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Nuclear Models and Surfaces”®

Davip R. INcLIs

Argonne National Laboratory, Argonne, Illinois

HERE are many schemes going under the name
of nuclear models these days and not all of them
can be discussed here. Some of them are merely models
of models. Among them, the shell model and the dis-
torted-shell model, or collective model, have been very
successful in correlating nuclear data. Instead of
dwelling on the victories represented by the frequently
discussed quantitative agreement, the present discussion
emphasizes the relationships between different nuclear
models and points out some of the conceptual problems
of the models themselves, problems associated with the
nature of the nuclear surface, particularly as they ap-
pear among some of the light nuclei which are practically
all surface.

COMPARISON OF MODELS FOR He¢

Let us first consider the shell model in one of the
simplest cases He®. The ground state is a 1S state, with
the spins of the two p protons antiparallel and the space
- function symmetric on exchange of the two nucleons.
In Fig. 1(a), we see that the orbital planes in which
the two nucleons circulate coincide because the angular
momenta are exactly oppositely directed. This circum-

* Based on a paper delivered at the Chicago meeting of The
American Physical Society, November 25, 1961. Work done under
the auspices of the U. S. Atomic Energy Commission.

stance, together with the fact that the space function
is symmetric in exchange of the two nucleons, maximizes
their average proximity to one another and minimizes
the energy arising from their attractive interaction. The
first excited state D differs from this ground state in
having the two orbital angular momenta /; as nearly
parallel as possible [Fig. 1(b)]. The uncertainty princi-
ple does not permit them to be exactly parallel, however,
as seen by the direction cosines in which /;? is replaced
by l1(l1+1), etc. The orbits thus are not quite in the
same plane and the particles are on the average farther
apart, so that the energy is slightly higher than that of
the ground state. The higher states of the configuration
$? comprise the 3P state, with energy much higher both
because the planes of the orbits are approximately
normal to one another, as shown in Fig. 1(c), and be-
cause the space function is antisymmetric.

In the simple case with two p nucleons, and also in
more complicated cases with more nucleons, the main
point is that the low state is determined by a maximum
angular bunching of these nucleons. If the charge dis-
tribution of a p nucleon is roughly represented by a
circular orbit, maximum bunching is attained, as a first
consideration, by having the orbits as nearly coplanar
as possible. But, it is equally important that we should
consider the phases involved when we think of the
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F16. 1. Features determining the average proximity and inter-
action energy of the two p nucleons in the low states of the shell
model of HeS. This pictorial representation, of course, depicts
merely the main features of nuclear states which are more-precisely
described by wave functions. The corresponding density functions
are more diffuse than the line orbits so as to satisfy the uncertainty
principle. The wave functions for the S and D states, for example,
in an oscillator potential are

1D~ (212 y1y2— 22122) exp[ — 3 (r2+722) ]

1S~ (x1xa+y 1yet2ize) exp[— 5 (r2+r:2) ]
In terms of the relative and c.m. coordinates of the two $ nucleons
R=27%r+rs],

we have in the exponent the identity r,2472=R>+* and these
wave functions may be written instead in terms of the 2s and 1d
wave functions of these coordinates (containing the exponentials
€ R%2 and ¢~7*/2) 50 as to emphasize the dependence of the proba-
bility distribution on the relative coordinate, thus:

1D=1d(R)1s(r)—1s(R)1d(r),
1S=2s(R)1s(r)—1s(R)2s(r).
The corresponding matrix elements of the interaction V () are then
(D|V|'D)y=(1s|V[1s)+(1d| V|1d),
(S| V|1S)=(1s| V| 1s)+ (25| V| 2s).
The relative 2s function has a maximum at »=0, when the two
nucleons coincide, whereas 1d(r) hasa node there. For ashort-range
attractive potential, the last term in the matrix element thus
gives the 1§ a lower energy than 1D, as may also be inferred by

comparing the angles between the orbital planes in sketches
(a) and (b).

r=2"%r,—ry],

motion of the nucleon as given by a wave drawn around
the circular orbit, as in Fig. 1(d), to represent theangular
factor of the wave function. In the simple example of
He®, the symmetric wave function with maximum
bunching corresponds to having the phases arranged so
that the crests of the waves for the two nucleons coin-
cide. This means that, in this case, the bunching is not
a flattened distribution in a plane, as the orbits alone
would suggest, but a bunching about an axis of unknown
orientation.

This result was obtained after starting from a spheri-
cal potential well. Much the same result can be obtained
by introducing the ellipsoidal potential well of the
distorted-shell model in the first place (a prolate well
for He®), and by letting much of the angular dependence
of the interaction between nucleons be represented by
the interaction of the individual nucleons with the shell.

There is thus a close correspondence between the
shell model and the distorted-shell model. The shell-
model calculations become very extensive when many
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nucleons are involved, and the use of the distorted-shell
model constitutes a distinct simplification. The collec-
tive rotation in the distorted-shell model provides an
explanation for the widely observed rotational bands.
The fact that the shell model explains similar excited
states in the simple cases in which comparison has been
possible seems to reveal the nature of some of the low
excited states in the shell model, suggesting that
although the relative orientation of the nucleon orbits
is changed to make higher values of the total angular
momentum, it is done in such a way that the wave
function has almost as high a degree of internal sym-
metry as in the ground state.

The symmetry is not quite as high in the rotational
state as in the ground state. In the rotating distorted-
shell model (called the cranked model), this is expressed
by the admixture of higher single particle states
through the action of the Coriolis force. The Coriolis
force acting on the free nucleons gives too small a
spacing between the rotational states (the spacing
corresponding to the rigid moment of inertia). This
excessive freedom of the individual nucleons to react
to the Coriolis force is suppressed by a residual inter-
action between pairs of nucleons (the part not already
included in the distorted potential well). This, too is
most effective between pairs of nucleons with oppositely-
directed momentum components, for a reason similar
to that in the ground state of He®. An important mathe-
matical simplification, which goes under the name of
“pairing model” or ‘“superconducting model,” assumes
all such interactions between pairs to have the same
value and neglects all other matrix elements. The
methods used are rather formal, being derived from field
theory and treating closed shells as the “vacuum.”
These useful methods are thus not really nuclear
models, but model calculations within a nuclear model,
or models of a model. They make possible rough, ap-
proximate calculations in cases too complicated for
direct application of normal shell-model methods. They
lead to the concept of a quasi-particle, which involves
the inclusion of certain important parts of the con-
figuration mixing, so that a nucleon seems to sweep
along with it some of the medium in which it moves.

POTENTIAL WELL FOR HEAVY NUCLEI

When shell-model calculations are made for heavy
nuclei and some of the integrals encountered are deter-
mined by comparison with experimental data before
predicting other experimental data, these should be
considered as shell-model calculations for quasi-parti-
cles, since the configuration interaction associated with
breaking the closed shells to make quasi-particles must
affect the data used to fix parameters. An attempt to
calculate the total binding energy of light nuclei must
deal with interactions between actual nucleons, and
such calculations are usually not very successful—partly
because some of this configuration interaction is
neglected.
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In constructing shell-model wave functions, the
three-dimensional harmonic-oscillator potential is com-
monly employed. This goes up rapidly toward infinity
outside the nucleus, and thus would seem to confine the
wave functions in an unrealistic manner. One usually
thinks of the central part of this oscillator potential as
the important part, and considers that the shoulder
should be cut off squarely at the separation energy for
a neutron (or with a Coulomb barrier above this for a
proton), so as to make a potential resembling the simple
“finite square well,” but with a rounded bottom. How-
ever, with such a cutoff potential, the tails of the wave
functions of the least-bound nucleons would penetrate
into the classically forbidden region outside the nucleus
considerably more than do the artificially confined,
oscillator wave functions.

When a neutron is separated “adiabatically” from
the nucleus (as in the usual low-energy, nuclear reac-
tions), the energy of the neutron threshold is calculated
in terms of the energy of the residual nucleus after the
remaining nucleons have rearranged the symmetry of
their wave function to take advantage of the absence
of the departed nucleon. The energy of the neutron
threshold is lowered by taking advantage of this re-
arrangement energy. This is not the case in the deter-
mination of the penetration of the tail of the single-
neutron wave function into the classically forbidden
region outside of the nucleus.! Instead, a considerable
part of the wave function still exists inside the nucleus
and has its influence on the symmetries of the other
nucleons, forbidding “rearrangement.” Thus, the
shoulder of the potential well confining the single-
particle wave function is higher than the threshold for
separation by an amount equal to the rearrangement
energy. The confining effect of this higher potential is
more nearly like that of the parabolic potential on which
the oscillator wave functions are based. The customary
use of these simple functions is thus better justified if
rearrangement is taken into account.

THRESHOLD STATES

If we think of changing some such parameter as the
radius of the nucleus in order to raise the energy of a
single-neutron state toward the threshold energy, and
if we cut off the potential well at the threshold, then the
tail of the wave function penetrates more and more
outside the nucleus as the threshold is approached. The
neutron distribution refuses to be squeezed as much as
it otherwise would, and the energy of the state corre-
spondingly refuses to be raised so rapidly. At the very
last, the curve of energy plotted against radius bends
over to become horizontal, and thus a relatively large
increment of the arbitrary parameter corresponds to a
very small change of energy. This is illustrated by the
solid line in the magnified portion of Fig. 2. On the
basis of this type of effect, it has been suggested that,

ID. R. Inglis, Nuclear Phys. 30, 1 (1962).

MODELS AND SURFACES

03 ll 16 820
\ 04’}—"
0.2 lo.0o2[ LAt
\\0.04 N
O.1 - b RO SN
B vaad
o . | | | }
-o.1f \ b* -
\\
-0.2r- \ —
€ \
-0.3- \ —~
P |
-0.4- \ \ ENETRAT ON
: \
057 kremz \ \/ R
u(r)
-0.6/- EN
o R
-0.7+ !
1
-0.8- N
-0.9 | | | | N | |
0 ) 2 3 4 5 6 7
(Burssm)/?R

IF16. 2. With a potential well cutoff at threshold, the energy
as a function of well radius bends over to approach the threshold
asymptotically.

because of the statistical distribution of such param-
eters, one should find nuclear-energy states more fre-
quently in an energy interval close to such thresholds
than elsewhere.

The existence of a confining barrier which is higher
than this by an amount equal to the rearrangement
energy of course alters this expectation. However, the
greater the penetration by the tail, the smaller is the
amplitude of the wave function inside the nucleus; one
may assume that this reduces the height of the re-
arrangement barrier in direct proportion to the lowered
probability that the neutron is in the nucleus. Thus, as
the threshold is approached from below, the penetration
reduces the barrier height and there is a feedback by
which this increases the penetration, and at a certain
point above the threshold the feedback mechanism be-
comes unstable and the rearrangement barrier dis-
appears. If the rearrangement energy is ‘“intrinsically”
rather small (that is, small even for a neutron wave
function concentration in the nucleus), then this ap-
proach to instability occurs quite close to the threshold,
and there is an enhanced probability of finding a state
as near to the threshold as this. For a realistic, intrinsic,
rearrangement energy of several Mev, however, the
probability of finding a state within a few tens of kev

T1c. 3. The energy function of
Fig. 2 is replaced by one with finite
slope at the threshold if the height
of the potential barrier is aug-
mented by a rearrangement energy
proportional to the density of the
nucleon state inside the nucleus.
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F16. 4. Typical one-dimensional
potentials in the two-dimensional
configuration space of two inter-
acting nucleons in a one-dimen-
sional square well.
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of the threshold is not appreciably greater than at other
energies. This effect is illustrated in Fig. 3, where the
various curves give the energy of a single-neutron state
in a square well with its barrier height augmented on the
basis of various values of the intrinsic rearrangement
energy.

A similar argument can be applied to the separation
of a cluster of nucleons, such as a deuteron or alpha
particle, from a nuclear system. An interesting case is to
be found in the fact that the first excited state of He®
(above the very diffuse ground 2P) as a (3/2)* state at
16.69 Mev, only 0.07 Mev from the threshold for
breakup into H3+d. The shell-model description of this
excited state of He® is similar to that of the ground
state of He® (suggested in Fig. 1) plus a proton hole in
the s shell. The two p nucleons are similar to a deuteron
in that they form a 35 state with parallel spins and a
symmetric space function. The s shell and p shell pre-
sumably have rather little influence on one another’s
symmetries. Thus, there probably is only a very small
rearrangement barrier because the relative symmetries
of the nucleons in the shell model of the compact system
are very similar to those in the cluster model in which
the deuteron and triton are slightly separated in space.
In this case, the suggested penetration effect on the
probability of finding a state near threshold probably
helps to explain the occurrence of the threshold state.
This may become clearer in the following discussion.

The cluster model is not sufficient in itself to explain
the proximity of the energy level to the threshold, since
it is difficult to calculate whether the two clusters should

almost or just barely stick together, or stick together
with a fairly strong binding.

Figure 4 presents a one-dimensional shell model of
Li® or of F'8, whichever you prefer. It consists of a one-
dimensional potential well (a), which we imagine to be
provided by an unspecified filled shell, containing a neu-
tron and a proton interacting with each other by a short-
range potential (b). Figure 4(e) is a map of the energy
surface as a function of the proton coordinate %, and the
neutron coordinate x,. The heights of the various
plateaus are given in the same arbitrary units as were
used to express the depth of the one-dimensional well
for protons (V,=4 arbitrary units) and for neutrons
(V=35 units). The interaction V,, makes a deep trench
near the main diagonal where x,=x,. The potential
energy is 19 if the proton and neutron leave the potential
well separately, but, if the energy of binding of the one-
dimensional deuteron [whose wave function is shown
in (f)] is E4=—2, then the threshold energy for deu-
teron emission is 17.

If the energy of the system is slightly lower than this
threshold, the penetration of the deuteron into the
barrier will be represented by a decaying exponential
as in Fig. 4(g). One can imagine using a net of points to
solve the differential (or difference) equation over this
surface, and finding that a considerable part of the wave
function corresponds to a shell-model-like existence of
proton and neutron inside the nucleus, and part to a
cluster-model-like penetration of the barrier in the
deuteron channel in the upper right-hand part of
Fig. 4(e).
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The numbers in Fig. 4, which have been chosen to
place the single-nucleon thresholds below the deuteron
threshold, correspond to the situation in F!# but not in
Li% In the situation shown, the rearrangement barrier
against single-nucleon emission may be sufficiently high
to contain the wave function of a fairly sharp nuclear
state near the deuteron threshold.

NATURE OF THE NUCLEAR SURFACE

Because a nucleon wave function contains four com-
ponents associated with the specification of spin and
isobaric spin, any type of nuclear state displays a special
stability when occupied by four nucleons. In calcula-
tions of the stability of nuclear matter, it is a fairly
close decision whether the more stable configuration
consists of four interpenetrating, uniform distributions
of the four types of nucleons, or a nonuniform dis-
tribution in which four groups of closely interacting
nucleons cluster together. Calculations by Brueckner
and others indicate that at the normal density of nuclear
matter such clustering does not occur. In these calcula-
tions, the interaction between the pair of nucleons is
_ represented as a very short-range repulsion, which helps

to prevent collapse of the nucleus, superimposed on a
fairly short-range attraction. At lower densities, how-
ever, it seems that some degree of clustering is possible.

Wilkinson has discussed evidence that the nucleons

“near the nuclear surface (where the density is small)
are to a considerable extent fleetingly clustered.? The
evidence is based on such phenomena as natural alpha
decay and the relative frequency of different modes of
K—-meson capture in the “nuclear stratosphere.” It is
easy to imagine a process similar to that suggested by
Fig. 4(e) permitting clusters like alpha particles to
penetrate into the Coulomb barrier, to make the surface
consist largely of such clusters. [Alpha decay through
the Coulomb barrier in many-dimensional space is ex-
pected to take place where the barrier is lowest, namely,
through the channel in which the nucleons are clustered
together to form an alpha particle as they go through.
The tail of the cluster wave function penetrating into
this channel, as in the corner of Fig. 4(e), corresponds to
some preformation of the alpha and facilitates the
decay to make it as rapid as observed. ]

In a few special nuclei and particularly in O, this
clustering at the surface may have a more nearly
permanent character; i.e., there may be a collective
deformation similar to that in the more commonly dis-
cussed, ellipsoidally deformed, shell model. This could
give rise to a surface with a tetrahedral symmetry,
corresponding to the partial formation of four alpha
clusters, and could be the basis for the success of
Dennison’s treatment? of a model with this symmetry.

2 D. H. Wilkinson, Proceedings of the Rutherford Jubilee Inter-
national Conference, Manchester, 1961, edited by J. B. Birks
(Academic Press Inc., New York, 1961), p. 339.

3D, M. Dennison, Phys. Rev. 96, 378 (1954),
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The fact that Elliott and Flowers* obtained some of the
same results from the shell model suggests that there is
a close correspondence between these two models just
as there is between the shell model and the deformed-
shell model discussed earlier.

NUCLEAR MODELS IN LITHIUM

Let us return to the lithium isotopes and other very
light nuclei. Here, we may ask whether we have an
extreme manifestation of surface clustering, so that the
cluster model is valid, or whether the shell model applies
and there are too few particles to favor a full develop-
ment of the surface clustering. By “full development”
is meant a clustering more pronounced than is inherent
in the first-order symmetries, one which from the shell-
model point of view is enhanced by a substantial amount
of configuration mixing. It may also be described in
terms of a molecular model, following Hafstad and
Teller’s discussion back in 1938, and others even earlier.

This is emphasized because there is already a large
amount of close association or clustering of the nucleons
in the first-order treatment of the shell model, as we
have seen in the discussion of He®. This is particularly
pronounced in the ground state of Be?, discussed in LS
coupling by Wildermuth and Kanellopoulos,® who re-
ferred to this ground-configuration clustering as sub-
stantiation for a cluster model. Here, there are four
nucleons in the p shell and the symmetry of their space
wave function makes them tend to cluster fleetingly on
one side of the shell. This means that they are predomi-
nantly on one side of the center of gravity whereas the
s nucleons are clustered on the other side. While this
seems like a description of a separation into two alpha
particles, the limitation imposed by the shell model
(with oscillator wave functions) is that there is a pre-
scribed (and quite large) amount of overlap between the
two clusters. The average distance between the two
clusters and the sizes of the clusters are dictated by the
same size parameter of the oscillator well. Perhaps the
most serious limitation is that, in minimizing the energy
of the system, the necessary compromise with the
presence of the p nucleons forces the s shell to be con-
siderably larger (about 509 larger in radius) than the
free alpha particle. If the shell model is to give a more
stable ground state than does a molecular-type cluster
model, the gain in binding energy through overlap of
the s shell and p shell must be great enough to com-
pensate the loss of internal binding energy accompanying
this expansion of the s shell.

It has long been questioned whether the shell model
or a cluster model (it used to be called an alpha model
or alpha-particle model) applies to the lithium isotopes.
Such properties as magnetic moment and strength of
spin-orbit coupling have been estimated with both

17. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A242, 57 (1957).

5 Th. Kanellopoulos and K. Wildermuth, Nuclear Phys. 9,
349 (1960).
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F16. 5. Energy groups for protons ejected from the s and
p shells in the (p,2p) reaction.

models during the late 1930’s and 1940’s. (Since these
nuclei display LS coupling, the famous 1949 discovery
of 77 coupling in heavier nuclei does not invalidate these
old and incomplete calculations.) Fairly serious attempts
to calculate binding energies of these isotopes on the
basis of various force assumptions have been made at
that time and also more recently.®

A new and exciting experimental result obtalned at
Orsay, France, has shed light on this question. In fact,
that is the reason for reviewing the question of clustering
at this time. The power of careful observations of the
(p,29) reactions (with incident proton energy in the
neighborhood of 150-450 Mev) was first demonstrated
at Uppsala, Sweden, about four years ago, by Tyrén,
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F16. 6. Angular distribution in the ($,2p) reaction on C,
for the p-shell group. See reference 8.

¢ H. Margenau and K. G. Carrol, Phys. Rev. 54, 705 (1938);
D. R. Inglis, Phys. Rev. 51, 531 (1937) Y. C. Tang, K. Wilder-
muth, and L. D. Pearlstein, zbui 123, 548 (1961); N. Austern and
P. H. Wackman L. Foldy (private commumcatlon)
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Hillman, and Maris.” Their observations of numbers of
events as dependent on the energy required to knock a
proton out of Li” or Be? are shown in Fig. 5. The right-
hand peak in each case corresponds to knocking a proton
out of the p shell and the left-hand peak to knocking out
a more tightly bound proton from the s shell. This is a
beautiful confirmation of the separation of the protons
into shells, and one sees that the p protons are more
tightly bound in Be? than in Li?, a manifestation of the
familiar four structure in nuclear binding energies.

In addition to recognizing them thus by their energies,
it is also possible to identify the s and p nucleons experi-
mentally by their angular-momentum distributions. One
sets the two counters at about 45° from the direction of
incidence and gates them to observe the highest-energy
range occurring in coincidence. At this position, which
is appropriate for observing the scattering from a free
proton (hydrogen) at a slightly higher energy, one ob-
serves the knocking out of protons which had no mo-
mentum in the nucleus. By shifting to slightly smaller or
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I'16. 7. Angular distribution in the (p,2p) reaction on He*.

larger angles, while keeping the two angles equal, one
can observe instead the scattering from particles moving
either in the direction of the beam or in the opposite
sense, respectively.

With oscillator functions, the wave functions in mo-
mentum space are very similar to those in space. The
momentum distribution for an s state has a maximum
at zero momentum and for a p state it goes to zero at
zero momentum. Classically, a particle having a finite
angular momentum keeps going round and round and
never stops, while a particle with zero angular mo-
mentum swings back and forth through the center and
stops at the turning points at the ends of the swing.
Thus, with the experimental arrangement just described,
one obtalns a maximum near 45° for scattering from
s protons and a minimum for p protons. This was first

7 7H( Tyren P. Hillman, and Th. A. J. Maris, Nuclear Phys.
1 (1958
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demonstrated experimentally by Gottshalk and Strauch
at Harvard® (Fig. 6) and has also been shown by
Tyrén at Chicago® (Figs. 7 and 8). One sees a beautifully
clean distinction between the s and p protons, in keeping
with the identification of the groups from their energy
and in keeping with the expectations of the shell model.

This brings us to the recent observations on Li® and
Li7 at Orsay.! In the case of Li’, we see in Fig. 9 that
the low-binding-energy group has a dip in the middle,
characteristic of a  proton, just as in the earlier observa-
tions on C'2, The surprise comes in the observations on
Li% shown in Fig. 10. Here again, there are two energy
groups, but both groups have angular distributions
characteristic of s protons.

This would be expected by a cluster model but not by
a shell model. Another experimental result which singles
out Li® as qualitatively different from the other p-shell
nuclei is found in the Stanford observation of nuclear
densities by electron scattering.* These data indicate
that Li® is the only one of these nuclei with distinctly
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F1c. 8. Angular distribution in the (p,2p) reaction on C%,
for the p-shell group. See reference 9.

less than normal density. This also suggests, but less
decisively than do the (p,2p) results, that Li®is a unique
example of the validity of a fully developed cluster
model.

The simplest description of a cluster model of Lif is a
deuteron clinging feebly to an alpha particle. Then, one
of the groups would correspond to ejecting a proton
from the s state of the deuteron, the other from the s
state of the alpha particle. The actual binding energies
suggest that the deuteron clings to the alpha by a

8 G. Gottshalk and K. Strauch, Phys. Rev. 120, 1005 (1960).
9 H. Tyrén (private communication), and cf. Proceedings Inter-
national Conference on Nuclear Structure, Kingston, Ontario, 1960
(University of Toronto Press, Toronto, Canada, 1960), p. 432.
10 J. P. Garron, J. C. Jacmart, M. Riou, C. Ruhla, J. Tiellac,
C. Caverzasio, and K. Strauch, Phys. Rev. Letters, 7, 261 (1961).
(119‘51\/.5. Meyer-Berkhout and K. W. Ford, Ann. Phys. 8, 119
9).
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F16. 9. Angular distribution in the (p,2p) reaction on Li%.1 As in
Tigs. 6 and 8, the dip is characteristic of the p shell.

cohesion energy almost as large as the internal binding
energy of the deuteron, so the picture is probably not as
simple as this, but perhaps almost. The energies of co-
hesion and internal binding energies of the clusters in
the cluster models of Li® and of Li” are shown in Table I.
We note that the cohesive energy is smaller, relative to
the binding energy of the cluster, in Li” than it is in
Li% From the point of view of the question, “Is the
cohesive energy strong enough to break up the internal
structure of the cluster?” one might then naively con-
clude that the cluster model would be more apt to be
valid in Li7 than in Li¢,

Instead, the true situation seems to be that the twelve
interactions between the three nucleons of the p shell
and the four nucleons of the s shell in Li” are sufficiently
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Frc. 10. Angular distribution in the (p,2p) reaction on Li¢
(data from reference 10). In this case, the low-binding-energy
group does not show the pronounced dip characteristic of a p state.
There remains room for more precise observation and for careful
interpretation to determine how closely the shape of the curve is
characteristic of a simple s state. It is not clear to what extent it
is excluded, for example, that there might be a modest admixture
of d state. This could be caused in the cluster model by the
action of a tensor interaction which may also be largely responsible
for the energy separation of the 3D excited states, involving
rotation of the entire deuteron, with its spin, about the alpha.
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TasLE L. The energies of cohesion and internal binding energies
of the clusters in the cluster models of Li® and Li".

Li¢ Li7
Binding energy of & (Mev) 28.30 28.30
Binding energy of other cluster 2.23 8.48
“Cohesive energy’’ 1.47 2.47
Total binding energy of nucleus 32.00 39.25

important when the two shells overlap that they can
compensate for the energetic cost of distorting the two
groups of nucleons, to make them fit into the same
potential well, by expanding the alpha and introducing
nodes within the “triton.” The triton has three attrac-
tive interactions between its nucleons to benefit from
the compactness imposed by the compromise with the
alpha and to help pay for the introduction of three
nodes in the nucleon wave functions, whereas the
deuteron has only one attractive interaction to help
pay for two nodes in the shell model of Li¢. The required
change of kinetic energy is less serious in Li’ than in
Li also because the free triton comes closer to matching
the alpha particle in size than does the quite diffuse
deuteron.

Perhaps another significant aspect of the situation is
that in Li’, where one  nucleon interacts with two
others, we are beginning to get some of the pluralistic
complexity characterized in heavier nuclei by the con-
cept of quasi-particles, as an improved treatment of the
shell model. This is absent (within the p shell) when
there is only one other p nucleon as in Li®

In other words, the formation of a shell seems to be a
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cooperative phenomenon. Just as ferromagnetism has
its Curie point, superconductivity its critical tempera-
ture, and the deformation of moderately heavy nuclei
its critical neutron number 88, so the formation of the
p shell has its critical nucleon number three.

In closing, a much over-simplified analog may be
introduced which suggests that one does not have to go
so far as to think of a separate deuteron in the cluster
model of Li® in order to explain the experimental result.
Consider first a simple pendulum constructed with a
stiff rod, not a string. Consider it swinging perhaps
even beyond the horizontal position, but not going
“over the top.” It still spends a considerable fraction of
its time in the neighborhood of zero velocity. Give it
more energy (or keep the same energy of oscillation but
shorten the rod) so that it goes over the top. Now, it
never stops and there is no zero-momentum component.
To make the analog look more like LiS let us eliminate
gravity and connect two such pendulums by a spring
which makes them attract one another. The rods of the
two pendulums are longer in such an analog of Li® than
in the one for Li7, so there is not enough energy to carry
them on around through the position 180° apart. They
vibrate relative to one another and have a zero-mo-
mentum component.

The ground state of Li® thus seems to contain some-
thing vaguely like a separate deuteron, perhaps very
much distorted by its interactions with the alpha but
so different from a shell-model state that a great deal
of configuration mixing would be required to describe
it in the shell-model terms. Thus, between Li? and Li¢ we
see the demise of the shell model at the light-nucleus end.



