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l. INTRODUCTION

'HE experiment of rotating a magnet to polarize
it and the converse experiment of applying a

magnetic field to a freely suspended magnet in order
to induce its rotation are called gyromagnetic experi-
ments. Their history goes back as far as Maxwell, '
who suggested and tried these types of experiments as
a means of determining whether electricity is carried

by a material substance. The first successful magneti-
zation-by-rotation experiments were performed by
Barnett' and the first successful rotation-by-magneti-
zation experiments were carried out by Einstein and
de Haas. ' These experiments provided early measure-

ments of the gyromagnetic ratio of electrons. The
experimental work on these effects has continued' and
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very high accuracy is attained in the recent experiments,
particularly those of Scott. '

In this paper we present a unified theory of these
gyromagnetic effects and ordinary magnetic polariza-
tion. In addition, we consider the analogous nuclear
gyromagnetic phenomena and polarization of nuclei
by a magnetic field. This results in a unified treatment
of several eRects, such as the Knight shift, the Lamb
diamagnetic shielding, the Ramsey chemical shift, and
pseudodipolar coupling. Of these phenomena, only the
nuclear gyromagnetic eRects have not as yet been
observed experimentally, although their existence has
been suggested. ' Our treatment of electronic effects
does not include ferromagnetism.

The physical fact underlying all the gyromagnetic
eRects is that the nuclear spin and the electronic spin,
as well as their orbital angular momenta, generate a
magnetic moment parallel to the angular momentum
with a magnitude fixed through a characteristic constant
of proportionality, known as the gyromagnetic ratio.
This fact, together with Newton's second law of motion
or the Schrodinger equation, transformed to a rotating-
coordinate system, leads to Larmor's theorem —that
the effect of a uniform magnetic field on a system of
spins or particles can be transformed away by going
to a rotating coordinate system, provided the angular
momentum of the system in the field direction is a
constant of motion.

In Sec. 2, the quantum-mechanical Larmor theorem
is derived. It is given in a generalized form including
spin and orbital motion, systems of spins with differing
gyromagnetic ratios, and some time-dependent mag-
netic fields. According to the Larmor theorem, the
magnetic field produces only a periodic eRect, although
in fact it is well known that magnetic fields tend to
produce polarization in the field direction, not just
periodic Larmor precession. To analyze how polarization
can take place, the behavior in a magnetic field of two
spins coupled by the interaction between their magnetic
dipoles is followed by an exact solution of the
Schrodinger equation. The coupling is essential so as
to allow the exchange of angular momentum required
to produce polarization. It is shown that, if no field
acts on these two spins but instead the whole system
is physically caused to rotate, this rotation can cause

Chap. 7. Of particular importance are the experiments on para-
magnetic materials performed by W. Sucksmith, Proc. Roy. Soc.
(London) A128, 276 (1930);A133, 179 (1931);A135, 276 (1932).
Measurements reported in the literature since 1951 are S. J.
Barnett and G. S. Kenney, Phys. Rev. 87, 723 (1952). A. J. P.
Meyer, Compt. rend. 246, 1294 (1958). A. J. P. Meyer and
S.Brown, J.phys. radium 18, 161 (1957).A. J. P. Meyer, G. Asch,
and S. Brown, "Colloque National de Magnetisme, " (Strasbourg
1957), p. 305. G. Asch, Compt. rend. 246, 1294 (1958). G. G.
Scott, Phys. Rev. 82, 542 (1951); 99, 1241 (1955); 99, 1824
(1955); 103, 561 (1956); Rev. Sci. Instr. 28, 270 (1957); Phys.
Rev. 119,84 (1960);120, 331 (1960).For a recent review of experi-
ments see G. G. Scott, Revs. Modern Phys. 34, 102 (1962).

~ G. G. Scott, see reference 4,
~K. T. Jaynes, Phys. Rev. 106, 620 (1957); S. P. Heims,

Helv. Phys. Acta Suppl. VI (1960).

a polarization of just the magnitude produced by a
field which produces a Larmor frequency equal to the
rotation frequency. Polarization does not occur for
any arbitrary initial conditions, but it does occur, for
example, if the initial density matrix corresponds to
thermal equilibrium. This example helps reconcile in a
qualitative way the exact Schrodinger-equation solution
with the approximate statistical theories of magneti-
zation or magnetic-relaxation phenomena. '

In Sec. 3a, the density matrix for a uniformly
rotating system in thermal equilibrium is derived on
the basis of maximum-entropy inference. Since one
rarely sees equilibrium distributions involving the
angular momentum in a role parallel to that of the
energy (although they were given by Gibbs), it is of
some interest to make predictions for observations on
the basis of this density matrix. The application to
physical systems is made by use of a perturbation
theory for expectation values. The perturbation theory
is derived in general terms and its properties are
investigated in detail in Sec. 3b.

In Sec. 3c we obtain the magnetic moment of a
piece of magnetically dilute material with a magnetic
field acting on it and with the material rotating.
Similarly, the electronic angular momentum is studied
subject to a field and a rotation. The cross-coupling
coefficients, i.e., the magnetic moment due to rotation
alone or the angular momentum due to the field alone,
represent the Barnett and the Einstein-deHaas eRects,
respectively. A summary of the comparison of experi-
mental data with the theory of these eRects is given.
The present form of the theory is in agreement with
some previous calculations for particular cases in the
literature. 8

In Sec. 3d, the polarization of a nuclear spin in a
rotating crystal acted upon by a constant magnetic
field is studied and its magnitude calculated. The
corrections to the polarization due to the internal
crystal 6eld are obtained from the perturbation theory
for expectation values. Many line-shift phenomena,
well known from nuclear magnetic resonance experi-
ments, are shown to result from such a treatment.
These eRects are usually derived separately; in some
cases, the unified method given here may provide a
simpler means of evaluating the eRects because the

N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1943).R. V. Wangsness and F.Bloch, ibid. 89, 728 (1953).
F. Bloch, ibid 102, 104 (19.56); 105, 1206 (1957). Y. Ayant,
J. phys. radium 16, 411 (1954). U. Fano, Phys. Rev. 96, 869
(1954).R. Kubo and K. Tomita, J.Phys. Soc. Japan 9, 888 (1954).
A. G. Redfield, IBM f. Research Develop. 1, 19 (1957).

A. Frank, Phys. Rev. 39, 119 (1.932). J. H. Van Vleck, The
Theory of E'lectric and Magnetic Susceptibilities (Oxford University
Press, Oxford, England, 1932).C. J. Gorter and B.Kahn, Physica
7, 753 (1940).

Reviews of such phenomena are given by G. E. Pake, in
Solid-State Physics edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1956), Vol. 2; by N. F. Ramsey, Nuclear
Moments (John Wiley R Sons, Inc. , New York, 1953); and J. A.
Pople, W. G. Schneider, and H. T. Bernstein, High Resolution
Nuclear Magnetic Resonance (McGraw-Hill Book Company, Inc. ,
New York, 1959).
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energy denominators of second-order perturbation
theory can be avoided and also because the formulas
are in a form independent of the representation
used.

In Sec. 4, the time-dependent behavior of nuclear
spins in a rotating crystal is described. We attempt
there to show the relation of solutions to the Schrodinger
equation for the rotating crystal to those for the case
of a rotating magnetic field acting on the crystal. A
statistical treatment of the spin system on a rotating
crystal is given, using the formalism and the approxi-
mations of the Wangsness-Bloch theory of nuclear
magnetic relaxation.

In all of the theory of rotation phenomena and
induced angular momenta, it is apparent that the
information to be gained from their study is of a nature
similar to, but not usually identical with, that obtained
from studying magnetic phenomena and magnetic
moments. Thus, the measurements of gyromagnetic
coefficients give as much useful information as the
determination of magnetic susceptibilities, nuclear or
electronic. Yet, the magnetic phenomena have been
studied far more fully than the gyromagnetic ones;
small wonder, in view of the greater difficulty of
performing experiments of the latter type.

2. DYNAMICS OF SPIN SYSTEMS

a. Larmor's Theorem in Quantum Mechanics

where 3C is the Hamiltonian operator, x represents all
the space and spin coordinates of the system of particles,
and t is the time. The transformation of the wave
function to a rotating coordinate system is achieved
by means of a unitary operator R(t). The rotated wave
function is Q„=R(1)P(x,l). The vector operators appear-
ing in quantum mechanics (momentum, position,
angular momentum) are rotated by the same trans-
formation. If Q is such a vector operator, then Q,
=R(1)QR(—t) gives the operator in the rotating system.
Explicitly,

R (t) = exp[(i/h) J rot], (2)

where J is the total angular momentum of the system
and ~ the angular velocity of the coordinate system.
Equation (2) follows from the requirements that R be
unitary, that it satisfy the relation R(tt)R(ts —it)
=R(ts), and the well-known connection between
j.nfinitesimal rotations @nd angular-momentum oper-

According to both classical theory and quantum
mechanics, the effect of a uniform magnetic 6eld on a
system of charged particles may be shown to be
equivalent to a rotation of the coordinate system. In
quantum mechanics, the system is described by the
wave function f(x,t), a solution to the Schrodinger
equation

i7zBQ/R =Xf,

ators, "expressed by

J to= i' lim [R(t)—1]/1.

Restricting consideration to a Hamiltonian BCO which
is invariant to rotation around the direction of ~, so
that [J ro,BCs]=0, permits rewriting (5) in the form

P,.= exp[ —(i/is) (—ro' J+BCp)1]$(a,O). (6)

To obtain a Larmor theorem, " we compare Eqs. (4)
and (6) for some particular types of systems:

For a system of spins all having the same gyro-
magnetic ratio y, in a uniform magnetic field H, BCt
= —pS H; then by inspection fr and P„are identical
if the field is equal to H= (1/y)ro.

For a system of spins with differing gyromagnetic
ratios and a field HJ„- acting on the 4th spin, 3C~
= —P&y&S& H&. For a given angular velocity ro, Pr
and P, are equal only if the fields Hs have the values

H =(1/v)~

or if a uniform field H& ——H is given, the theorem may
be stated as requiring a different rotation frequency for
each particle, so that in Kq. (6), ro J becomes Ps ros Ss.
with

(7b)

The theorem is exact for a pure spin system. Consider
however the magnetic part of the Hamiltonian for the
motion of an electron in a uniform magnetic field H,

BCr ——(e/2mc)H (L+2S)+ (es/Smc')H'r' sin'8, (8)

" P. A. M. Dirac, Quantum Meclzanics (Oxford University
Press, New York, 1947), 3rd ed. , p. 35.

"For the case of a pure spin system, I. Rabi, N. F. Ramsey,
and J. Schwinger [Revs. Modern Phys. 26, 167 (1954)g give a
different proof of Larmor's theorem. They consider the operator
J and its equation of motion in the Heisenberg picture. Their
proof can be readily generalized to differing p's and to include
orbital motion. However, the restriction LJ ro,Xoj=0 is also
necessary. Transformation to a rotating coordinate system as a
means of transforming away static helds is well known in the
theory of magnetic resonance. See, for example, R. V. Wangsness
and P, Bloch, Phys. Rev. 89, 728 (1953).

The Hamiltonian 3C of the system considered is
assumed to be time-independent and to consist of a
part Xo independent of the magnetic field and an
additional part K~ due to a constant magnetic Geld.
Without the field, the time development of the wave
function is

P(x, l) = exp[ —(i/A)X, ,t]1( (x,0); (3)

with the magnetic field, it is

1//f —exp[—(i/h) (BCt+Kp)/]lg (x,O). (4)

Applying the rotation operator R(1) corresponding to
a uniform rate of rotation to (3), gives

f,.=exp[(i/Is) J rot] exp[—(i/h)apl]IP($, 0). (5)
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where 0 is the angle between the position vector r and
the magnetic 6eld. In this case, it is necessary to
assume that the quadratic term in X is small compared
to the linear term. Then the Larmor theorem applies,
the space function and spin functions being rotated
with angular velocities

H, and to, = 2tu~, (9)

a= —— X,—-H (L+2S)
2mc

~] ~2II2 I

fi 8mc'
d7e "(r' sin'e)e" -.

(10)

respectively. For ordinary laboratory fields, the quad-
ratic term in (8) is indeed very small compared to a
linear term and (9) is a very good approximation. The
error can be estimated by expanding (4) to first order
in the neglected term to obtain

Pr (x,t) =e"(1+e)P(x,0),
where

and the limit of the product

N

E(t)= lim g R„=exp —P I~, .
n=I k

N —+no
N/t t~i

nip(t')Ch' . (13)

In (13), the convention must be observed that in every
product of Iq esk(t„) and Iq &oi, (f ) that occurs, the
order of writing the factors is taken to be the order of
the natural time sequence. Comparing (13) to the part
of the time-evolution operator involving the magnetic
field and requiring that $J rn(t), Xs]=0, gives the
time-dependent Larmor theorem which differs from (7)
and (9) only in that H and in are time-dependent. For
example, (7b) becomes

m„(i) =q,H(t) for a,ll t. (14)

For magnetic fields which vary nonlinearly with the
time, the accompanying electric field is only approxi-
mately given by E= —H&&r/2c. The approximation
consists of neglecting displacement current. When that
approximation applies, the theorem (14) and the other
time-dependent expressions corresponding to (7a) and

(9) can be derived.

E„=1+(i/5) Q(. Is roi(t„)At, (12)

' Exact solutions of the Schrodinger equation for particles with
spin, but without orbital motion, in a time-dependent, magnetic
field have been studied by E Majorana, Nuovo cimento 9, 43
(1.932), and by I'. Bloch and I, Rabi, Revs. Modern Phys, 17, 237
(1945).One may treat the case including orbital motion by means
of the adiabatic approximation: B the field does not change
direction, then, in the lov est approximation of a slowly varying
iield, the eigenvalue equation [BCO—MH(t)g&„=1':„(t)p„,is solved,
yielding the Zeeman splitting but no transitions between states.
The next approximation yields transition probabilities propor-
tioo.al to ~dH/dh. )',.

Thus, (9) is valid when
~

e~((1. The assumption made
in deriving (6), namely, that $J to,Xs]=0 is fulfilled

for any system on which no external torque is acting
other than the constant magnetic field considered.

The Larmor theorem, Eqs. (7) and (9), may be
generalized to time-dependent fields, giving a descrip-
tion of the wave function as the field buiMs up. Suppose
the magnetic field varies linearly with the time"

H(t) = et+He,

but is uniform throughout space. The vectors Hs and n

may point in arbitrary directions, so that the direction
of the field H(t) may be a function of time. To satisfy
the Maxwell equation curlE= (—1/c)BH/Bt an electric
field must accompany the growing magnetic field:
E= —e&(r/2c. The other Maxwell equations for a
source-free region are then also satisfied. By introducing
the potentials A=H(/))&r/2 and &=0, it is readily
shown that the Hamiltonian of systems of spins and
particles will diRer from that of a system in a constant
magnetic field only in that H(/) everywhere will replace
H. The time-dependent Larmor theorem is then proved
by considering small rotations ~ 7&72

S, S,—G(~) =
2R'

3[s, R(i)]Lss.R(t)]

Z PPP I+9
= exp —ei St-

& 2R'

3LSt R(0)]LSs R(0)] i
S, S.,—— —exp -es St

R2

"Not to be confused with the rotation of the coordinate
system in I.armor's theorem. XVe are now talking about an actual,
physical rotafjon,

b. A Simple Example of Polarization

The discussion of Larmor's theorem has shown that
the effect of a constant magnetic field is transformed

away by going to a rotating coordinate system. How-

ever, in the following sections, we are primarily con-
cerned with the polarization of systems in the 6eld
direction, a phenomenon which is rot transformed

away by going to a rotating system. To help clarify how

polarization can occur in spite of Larmor's theorem, a
very simple example is treated in Appendix A by an
exact integration of the Schrodinger equation. The
system considered is a pair of nuclear spins, each of
magnitude ~A, coupled to each other by dipole-dipole

coupling. Some polarization of the spins can be brought
about either by applying a magnetic field in a direction
perpendicular to the line connecting the positions of
the two nuclei, or by a rigid rotation of the whole

system about such a direction. " To show that the
latter problem can be reduced to the magnetic-field

problem, we note that the expression for the interaction
of two dipoles, if the relative position vector R is

rotating, is
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3 (3R )' (17)

The second ( ) indicates the average over the initial
states. The polarization (17) is a maximum when
2AM =3Ep and it falls off for 2Aco))3Ep. This is to be
expected, because the polarization process requires
simultaneous exchange of energy Ace and angular mo-
mentum A between the Zeeman part of the Hamiltonian
and the dipole-dipole coupling. However, the latter
can absorb no more than an amount of energy of the
order of ~Ep, so that when 2Aco))3Ep the two spins are
effectively uncoupled and no polarization can occur.
If we had included more degrees of freedom in the

where ro is the angular velocity of rotation and Si and S2
the spins of the two dipoles in units of A and y~, y~, their
gyromagnetic ratios. Transforming the Schrodinger
equation iA3f)=G(t)p by the unitary transformation
Ib'= expL(x/A)oi St)lb gives the equation

iAag'/r)t= PG(0) —Aro S)P', S=—Si+S,. (15)

The Schrodinger equation for the pair of coupled spins
with identical gyromagnetic ratios & is fABQ/R
= (G(0)—yAH S)P, which is identical with (15) except
in that the Larmor frequency roi, =yH replaces
We expand the solution in eigenfunctions p of S'
Leigenvalues s(s+1), ~Si—S2~ &s& ~Si+S~~) and S,
[eigenvalues m, —s &m &s):

4'(1)=Z b (1)4 '"',
where k=1 stands for (m, s)= (1,1); k=2 for (m, s)
= (0,1); k=3 for (m, s)= (—1,1); and k=4 for (m, s)
= (0,0). We take the direction of ro or H as the x
direction, but the nuclei on a line parallel to the s
direction. Assuming the 6eld turned on at 3=0, and
averaging over oscillations, we find the following results
for the expectation value of the total spin after the
field (or rotation) has been on a long time:

3kcokp
(S,)= [~b, (0)+b3(0) ~' —2~b2(0) ')

2

4(A~)'
+

(s.)= (s*)=o,

with Ea (Ay)2/283, e——= L(3EO) +(2Ao3) )'. The polari-
zation (16) clearly depends on initial conditions and
may be in either direction. If the initial density matrix
b;b,* is a multiple of the unit matrix, the system
cannot polarize because the density matrix will of
necessity commute with the Hamiltonian and so will
not change with time. If we have a large number of
identical pairs of spins, and if initially before the field
is turned on each pair is in contact with a heat reservoir
at a temperature Tp, and then at 3=0 the reservoir is
removed, we find from (16) for one such pair on the
average

example, then it is expected more polarization would be
possible. The spins can be polarized in this example in
spite of Larmor's theorem, since the Hamiltonian G
does not commute with S o3; the angular momentum
lost or gained by the spin is transferred to the nuclear-
orbital motion via the interaction G. Thus, the dipole-
dipole coupling provides a mechanism for spin polari-
zation through the exchange of angular momentum
with the nuclear-position coordinates,

3. EQUILIBRIUM THEORY

a. Density-Matrix Description of
Rotating-Material System

The foregoing example illustrates that. Larmor's
theorem (or in fact the Schrodinger equation) is not
incompatible with the tendency of systems to move
towards thermal equilibrium. In this section, we as-
sume that thermodynamic equilibrium of the system
is obtained, and study the equilibrium properties of
general systems. Consider a macroscopic system which
has a total energy E= (X) and whose total, angular-
momentum components are M, = (J;).The ( ) indicate
the taking of an expectation value of an operator, i.e.,
the trace of the product of the operator with the
density matrix describing the system. The density
matrix which describes the aforementioned information
is obtained by maximizing the entropy, subject to the
constraints imposed by knowledge of the expectation
value of energy and angular momentum. '4 The resulting
density matrix is

p= exp( —/BC —X,J,—Xo 1),

where P, X,, and Xe are introduced in the derivation as
Lagrange multipliers whose physical significance is
determined next. ' The summation convention is used
for the index i, which runs from 1 to 3. Normalization
of p such that Trp=1, requires that Xp

——lnZ, where
Z= Tr exp( —PK—)I.,J;) is the partition function. The
afore-mentioned expectation values are given in terms

"This procedure has been formulated by E, T. Jaynes, Phys,
Rev. 106, 620 (1957); 108, 171 (1957), in a general way from
considerations based on information theory.

"One may also wish to incorporate into p knowledge of the
accuracy with which the energy and angular momentum are
known. This can be done most easily by including 3C' and J in
the set of operators whose expectation values are given, which
would add the terms —u3C' —y;J to the exponent in (18). In
principle, whenever such information is available it should be
incorporated into p. However, as was pointed out in the classical
case already by Gibbs, the state-density function for any system
which exhibits reproducible thermodynamic properties is such a
rapidly varying function of the parameters 3C, J; that the variance
(3C') —(X,)' or (Js2) —(J;)' obtained from (18) is already very
small compared to any reasonable mean-square, experimental
error. Consequently, although the extra terms would represent
a considerable redistribution of probabilities, they would not lead
to any difference in prediction of reproducible phenomena. This
is the basic reason for the success of the Gibbs canonical ensemble,
and it is interesting to note that Gibbs also used an ensemble
canonical in angular momenta, as in (18), to describe a rotating
system.
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of pand Zby
(BC)=Tr (BCp) = —c) 1nZ/c)P;

(J,)=Tr(J,p) = —c) lnZ/c)X„.

The entropy corresponding to the density matrix (18)
is, in conventional units,

(20)

p= 1/kT, X,= rd„/kT. — (23)

The density matrix (18) may thus be written as
p=Z ' exp —P(K—M;J;). From Eq. (6), the quantity
K—~;J; appearing in the exponent has the physical
significance of the effective Hamiltonian in the rotating-
coordinate system, if co;J; is a constant of the motion.
In this case, the density ma, trix remains given by (18)
for all time.

If to;J, is not a constant of the motion, Eq. (18) gives
the density matrix only at the initial time 3=0, for
which the information (3C), (J;) is given. The time
dependence of any density matrix is given by
imp = L5C,p]. The equilibrium-density matrix for a rotat-
ing system need not commute with the Hamiltonian and
thus may have a time dependence. By "equilibrium"
we mean that expectation values of observable quanti-
ties are constant in a frame of reference rotating with
the system. The vector operator v is represented in the
rotating system, for example, by the operator
v„=R(t)vR( t), where R(t)—is given by the expression
(2). Its equation of motion is

where k is the Boltzmann constant. Differentiating (20)
and noting from (19) that —O'Ae ——(K)dP+ (J;)dX;,
gives

dS=@M(5C)+X;d(J;)]. (21)

We now consider a macroscopic system characterized
by a uniform and constant temperature T, rotating
with constant and uniform angular velocity ~. The
system is in thermal and rotational equilibrium, and
can be described by the laws of thermodynamics. The
increment of total energy is dE=dQ+oi, dM, , from
which the differential of entropy is

dS=dP/T= (1/T)dE ((o,/T)dM, —. (22)

Comparison of (21) and (22) yields the physicalmeaning
of the Lagrange multipliers,

In practice, one may be interested only in some
small part of the macroscopic rotating system, such as
the expected value of the spin angular momentum in a
crystal with many other degrees of freedom. Then, in
taking the trace of p, one can first sum over all the
quantum numbers of the other degrees of freedom;
what remains is a density matrix with a smaller number
of rows and columns, describing only the small sub-
system being studied. If the interaction energy between
the subsystem and the remaining system is neglected,
the only role of tge larger system will be to provide an
environment with a definite temperature and angular
velocity. We focus attention on the expectation value
of the magnetic moment of a single atom or nucleus,
but assume that it is representative of a large number
of identical spins in the macroscopic sample. If spin-
spin interactions, either direct or indirect (through the
lattice) are negligible, the condition that expected
moments for a single spin correspond to a reliable
prediction of total moment of N spins is cV))(PkyH*)',
where H*= ~H oi/y~ is th—e effective magnetic field.
As spin-spin interactions become stronger, the require-
ments become more stringent, and when conditions for
a ferromagnetic or antiferromagnetic phase change are
reached, the connection between expected moment of
a single spin and total moment of 1V spins breaks down
completely. As is shown elsewhere, this breakdown of
correspondence between the Boltzmann "molecular"
treatment and the Gibbs "global" treatment is char-
acteristic of any phase transition. In this paper, we
limit ourselves to the case of sufficiently weak inter-
actions so that cooperative phenomena do not appear.

Before proceeding to calculate specific gyromagnetic
effects with the density matrix (18), the perturbation
method to be employed is developed.

b. Perturbation Expansion" for
Expectation Values

The expectation value of an arbitrary operator C,
pertaining to a system described by a density matrix of
the form (18), is (C)=Tr(pC). If part of the exponent
in (18) is small, but complicated, it may be treated as
a perturbation. Since the quantity (C) is the trace of
an operator, its value is independent of the representa-
tion; this invariance property is to be retained in the
perturbation scheme. Not only is it convenient to
work directly with the expansion for the expectation
value of the observable of interest rather than an

= (1/ih) (Lv„, X-co,J,])
= (1/ik) Tr{v„Lp, K—ro,J;]), (24)

The commutator, and hence (dv„/dt), vanishes for the
equilibrium-density matrix (18). Also, it is easily seen
that the density matrix in the rotating frame is
constant: t),= (d/dt) LR(t)pR( —t)]=0.

"An early quantum-statistical perturbation theory, expressed
in terms of perturbations on the energy levels, was given by
R. Peierls, Z. Physik 80, 763 {1933);S. Nakajima, Advances in
Physics 4, 363 (1955), has used operator techniques to obtain an
expansion. for t:he partition function. Application of similar
techniques to statistical-mechanics problems has been given
among others by R. Kubo and K. 'romita, J. Phys. Soc. Japan
9, 888 (1954); D. Thouiess, Ann. Phys. 10, 555 (1960); 1V. Kohn
and J.Luttinger, Phys. Rev. 118,41 (1960).The present approach
was brieffy reported at the April 15, 1961, meeting of the New
England Section of The Americaq. Physical Society,



expansion for the partition function, but also, because
of the normalizing denominator, the convergence of the
expansion is bound to be better. Consider a quite
general system described by a density matrix

In that case, (30) becomes

(r)= (Br),+((S,—(8),8)r),
=(BP).+-,((8-(».) P).+Q,

(31)

—eA+BP'r (eA+B)] i— (25)
where

en dn(C)

n=O g, t

(26)

To evaluate the leading terms in (26), we make use of
the well-known mathematical identity'7

BA+eB eA -Aug(A+ «B)xd (27)

where 3 and 8 are arbitrary operators. A second,
simpler, density matrix, is pp=eALTreA] '. We assume
that expectation values over po can be evaluated
directly, and express the expectation value over p in
terms of those over po. The expectation value of an
arbitrary operator C, (C),=TrCe"+'B/TreA+' ] ', is a
function of the number e. When e=0, then (C),= (C)o
=Tr(poC). When e= 1, then (C),= (C)=TrpC. Ex-
panding (C), in a Taylor series about e=0,

0 0

xdxdx'(e "*$8—e *" *')]BeA**'P)o. (32)

6i—=&~iLP.
~

B~.)'f(rr. —ii~) —(8)oB),~],

It is seen that if the operator A —+ 0, the commutator
in Q vanishes, since every operator commutes with the
unit operator. For small A, the operator Q is of order
(AB'), and is, therefore, small compared to the other
terms in (31) which are of the order (8'). So, for
sufficiently small A, the operator Q may be neglectecl.
To make this condition more precise, we introduce an
explicit representation. In general, one can split A into
a part a which fails to commute with 8 and a part u'

which commutes with a and 8, both a and u' commuting
with I'. Then, in a representation where a and F are
diagonal, the complete quadratic term in (27),
((Ss—(8)pB)P)p, can be shown to be equal to (eI')p
with

to obtain, by iteration,

eA+~B=eAD+eg, +esp +O(ep)] n=2 ef

e*—x—1 (33)

and, thus,

&d&d&&&-A~8&A~(r —~'}8&8~~'

deA+ «B

~AS

o

(28)

Putting Q =0 corresponds to replacing f(a„a),) by—
1/2, its limiting value for vanishing

~

a„—a), ~. A suffi-

cient condition for neglecting Q is that for all states )s

and b for which ~8„),~' is finite,
~

a„—a),
~

be much less
than unity. A particular case of (31) and (33) is the
one in which 8 is a sum of terms, 8=g), bl"). Then,

Q„((b(k)b(x) 2(b(k)) bix))P) +Q (34)

d2eA+ «B

= 2e~S2.

The derivatives for (C), are then obtained by applica-
tion of (29) and the definition (26) for (C),. The result
is up to is= 2 for e= 1, if we define P—=C—(C)p 1,

(r) = (~,r),+((~,—S,(8),)r),. (30)

The subscript 0 means the average is taken over
density matrix po. The higher-order terms to arbitrary
order are derived in Appendix B. In the special case
that A and 8 commute, the calculation becomes
relatively simple because S&=8 and S2———,'8'. A some-
what more complicated case is the one where A and 8
do not commute, but 3 and C are commuting operators.

'r R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948);
R. P. Feynman, ibid. 84, 108 (1951); R. Kubo and K. Tomita,
J. Phys. Soc. Japan 9, 888 (1954).

ei ——bi Po P) Lg. b .i")b. i")f(a„—a )
(bik)) b i),)]

The rapid convergence of the expansion (26) or (30)
for (C) does not necessarily require that the eigen-
values of the operator 8 be small, even though it is an
expansion in powers of 8. The convergence is in part
due to the eRective cancellation of terms in the numer-
a,tor and the denominator of Tr(CeA+B)/Tr(eA+B). For
example, if 8 is a multiple of the unit operator, cancel-
lation is complete and (C)= (C)p,' if 8 is a multiple of
the unit operator plus a small operator, one expects
convergence to be rapid because the part proportional
to the unit operator has no eRect.

The linear term in the expansion (30) has the
property that if the roles of 8 and C are interchanged,
it remains unchanged, even if none of the operators



dx(e Ax—+eAx( ) dx(e A*Ce" 8)o——0; (35)

2, 8, or C commute with either of the other operators: —2BBC('). Taking the expectation value gives the
exact expression for the magnetic moment; assuming
an equilibrium density matrix with no rotation,

for, in a representation in which 3 is diagonal,

(~-)Z.Z.(~l~lm)(miCI&. )

—Tr(BX/BH) exp( —PX)
(M, )=--

Tr exp( —PX)

= —(X&'& )—2H(Xt'&).

(37)

dx(expi A „(1—x)+A„x]
—expLA„(1 —x)+A „x])=0,

because the integral vanishes identically. The other
linear term (Si)o(C)o= (B)o(C)o is obviously also un-
changed by an interchange of 8 and C. This symmetry
property is shown to imply a class of reciprocity laws
for measurable magnetic and gyromagnetic constants.

We illustrate some properties of the expansion (30)
and at the same time obtain some formulas which are
required later on by applying the perturbation scheme
to some simple examples of nonrotating systems.

Mctgrtetic Susceptibility of Free Atoms or Iorts

We restrict attention to the part of the magnetic
moment linear in the field strength. Let A = —PX"',
8= —P(HX&'&+H'3C&'&) and assume that 8 is small,
or numerically that Ptst&H=6. 4X10 'H/T((1, if H is
measured in gauss and T in degrees Kelvin. Expanding
(37) by means of Eq. (30) and assuming zero sponta-
neous polarization (X"')o=0, we obtain for the term
linear in II,

. (Me) = HP ds(e A*X&"&eA*X "& )o—2H(3C"&)o.

The susceptibility, defined by x=d(M, )/dH, is then

dx(e "'X'"e"'X'")o—2(X"&)o. (38)

g2

The electrons of an atom or an ion in the presence of The diamagnetic (negative definite) part has the usual
a static magnetic field H, may be described by a form,
Hamiltonian of the form —e'

3C=3C "&+Xo&H+X "&H',

Xo& =—(e/2mc) (L+2S)„
X"'= (e'/8mc') Ps (ss'+ys')

(36)

and X~') is an operator not involving the magnetic
fieM; L and S are orbital and spin angular momentum.
The magnetic-moment operator is defined by M,

NC/BH, w—hich in view of (36), becomes M, = —Xo&

Xd= —2(X' )o= Ps (xs'+yi')= Ps (r&')o,
4mC2 6mC2

where the last step is permissible if in the absence of
the field no direction is singled out. in the atom, i.e., if
its environment has cubic or isotropic symmetry. We
obtain the Van Vleck expression" for paramagnetic
susceptibility from the first part of (38) by introducing
a representation in which X,&') is diagonal with eigen-
values 8„, and then integrating:

.1
&t =-P dx(e '*3C "&e"'X"')o (39)

„(mi e " "im)(miX&i& i@)(ei

e"*inst)(mixo'im)

=P dx—
0 2- (ul +

I
&s)

exp( —E„P)
2 Q p i

(miX"'irt) i' p p exp( —E„li)
i
(niX"'i st) i'

num n

(39a.)

(39b)
Q exp( —E„P) P exp( —E„P)

X =p((Xtr&)s)o+p dx([e—» 3Ci&&]e»3Ci&& )

and neglect the commutator to obtain

X„=Pttt&'/is'((I. ,+2S,)')o. (40)

An approximation to (39) suggests itself if we write The neglect of the commutator is permissible if that
part of 3 which fails to commute with BC(" is sufficiently
small. In an atom or ion, this is usually a single term
of the form (i/A')L S, so that if

i
iPi((1, the com-

mutator may be neglected.

"J. H. Van Vleck, The Theory of Electric and Magnetic
Susceptibilities (Oxford University Press, New York, 1932).
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From this derivation of susceptibilities, three points
about the perturbation theory are noted. (1) Whereas
the result (39) is obtained by using only the first term
in the expansion (30), the usual derivation" of (39)
by means of a perturbation theory for the energy
levels requires a second-order perturbation calculation.
Generally, the two different perturbation schemes need
not run parallel, since their expansion parameters are
in fact different. (2) The result (40) would not be
obtained at all in the energy-level perturbation scheme.
There the 6rst-order term involves only the diagonal
elements of (L,+2$,), whereas (40) includes both
diagonal and off-diagonal elements. Thus, somewhat
different approximations are suggested by the two
different schemes. (3) If the energy denominator in
(39b) creates a problem, an alternative method of
evaluating (39) is to take the trace Le.g. , carry out the
sums in (39a)] before doing the integral.

Polorisatiopp of lVuelei with Hyperfcne Coup/issg

The second example for consideration is the polari-
zation of nuclei which are coupled to electrons via the
hyperfine interaction. The system is described by the
Hamiltonian

x=3('.,—y,S H —y„i H —y„Qs oiSs I, (41.)

where BC, does not involve the nuclear-spin coordinates,
I is the nuclear-spin vector, S=P s Si is the total
electronic spin, and y, and y„are the electronic and
nuclear gyromagnetic ratios, respectively (Ay, = 2tp& and
Ay =gts„ in terms of the Bohr and nuclear magneton).
The uk are the hyperfine-coupling constants, " aI,
= (8pr/3)y. ~its(0) ~' where ~ps(0) ~' is the probability
that the kth electron is found at the nucleus. This
probability is finite for the 5-state electrons in free
atoms as well as for the free electrons in metals. The
second and third terms of (41) give the coupling of the
external field with the electronic and nuclear dipoles,
respectively, and the last term is the interaction of the
nuclear dipole with the electronic ones. Let us call the
direction of the magnetic field the s direction, and let

a =p(~„I.Hqy. S H —X.),
&=py. 2 a opS p. I,
C=I,.

Since (A,C]=0, we have to first order in 8 from

Eq (»)
(I,)= (I,).+P,„P„.„(S I(I,—(I,),)),.

Evaluating the sums over the nuclear-spin states gives
for Py„AH«1,

(I,)=Py„A'—'I (I+1)LH+Ps (as(S,)p)]. (43)

The only requirement for the expression (42) to be
valid is that Piping Pi, ui&&1. The physical inter-

"P E. Fermi, Z. Physik 60, 320 (1930).

pretation of (43) is simple. Clearly, the magnetic
susceptibility for the free nucleus is

l~-=P(v-A)'lI(I+1),

and the effect of the hyperfine coupling is to provide an
internal magnetic field of magnitude H'=Pi (ae(S.)s)p.
For the free electrons in a metal, Pa (ai(Sp)i)p is
evaluated" with the help of the de6nition of the aA, and
the Pauli theory of paramagnetism in metals, to yield
H'=H (87rtc&'/E&)ss(0), where Ez is the Fermi energy
of the metal at absolute zero, and N(0) = (Pi ~1(i,(0)

~
)p.

These internal fields give rise to the Knight shift" in
the nuclear magnetic resonance in metals. The internal
field here gives a small correction to the applied 6eld,
so that the problem could as well be treated by a
perturbation theory for the energy levels. On the other
hand, in a hydrogen-like atom, if the electron is in its
ground state, one easily finds"

H'= (o(S*))p= (PHl e)(g/3)t ~e'/oo',

where ao is the Bohr radius and Z the atomic number
of the nucleus. These fields give rise to a method of
polarizing nuclei suggested by Rose and Gorter. '2 At
temperatures of the order of 1'K, such internal fields
may be j.0' or 10' times as large as the external field.
Still, the present perturbation theory would be applic-
able and second-order terms negligible, although it
would not be appropriate to use the usual perturbation
theory for energy levels. As these examples indicate,
the method employed here can provide a unified
derivation of some phenomena which are usually
treated by diverse methods.

c. Electronic Gyromagnetic Effects

The results of the preceding sections are now applied
to the analysis of electronic gyromagnetic effects. We
wish to evaluate the combined effect of a macroscopic
rotation of a substance and of an external magnetic
field on the angular momentum of the electrons and on
the atomic-magnetic moment. Only the effects linear
in the magnetic 6eld and the rotation are considered,
practically limiting the theory to magnetically dilute
systems.

Let X,o be the Hamiltonian of a stationary crystal in
the absence of any external 6eld. The crystal is rotating
about a 6xed direction with angular velocity ~ and has
an external magnetic 6eld 8 acting on it. We introduce
coordinates fixed with respect to the crystal, and

ln the evaluation of the II' for the free electrons in a metal
and for the hydrogen-like atom, it was assumed that (S.e(r))p= (S,)p(8(r)) p.

Pr W. D. Knight, Phys. Rev. 76, 1259L (1949); in Solid State-
Physics, edited by F. Seitz and D. Turnbull QcademicPress Inc. ,
New York, 1956), Vol. 2.

'-'M. E. Rose, Phys. Rev. 75, 213 (1949). C. J. Gorter, Physica
14, 504 (1948).The problem is analyzed by A. Simon, M. E. Rose,
and J. M. Jauch, Phys. Rev. 84, 1155 (1951).
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distinguish all operators expressed in the rotating co-
ordinates by an asterisk. More explicitly, by a vector
operator A* we mean one whose components A;* are
found by computing the components A, in the labor-
atory frame and projecting onto rotating axes. In view
of (18) and (23), the density matrix of the system may
be written in the form (25) with

A = —PBCp*,

chere

X;;=P
l

dx(e "'(L,*+2S,*)e"*(L,"'+2S;*))p
2nzc) p

—P(e/2mc)'((L, *+2S,*))p(L,*+2S,*)p

+ (e'/4mc') Q, (x,*'x;*'—8,,(r*')') p

J3=p —(&+2S)* H*(t)
2mc

e2

Z lr *XH *(t)l'+J . (44)
Smc2

o,p= p
2mc

e
tI''i =P

2mc

dx(e ~.J,*e~*(L,*+2S,*)),

—P (Js*)p(L;*+25,*)p, (47)
2mc

dx(e—Az(J .8+2S.@)eA*J,e)

The time dependence of H*(t) arises because a field
which is fixed in space will be seen as a rotating field in
the rotating-coordinate system.

While Xo would be expected to have an implicit time
dependence due to the rotation, the Hamiltonian BCO*

referred to body-fixed axes keeps the relative-position
vector of particles approximately independent of the
rotation, and no implicit time dependence is expected.
~e calculate the magnetic moment (M*) and the
angular momentum (J*);these vectors, like H~(t), are
related to the laboratory frame, if the axis of rotation
is the 3 direction, by the relation

81 COScot

@2* —— —singlet.@3*. . 0

sinort 0
cosset 0

0

(~;*)— (L;*+2S,*)p
——Q X;,H, *(t)+8;s,

2mc
(46)

(J'*)—(J;*)o=2 0'*i»*(t)+~:p~
7=1

"J.H, Van Vieck, Revs. Modern Phys. 23, 213 (1951).

If the cosset and singlet are treated as C numbers, the
commutation rules for vectors in the rotating system
are the same as that in the fixed system; the trans-
formation (45) is then, in fact, equivalent to the
unitary transformation (2) for vector operators,
although not for classical quantities such as the mag-
netic field. If the cosset and singlet are regarded as the
components of a vector giving the relative orientation
of physical particles (or a quasi-particle such as the
center of mass of the system), they do not commute
with J. In that case, the angular-momentum, commuta-
tion rules become in the rotating system" l J,*,J„*]
= —iJ,*, etc. , instead of the usual l J„J„]=iJ„etc.
Note the minus sign.

Applying the perturbation expansion (30) to (44),
considering only the term linear in 8, yields for the
expectation value of J;*and M,~=— NC/BH, :—

e—P — (J'*)p(Li*+2S,*)p,
2mc

1

it;s=P dx(e "'J,*e"*J-;*)

From the identity (35), it follows that these coefficients
have certain symmetry properties:

In deriving (46) and (47), it was assumed that the
system is in thermodynamic equilibrium; but, the
system is generally in the presence of a time-dependent
field H*(t) so that the assumption is not generally
justified. The time-dependent behavior is discussed in
Sec. 4. However, the equilibrium treatment is applicable
in several important cases.

(a) The field is parallel to the axis of rotation
(only the transverse components have a time
dependence).

(b) The transverse components are made to rotate
with the crystal, so that again there is no time
dependence.

(c) The rotation is so slow that the longest relaxation
time of the system is very small compared to the
period of rotation. Then the system continues in
a time-varying equilibrium.

(d) The rotation is so rapid that, the shortest
relaxation time of the system is very large
compared to the period of rotation. In this case,
the spins and particles do not have time to
respond to the rapidly changing, transverse field,
and only the field in the 3-direction should be
considered in Eq. (46).

The usual Einstein-deHaas and Barnett effects' 4 are
already included in the case of a field parallel to the
axis of rotation. For analysis of these effects, we require
further that the system have sufficient symmetry (e.g. ,
refl.ection symmetry across a plane passing through
the 3 axis is sufficient), so that the off-diagonal elements
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of the tensors (47) all vanish. In addition, it is assumed
that the unperturbed crystal is unpolarized. Finally,
diamagnetism is neglected.

The Eqs. (46) become, with these simplifications,

with

(Ms) = XssHs+gssrp,

(Ip) =&'ssHs+nsscp,
(49)

2 1

Xss ——P dh(e ~*(Ls+25p)e"*(Ls+25p) )p,
2mc

0'ps=|its=P
2$$&

dx(e—"'(Ls+25s)e~ Js)p,

1

ttts=P dx(e-"*Jpe"*Jr)p.
0

In the usual Einstein-deHaas type of experiment, a
magnetic field Hs induces a magnetic moment (Ms) in
a solid which is measured, and it also induces an
electronic angular momentum (Js). This internal angu-
lar momentum must be balanced'4 by a macroscopic
rotation Qcptt ———(Js), with Q the moment of inertia
about the 3 axis. Measurements then yield the g'z factor

salts, and by Gorter and Kahn" particularly for salts
containing ions of the iron group. Van Vleck, Frank,
and Arajs assume that J; commutes with X,(", so that

&,;= (e/2ntc)P((L;+5, ) (L'+25 ) )p (53)

This is a good assumption for the rare-earth salts,
since the 4f electrons responsible for the magnetism are
well inside the atoms and only very weakly coupled
to other atoms with which they could exchange angular
momentum; in addition, these authors assume Russell-
Saunders coupling for the atom. " With only these
assumptions, g' has been evaluated for Eu'+ and Sm'+

by Frank for various temperatures. Theory and experi-
ment" are in agreement insofar as experimental data
are available. For the other rare-earth ions, the calcu-
lation for room temperatures is simplified, because the
multiplet splitting (same L and 5, diiIerent J) is large
compared to kT. If, further, the off-diagonal elements
of (L,+25;) are neglected in a representation where
Kp is diagonal, it is found from (39) and (51) that
g'=g, the usual Lande splitting factor associated with
the ground state of the ion:

5(5+1) L(L+1)—
g= 3/2+

2J(J+1)
(e/2mc)g'g—= (Ms)/Quips

(51)= (Ms)/(Js) = Xss/0'ss.
This simple formul. a agrees with the experimental
results quite well for all the rare-earth salts, except
those involving Eu'+ or Sm'+. To illustrate the situa-
tion, we take the case of Nd'+ where g=0.73; the
evaluation of g' without assuming large multiplet
splitting or negligible off-diagonal elements gives
g'=0.76; the experiments of Sucksmith" on Nd20&
give values of g' ranging from 0.74 to 0.83, the mean
value for the experimental results being 0.77, in good
agreement with Van Vleck theory. Arajs and co-
workers have extended the calculations of Frank for
Eu'+ and Sm'+ to higher temperatures, up to 2000'K.
They also have evaluated the g' for the other tri-
positive rare-earth ions in the temperature range from
10'K to 2000'K. They find that Eu'+ (six 4f electrons)
has by far the largest g' value at room temperature, but
it falls off with increasing temperatures; the g' for
Sm'+ (five 4f electrons) increases with temperature,
reaches a maximum at about 1000'K, and then de-
creases. The g' values for the tripositive, rare-earth ions
having from one to four 4f electrons increase monotonic-
ally with temperature, whereas those for ions with
more than six 4f electrons are practically independent
of temperature. No high-temperature experimental
measurements of g' for these tripositive ions are
available.

In the Barnett experiments, the angular velocity cv& is
impressed, and a resulting polarization observed. The
angular velocity is compared to an equivalent field II~
which produces the same polarization. The Barnett
coefFicient

(e/2mc) g'tt =reit/Htt—
(M,)/g„x„
(M, )/X„e,,

(52)

The equality g'&=g'z =—g' arises from the equality of
0'33 and 033, which is a direct consequence of the relation
(35). In the present (linear) approximation, g'@ and
g'~ are independent of the 6eld strength or angular
velocity, but may have a temperature dependence.

Numerical evaluation of g' has been carried out by
Van Vleck and Frank, "by Arajs et al.26 for rare-earth

24 The fi,eld does not give up appreciable angular momentum to
the material: The angular momentum of the field,

G(t)=1/4irc [(E&(H)Xr]ds

27 C. J. Gorter and B. Kahn, Physica 7, 753 (1940)."The comparison of theory and experiment for the g' values of
salts of the iron group, given by L. F. Bates (cited in footnote 4)
p. 270, does not include the only really satisfactory calculation,
of the g' values, that of C. J. Gorter and B. Kahn, reference 27.

sP W. Sucksmith, Proc. Roy. Soc. (London) A128, 276 (1930);
A135, 276 (1932).

with r the vector distance to the center of rotation of the crystal,
is quadratic in field strength and in this respect of higher order
than the right-hand side of (49). If the field increases linearly
with time in the s direction, G(t)=(1/ger)cHH(t) J's(yf xj)dp-
This quantity has no component in the field direction and vanishes
for all but rather asymmetrically shaped bodies.

"A. Frank, Phys. Rev. 39, 119 (1932); (see also reference 17).' S. Arajs, R. V. Colvin, and R. W. Whitmore (1961 unpub-
lished). Recently these authors have used for some cases more-
exact energy levels than those given by the L-S coupling scheme.
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t orter and Kahn have worked out a procedure for
calculating (); without the simplification (53); 1; and
BCO need not commute. However, they assume, in

analogy to the Van Vleck theory for susceptibilities,
that one has Russell-Saunders coupling and that multi-
plet splitting is either large compared to kT or small
compared to kT. In evaluating g' for salts of the iron
group, it is assumed that the crystalline-field splitting
is much larger than the L S splitting; the former is in
lowest approximation assumed to quench completely
the magnetism due to orbital motion; then the L S
coupling is treated as a perturbation. The perturbation
parameter o. is a measure of the relative strength of
spin-orbit coupling to the crystal field. In terms of
this parameter, the magnetic susceptibility obtained is

7t = -', (e/2mc)'PS(S+1) (2+n)', and the g' value is
g'= (2+n)/(1+n). The values of n obtained from
susceptibility measurements are then employed to pre-
dict g' values. Agreement is satisfactory" for Cr'+,
Mn'+, Fe++, and Co++, although for Co++ the appli-
cation of perturbation theory is questionable, and o is
rather large, around 0.5. The g' for Ni++ and Cu++

were evaluated by these authors, but no measurements
are available.

Although the theory presented here is primarily for
paramagnetic materials, for completeness we summarize
the status of the theory of the gyromagnetic ratio for
ferromagnetic and other materials. For ferromagnetic
materials, it has been shown first by KitteP" and
proved quite generally by Van Vleck" that the magneto-
mechanical factor g' is related to the spectroscopic-
splitting factor g which occurs in the theory of ferro-
magnetic-resonance experiments by the relation g'
=g/(g —1), or approximately g

—2 = 2—g'. This is

proved by assuming again that the orbital angular
momentum is nearly quenched. It is irrelevant whether
quenching is due to exchange coupling or due to the
crystal field. If M, = (e/2mc) (L,+2S.), i.e. , if dia-
magnetism may be neglected, and J.=L.+S„ then
one has g'= (2 c/me) (M, )/(J, )= (2+a)/(1+rr), where
n= (L,)/(S, )«1.—In microwave spectroscopy, one ob-
serves energy levels E=Ep+pngMH, where M is an
integer eigenvalue of the component of the total spi.n
in the direction of the field. The splitting factor g is

equal to 2 in the case of no orbital contribution. In
Van Vleck's calculation, the spin-orbit coupling and
the effect of the external field on the orbital angular
momentum are treated as a perturbation. Using
second-order perturbation theory, he finds g=2+n.
The result is valid even when exchange interactions,
dipole interactions between spins, and any other inter-
actions which commute with S are included. The
available experimental data" are summarized in Table I.

' C. Kittel, Phys. Rev. 76, 743 (1949). See also D. Polder,
Phil. Mag. 40, 99 (1949).' J. H. Van Vleck, Phys. Rev. 87, 266 (1950).

'The g and g' values for Fe, Ni, Co, Permalloy, and
Supermalloy are those biven-by G. G. Scott, Bull. Am. Phys.

TAHi. E I. Comparison of experimental g values and g' values. '

Material

Fe
Co
Ni

Permalloy
Supermalloy
Heusler Alloy
Magnetite

Mn Sb

Magnetic-resonance
mey, surements

g/'(g —1)

2.11 1,90
2.20 1.83
2.21 1.83
2.11 1.90
2.10 1.91
2.01 1.99
2.20 1.83
2.10 1.91

Gyromagnetic-effect
measurements

g

1.92
1.85
1.84
1.91
1.91
1.99
1.93
1.98

a See reference 32.

Soc. 5, 178 (1960). The g' values are measured by the Einstein-
deHaas effect by Scott; the g values for these substances are
averages of the res'ults of various investigators during the past ten
years: G. Asch, Compt. rend. 248, 781 (1959);249, 1483 (1959).
D. M. S. Baggulay, Pro c. Phys. Soc. (London) A66, 765 (1953).
D. M. S. Baggulay and N. J. Harick, ibid. A67, 648 (1954). L.
Barlow and K. J. Standley, ibid. B69, 1052 (1956). N. Bloem-
bergen, Phys. Rev. 78, 572 (1950}.A. J. P. Meyer, Compt. rend.
246, 1517 (1958).K. H. Reich, Phys. Rev. 1Q1, 1647 (1956).J. A.
Young, Jr. and E. A. Uehling, ibid. 94, 544 (1954).The agreement
between the ferromagnetic g and the magneto-mechanical g' should
be still better if instead of the averaged values of g, the most-recent
measurements, those of Asch, would be used for comparison, The g'

values for the Heussler aHoy and for MnSb have been recently
measured by G. G. Scott (private communication); the magnetic-
resonance values are from W. A, Yager and F. R. Merritt, Phys.
Rev. 75, 318(L}(1949),and Adam and K. S. Standley, Proc. Phys.
Soc. (London) A65, 454 {1952),respectively. The g and g' values
for magnetite are from L. R. Bickford, Phys. Rev. 76, 137(L)
(1949), and W. Sucksmith (reference 29), respectively. For a sum-
mary of the earlier measurements of g and g' values, see C. Kittel,
J.phys. radium 12, 291 (1951).A very recent summary of data for
E' e, Co, Ni, and their alloys is given by A. J.P. Meyer and G. Asch,
J. Appl. Phys. 32, 3305 (1961). Added in proof. See also G. G.
Scott, Revs. Modern Phys. 34, 102 (1962).

"C.Kittel and A. Mitchell, Phys. Rev. 101, 1611 (1956). See
also Kittel, reference 5.

'4 L. J. F. Broer, Physica 13, 473 (1947).
35 I.K. Kikoin and S.V. Goobar, Doklady Acad. Nauk S.S.S.R.

19, 249 (1938).

The data indicate satisfactory agreement with the
relation g/(g —1)=g', for Fe, Ni, Co, and the alloys.
A few years ago it appeared that discrepancies existed
for these metals and alloys. However, the recent
precision measurements of the Einstein-deHaas effect4

seem to have removed the discrepancies. For the
chemical compounds Fe304 and MnSb, the experiments
indicate that g/(g —1)&g . Possible origins of deviations
from this relation have been discussed by Van Vleck"
and by Kittel and Mitchell, " although not specifically
in connection with these compounds. Further theoretical
study is needed to understand quantitatively and
qualitatively the relation between g and g' for them.

For diamagnetic ionic crystals, one expects no gyro-
magnetic phenomena because the (),, and ()',; of Eq. (47)
contain no diamagnetic contribution as the suscepti-
bilities do. Gyromagnetism due to conduction electrons
has been discussed by Broer, 34 although it is too small
to be observable in ordinary metals by present tech-
niques. However gyromagnetic experiments have been
performed" on superconducting lead; these experiments
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give g'=1.0 for the conduction electrons in magnetic
fields below the threshold value at which the resistivity
of lead has a measurable magnitude.

Magnetomechanical effects are not necessarily re-
stricted to solids, but would also be expected in liquids
and gases, in which the atoms or molecules have a
magnetic moment. Gorter and Kahn point out that
molecules in a gas can exchange angular momentum
through collisions with the walls of the vessel in which
the gas is contained, so that we should be able to detect
gyromagnetic effects in paramagnetic gases such as
oxygen and nitric oxide. In the Einstein-deHaas effect,
we would observe a rotation co~ of the vessel.

d. Polarization of Nuclear Spins in a Crystal

Since most nuclei, like electrons, posses both a spin
angular momentum and a parallel magnetic moment
in their ground state, and since angular momentum can
be exchanged between nuclear spins and lattice motion,
we expect at least in principle that polarization of
nuclei by the rotation of a macroscopic sample, the
nuclear analog of the Barnett effect, is possible. The
polarization of nuclei by a magnetic field requires a
means for balancing the angular momentum acquired
by the nuclei. One such means is the rotation of the
whole lattice. This occurrence is the nuclear analog of
the Einstein-deHaas effect. We discuss in the following
the polarization of nuclei due to the simultaneous
action of an external field and a rotation, thus including
both effects. The coupling of the nuclear spins with the
crystal environment is treated as a perturbation,
whereas the action of the field and the rotation on the
uncoupled nucleus are treated exactly. In evaluating
the polarization of the nuclear spins, the simplifying
assumption is'-.made that in the stationary crystal the
nuclei have no orbital angular momentum.

Consider a single-spin operator I expressed in units
of 5 with moment pgI and in an external fi.eld H con-
tained in a rotating crystal which is at temperature P.
If the coupling between the spin and the surroundings
is neglected, the density matrix, in view of (18) and
(23) is

pi ——(1/Z) exp (PpgI;K, ), where E,=II~+~i/y, (54)

the E; are the components of the effective magnetic
field due to the combined action of the external field
and the angular velocity ~ of the crystal. We leave off
the subscript n from y„ in the rest. of this paper. The
expectation value for the component Il, along the
direction K is

(I„)= (I+-,') cothLa(I+-', )j——', cotha/2 —-', aI(I+1),
if Ea=PpgK«1. (55)—

The expectation value (I„) is time-independent; the
perpendicular component has zero expectation value.
I is the spin of the nucleus in its ground state. The
effects of rotation and magnetic field are additive

according to (55) if a«1, and for any value of a are
correctly described by a total effective field K. The
moment of inertia g~, defined by A(I)= f~~, and the
nuclear susceptibility are related:

&~=v'n~ = P(gu)'3I(I+ 1) (56)

To include the interaction of a single nuclear spin
with the internal fields due to all the rest of the crystal,
we treat the uncoupled system "spin plus remainder
of crystal" as the zeroth approximation, and regard
the coupling between the spin and the crystalline field.
as a perturbation, which must be small compared to kT.
The calculation is carried out in the laboratory co-
ordinate system in which the effective, external,
magnetic field K is constant. The perturbation
Hamiltonian Ki2 will in general have an implicit time
dependence, which is discussed further on. In applying
the perturbation expansion (30), we choose

&= —p(xo —H M —~ J—pgK I),
B= —pKi2,
I'= I—(I)0.

Here, X',0 is the uncoupled Hamiltonian of the crystal
in the absence of the magnetic field and the rotation.
(I.)p is given by (55) and (I~)0——0. M and J are the
magnetic-moment and angular-momentum operators
for the crystal excluding the particular nuclear spin of
interest. To calculate (F,), Eq. (31) is applied, neglect-
ing Q; to obtain (I+), the corresponding approximation
is made in Eq. (30). Thus one obtains,

(r, )=p(x.„r,)
+ -,'P2((r, X,,,2),—2(r,ae„),(II„),), (57)

a=PpgK; a= (1——e ')/u —1——2a; and I~=I,&iI„.

The s direction is chosen parallel to K. To derive (58),
we use the commutation relations

[e",I~j=a (e' —1)I~e'*, (59)

where c is any complex number. These relations are
easily verified in any explicit representation of the I,
and I+. The Hamiltonian K&~ is a sum of interactions.
In the linear approximation, only those terms can
make a contribution which have a dependence on the
components of I. These terms are:

1. the magnetic-dipole coupling between nuclei

g. — (R. I) (R .I )-
3C"& = —p'g Q I I—3—;(60)

R.3- R'

2. the coupling with electron spins of unpaired

(I,) = -P(1~-)(~-I,).+lP'(L1~ 1~2(-/ )1
X(~ 'I„)o—L1& ](& I~)o(K )o), (58)

where
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electrons

~ &= —(g-/3)g. ~.Z. ~( -) I s.
3(I r„)(s„r )-—

gt v. Z
m 3— rtn rm 5

(61)

3. the interaction due to the electric-quadrupole
moment of the nucleus"

1 s
&r Bsp

30"&=- E Q, &:I—
6 &'s &, =(c&xtBxi;

Q„=C[ss(I,I,+I-,I,) S,„Is] —(62)

with the constant C= eQ/I(2I 1); and—
4. the interaction between the nuclear magnetic

moment and the orbital motion of the electrons" in
the presence of the external field,

e I. —

BC&4& = —
t&g
—Q„—r„XI&„——(IIr„'—r„H r„)
fPSC P'

rt — 2C

primarily determined by the eRective, external-field
direction rather than the relatively weak, internal,
magnetic fields. "The fact that the spin of interest is
subject to an internal magnetic field which varies
systematically with time indicates that the assumption
of thermodynamic equilibrium can be expected to hold
only in some cases, such as any of the following:

(a) The internal magnetic field has cylindrical
symmetry about the axis of rotation.

(b) The longest relaxation time is much shorter than
the period of rotation. The equilibrium polari-
zation will in that case vary slowly with time,
as in the corresponding electronic case. The
dominant part of (I), namely, (I)s, will remain
constant.

(c) The shortest relaxation time is much longer than
the period of rotation. The internal fields per-
pendicular to ~ are eRectively replaced by their
average value in this case.

With these reservations, the first order to (I,), in view
of (57) and (60) to (63), are found to be

g2 1 2

+(„g) ~ Ix, (63) (I.) (I.)o=—t.g(H'+H'+H"+H'+H )
Smc2 n r„ X (I,i')&&—P(D&+Ds) (I si')&&, (64)

The notation used is the conventional one. In the first
term of (61), the sum is over 5 electrons and &I(r„), the
Dirac delta function which vanishes unless the electron
is at the nucleus; the second sum in BC(2) is over electrons
ot.her than S electrons. In (62), x, and xs are the
Cartesian coordinates of the nuclear charge of the
nucleus of interest, Q, &, is an operator, p is the electro-
static potential, and Q is the quadrupole moment of
the nucleus. 3C(4) is obtained if it is assumed the eth
electron is in the combined external and nuclear field
H„=H+&ug grad(I V1/r„), and the vector potential is
taken to be A„= srH xr„—t&gi)(V'(1/r„). The r„ is the
position vector of the vth electron relative to the
nucleus to which it is bound.

Unlike the calculation of the electronic gyromagnetic
eRects, we have here expressed the Hamiltonian in the
stationary frame. The rotation means that the nuclear
position coordinates will in fact rotate in space; if the
rotation is sufficiently slow and the external field
produces an eRect on the electron motion which is
small compared to the electrostatic crystal fields, the
electron coordinates will also rotate with the same fre-
quency co. The nuclear-spin orientation I in effective,
external, magnetic fields of a magnitude customary in
nuclear magnetic resonance experiments is primarily
determined by the effective external field and is little
influenced by the changing, internal, . magnetic fields.
The orientation of unpaired electronic spins is again

'6 See e.g., N. H. Cohen and F. Reif in Solid-State I'hysics
edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1959), vol. 5.

37 N. F. Ramsey, Phys. Rev. 78, N9 (1950); 86, 243 (j.952).

&Z. &R, &.})H'=tt P g
nuclei p

(65a)

If all the nuclei are similar to the one of interest, and
the external field is large compared to internal magnetic
fields, this may be written in terms of the angle 8
which the relative-position vector R makes with the
3 axis:

Hr —isI(I+1)PtsgH P ((1—3 cos'ft )/I&.'')&&. (65b)

The internal field H8 due to nearby unpaired electron

3 This time dependence arising from rotating-position vectors
may be made explicit by rewriting (60) to (63) as follows

X&'&(t)=U(t)X&'&(0)U( —t); V(t)=—exp/(i/&t)(I+ Z I ) &ot7,
X&s&(t) = U(t)X"'(0)U( —t); U(t)==. expt (t/ )(I+&&tZ S ) oit7,

82$
X& &(t)=— Z Q, s ~ „C»,(—(A)C~, (—~t),6 ),I,i,m=1 »m*»i*

with C the square matrix appearing in (45), and x * the nuclear
coordinates 6xed relative to the crystal axes. Finallv, in X(') the
vectors r„have components»;= Zr, C;&,( ~t)r»,*, the scalar—r
has no time dependence, but the components of the gradient
operator become 8/8», = Z&, C;r( ut)s/Br&&, *. —

with the following expressions for the quantities in (64)
(see Appendix C):

(IcI')&&=I(I+1)/3;

(I.'I'),=L&tI(I+1)/45)L4I(I+1) —3j.
H is the average field in the s direction due to other
polarized nuclear spins,
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spins for all but s electrons is

(s;). 3z;(r; s;))Hs
electrons r; o

and the internal 6eld due to the s electrons,

(66)

This field H ' is the hyperfine field already discussed
and shown to be responsible for the Knight shift in
metals, and the Rose-Gorter polarization in para-
magnetic ions. In the presence of the rotation as well
as the external field, the expressions given there for
this internal field must be generalized to Hs' =8s pi)rs(0)
X(liriH +AM )/Ep for free electrons in a metal, and
H ' = (8/3)P(lr&Z'/a()') ()(r&H, +As&,) for a hydrogen-like
atom or ion. The magnetic moment due to orbital
angular momenta L' of the individual electrons gives
rise through 3'."' to the internal held

(69)

where, in evaluating the expectation value, it must be
remembered that the electrons are in an effective
external field (H+Ao)/le)). Also, from 3('.('), there arises
the field

HD=—
g2

+r).(
' ') . ()o)

The last expression is legitimate" because the s elec-
trons do not contribute to the quadrupole interaction,
and the charge density at the nucleus due to p or d
electrons Pp is negligibly small. The quantity Ds has
the value

e2

,(zr)' E ( )r 4
(72)

It is a small interaction of the nonspherical part of the
electron cloud with the nuclear-magnetic moment.

For the spin of a nucleus in an atom with a spherically
symmetric charge distribution, only the last term in
(70) will contribute. The direction of the internal field
is in this case opposite to that of K.

For I)-'„ the Dj and D2 terms can contribute. D~
depends on the nuclear quadrupole moment:

eg Bsg
D + —2

2I(2I—1) Bx' By' Bs'

3eQ B'g
(71)

2I (2I—1) Bs' ()

Each of the terms in (64) is related to previously
known effects, many of which have been observed and
evaluated theoretically in detail.

The field H is known" to cause splitting of magnetic-
resonance lines in unsymmetrical con6gurations. If the
crystal is rotating, the vector R also rotates, so that
the splittings depending on the components of R
perpendicular to the axis of rotation will be washed
out. 4'

The term H8 produces an anisotropic line shift,
which is however zero in crystals with cubic symmetry.
The 6eld H~ must also include the effect of the second-
order, pseudodipolar coupling, which has, for example,
been studied by Bloembergen and Rowland. " This is
shown by treating the contact interaction between the
electron spin S and nuclear spin I as a perturbation in
the exponent of the density matrix po in evaluating the
expectation values (66), and by then calculating the
linear term in the perturbation according to (30). In
this way, we 6nd for an electron of spin 5 coupled with
a nuclear spin I other than the spin of interest:

(
S, 3s(r S) 5, 3s(r S)

r' r' o r3 r'

j.—3 cos g~'—(4~/3)l gI sP(I )oo — + . (73)
+n 00

Here, the 00 means that the expectation value is taken
over the density matrix pp() uilperturbed by the I S
coupling. Comparison of the second term in (73) with
(65b) shows its resemblance to a direct, nuclear,
dipole-dipole interaction. Integrals over commutators
of the form $poo, 6(r—R )S I j are neglected in
deriving (73).

For the Knight shift H ', much detailed knowledge
is available for nonrotating crystals, and values of
Hs'/H are in the literature" for a large number of
metals. In many cases, the magnitude of Hs'/H is of
the order of 1/100. If the crystal is rotating, the
correction is unchanged, except that H is replaced by
FI,+ (Ao),/p&). If Hs' is evaluated in just the same way
as H8 in Eq. (73), with Ppg (8iry, /3)B(r,—R )I -S,
treated as a perturbation, one 6nds,

(Hs'I. l') o= (Ssv./3) g s (5(r))S.")oo(I~I') o

+(8~~./3)'I.pg. (I;I,I ), p, L(B(r,—R.)s,').,
g(B(r),)8 )()() (5 'S "B(r),)i)(r R ))()()$. (74)

The second term in (74) is, in effect, like an exchange
interaction between nuclear spins I and I . Here rl, is

39 G. E. Pake, J. Chem. Phys. 16, 327 (1948); See also G. E.
Pake, reference 9.' H. S. Gutowsky and A. Saika, J. Chem. Phys. 21, 1688 {1953).
H. S. Gutowsky, D. W. McCall, and C. P. Slichter, ibid. 21, 279
(1953)."N. Bloembergen and T. Rowland, Phys. Rev. 97, 1679 {1955).

"W. D. Knight in Solid-Skate Physics edited by F. Seitz and
I). Turnbull (Academic Press Inc. , New York, 1956), 2nd ed.
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the position vector of electron k, the nucleus of interest
being taken as the origin. In a metal, if an electron has
a 6nite probability of being at nucleus n as well as at
the nucleus of interest, the eRective-exchange term can
give a contribution for i=k. This kind of pseudo-
exchange eRect has been derived by Rudermann and
Kittel. 4' It is possible to obtain a contribution if i&k,
provided the two electrons are strongly coupled to
each other, as for example by an electron-exchange
interaction. 4' Without any correlation between the
electrons, the eRective-exchange term is zero. If the
electron, nuclear, dipole-dipole interaction were treated
as the perturbation in evaluating II ', we should again
obtain a pseudo-dipolar term something like (73).

The field Hp is seen from (69) to have the simple,
physical significance of the 6eld due to polarization of
the magnetic moments due to the orbital motion of the
electrons. It is closely related to the shielding eRect
obtained by Ramsey, "which is known as the chemical
shift. This relation is shown by writing

po= exp[—p(xoo —paL' H')]/so,

where H'= H+ I/phoo, and so is the partition function,
and then treating pfsnL H' as a perturbation. If
poo=exp( —PXoo)/soo, application of (30) to (69) yields
in a representation in which BCpp is diagonal and has
eigenvalues E„for the term linear in py, L H',

Pe 2* (L' H') (L.'/~")-
FI = Re+ Q (poo).—.

num

+alii'p 2- ( oo)- 2' [(I ' H')L. '/r''j-. ; (75)

Re means "real part of." As Ramsey points out, the
calculation of this eRect is very similar to that of the
Van Vleck theory of paramagnetism. Ramsey's shield-

ing correction corresponds to the double sum in (75).
In obtaining (75), it is assumed that P, (L,'/r, ')oo ——0,
or complete quenching of the orbital angular momenta
in the absence of the 6eld. The rotation manifests
itself in that H' rather than H appears, and in that
energy levels may be modi6ed by the rotation. Experi-
mentally, without rotation, shifts of resonance lines due
to chemical surroundings have been found for exam-

ple to be H~/H 6X10 ' for fluorine atoms. Measure-
ments of chemical shifts have been made by a number
of investigators. 45

The field IIn [Eq. (70)j becomes in the limit of no
rotation the diamagnetic-shielding 6eld found by

4' M. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
4'N. Ramsey and F. Purcell, Phys. Rev. 85, 143(L) (1952)

discuss f;his interaction in molecules.
4' See, e.g., reference listed by G. E. Fake in reference 9, pp.

,5'7—58; also see N. F. Ramsey, Molecular Beams (Oxford Univer-
sity Press, New York, 1950), pp. 162—166. J. A. Pople, %. G.
Schneider, and H. T. Bernstein, IXi gh Resolution Nuclear Magnetic
EgsoygNge (McQraw-Hill gook. Company, Inc. , New York, 1959).

Lamb4'. II~ =o-II, where

The term proportional to D~ gives the polarization
through the electric-quadrupole moment of the
nucleus. 4' In the evaluation of the field gradient
(r)'P/r)s')o, the field gradient of the electrons of the ion
containing the nuclear spin of interest must be added
to the field gradient due to other ions. The contribution
to the quadrupole interaction arising from the distortion
of the 6eld of the ion in which the nucleus of interest
sits, due to the other ions is included in the expectation
value (8'g/r)s')o, since the interaction energy between
the electrons of the ion with the crystal 6eld is contained
in the exponent of pp. Tllis interaction may be treated
as a linear perturbation using (30). Finally, the term
ProPortional to Ds has been discussed by Ramsey's in
connection with the magnetic-resonance spectrum of
molecules, and the line shift evaluated for deuterium
molecules. It gives rise to an apparent quadrupole
moment, since it produces the same line-splitting as the
nuclear-quadrupole term D&.

In evaluating the correction to (I,)o, which is linear
in the direct coupling of the spin to the surroundings
X», we have found actually two types of corrections:
one which is really of 6rst order, such as the Knight
shift and the Lamb shielding —these line shifts would
appear as a first-order perturbation of energy levels in
usual quantum-mechanical, perturbation theory; the
other type involves not only the coordinates q& coupled
directly to the spin I of interest, through BC», but also
coordinates qs coupled to I only indirectly through
terms in the total Hamiltonian which contain both q2
and qs. These corrections are of the form P(KisXssl')oo
and are exempli6ed by the Ramsey shielding and the
effective-nuclear-exchange term; the corresponding
corrections to the energy levels would appear in
second-order perturbation theory.

Of course, we might have employed a perturbation
K'rs ——5Crs+Xss in the first place, and then the terms
proportional to (BCisKss) would appear in the second-
order part of the expansion. However, the physical
significance of individual terms is more clearly brought
out in the present way of doing it; besides, we are
assured that the P'PCis)' effect is small, whereas this
may not be the case for P'(K'&s)'.

In Eq. (64), seven linear corrections were dis-
tinguished; we would obtain 28 types of terms from
them in evaluating (mrs)'. While all of these quadratic
corrections are expected to be small, some of them are
expected to be well within the range of observation of

46 W. E. Lamb, Phys. Rev. 60, 817 (1941); numerical values
are given there and also by W. C. Dickinson, Phys. Rev. 80, 563
(1950).

"Nuclear-quadrupole effects are reviewed by N. H, Cohen
and F. Reif, reference 36.

'" N. F. Ramsey, Phys. Rev. 89, 527 (1953).



GYROMAGNETI C EFFEC'1'S 159

experiment. ' Here, only the five quadratic terms
involving the hyperfine coupling and the "internal
magnetic 6elds" occurring in (64) are evaluated; they
are corrections either to the nuclear polarization in a
paramagnetic ion or to the Knight shift. At this point,
it must be mentioned that the "internal fields" H», H~,
etc., are statistical averages of fields arising from
particular internal interactions. It does not necessarily
follow from this that the NMR frequency will be
shifted by the Larmor frequency corresponding to the
internal fmlds; however, (64) states that the polari-
zation of the spin acts as if the levels were shifted by
just that amount. In some cases, as for example in the
lowest-order Knight shift or the Lamb shielding, it is
in fact so.

We write the part of K&2 giving rise to H, H, H ',

H, and Hn in the form X'+BC +3C '+5C, where 5C

gives H», etc. The coupling of hyperfine interaction
BC8' with BC gives in second order,

-'(gyp)'[(3E, 'H, '—H ' H')(I, 'I')p
—4H 'H '(I*)o(I*I') 1 (76)

where H, ,„r are obtained from (65) by replacing s by
x and y, respectively; similarly, H, „' are obtained
from (67). To obtain (76), the simplifying assumption
is made that the coordinates and spins of the electrons
responsible for the contact interaction are not cor-
related to the spins of the nuclei, other than the one
of interest.

The quadratic term coupling BC and BC
'

is of the
same form, if it is assumed that the coordinates of
different electrons are uncorrelated and that a particu-
lar electron either has the X type or the X '

type of
interaction, but not both:

-', (giiP)'L(3H, 'H, —H ' H )(I,'I')p
—4H H '(I )p(I I')pg. (77)

If the correlation between electrons is to be included,
the coefficient of (I,sr)p in (77) is replaced by

( 8~ /3)( g~~~ P)'

xpz(~(..) 3s,.(
' — "

)
S" S"' 3(S" r"')(S"" r"')—

( (78)
rn' 8 rn', 5

0

The quadratic correction depending on (5Cs')' is

L(8-/3)g. ("/~)P]s(1'.I:).
xZ. p„. (Ls.-s.-' ——,'(s.-s.-'+s„.s„")$

&&5(r-)~(r- ))o—
(gl H' P)'(I*)p(I I')p (79)

If ss=n', the first term of (79) clearly vanishes; it can
make a contribution only if at least two electrons have
a finite probability of being at the nucleus. Even then,

it can be shown to vanish, if the electron-spin space
and. coordinate space may be separated. For the quad-
ratic terms coupling K~' and X~, one assumes that the
electrons with finite probability of being at the nucleus
are in s states, to obtain

pa
(8 /3) gg

—P (II,')o

S(r )
y.Q Q —(3I. -S -' —L ' S ")

nZn' y„2 0

2(gpP)'H— H '(I, )p(I'I, )p. (80)

The terms arising from products of X ' and 3'. give
rise to the quadratic correction

(4 /3) (g P)'( '/ ') (I I*')o
XE- (5(r.)(»."f.—S" f))

+2(gyP)' H,
'8 HD(I, )p(I.I')p, (81)

where f, is the sum over electron coordinates:

fz Pn LpnznHp &nsnHx (+n +)in )Hz j/&n

and f, and f„are obtained by cyclic permutation of
x, y, and s. We recall that, when the crystal is not
rotating, H, =H„=Q. This completes the list of quad-
ratic effects calculated here. In Eqs. (76) to (81), all
of the coefficients of (I,'I')p produce an effect on the
expectation value of the s component of the nuclear
spin proportional to that produced by a nuclear-
quadrupole moment. For I=1/2, these effects are not
present, since (I,'I')p=0. Ramsey4' has discussed the
pseudoquadrupolar effect contained in our Eq. (77) in
connection with the deuterium molecule. He also
points out that no pseudoquadrupolar contribution
can come from (BCs')s, because the dot product I S is
isotropic. In solids in thermal equilibrium, a small
contribution could come from this term, the first term
in our Eq. (79), through the anisotropic terms in the
exponent of the density matrix.

Finally, a comment on the magnitude of the nuclear
gyromagnetic effects. According to Eqs. (54) and (55),
the polarization produced by a crystal rotation of rp/2m.

rev/sec is equal to that produced by a magnetic field
of H gauss if pp/2rr=pgH/5=762 gH. For a nuclear g
factor of order unity, a rotation frequency of order of
1000 rev/sec is equivalent to a gauss; rotation fre-
quencies up to 10' rev/sec have been achieved. " By
the techniques of nuclear induction, one might observe
not only the total polarization due to rotation, but also
details of the associated relaxation phenomena. The
easiest, but least interesting, observable eGect of rota-
tion would be the shift of the resonance line. The
nuclear counterpart of the Einstein-deHaas effect,
rotation by polarization, would, for a sample of X-

4P J. Dreitlein and H. Kesserneier, Phys. Rev. 1251 855 (1961);
see also I. Lowe, Phys, Rev, Letters 2, 285 (1959).
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saturated, nuclear spins which are allowed to come to
thermal equilibrium, lead to a rotation frequency of
the crystal co = IVI (I+1)PgtiH/38, where 8 is the
moment of inertia of the sample. For a field of 10' gauss,
T= 1'K, and a cylindrical sample with radius of gyra-
tion 10 ' cm, we have u= 0.0023LI(I+1)g/A sec) ',
where A is the average atomic weight of the sample.

3'-s= —Qi yiH Sa+G(t)+A, (83)

where S& may be a nuclear or electronic spin. tf the
operator A is unchanged by the transformation U, we
can put the time dependence into the Zeeman term by
the transformation P'= UP to give ibad'=Xs'P' with

~s'=Xi Si (H'(t)y, +~]+G(0)+A, (84)
where

H' =H costs] —H„sin~t,
H'~=H sin~t+H„cosset,

H'. =H.,

if the axis of rotation is taken as the s axis. The
Hamiltonian (84) is, however, just the Hamiltonian
for the spin system in a stationary crystal acted on by
the rotating field Hi ——(H'„II'„,0) plus a static field
H~"= (0,0,H, +~/yi, ) acting on the kth spin. Thus, the
rotating-crystal problem can be reduced to the much-
studied, rotating-field' problem; of course, the solution
to ihf'=Xs'P' must finally be transformed back to the
laboratory frame through P= U 'f'.

In the particular case that the field is parallel to ~,
the equivalent problem is just the stationary field H
acting on the spins, but with the effective gyromagnetic
ratio yq' ——(yi,+co/H). In this case, the effect of the

See, for example, A. Abragam, The I'rinciples of unclear
Magnetism (Oxford University Press, New York, 1961),Chaps. II
and XD.

4. TIME-DEPENDENT BEHAVIOR OF NUCLEAR
SPINS IN ROTATING CRYSTALS

a. Solution of Schrodinger Equation

To generalize the example of the rotating pair of
spins coupled by dipole-dipole interaction of Sec. 2b,
we consider a general system of spins in a rotating
crystal, acted upon by an external magnetic field H.
The interaction between spins is assumed to consist of
a part A which is unaffected by the fact that the
crystal is rotating, and a part G(0), which if the
crystal is rotating becomes

G(t) = U(t)G(0) U(—t); U(t) = exp(i~ St),

where S is the total-spin vector for the system, The
term A includes, for example, the contact interaction
between nuclear spins and S electrons; the G(0)
includes, in particular, the interaction between non-
overlapping dipoles. The Hamiltonian for the spins is,
thus,

E (co) =8 (0).

The wave function is then in the laboratory frame

(86)

P= P„exp(—i/AE„t) p'„(Qi), Qi, pi H+(v, ——(87)

where the E„are independent of the frequency of
rotation and are given by (86); the p'„(0) are simul-
taneous eigenfunctions of K's and S ~. The effect of
the rotation is only to change the argument of the
p'„ from y~H to Q~. The condition that m, is a good
quantum number is satisfied if the effective external
field yiH+co is large compared to the transverse part
of the internal field due to the other dipoles acting on
spin k.

The effect of the rotation on the lattice motion can
be seen by transforming the Hamiltonian to body-Axed
axes. Presumably the rotation is slow enough so that
in the rotating coordinate system the crystal electric
fields are the same as those in a stationary crystal. The
Hamiltonian referred to the rotating axes is, if spin-
orbit coupling and external fields are neglected, "

Ki,"=pi, Pi,'/2m' aa L+V. —

Here, I. is the orbital angular momentum in the
rotating system. The I ~ term is due to the rotation;
it indicates that a particular lattice-vibration frequency
may be split into frequencies di6ering from it by an
amount of the order of the frequency of rotation of the
crystal. If L u/co commutes with the Hamiltonian, its
integer eigenvalues are good quantum numbers, and
the frequency splitting is by integer multiples of co.

"One readily finds the classical, inertial accelerations from this
Hami)tonian:

i = (1/th)[r &'Jer~5 —(1/'ti')ppr, X= r,"5)SCr."5
= —grad V—2uXr —6iX(uXr).

rotation on the wave function and eigenvalues is
found by considering the eigenvalues E', and eigen-
functions y'g of K8'. Assume the y', forms a complete
nondegenerate set, and the g sym, bolizes the quantum
numbers of a complete set of commuting, dynamical
variables. In particular, if the magnetic-quantum
number m„eigenvalue of S ~/&v, is a good quantum
number, it too is included in the symbol g. In general,
we transform the q', to a representation in which
S.~ is diagonal by means of transformation coefticients

(g~m, f), where f represents any quantum numbers
besides m, required to label the complete set of functions
U,f. Then,

/=exp( —iS ~t)P'=exp( —iS ~t) P exp( —i/AE, t)q',
=exp( —iS ~t) P, exp( —i/AE'), t Pr, , (g ~m,f)U„,r
=g, P„,exp L

—i/f (e,+m,~)t]P, (g ~
m,f)U„,

(»)
So that, in the laboratory system, the characteristic
energies are Ei, (co)=P.', (co)+mg&u If m. g is a good
quantum number, then it follows from (84) that
P'g(a)) =E'g(0) —mga&. Thus,
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X=X,+As+ G (t), (88)

where BcI and Bc2 are the Hamiltonian operators for
systems one and two separately, and G(t) is the coupling
between them. 3CI and 3'.2 are assumed to be in-
dependent of the time, while G(t) will be assumed to
have the time-dependence characteristic of the dipole-
dipole interaction in a rotating crystal:

G(t) = U—'G(0) U, U= exp[i(Ii+ Is) eot7. (89)

The calculations are most easily carried out in the
interaction representation, obtained by a unitary trans-
formation S from the laboratory system. Let p be the
density matrix in the laboratory system and p' in the
interaction representation, then,

p'=SpS ', S—=exp[i/A(5Ci+X2)t7,

p'= (1/Ai)[G', p'7, G'=SG(t)$

Applying perturbation theory to (91), keeping terms
up to second order in G', and then summing over the
quantum numbers of the environment, gives in the
usual way"

a +i »2[G (t) p (0)7

[G'(t),[G'(t'),p'(0)77«, ' (92)

where Tr2 means the diagonal sum over the quantum
numbers of the environment, and o-'=—Tr2p'.

The eigenvalues of Ks—I io will be labeled g and are
assumed to be nondegenerate; one can suppose some
very small perturbations to have removed all de-
generacies. Now, we restrict system one to a single
nuclear spin, with (Ii),='mA. The matrix elements of
0' are

(mla'lm')=go (mglp'lm'g).

b. Statistical Treatments; Approach
to Equilibrium

The approach to thermal equilibrium of nuclear
spins in a rotating crystal may be studied by means of
the Wangsness and Bloch" theory of nuclear magnetic
relaxation. Consider the case of a crystal rotating with
angular velocity ~; in addition, the crystal is in a
constant magnetic field Hs. Let Ii be the spin operator
of system one, the systetn of interest, and Is the
total-spin operator of system two, the environment.
The combined system is described by a Haroiltonian
of the form

angle 0 with the s axis. Then,

U(t) = exp(iIs o~t) exp(iIi nit)

=exp(iIs nit) exp[—i8(Ii)„7 exp[ —i~t(Ii),7
)& exp [i8(Ii)„7 (9$)

(mg l U(t) lm'g')
= (gl exp(iIs cot) lg') P "exp(—icotm")

Xd,-"(8)d.- "(—8)

where the d r(8) are the well-known, explicit matrix
elementss' (m

l
exp[—i8(I)„7l

m'). The interaction G'(t)
=SU 'G(0) US ' is in this representation

exp[ —io~t (m"—m") 7

&& (m"'g
l G(0) l

m'"g') A (8), (9&)

with A„„=d„"(8)d„~""( 8)d —" "(8)d" ~ ( 8)—
In particular, we consider oi and Ho parallel, 8=0.

Since d (0)=8, (94) becomes for this case

(mg
l

G'(t)
l

m'g') =e" '"'(mg
l
G(0)

l

m'g'), (95)

where Q=yHs+oi. The heat bath is assumed to remain
in thermal equilibrium

(gml p l
g'm) = (e

—eo/Q, " e—~"')8„; (9o)

further, the interaction of the spin of interest is assumed
to be linear in the spin components, so that one may
expand

(97)G(0) =Q„F"K„,

(F"(e)F "(—e))
=&. (glF" lg+~0+e)(g+&~+e F "lg)

X (e eo/g, e »')-(-98).

We insert (95), (96), and (97) into Eq. (92), and
averaging over oscillation in the usual manner" to
obtain in the laboratory system

a+i [yHoI, +DE+I',a7
(F"(Q)F "(Q))(2e e"nK„aK

oK„K „E„K„a—), . (99)—

with (gmlK lg'm')=(mlK lm+m)B ~ ~„8„and F"
dependent only on the state of system two. The heat-
bath action is characterized by the quantum-mechanical
spectral density defined by

with AE defined by its matrix elements
Choose the z axis along the external field Hs and choose
the y axis such that eo lies in the x-z plane at some (mlgElm&) =[8 „,/(p, , e—eo')7 p, e eo(mglG(0)

—
lmg)

"R.K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1956); 5 See, for example, M. K. Rose, Flerlentury Theory of Angler
F. Bloch, ibid 102, 104 (1956); 105., 1206 (1957). Momentlm (John Wiley 8z Sons, Inc. , 1957).



and

P=—Q„P (de/e)(F" (—e)l' "(e))li.„lt. „,

where P means the "principal part of the integral. "
The left-hand side of (99) describes the periodic
precession of the spin. In first approximation, the
precession frequency is just &Ho, independent of the
rotation of the crystal. The terms in DE and F are
corrections, respectively, linear and quadratic in the
coupling G; these correspond to the linear and quadratic
perturbations on the energy levels, which were studied
in Sec. 3d in connection with the equilibrium-density
matrix. The right-hand side of (99) describes the rate
of relaxation towards equilibrium. Inspection shows
that it depends on the quantity Q=yHs+&o, but does
not depend on WHO and co separately, except for the
dependence of the heat-bath levels g on IIO and co

separately. Generally, g will depend on the combination
Qx ='rxHp+ro where && is the gyromagnetic ratio of
spins interacting with the spin of interest. In the case
of pure rotation (Hs ——0), all the Qx ——Q; this allows
transitions involving two spins of differing gyro-
magnetic ratio without exchanging energy with the
lattice. For this reason, one should expect an enhanced
cross relaxation if the total eRective field H= He+a//y
is partly due to rotation, rather than wholly due to a
static field. If we multiply (99) by the spin vector I for
I=~, we obtain in the usual manner" the Bloch
phenomenological equations with the asymptotic value

The foregoing discussion based on the Wangsness-
Bloch is limited in a number of ways.

1. We have assumed that ~ and Ho are parallel.
This simplified the analysis, permitting the use of the
expression (95) instead of (94). However, the extension
to the case of ~ and Ho being in different directions can
be carried through; in fact, the closely related problem
of the rotating magnetic field has been treated'4 by
several authors.

2. It has been assumed that the interaction G is a
perturbation on the dominant energy term which has
a magnitude 0, so that m is a good quantum number.
In other words, we require Q))1/Ts. For CaFs, the
1/Ts 10' sec '. These are rather high frequencies for
a pure rotation.

3. The most serious shortcoming is that the system
of interest is taken to be a single spin, and the other
nuclear spins are regarded as part of the heat bath,
which is not described in detail. Thus, the correlations
between neighboring spins is completely ignored. In
principle, one should consider all of the spins and their
dipole interaction as the system of interest. However,
the solution of the coupled-spin systems in a solid
lattice is prohibitively dificult. One can, however,
assume that the spin system as a whole is described by
a spin temperature" different from the lattice temper-
ature; then, the problem becomes soluble. In many
crystals indeed, T2(&T&, so that the assumption of a
spin temperature can at least be regarded as physically
plausible.

(I,)o= —', tanh-', PQ, (I, „),=0;

the precession frequency

W =y(H p+ lr'+h"),

»'=(1/2' e ")E.e '(glF(0) Ig),

»"= —P I 1+e e—'"+'5 (F—'(e)F '( e) );——

and relaxation times

(iooa)

(ioob)

Dreitlein and Kessemeier, 4 have studied the line
shape for the magnetic resonance absorption of a
rotating crystal. The study is restricted to high mag-
netic fields and assumes a rigid lattice. The physical
features obtained include (1) the narrowing of the
magnetic-resonance lines which results from the time
dependence of the dipole-dipole coupling G(i) if the
crystal rotates, and (2) the characteristic frequencies
of satellite lines which appear in the presence of
rotation. These phenomena occur when the rotation
axis makes a finite angle with the magnetic field.

1/Ts 2ir(1+e e") (F'(0)F '——(0) ),

1/Ts 1/2Ti+vr(F'(0)F'(0) )——.
(iooc)

It may be of interest to note explicitly that ph", if the
exponent is expanded, contains a term linear in PQ.

It follows from (99) that, when the diagonal elements
of 0. are stationary, then,

(re
~

~m)o/(m+n
~

r
~
m+m) = e e"", (101)

(F-(0)F--(0) ) (m
~

IC.E „~m) ~0.

provided that for every value m there exist at least one
value of e so that
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APPENDIX A. SYSTEM OF TWO COUPLED SPINS

Consider two spins, S) and Sp attached to two nuclei
located on the Z axis a distance R apart; the coupling
between the associated dipoles is

(0), —40, 0, 0), whereas in the t(0/Ep(«1 limit, they
become the eigenvalues of K)0, (—Ep, —Ep, 2E0, 0).
Assume the field is practically in the x direction, but
has a very small component in the s direction, which
will eventually be put equal to zero. Then,

K)0= 2Ep[S1 S&—3S),S&,], where Ep= ft'»&—1/2R'. (Al)

In a representation in which S'= (S1+Sp)' and

S,=(S1+Sp), are diagonal with eigenvalues S(S+1)
and m, respectively, a complete set of orthonormal

m 8 Withe)genfunct)ons are tt e(~ '):

X,= -', (Ep—e) —t41,

&0= —Ep+~0,
&0= —

0 (Ep+ e)+~0,
X4——0,

(A5)

'1'

y (11) 0
0.0.

t'0 &

y (01) = 1
2

.0.

'0

(—11) 0

.0.

'0

(00 0
0
-1.

61=6Ep(p, '/(e' —3Epe),

60——3E()(4d,/40)',

60= 6E040,'/(e'+3Epe),
e—= (9E ~+4(p&) k

The single index k replaces the two quantum numbers
The solution to A2 reduces to

ns and S. The equations for the coefFicients in the
expansion/(i) =Pe bt, (t)ge( ' of the Schrodinger wave b (t) Q B net)nt

function are n=l
k=1, 2, 3, (A6)

4

ihb„+P b K„„=O, where K „=K„. (A2)
m=1

If the two spins are acted upon by a magnetic field
H = (H„O,H,) and are coupled through %10 of Eq. (A1),
the symmetric matrix E has elements

K11—— Ep pH, ; Kpp —2E—(), Kpp —— Ep——+yH.;—

where the constant 81," can be expressed in terms of
the initial state b&(0) by substituting (A6) into (A2)
and solving the resulting linear, algebraic equations
together with

be(0)= Q Bt".
n=l

The result is

K)0= Kpp= yH, /V2; —K14—— H,A/2;—
E24= —II. ,A,

with y=-,'(y1+yp) and 6,=——,'(y) —yp). If a rotating
pair of spins is being treated, replace pH by ~ expressed
in energy units and put 6=0. When 6=0, no transi-
tions between the triplet (S=1) and singlet (S=O)
state are possible. We treat only this case. The eigen-
values of E are most easily expressed in terms of the
angle ttt where

Ep(E0"+ptd 40 )
cost)) =—,0&P (w.

0+ 1~0)—,
'

They are

B '= —Bp'= k[b)(0) —bp(0)]

GO e+3E0
B10=Bpp= bp(0)+[b)(0)+bp(0)]——,

V2e 4~

P 1—0

e+3Ep M

Bpp= b, (0)—[bt(0)+bp(0)]
26 &2e

823—
6—3X~ p—b, (0)+[b,(0)+bp(0)]

26 v2e

M e—3Ep
B '=B '= ——bp(0)+[b)(0)+b (o)]

v2e 4g

(A7)

X1= (Ep'+-', tp') '[v3 sing/3+costtt/3],

Xp
——(Epp+ ~40') l[V3 sint))/3 —cosp/3],

Xp ——2 (Epp+ 'p)0) *' cosP/3, -
A. 4

——0.

The expectation value of S, in the representation

(A4) chosen is

= (1/V2e) [b)*bp+b,bp*+bp*bp+bpbp*].

Since the trace of K vanishes, l(,+l10+Xp+X4——0 even
when &NO. In the limiting case of ~40/Ep~))1, the Substituting (A6) for the be and averaging over all

eigenvalues (A4) go into the usual Zeeman splitting periodic terms, gives a time-independent value, which
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is, with the help of (A7),

(S,)., = (3~EO/e') [i bi(0)+b, (0) i

'—2
i
b, (0) i

'1
+ (4~'/e'v2) [bi (0)b,*(0)+bg (0)b,*(0)

+b3(0)b2*(0)+b~(0)bs*(0)j (AS)

The general expansion of (r) then gives

Similarly, one obtains (S„), = (S,), =0. The, in-
dicates the time average. If the initial density matrix
bI, (0)bi*(0) is diagonal and is normalized so that

2 Ib, (0)l =3/4,
k=1

Equation (AS) becomes

(S.)-= (9~&o/«') (1—4I b~(o)
I

') ~

If the initial states are distributed in a Boltzmann
distribution at temperature Tp, an averag- over initial
states gives the result quoted in the text:

((S*))-=(~/&To) (3&o/2e)'.

n—1

e =—S —Q (Qi)()s.—i.
k=—1

To prove (82) one can write (27) in the form

eA+eB eA P enS n7
n=p

where the S„are defined by (81). Consequently,

N(e): TrCe~+—eB Pen T—rCeAS„
n=p

~(~) TreA+eB Q en TreAS
n=-p

(83)

and the eth derivatives with respect to e evaluated at
The same assumption gives for the squared components &=0 are

Ep
((s.')),.=-—

2 SkTp

9Ep' —2'' Ep

((s„')),.=——
2 e' 8kT

In the limit of no coupling between spins (Eo —+0),
((Sq')), =1/2. A geometrical picture of the motion of
the tip of the averaged spin vector is, according to
(A9), more complicated than a circular precession
around the field direction, for otherwise one would
have equal values for ((S„')), and ((S,2)), .

APPENDIX B. PERTURBATION THEORY
TO ALL ORDERS

The perturbation expansion (30) may be extended
to all orders of 8, by calculating the derivatives
indicated in (26).

We generalize the definitions (2S) to

ui"& (0)/e(0) =e!(S„C')0, i '"& (0)/~(0) =e!(S„)o. (84)

dn(C) 1 dn(~~ —i) ~ ~i&) (~
—i) (n i)—

dEn Q! d E"
7

k!(n —k)!

as follows from the elementary rule for di6erentiating
a product. At e = 0, the derivatives are, with the help
of (84) and (85),

1 d~(C),-'=- z (e')o(s=.c)o+(s-c)o
rs! de" 1'=1

= (e„r),. (86)

Inserting the expression (86) into (26), finally gives
the theorem (82).

We need the derivatives of 1/w; these may be expanded
in terms of the derivatives of v, to obtain by use of the
second of the Eqs. (84),

(o)( ')'"'(0)= —~ (e-)o

Fquations (84) and (85) show that the (Q~)o and

(S„)o are related to the derivatives of the partition
function e. The derivatives required in (26) are

S = dx'dx"

&(dxi"'e "*'Be"*'e "*'*"(Bx')e"*'*"

)&e
—"*'*""*&"'(Bx'x" . xi"&)

Xe~"-" '(")

(81)

APPENDIX C. SOME SIMPLE EXPECTATION VALUES

Below are given the expectation values of frequently
occurring, spin operators taken over the density matrix

exp(aI, )
Pp=

TrLexp(al.,)$
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The abbreviation I'= I,—1—(I,)p is used, and I is the angular momentum in units of A.

2.

3.

6.

(I*)o=(I.)o=o

(I,)p
——(I+-,') cothLa(I+-', )]——,

' cotha/2= (a/3)I(I+1)+O(a')

(I,I, ,),= (I „I,),=0

(I ')p ——I(I+1)+-', coth'a/2 —(I+-,') coth(a/2) coth/a(I+-', )]=-',I(I+1)+O(a')

(I.l")p= ~(I.)p/~a= pI(I+1)+o(a')

8(I,')p aI(I+1)
(I, r)p= = [4I(I+1)—3]+O(a)

Bu 45

1 8(I ')p
(I.„r),=—

2 Bc

aI (I+1)
$4I(I+1)—3]+0(a')

90

9.

(I,„I,I')p ——(I,I, ,„F)p——0

(I.I„r),= —(I„I,r),=-,y (I,r)..
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'HERE are many schemes going under the name
of nuclear models these days and not all of them

can be discussed here. Some of them are merely models
of models. Among them, the shell model and the dis-
torted-shell model, or collective model, have been very
successful in correlating nuclear data. Instead of
dwelling on the victories represented by the frequently
discussed quantitative agreement, the present discussion
emphasizes the relationships between different nuclear
models and points out some of the conceptual problems
of the models themselves, problems associated with the
nature of the nuclear surface, particularly as they ap-
pear among some of the light nuclei which are practically
all surface.

COMPARISON OF MODELS FOR He6

Let us first consider the shell model in one of the
simplest cases He'. The ground state is a 'S state, with
the spins of the two p protons antiparallel and the space
function symmetric on exchange of the two nucleons.
In Fig. 1(a), we see that the orbital planes in which
the two nucleons circulate coincide because the angular
momenta are exactly oppositely directed. This circum-

*Based on a paper delivered at the Chicago meeting of The
American Physical Society, November 25, j.961.Work done under
the auspices of the U. S. Atomic Energy Commission.

stance, together with the fact that the space function
is symmetric in exchange of the two nucleons, maximizes
their average proximity to one another and minimizes
the energy arising from their attractive interaction. The
first excited state 'D differs from this ground state in
having the two orbital angular momenta It; as nearly
parallel as possible [Fig. 1(b)].The uncertainty princi-
ple does not permit them to be exactly parallel, however,
as seen by the direction cosines in which /&' is replaced
by /&(l&+1), etc. The orbits thus are not quite in the
same plane and the particles are on the average farther
apart, so that the energy is slightly higher than that of
the ground state. The higher states of the configuration
p' comprise the 'I' state, with energy much higher both
because the planes of the orbits are approximately
normal to one another, as shown in Fig. 1(c), and be-
cause the space function is antisymmetric.

In the simple case with two p nucleons, and also in
more complicated cases with more nucleons, the main
point is that the low state is determined by a maximum
angular bunching of these nucleons. If the charge dis-
tribution of a p nucleon is roughly represented by a
circular orbit, maximum bunching is attained, as a 6rst
consideration, by having the orbits as nearly coplanar
as possible. But, it is equally important that we should
consider t;he phases involved when we think of the


