres-
sures for T&0.02'K. Their results are shown in Fig. 14,
and for p(25 atm they can be represented within 10%
by the equations
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I'. IG. 13. Specific heat of liquid He' below 0.1'K. ' "

difficult to assess the final mass of the liquid within the
calorimeter. In the Ct data under discussion, and in all
subsequent high-pressure data for discussion here, the
authors have always assured that the mass of liquid
within the experimental cell remains constant during
the cooling-freezing/cooling-melting process. The results
shown in Fig. 14 for p&29 atm depend on this
assumption. (See note added in proof. )

8. Entropy

All of the diferent sets of specific-heat results above
0.1'K described in the foregoing section are in good
agreement in the temperature range where they overlap
(down to 0.23'K). Consequently entropy di,fferersces
evaluated by integration of the specific heat between
any two temperatures within this range also agree. Un-
fortunately, discrepancies occur when diferent methods
are used to compute the absolute entropy. Weinstock,
Abraham, and Osborne" accurately measured the latent
heat of the liquid, L= T(S,s—Si;~), calculated S,~ for
the vapor using the Sackur-Tetrode equation with
corrections for nonideality, and hence obtained Si;~
which, at 1.5'K and saturated vapor pressure, was
found equal to 2.614&0.03 cal/mole'K. Roberts and
Sydoriak evaluated absolute entropies from the thermo-
dynamic vapor-pressure equation, obtaining the value
1.44 cal mole ' deg ' at 0.5'K. Brewer et al."' were able,
by use of their linear extrapolation of the specific heat
to O'K, to derive absolute entropies directly from

S(T)=JP (Cv/T)dT. It is found, as a result of these
calculations, that the entropies of Roberts and Sydoriak
and of Brewer et ul. agree closely, but are lower by a
constant amount of about O. l cal mole ' deg ' than
those of Abraham et ul. Random errors are reckoned to
&0.01 cal mole ' deg ' or rather more at higher tem-
peratures, with an additional error of ~0.03 cal mole '

deg ' for Abraham et al. , due to possible inaccuracy in
the reference vapor entropy at 1.5'K. Brewer et ul. 79

estimate that their values may have to be increased by
a maximum of 0.03 cal mole ' deg ' due to error in
extrapolation, but, in view of the much larger values



for no*/nz and C/RT found recently, their entropies may
have to be increased by an amount of the order of
LEq (59)j

=0.4X2.8X0.04=0.05 K ' (61)
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since most of the increase in m* occurs below 0.04'K,
The correction represented. by Eq. (61) would remove
the 0.1 cal/mole'K discrepancy.

At higher pressures, the entropy 5~ can be calculated
from 50 with the equation

8 t/'

S(P») S(Ps, T—) = — dP
pp OT

(62)

Between 1.00' and 3,30'K, the right-hand side of this
equation has been evaluated by Sherman and Edeskuty"
up to the melting pressure. Brewer and Daunt" evalu-
ated it at one temperature (0.6'K) by integration of
expansion coefFicients under pressure, and combined the
result with an integration with respect to temperature
of the specifi. c heat under pressure to obtain the entropy
as a function of temperature and pressure up to 1'K
and 22 atm. This procedure has also been used by Lee,
Fairbank, and Walker. "'

I 4 I $ ) I I I j ) 4 I I I ) I

RT
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9. Thermal Conductivity and Thermal
Boundary Resistance

It has been known since the work of Kapitza" that a
temperature jump exists at the interface between liquid
He4 and a solid wall when heat Rows across the interface.
Fairbank and Lee'4 observed a similar effect in a liquid-
He'/copper interf a,ce.

As a result of this temperature jump, the observed
rates of fIow of heat have to be corrected for this

0—
0 LO 2.0

T oK
4.0

FIG. 15. Thermal conductivity of liquid He' above 0.24'K.

apparent Kapitza boundary resistance. The Kapitza
resistance is found to increase very rapidly"" with
decreasing temperatures for both He' and He4.

Thermal conductivity s data (Fig. 15) from several
authors" "indicated that I(. decreases with temperature
down to 0.24'K (Fig. 15), and that the uncertainty in Ir

is considerable due to the Kapitza-resistance corrections.
Recently, Anderson, Salinger, and Wheatley" measured
K from 0.2'K down to 0.026'K, and they found that
below 0.04'K the thermal conductivityiecreuses at T '

(Fig. 16) in agreement with what one expects from the
Fermi-Dirac-Landau theory. "" The effect of the
Kapitza resistance was minimized in the experiments by
Anderson, Salinger, and Wheatleyss by placing the
thermometers in direct contact with the liquid, by using
surfaces with small thermal. conductivity, and by in-
creasing the total area of contact with the liquid.

Anderson" analyzed numerically certain corrections
which, according to Jeener and Seidel, "should affect the
published results of Lee and Fairbank'4 above 0.24 K.
Anderson concluded that the corrections to the Lee and
Fairbank data should not be as large as Jeener and
Seidel had suggested, and, thus, that the published
values" near 0.24'K are essentially correct. This con-
clusion is strengthened by the fact that the results
below 0.2'K as shown in Fig. 15 join smoothly with
those above 0.24'K as shown in Fig. 16.

Anderson, Salinger, and Wheatley" concluded from
their measurements that the Kapitza resistance is
proportional to T ', in agreement with a model proposed
by Bekarevich and Khalatnikov. "

Approximate values for the relaxation time w of the
Fermi quasi-particles near the Fermi surface can be
obtained from the thermal-conductivity data in the
region where I(; T ', by means of the usual kinetic

I t r I I I C i & St I
lo 20 30

PRESSURE(atm)

Fro. 14. C/RT and nr*/ra for liquid He under pressure. so

ss P. L. Kapitza, J. Phys. (U. S. S. R.) 4, 182 (1941)."D.M. Lee and H. A. Fairbank, Phys. Rev. 116, 1359 (1959).

A. C. Anderson, G. I.. Salinger, and J. C. Wheatley, Phys.
Rev. Letters 6, 443 (1961).' I. J. Challis and J. Wilks, Proceedings of the Symposium on
Iiqlid and Solid IIe (The Ohio State University Press, Columbus,
Ohio, 1957).

A. C. Anderson, Ph.D. thesis, University of Illinois, 1961
(unpublished).

J. Jeener and G. Seidel, see reference 50, p. 483 ~

I. I. Bekarevich and I. M. Khalatnikov, see reference 50,
p. 480.
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argument which relates ~ to Cy, i.e.,

Cv =3s/re F', (6»)

where es is the Fermi velocity pF/m*. Below 0.04'K,
Cv—6)&10sT erg/cm' 'K' m* ~2.8 m, " and s~48T '
erg/'K' cm sec."Hence, Eq. (63) gives

v-—6)&10 "T ' sec,

where T is the temperature expressed in 'K. The
Fermi-Dirac-Landau model is expected to work only
at temperatures low enough, such that t)t/r«kT, which
in view of Eq. (64) can be written as

0
0

+y++~' $ h

T«6k/10rslt —0 1'K (65)
Q
T, 4K

2D 2S KQ

10. Viscosity

The earliest Row measurements on the liquid, by
Osborne, %einstock, and Abraham, " were aimed
principally at determining whether it became superAuid;
they showed that the viscosity increases with decreasing
temperature without any sign of superAuidity down to
1.05'K. Later workers used the oscillating-disk method"
between 2.15' and 13'K, and the capillaryQow
method" down to 0.35 K, the latter by means of a He'
cryostat. They agree in confirming the temperature de-

pendence of the viscosity found by the earlier workers,
but, as shown in Fig. 17, the absolute values are different

by 20% or more. Errors are assessed at about &2% by
Taylor and Dash, and at &5% above 1'K &10%
below 1'K by Zinov'eva. Two different capillary tubes
used by the latter gave essentially the same result, and
the data appear rather more consistent than the quoted

5.0-
g ~ ) ~

THERMAL OONnUCTIVITY OF
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FIG. 16. Thermal conductivity of liquid He' below 0.2'K."
'03. M. Abraham, D. W. Osborne, and B. Weinstock, Phys.

Rev. 75, 988 (1949)."R.D. Taylor and J. G. Dash, Phys. Rev. 106, 598 (1957).
9' K. N. Zinov'eva, J. Exptl. Theoret. Phys. (U. S. S. R.}34,

609 (1958); Soviet Phys. —JETP 7, 421 (1958).

and which indicate that even at 0.1'K the simple
properties of liquid He' may show deviations from the
Fermi-Dirac-Landau model.

Fzo. 17. Viscosity of liquid He' above 0.35'K.""

accuracy indicates. In any case, the discrepancy be-
tween the two methods is well outside the estimated
experimental error. Both were applied to liquid He'
above the X point where again it appeared that the
Taylor and Dash results were somewhat higher than
previously found. These authors have, however, made

a careful assessment of their errors.
Direct measurements of the viscosity coefficient in the

Fermi liquid region have yet to be made. However,
Abel et al. 72 observed that the attenuation of sound

below 0.06'K is due only to viscosity, and inferred that
q=2.8T—"K'p, poise, which is the temperature de-

pendence expected from the theory. ""Thus the three
transport coefficients, J(, p, and D, all display tempera-
ture dependences in agreement with the Fermi liquid

model below 0.05'K.

11. Surface Tension

The surface tension o. of liquid He' has been measured

using the capillary-rise method by Eselson and Berez-

nyak, "by Zinov'eva, "and by Lovejoy. "The results,
given in Fig. 18, are in fairly good agreement, and show

a practically linear dependence on temperature between
the critical temperature T,=3.33'K and about 1.5'K.
Lovejoy compares his results with the A&ins theory, "
which considers the variation of surface tension at low

temperatures to be duie to the variation of the energy
of surface waves. On the basis of this theory, he ex-

trapolated his values from 1.08'K to O'K, and ob-
tained for the surface tension at the absolute zero
n=0.154+0.005 erg/cm'. The Zinov'eva data indicate
that n remains constant below 0.5'K and equal to
0.152 erg/cm'. By plotting n vs T/T, for He' and He',
she found that the curves are identical within experi-
mental error. The difference in statistics between He'

9'B. N. Kselson, N. G. Bereznyak, Doklady Akad. Nauk
S. S. S. R. 99, 365 (1954).

94 K. N. Zinov'eva, J. Exptl. Theoret. Phys. {U. S. S. R.) 29,
899 (1955).

'5 D. R. I,ovejoy, Can. J. Phys. 33, 49 (1955).
"K.R. Atkins, Can. J. Phys. 31, 1165 (1953).
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and He' thus has no influence on t.he surfa. ce tension
right down to the lowest temperatures.

12. NUlee j.'-Magnetic Susceptibility

The nuclear-magnetic moment of an He' nucleus
being too small, static methods are inadequate for
measurements of the nuclear-magnetic susceptibility.

Fairbank and his collaborators" ' @' have made ex-
tensive use of spin-resonance techniques in order to in-
vestigate the behavior of the nuclear-spin system. Other
groups have also used resonance techniques to investi-
gate the behavior of the nuclear-spin system, as well as
an indirect method of measuring the self-diffusion co-
efIicient, "for instance.

The results by Fairbank et al." are summarized in
Fig. 19, in which xT/C is plotted against T, where x
is the molar susceptibility at temperature T and C a
normalizing constant. Since the linewidth due to field
inhomogeneity is much greater than the natural width,
the form of the observed resonance remained constant,
and relative susceptibilities were given by changes in
height. Absolute values could not be measured directly,
and a normalizing procedure was first carried out by
measuring the susceptibility in the gas at 4.2'K where
its behavior would be expected to be nearly classical.
The result appeared to indicate a 5% degeneracy in the
liquid at 1.2'K, but the gas data were not accurate
enough to be certain of this. In Fig. 19, it has in fact
been assumed that the liquid degeneracy at 1.2 K. is
zero; i.e., all of the measurements have been normalized
to unity at this temperature. This procedure was fol-
lowed because the molar susceptibility appeared to be

X4

a %4k
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VAPOR PRESSURE
12 atm
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I IG. 19. Nuclear-magnetic susceptibility" of liquid He' under
pressure, normalized at high temperatures (1.2'I).

constant against change in pressure at this temperature,
indicating that there was no degeneracy at 1.2'K within
the accuracy of the measurements (about &3%).

In Fig. 19, a Curie la,w (random-spin distribution) is
indicated by the horizontal line with XT/C= 1. Within
the accuracy of the measurements, the susceptibility at
the saturated vapor pressure (lowest curve in the figure)
fits that for a perfect Fermi gas with a degeneracy tem-
perature T=0.45'K, an order of magnitude lower than
that calculated for liquid He' as an ideal Fermi gas
(5'K), and about four times lower than the degeneracy
temperature as calculated from specific-heat data,
(Sec. II.2. 3).

The data of Fig. 19 have been extended to lower tem-

peratures, " '"' as shown in Figs. 20—22. From these
figures, one sees that the susceptibility below 0.05'K is
practically independent of temperature, and that the

susceptibility per atom below 0.05'K increases by a factor
of two, when the pressure is increased from 0 to 30 atm.
To a good approximation,

xi(p =0)L1+0.03p],

0
Q o.

Fzo. 18. Surface tension ' "of liquid He' and He'.

W. M. Fairband and G. K. Walters, Nuovo cimento, Suppl.
9, 297 (i958).' A. C. Anderson, W. Reese, R. .J. Sarwinski, and J. C.
Wheatley, Phys. Rev. Letters 7, 220 (1961).

where x& is the susceptibility per atom below 0.05'K,
a,nd p is the pressure in atmospheres.

Thomson and Meyer" as well as Anderson et al."
observed that the susceptibility for pressures above
30 atm changes drastically within a very narrow pres-
sure range. Figure 20 shows that the susceptibility
below 0.05'K increases by a factor of almost 3 when
the pressure is increased from 30.4 to 30.8 atm (curves
C and F).This behavior is similar to the behavior of the
sound velocity under pressure as discussed in Sec. III.6.
Figure 20 also shows that for pressures above 30.8 atm
the susceptibility follows a Curie law down to 0.1'K.
(See note added in proof. )

"A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev.
letters 7, 366 (1961).

A. L. Thomson and H. Meyer, Bull. Am. Phys. Soc. 7, 76
(1962) and private communication. However, see note added in
proof.
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tions where the ratio of the free liquid surface to its
volume is large. Most He' atoms may then diffuse to the
vapor-liquid interface in times comparable with or less
than T&, may become relaxed on any "black" surface in
the vapor (for example, a metal), may return to the
liquid, and thus may shorten the observed T&. This
mechanism, which is more effective at higher vapor
pressures, is thought to account for the peaks observed
by Careri et al."Evidence for bulk-impurity relaxation
is uncertain. It may have been present in the vmrk of
Low and Rorschach" who found a decrease in T~ with
time during some experiments, due possibly to diffusion
of oxygen into the sample chamber. Walters, " on the
other hand, found no effect even when oxygen is de-
liberately mixed with the He' gas before condensing.

14. Self-Diffusion
TQK)

Pro. 20. Nuclear-magnetic susceptibility'" of liquid Ne' under
pressure, normalized at 1.0'K. (See note added in proof. )

A discussion on other susceptibility data can be found
in references 49 and 50.

13. Spin Relaxation

Since nuclear-spin alignment occurs in the liquid at
about 0.3'K (see preceding section), there is the possi-
bility of studying spin relaxation in He' in a range of
temperatures from the "classical" high-temperature
region down to low temperatures where quantum-sta-
tistical effects become important. Experimental results
for T& from different laboratories have given widely
disparate results, but these can be explained by spurious
relaxation mechanisms, and, in some cases, can be re-
analyzed to give good agreement with the theory for
ordinary liquids as proposed by Bloembergen, Purcell,
and Pound. The best published values for T~ seem to be
those of Romer, "' which have been confirmed by
Norberg. "' Values of T2 do not agree with theory, but
can probably be explained by the presence of bulk
paramagnetic impurity.

Relaxation mechanisms giving spurious results are:
(a) wall relaxation from paramagnetic impurities or
adsorbed oxygen; (b) bulk relaxation from, for example,
oxygen impurity or charged ions caused by decay of
residual tritium in the He'; and (c) relaxation due to
atomic exchange at the vapor-liquid interface. Wall
relaxation was con6rmed in the work of Careri et uI. ,

4'

and also was investigated in detail by Walters. " It
appears that Pyrex glass is a very poor relaxer, whereas
metals are almost "black" for spin relaxation. However,
even Pyrex containers can give shortened relaxation
times, which are presumably due to adsorbed para-
magnetic impurity, since careful cleaning of the walls
increased T&. Walters also showed experimentally" that
the third mechanism above can be important in situa-

' ' R. H. Romer, Phys. Rev. 117, 1183 (1960); R. E. Norberg
{private communication).
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FIG. 21. Nuclear-magnetic susceptibility"" of liquid He' at
very low temperatures for different pressures.

'" R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959);
A. C. Anderson, %. Reese, R. Sarwinski, and J. C. %heatley,
Phys. Rev. Letters 7, 220 (1961).

The coefficient of self-diffusion D of liquid He has
been measured using the spin-echo technique by Garvin
and Reich'02 and by Wheatley and co-workers io2 Garvin
and Reich measured the pressure and temperature de-
pendence in the range 2.4 to 67.0 atm between 0.45' and
about 3.7'K. They found that D increases with tem-
perature and decreases with pressure, and the authors
consider that in this temperature range D can be under-
stood qualitatively in terms of zero-point energy and
tunneling of atoms through potential barriers.

Wheatley and co-workers'" have measured the self-

diffusion coeAicient at lower temperatures below 0.5'K,
and their results join smoothly with those of Garvin and
Reich. '' At lower temperatures, they found that D
decreases with T. Below 0.04'K, their diffusion coeffi-

cients are proportional to T ' in agreement with the
Fermi-Dirac-Landau theory.

Thus, viscosity (Sec. 10) is the only transport property
of liquid He' which has not been measured at tempera-
tures low enough to display a behavior characteristic
of a Fermi-Dirac system.
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p min The phonon entropy may be written as

Sp/E= 77(T/8)', T«B, (68)

all practical purposes, independent of the magnetiza-
tion. At high temperatures, the spin entropy can be
expanded into a power series in T ',

S,/R= ln2 —n(Tc/T)'+ . , T))Te, (66)

where T& is the exchange energy per atom and n is a
numerical constant, which, for a bcc lattice, can be
taken" equal to 3/32. On the other hand, at low tem-
peratures a spin-wave model gives

(67)

FIG. 22. Pressure dependence of the nuclear-magnetic suscepti-
bility of liquid He' at very low temperatures. ""

IV. SOLID PHASE: EXPERIMENTAL DATA

1. General

Little is known from experiments about the properties
of solid He'. X-ray analysis4'4' shows that it has three
different crystallographic phases (Sec. II.5).

Its cohesive energy should be about 0.5'K/atom as
estimated in Sec. II.S. The density of the solid at 30 atm
is known with goad accuracy from the experiments of
Mills and Grilly'" 6' which give a molar volume of
24.7 cm'/mole. The compressibility has not been meas-
ured directly, except for some measurements of the
velocity of sound v, at some unspecified low pressure. "
From v, =475 m/sec, "we can infer that the compressi-
bility E= 1/pit ' is equal to 3.5&&10 '/atm.

where 0 is the Debye temperature.
Specific-heat measurements below 0.04'K indicate

that Eq. (66) is valid with Tc—0.01'K."
The specific heat above 0.3'K seems to be due solely

to phonons. Heltemes and Swenson"' have measured the
specific heat of both solid He' and He4 for pressures up

IO

Xp

2. Speci6c Heat

The entropy of the solid may be separated into a
contribution S„ from the lattice phonons and another
8, arising from the nuclear-spin system. This separation
is possible since the lattice-vibration spectrum is, for

00
I!T(oK)

Fio. 24. Nuclear-magnetic susceptibility of solid He'
for pressures above 60 atm. ' '

1

I2 l4 I6 IS 20 22 24 26
Vs

PIG. 23. Debye temperature'. ' of o.' and P solid He'
ps fungtiogs of molar yojurne.

to 1800 atm. Their results are in agreement with Eq.
(68), 8 being a function of volume as shown in Fig. 23.'0'

The values of 8 and of the Grueneisen constant
y= —d lnB/d lnV are in essential agreement with the
calculations by Bernardes. "The experimental results
may be expressed by

8 ('K) =27(20/V)&~, V) 18.6 cm'/mole, (69)

8~('K) = 33 (20/V) '9, V &18.6 cm'/mole, (70)
aild

y =yp=2. 24,

where V is the molar volume expressed in cm'/mole.
Heltemes and Swenson"' observed an anomaly in the

low-pressure (bcc, n phase) specific heat, which can be
empirically described by an Einstein specific-heat func-
tion. '" The origin of this anomaly is not known, but it
must be connected with the strong anharmonicity of the

'"K. C. Heltemes and C. A. Swenson, Phys. Rev. Letters
7, S63 (j.96&,).
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lattice. In fact, if the static potential energy U(r) be-
tween nearest neighbors is expanded into a power series

26

U(r) = a+br'+cr4, (72)

Op
—0 =6'K. (73)

The significance of this result is discussed in Sec. IV.4.
We may conclude that the phonon entropy at 0.5'K

is only about 7X10 ' cal/mole 'K. On the other hand,

in the deviation r from the equilibrium distance, one
finds that b(0, c&0. Therefore, we may expect ab-
normal thermal properties for such a lattice, except at
very low temperatures. The experiments of Heltemes
and Swenson, '" as well as those of Dugdale and Simon"
for solid He4, do indicate, however, that despite the
large anharmonicity the specific heat at very low tem-
peratures is proportional to T'.

According to the experiments of Heltemes and Swen-

son, the low-pressure Debye temperatures 0 and ep of
the (n) bcc phase and (P) hcp phase differ by about
6'K; i.e.,

24-
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FxG. 26. Melting curve of He' and He' at low pressures.

For instance, for T—0.3'K, the relative susceptibility is
larger than the value given by the Curie law; this would
indicate a tendency towards ferromagnetism. The rea-
sons for this complex behavior are not understood.

Other spin-resonance experiments in the solid include
those of Goodkind and Fairbank' ' on the relaxation
times, and those of Reich"' on the relaxation times and
self-diffusion. ""

oI4I
8
pl3

l05

FIG. 25. Melting curve of He' and He' at high pressures.

25

4. Melting Curve

The temperature dependence of the melting pressure
has been determined by several authors using the tradi-
tional blocked-capillary method" and, more recently,
other methods. "' '"

Even though the early measurements of Abraham,
Osborne, and Weinstock33 extended down to 0.16'K,
they did not reveal the presence of the minimum in the
melting curve, due to the fact that they used a blocked-

capillary method. More recent experiments by Baum

at T—3T& the spin entropy is less than R ln2 by about
10 2 cal/mole 'K. Since Tc of Kq. (66) seems to be
much smaller than 0.1'K, the total entropy of the solid
between 0.1' and 0.5'K may be taken equal to R ln2,
within 1%%u~.

3. Nuclear-Magnetic Susceptibility

I I ~ I I ~ I ~ ~
1 I ~ I ~

1
I ~ ~ I I I ~ ~ ~ ) I ~

52—
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CO
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CO

30-
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The nuclear-magnetic susceptibility of the solid was

first measured by Fairbank and Walters" who found

large deviations from the Curie law at temperatures
below 0.2'K. These experiments indicated a large value
(0.1'K/atin) for the exchange energy of the order of
those calculated by Bernardes and Primakoff. However,
these results do not agree in detail with more-recent
measurements' ' which show that, for pressures less than
60 atm the Curie law is obeyed down to 0.1 K. The
susceptibility above 60 atm (Fig. 24) is quite complex.

' 4 E. D. Adams, H. Meyer, and W. M. Fairbank, reference 49,
p. 57.
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FIG. 27. Minimum in the melting curve'0 of Hes.

J. M. Goodkind and W. M. Fairbank, Phys. Rev. Letters 3,
127 (1959).

H. A. Reich (private communication).I' J. Baum, D. F. Brewer, J. G. Daunt, and D, O. Edwards,
Phys. Rev. Letters 3, 127 (1959).D. O. Edwards, J. Baum, D. S.
Brewer, J. G. Daunt, and A. S. McWilliams, reference 49, p. 126."'D. M. Lee and H. A. Fairbank (private communication).

' 'S. G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters 4, 495 (1960).
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FIG. 28. Densities
for thermal-conduc-
tivity data" (see
Figs. 29 and 30).

at higher pressures contain the entropy at saturated
vapor pressures as an additive term, one may expect
this difference to arise from an invalid extrapolation to
O'K of Cv data (m*/m=2) above 0.1'K. More recent
C& data below 0.1'K give a substantially larger value
for m*/m, and hence for the liquid entropy which now
seems to be E ln2 at the minimum of the melting curve
(see Sec. III.8).

As discussed in Sec. II.6, the entropy of the solid at
very low temperatures (below 0.1'K) should again be
less than that of the liquid, and, hence, the melting
curve should have a maximum below 0.1'K. The calcu-
lations of Bernardes and Primakoff'~ give 0.08'K for
this temperature. But, due to the uncertainty in their
exchange integral, this temperature may be as low as
0.01'K (Sec. II.6).

20 50
TEMPERATNK, 'K

dP aS S) S,
dT aV Vi—V,

(74)

et ul. ""' by Lee, Fairbank, and Walker '"' and by
Grilly, Sydoriak, and Mills' ' revealed the minimum at
0.32—0.33'K and 29.1—29.3 atm.

Mills and Grilly4' measured the melting pressure P
as a function of T from 1.3'K (50 atm) to 30'K (3500
atm). They also determined the volume of the freezing
liquid VE, the volume change AV = V~—V„and hence,
from Clapeyron's equation,

5. The e-Ii Phase Transition

The melting-curve measurements by Grilly and
Mills'" revealed a phase transition at 3.15'K and 140
atm on the melting curve. They were able to determine
the transition pressure P& as a function of T down to
1.8'K (P~—110 atm), the volume change hV~, and
hence, from Clapeyron's equation, the entropy
cha.nge ~S,.

Later, x-ray analysis by Schuch et a/. "revealed that
the low-pressure n phase has a bcc structure, whereas
the high-pressure P phase has a hcp structure. An extra-
polation of the experimental data to low temperatures"
indicates that the n /phase t-ransition may occur at
O'K for a pressure of the order of 100 atm.

the entropy difference, hS =5&—S„ is between liquid
and solid. Their results are shown in Figs. 25 and 26,
together with data at lower temperatures of Grilly,
Sydoriak, and Mills. "'

The AV measurements of Mills and Grilly4" re-
vealed the existence of a phase transition near 3.1'K
and 140 atm, which are discussed in the next section.

The minimum in the melting curve was detected by
Baum et al. ,

' by I,ee, Fairbank, and Walker Ios and
by Grilly, Sydoriak, and Mills. '"The results of all these
groups can be represented, within 2%, by the equation4'

I' = (29.1+0.2)+32.2(T—0.33)2 atm, (75)

which is valid between 0.1' and 0.5'K. The results of
Baum et al. are shown in Fig. 27.

A detailed comparison of Eq. (75) with theory is
diAicult. However, since the entropy of the melting
solid between 0.1' and 0.5'K can be taken equal to
R ln2, we may conclude that the entropy of the freezing
liquid at 0.33'K is also equal to R ln2. On the other hand,
the extrapolated. values of SE of Brewer and Daunt"
give S~(p—30 atm) =R ln2 for T=0.37'K; or, in other
words, the liquid entropy values of Brewer and Daunt
seem to be too small by about 10%.Since their entropies
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FIG. 29. Thermal conductivity" of o'. and P
solid He' for p) 130 atm.
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IOOO by Cz data, we may infer from the Heltemes and
Swenson"' data (II =28'K, IIp

——34'K), and from
Eqs. (77) and (78) that

and
b =3.2,

bp=3.4,

(80)

(81)
eo

(82)

and, hence,

which is reasonable. On the other hand, Eqs. (76) and
(77) allow us to calculate the Grueneisen constant yp
for the P phase,

11 ep(18.6 cm'/mole) I'19.5q &p

10 8 (19.5 cm'/mole) (18.6)

y p
—2.0, (83)

.h

FIG. 30. Thermal conductivity"' of a and P solid He'.
The curves are labeled according to Fig, 28.

The n-P phase transition was also observed by Fair-
bank and Walker" on the thermal conductivity of the
solid under pressure, and by Heltemes and Swenson"'
on the specific heat (Sec. IV.2).

The results of I'airbank and Walker'" for the thermal
conductivity for molar volumes (Fig. 28) of 18.6 and
19.6 cm'/mole are shown in Fig. 29. Their results for
lower pressures (Figs. 28 and 30) are complex, and diffi-
cult to interpret. The results of Fig. 29 can be expressed,
in mw/cm 'K, by the equations, "'
Kp=0. 1 exp(11/T), V=18.6 cm'/mole,

1.2'K&T &2.5'K, (76)

Kp ——0.1 exp(10/T), V=19.5 cm'/mole,

1.2'K& T&2.1'K, (77)
and

K =0.05 exp(8. 8/T), V= 19.6 cm'/mole,

2.2'K &T &2.5'K, (78)

which are typical of insulators in a temperature range
where the scattering is predominantly by umklapp.

The theory of thermal conductivity for a temperature
region where umklapp processes dominate gives

K=A exp(II/bT),

where 8 is the Debye temperature arid b is a constant
of the order of two.

If we assume'" that II in Eq. (79) is the same as given

" E.- J. Walker and H. A. Fairbank, Phys. Rev. Letters 5,
139 (1960).'" N. Bernardes, Phys. Rev. Letters 8, 164 (1962).

DS~/R=1 5X10 'T', (87)

which is in good agreement with Eq. (84) obtained
from the slope of the phase-separation line. '" Notice
that the early AS& results of Grilly and Mills, "' which
were found to be incorrect, '" would not give rise to
such an agreement.

The analysis in the foregoing shows that the change
in phonon entropy accounts for the total entropy
change. Hence, it is unlikely that the crystallographic
n-P transition is accompanied by a magnetic transition. "

We can see"' from the following that a theoretical
analysis of the relative stability of the n and P phases is
very difFicult. The static energies of a bcc and hcp of
He' atoms, for volumes as large as 18 cm'/mole, are
practically the same. Hence, the energy difference at
O'K should be due to different zero-point energies E.~
of the two lattices. However, this zero-point energy
difference hE, ~ cannot be simply proportional to the
difference in Debye temperatures 60. In fact, from exper-
iment, 'P' AU(0'K) —AE,~

—100 atm X0.1 cm'/mole—0.1'K/atom, while 68=6'K.io' Thus, we may con-
clude that, if

E„,(n) = a„8
'"- E. R. Grilly and R. L. Mills, reference 46a, p. 100,

which is in good agreement with the value obtained
from Cv data '" Eq (73)

An important result emerges from a comparison'"
of C& data"' with AS&. In fact, the entropy differences'"
DS~ can be represented by

AS&/R= (1.6+10%)X10 'T'. (84)

On the other hand, C& data"' show that the entropy of
the solid can be described by a Debye model, for which

S,p/R=77(T/0 p)'.

Hence, from Cy data, we expect

AS /Ri= 232 (Ae/04) T'. (86)

Since"' II =28'K, 8p=34'K (0=31'K, and AII=6'K),
we may expect from C& data alone that
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and

then
E o(P) =&et)e

AE,p
—a 0 —npPp —0.

Hence, Dcs/a 6—0/0—. Since tt —cte—1 and 60/t) =6/30,
we may write

(88)

E.o (P)—0.98e. (89)

This diRerence (ha/a —20%) is much larger than what
one expects from usual theories of lattice dynamics. '"

Only very accurate (AE/0 —0.1/30=0.3%) calcula-
tions will give a meaningful answer to the question of
the relative stability of the n and P phases.

Above 18'K and 1800 atm (V—12 cm'/mole), the hcp
lattice becomes unstable with respect to a fcc lattice,
and a new phase transition occurs."The theory of this
phase transition also would be very difficult. Neverthe-
less, solid He4 undergoes a similar phase transition at the
same molar volume, " which shows4' that this high-
pressure phase transition is primarily a classical volume
effect.

V. SUMMARY

We may summarize the present status of the investi-
gations on the properties of liquid and solid He' by
saying that the general features of liquid between 0.02'
and 0.1'K are known and understood. However, the
properties of the liquid below 0.3'K and above 30 atm
are not too well known and should be the subject for
further experiments. Also, the propagation of zero sound
as well as an eventual superQuid transition in the liquid
have not been detected, and experiments below 0.01'K
are desirable.

On the other hand, experimental as well as theoretical
results for the solid phase are meager, and much effort
is still required. For instance, further magnetic-suscepti-
bility measurements and melting-curve determinations
below 0.1'K would clarify the quantum behavior of the
nuclear-spin system.

Note added its proof. At the end of Sec. III.6, we men-
tioned the possibility that the peculiar results for the

'" C. Domb and I. Salter, Phil. Mag. 43, 1083 (1952).

specific heat, "magnetic susceptibility, '0' and sound ve-
locity" of the liquid above 30 atm and below 0.1 'K,
as shown in Figs. 14 and 20, might not be real, and due
only to experimental difficulties in cooling the com-
pressed liquid. Recently H. A. Fairbank LPhys. Rev.
Letters 8, 49 (1962)] analyzed the pertinent data nu-
merically, and came to the conclusion that all these
peculiar results can be explained by the hypothesis that,
instead of a pure liquid, one had a liquid-solid mixture.
In view of this one should disregard curves I" and Z of
Fig. 20, and the parts of the curves in Fig. 14 lying near
and to the right of their maxima. The unpublished data
of Fig. 20 was kindly provided to us by Dr. H. Meyer,
who is preparing a full account of his experiments for
publication.

Recent work on the properties of the liquid phase can
be found in Bull. Am. Phys. Soc. 7, 76 (1962).
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