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HE Perceptron is a self-organizing or adaptive
system proposed by Roosenblatt. ' Its primary

purpose is to shed some light on the problem of explain-
ing brain function in terms of brain structure. It also
has technological applications as a pattern-recognizing
device, but here our emphasis is on the brain function-
structure problem. The technological aspects are not
completely irrelevant however, since a model, no
matter how appealing it may appear from the point of
view of structural similarity, must also be judged on
the basis of its performance.

In brief a perceptron consists of a retina of sensory
Nrtits (for example photocells); these are connected
(for example by wires) to associator Nnits The co.nnec-
tions are many to many and random. The associator
units may be connected to each other or to resportse
units. When a stimulus is presented to the retina
(for example as a pattern of illumination) impulses are
conducted from the activated sensory units to the
associator units. If the total signal arriving at an
associator unit exceeds a certain threshold then the
associator becomes active and sends an impulse to
units to which it is connected. The magnitude of the
impulse carried by certain connections depends on the
past activity of their termini according to certain
preassigned reirtlorcerttertt rules. Thus the device changes
its internal functional properties. The resultant be-
havior exhibits, as is shown in the text, interesting
aspects of learning, discrimination, generalization, and
memory.

We present here a survey of the work to date. We
also give in detail the proofs of certain theorems which
illustrate some of the methods of analysis and which,
in view of their central position, illuminate a wide area.
Further elaboration and details are given in the
references cited, particularly in Rosenblatt's summary
report' which presents a detailed and comprehensive
exposition of the entire subject.

BACKGROUND AND MOTIVATION

1. Structure and Function

For most of the organs of the body (e.g., the heart,
lungs, kidneys, stomach, intestines, liver, spleen,
blood stream, bones, skin, peripheral nervous system,
etc.) we have some idea of the functions each performs
and some explanation of how the structure operates to
achieve the function.

Conversely, for most of the functions necessary to
sustain life (e.g. , locomotion, sensitivity, respiration,
reproduction, digestion, nutrition, excretion, etc.) we
have some idea of which structures are involved and
the manner in which they implement the function.

It is now generally believed that the brain is the
principal organ involved in thought, but there is no
reasonably precise explanation of how the action of
the brain structure produces the "higher functions. "

Admittedly there are still open problems for the
other organs. We do not know enough to build a real
lung. But we do know in a general way that the function
of respiration is to replace carbon dioxide in the blood
by oxygen. The lung offers a large thin surface area
where air can get on one side and blood on the other,
and the exchange can take place. Admittedly, for a
specialist in this field the really interesting problems
start at this point. Nevertheless we take it as evident
that at the present time the degree of our ignorance on
the brain "function-structure problem" is of a higher
order than for the corresponding "respiration-lung
problem. " To pose the problem precisely, we should
now define brain function and brain structure.

2. Brain Function

Since many psychological phenomena have not yet
been investigated, any description of "brain function"
is necessarily incomplete. Moreover, even those
phenomena which have been intensively studied often
admit a multiplicity of interpretations. ' ' It therefore
seems pointless to attempt to make a precise definition
of "brain function. "Clearly there is such a phenomenon.
Clearly it is related to perception, memory, discrimina-
tion, recognition, association, comparison, learning,
communication, reasoning, and attention. An opera-
tional definition of these terms might be given in
terms of the relation between (1) a sequence of inputs,
which might be suitable physical stimuli; e.g. , a light
pattern on the eye, sound on the ear, pressure or heat
on the skin, etc. , and (2) a sequence of outputs, which
might be the observable response of the subject.

Such a definition might be criticized as being too
narrow in that it neglects thouf;ht which is not triggered
by an observable stimulus or displayed in an observable
response. This objection might be answered by the
argument that, in principle, thought must be accom-
panied by physical, hence observable, changes some-

* Research sponsored by the OQice of Naval Research.
' F. Rosenhlatt, Principles of Xenrodynttntics: Perceptrons end

the Theory of Bruin Mechanisms {Spartan Books, Washington,
D. C., 1961).

2 E. G. Boring, H. S. Langfeld, and H. P. Weld, Foundations
of Psychology (John Wiley 8t Sons, Inc. , New York, 1948).' E. R. Hilgard, Introdnction to Psychology (Harcourt Brace 8r
Company, Inc. , New York, 1957), Chaps. 10—31.
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where in the brain and these might be interpreted as
the inputs and the outputs.

We are not concerned here with the diAicult problems
of determining which behavior patterns are impute and
which ones are learned. While questions of innate
behavior, such as the navigation systems of certain
birds and the mechanisms of their genetic trans-
mission, are clearly formidable, nevertheless most
scientists expect that the explanations, when they
come, will be based on conventional physics, chemistry,
and mathematical analysis and could, in principle, be
duplicated by engineering techniques a few orders of
ingenuity beyond our present state. For learned
behavior on the other hand, we believe, as will be
elaborated subsequently, that the physics and chemistry
involved may be straightforward, but the organization
of information and the mode of operation are based
on radically novel principles requiring entirely new

concepts of analysis. Thus from the viewpoint of the
present paper we would not be particularly concerned
with neuronal circuitry yielding an "unconditioned
reflex" behavior pattern, such as the pupillary contrac-
tion of the eye under bright light. We would, on the
other hand, be very interested in learning what physical
changes occur in a child's brain when he learns to
recognize the letter "A" and how, in precise terms,
these changes account for the learning.

Similarly it is possible to arrange circuits so that a
machine will perform tasks which appear to have
much in common with thinking. For example patter-
recognizers, ' ' chess players, ' and other "thinkiDg
machines" have been built. ' Although such special

purpose machines clarify the nature of the logical

problem to be solved, they contribute little to the
understanding of how the brain is organized to
perform these functions. Even the "heuristic reasoning

machines, "' while they reveal a great deal about the
nature of human reasoning, are several orders of
abstraction beyond the basic mechanisms with which

we are concerned here.

Let us leave the definition of "brain function" in

this rather vague state. These concepts are very

slippery and will probably never be formulated in a
way that will satisfy everybody.

4 gl. K. Taylor, Proc. Inst. Elec. Engrs. , (London), 106, 198
(1959).

~ R.. L. Grimsdale, F. H. Sumner, C. J. Tunis, and T. Kilburn,
Proc. Inst. Elec. Engrs. , 106, Part B (1959).

6 R. M. Friedberg, IBM J. Research Develop. 2, 2 (1958).
~ Symposilm on the Design of Machines to Simulate the Behavior

of the Human Brain, I.R.E. Trans. on Electronic Computers,
EC-5 (1956).

-' A. Newell, J. C. Shaw, and H. A. Simon, Psych. Rev. 65, 151
(1958).

3. Gross Brain Structure

The gross anatomy of the brain has been well
studied. ' "Certain regions appear to have well defined
functions; in particular, stimulation of points in the
post central gyrus causes the subject to feel sensations,
while stimulation of the precentral gyrus causes motor
action. The body is precisely mapped (with distortions
in scale) on these regions, so that the response is
quite specific. These facts do not shed any light on our
problem, however, since they serve only to move the
input and output terminals from the receptor and
motor organs onto the brain surface. The main question
remains, "what happens between the input and the
output?" While other localized areas appear to be
concerned with specific functions, " the localization
usually implies a predominance of function rather than
an absolute localization. Furthermore it is also true
that there is a certain equi-potentiality involved in
brain functions, in which the functions of extirpated
parts can be taken over by other parts and the loss of
function varies as the mass of brain removed. "Indeed
large sections of the brain can be removed with no
apparent permanent loss in function. The search for
specific structures performing specific functions has
been generally without success. It seems clear that
memory and the other higher functions are distributed
in the fine structure of the brain. It is not known
however to what extent different functions have
structural units in common. '

Elsasser" says, "When the histologist looks at the
brain he sees something which is very reminiscent of
large electronic computers. He sees a small number of
basic components repeated over and over again. All
the complexity lies in the innumerable interconnections,
not in the variety of basic components. So far as we
know, the brain consists exclusively of neurons. Again,
so far as we know, a neuron does nothing but conduct
electrochemical pulses from its head end to its tail end.
Some of the neurons leave the brain (efferent nerves),
others enter it (afferent nerves), but apart from this
the head and tail ends of neurons make synaptic
connections with other neurons. Thus if one is to
study the physiological background of memory one
might start with such a model of interconnected

' George W. Gray, Sci. Am. 119, 4 (1948).
'0 J. F. Fulton, Physiology of the Servols System (Oxford

University Press, New York, 1943).
» See, M. Singer, in Histology, edited by R. O. Greep (Blakiston

Company, New York, 1954).
G. Walter, The Living Brain (W. W. Norton and

Company, Inc. , New York, 1953).
"W. Penfield and T. Rasmussen, The Cerebral Cortex of M'an

(The MacMillan Company, New York, 1957).
I K. S. Lashley, Brain Mechanisms and Intelli gence (University

of Chicago Press, Chicago, Illinois, 1929)."K. S. Lashley, Research Pubis. , of the Assoc. Research
Nervous Mental Diseases, 36, 1 (1958)."W. M. Elsasser, The PhysicaL Foundation ofBioLogy (Pergamon
Press, New York, 1958), p. 138,
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neurons. We do not claim that this model is altogether
true, but it is simple, and presents itself on the basis
of anatomical data. There is rto artatotrtica1 evidertce for
a storage orgone used to file away the immense amount
of information which every person retains in his
memory. Also, brairt Physiology has stot brostght lo light

arty evidertce for the existence of the highly complicated
special scartnirtg devices

4. Neurons

The doctrine expressed in this quotation, that the
neurons are the functional units of the brain, is largely
due to Ramon y Cajal and is now widely held among
neurophysiplogists. '~ A considerable amount is known
abput the actipn pf individual neurpns is—20 A grpssly
oversimplified description is as follows. When the cell
body of a neuron is suKciently stimulated, an electro-
chemical pulse travels from the cell body down along
the axon, out along the branches to the end feet which
impinge (synapse) on the cell bodies of other neurons,
thus tending to stimulate or inhibit those neurpns.
This general description applies to the "internuncial"
neurons. The action of a sensory (afferent) neuron
differs from this in that its cell body is excited by an
external stimulus (for example light impinging on a
retinal receptor cell, or pressure on a special-purpose
capsule in the skin). The action of a motor (efferent)
neuron divers from the general description in that its
end feet terminate in a muscle fiber (or a gland);
electrochemical impulses arriving at these end feet
tend to activate or inhibit the muscle contraction
(or the gland output). There are perhaps 10s of these
input and output neurons, constituting about 1/o of
the 10' neurons in the brain.

The speed of conduction of the pulses in the neurons
varies from about 5 m/sec in the fine neurons up to
about 125 m/sec in the large ones. The time for a
pulse to be conducted along the length of the neuron
is of the order of 3X10 sec. The time to cross a
synapse is of the order of 10 ' sec. After a neuron
fires there is an absolute refractory period of the order
10 ' sec during which the neuron cannot Gre again.
There is also a relative refractory period, of increased
threshold.

We reiterate that the above description is grossly
oversimplided. It does, however, furnish a general idea
of the manner in which neurons operate.

5. Organization of Neurons in the Brain

To establish detailed anatomical information regard-
ing the connections of the 10'0 neurons in the brain
presents a formidable laboratory task. By ingenious
and painstaking techniques, such as microelectrode
stimulation, or degeneration and staining, some informa-
tion has been obtained. "" Some neurons are long,
some are short. Some make contacts with nearby
neurons, others wander the length of the brain before
contacting another neuron. Some neurons connect
with only a few others, others contact thousands. A
simplified scheme is shown in Fig. 1. In the words of
M. Singer, "Almost any type of connection scheme
that can be imagined can be found in the brain. " It
seems impossible to map the entire topology of the
neural network. Moreover, even if we accomplished
this, we would then face the disheartening task of
analyzing the performance of such a network. Now in
a digital computer every connection must be exact or
the answer can be entirely wrong. If it were also true
for the brain that the misplacement or malfunction of
a single connection could completely destroy the
function, then we could not hope to understand how
the brain operates until we have accomplished the
impossible tasks of determining the exact wiring
diagram of the neural net and analyzing it. However,
it is clearly not true that the connections must be
exactly right for the brain to function at all. This is
proved by the fact that, although neurons do not
regenerate, functions which are temporarily lost after
extirpation of sections of the brain, are later recovered.
Furthermore it seems unlikely that the genes would
carry the information to specify every one of 10"
connections. It seems more plausible that only certain
parameters of growth are specified and the fine connec-
tions are grown in a more or less random manner,
subject to these constraints. Thus the detailed
connection scheme would be unique to each individual.
If it is true that individuals, with connection schemes
specified only by certain parameters of growth, function

"T.H. Bullock, Science 129, 997 (1959).
» See, Frank Brink, in Handbook of ExPerisnental Psychology

edited by S. S. Stevens (John Wiley 5t Sons, Inc. , New York,
1951).

'" J. C. Eccies, The Physiology of 1Verve Cells (Johns Hopkins
Press, Baltimore, Maryland, 1957).

'o Revs. Modern phys. (Biophysical Science) 31, 1—598 (1959).
See also Biophysical Science, edited by I. I.Oncley (John Wiley
R Sons, Inc. , New York, 1959).

FIG. 1. Neurons (schematic).

"D. A. Shoil, Organisation of the Cerebral Cortex (Methuen
and Company, Ltd. , London, 1956).

A. D. Adrian, The Physical Backgronnd of Perception (Oxford
University Press, New York, 1947).

~' J. C. Eccles, The Xegrophysiolofica/ Basis of Mind I'Oxford
University Press, New York. , 1953).
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in similar ways, then there is hope that the performance
of such a system might be analyzed in terms of such
parameters. This also implies that the operation of
the brain is radically different in principle from the
logical circuitry of digital computers. '4 The discovery
of these principles poses some challenging mathematical
questions.

6. The Prospects for a Model

We have seen that our description of brain function
is vague and our knowledge of brain structure is very
sketchy indeed. It might well be argued that we have
not formulated precisely a brain "function-structure"
problem at all. Precisely formulated or not, it is clear
that the problem exists. Again it is entirely possible
that the areas of our ignorance of brain structure and
brain function cover items which are essential for an
explanation, and, until these are revealed, no under-
standing is possible. On the other hand, based on the
above description of the brain structure, we can, as
suggested in the quotation from Elsasser, " consider a
model of interconnected neurons and study its behavior.
Such networks can be arranged to perform any logical
function, "" but these arrangements are contrived
and do not appear to resemble the biological organiza-
tion at all. Some early experiments" —"were performed
on straightforward neural networks, but these systems
were very small and simple and the results were
dificult to interpret. More plausible, but descriptive
models have also been proposed in recent years. ""
While the verbal description of the conjectured
functioning of such systems is quite attractive, the
vagueness in the specifications of these models precluded
the possibility of reasonably rigorous analysis or
verification. With the Perceptron, '4 "Rosenblatt oGered
for the first time a model which was: (a) specified in
terms precise enough to permit testing of asserted
performance, (b) sufficiently complex to oKer the hope
that its behavior would be interesting, (c) suKiciently

simple to suggest that its performance might be
analyzed and predicted, and (d) consistent with the

"J.von Neumann, The Computer artd the Brain (Yale Univer-
sity Press, New Haven, Connecticut, 1958).

'~ J. T. Culbertson, Consciousness and Behavior (William C.
Brown Company, Dubuque, Iowa, 1950).

W. Pitts and W. S. McCulloch, Bull. Math. Biophys. 9, 127
(1947).

W. S. McCulloch and W. Pitts, Bull. Math. Biophys. 5, 115
(1943).

'e D. A. Sholl and A. M. Uttley, Nature 171, 387 (1953).
"W. A. Clark and B. G. Farley, Proceedings of the Western

Joint Computer Conference, p. 86 (1955).
~ B. G. Farley and W. A. Clark, I.R.E. Trans. Professional

Group on Inform. Theory 4, 76 (1954).
"N. Rochester, J. H. Holland, L. H. Haibt, and W. L, Duda,

I.R.E. Trans. on Inform. Theory, IT-2, 80-93 (1956).
"D. O. Hebb, The Orgartisatt'ort of Behaotor (John Wiley 8t

Sons, Inc. , New York, 1949).
3' R. L. Beurle, Trans. Roy. Soc. (London), B240, . 55 (1956).
"F.Rosenblatt, Cornell Aeronautical Laboratory Report No.

VG-1196-G-1 (January, 1958)."F Rosenblatt, P.sych. Rev. 65, 386 (1958).

known biological facts. Admittedly the model rep-
resents an enormous simpli6cation of even the known
brain structure; but if it does not violate the biological
constraints (such as the number of units, the organiza-
tion of connections, the reliability of components, the
mechanism of signal transmission, the speed of re-
sponse, the stability of the performance with respect
to component malfunction or extirpation, the capacity
for information storage, etc.) and if it exhibits even
rudimentary brain functions, then, even if it does not
in fact operate in the same manner as the brain does,
it still provides at least a possible explanation of how
the brain structure, as we know it at this time, might
be organized to perform these functions.

PERGEPTRONS

7. General Description

The term Perceptrort refers to a class of theoretical
brain models, such as illustrated in Fig. 2.

A stimulus 5 (for example a pattern of light) is
presented to the sensory retina. The illuminated
sensory elements send pulses with varying time delays
to the associators. Some of the pulses are positive
(excitatory) and some are negative (inhibitory). If
the algebraic sum of the pulses arriving at an associator
in a suitable time interval exceeds a certain threshold
(which need not be the same for all associators), that
associator sends out pulses as indicated by the arrows
to other associators and/or to the response units.
Each unit may have its own refractory period. Each
connection may have its own transmission time, pulse
magnitude and sign, or frequency and phase. The,
response units also have an activation threshold and
may have excitatory and inhibitory connections with
some associators and/or each other.

So far we have made no provision for change (learning
or memory) in the system. On this the anatomical,
histological, or physiological findings o6er no clue.
The general belief is that pathways through the
network are somehow, as a consequence of being used,
facilitated for future conduction. Thus, Hebb" says,
"When an axon of cell A is near enough to excite a
cell 3' and repeatedly or persistently takes part in
firing it, some growth process or metabolic change
takes place in one or both of the cells such that 3's
e%ciency, as one of the cells 6ring 8, is increased. "
This might be brought about in the biological system
by the growth of additional end feet, or by chemical
changes in the neurons such as the production of
enzymes in the cell body which alter the threshoM in
a small region of the cell body, or by several other
plausible means. " "Long term memory" in humans,
which can survive for a century in spite of severe
shocks, must be stored in some fairly permanent

36 F. Rosenblatt, Cornell Aeronautical Laboratory, Project
PARA Technical Memorandum Xo. 10 (December, 1959).
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FIG. 2. Organization of Perceptron.

structure; "short-term memory" might be stored by
means of a transient state of activity. In any case
many of the conjectures are functionally equivalent to
the rule that when the two ends of a connection are
sequentially active the connection is strengthened,
i.e., the pulse it carries is increased. This description
of the reinforcement rule is intentionally vague; it can be
realized in various ways, some of which are given in
precise terms below.

Parameters which must be specified to delne the
perceptron of Fig. 2 are: The number of sensory
elements, the number (or probability distribution) of
excitatory and inhibitory connections at each level
and the geometrical constraints on them, the number
of associators and the number of responses; the
thresholds, refractory periods, summation intervals,
and transmission times. For studying the behavior of
such a perceptron we would also have to specify the
set of stimulus patterns, the order and times of their
presentation, and the observations to be made on the
responses. The reinforcement rule must, of course,
also be defined.

We shall not pursue further here the arguments
showing that the above model is consistent with the
biological constraints. "4

37 H. D. Block, B. W. Knight, Jr., and F. Rosenblat, t. Revs.
Modern Phys. 34, 135 (1962).

8. Techniques of Investigation

For studying the behavior of perceptrons, three
general techniques are available.

(a) Mathematical anatysis When i.t is successful, this
approach overs many advantages, such as the pre-
dictability of the performance of classes of perceptrons,
the eGects of variations in the parameters, and so
forth. For a model of the complexity of the general
perceptron of Fig. 2 the analysis is quite complicated
(see Sec. 6 of the paper which follows" ). For certain
simplified cases as in the simple perceptron of Fig. 4
which is discussed later, the analysis is fairly complete.
In Sec. 9 we prove some theorems and illustrate the
analytical techniques for such systems. In the paper
which follows, a more complicated system is analyzed.

(b) Simnlatioe on a digital comPuler. The principal
advantage of this method is that it can always be done,
subject, of course, to time„storage, and cost limitations.
A considerable amount of data has been obtained in

l

3

I

g (

FIG. 3. Mark I Percep tron
at Cornell Aeronautical labor-
tory. (a) Overall view with
sensory input at left, associa-
tion units in center, and
control panel and response
units at far right. The sensory
to associator plugboard, shown
in (b) is located behind the
closed panel to the right of
the operator. The image of
the letter "C" on the front
panel is a repeater display, for
monitoring sensory inputs.

this way. ' "Some of these will be described in Sec. 9
below.

(c) Construction, of an actual machine This h. as an
enormous advantage in speed over the digital computer,
since essentially all the action goes on in parallel
simultaneously and the response appears almost
immediately, while in the digital simulation all compu-
tations are done in sequence. While an actual machine
enjoys certain types of Qexibility, such as the ease
with which the experimenter can vary the stimulus
patterns, it is a serious task to change the wiring
diagram (in the digital computer this can be generated
quickly by a suitable program) and it is impossible to
alter certain basic features of the network. There is
also the complicating factor of the inexact performance
of hardware. A machine of the complexity of Fig. 2
has not yet been built, but one having the organization
of Fig. 4 (but with eight binary-response units) has
been built, and is known as the Mark I, (Fig. 3)." "
The retina is a 20&&20 grid of photocells mounted in
the picture plane of a camera to which the stimulus
pictures are shown. There are 512 associator units and
eight binary-response units. Each sensory unit can
have up to forty connections to the associator units.

38 F. Rosenblatt, Proc. I.R.E. 48, 301 (1960)."J.C. Hay, F. C. Martin, and C. W. Wightman, Record of
I.R.E. 1960 National Convention, Part 2, New York, (1960).

'0 C. W. Wightman, Cornell Aeronautical Laboratory, Project
PARA Technical Memorandum No. 4 (February, 1959).

' J. C. Hay and A. E.Murray, Cornell Aeronautical Laboratory
Report VG-1196-6-5 (February, 1960).
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This wiring is normally made according to a table of
random numbers. The associator to response connec-
tions are varied by motor-driven potentiometers.
Many interesting experimental results have been
obtained. " Some of these are mentioned in Sec. 9(f)
below.

For purposes of building a machine having more
units and organized more in the direction of Fig. 2, the
principal requirement is for inexpensive, compact,
low power associator units and connections having
the desired variability of weights. Neither precision
nor reliability of the components is important. /This
is contrasted with the usual engineering situation in
which as the number of components increases the
reliability of each component must also increase, for
the failure of a single element results in the failure of
the entire system; the probability of system failure
thus increases rapidly as the number of components
increases. For the perceptron it is the other way
around; cf. the extirpation experiments described in
9(f) below. jAnother need is for an inexpensive method
of making connections. Again these need not be precise,
but there must be a great many of them. Recent
developments~ "are encouraging and lead to reason-
able hope for success.

9. Analysis

a. A Skate Perceptrort.

Consider the simple'7 perceptron shown in Fig. 4.
Let there be E, sensory units, S associator units,

and rt stimulus patterns (each stimulus pattern is a
specified set of activated retinal points). We denote
typical sensory units by s„typical associators by a„,
and typical stimuli by S;.Let us represent the connec-
tion between s and a„by the real number C „;in
particular the C,„might be random numbers having
the possible values +1, —1, 0. When the stimulus S;
is applied to the retina, the signal

n„'=,C,
„

err e Ss

is transmitted instantly to the associator d'„.If n„' 8,
where 8 is an arbitrary, but Axed real number, the

~ K. R. Shoulders, Simulation of 37eural Networks by Optical-
Photogruphic Methods (Stanford Research Institute, Menlo Park,
California, December, 1959).

~ K. R. Shoulders, Research in Microelectronics Using Electron-
beam-activated Machining Techniques (Stanford Research Institute,
Menlo Park, California, September, 1960l.

44 B. Widrow, Stanford Electronics Laboratory Technical
Report 1553-2, Stanford, California, (1960).

45 J.K. Hawkins and C. J.Munsey, A Magnetic Integrator for the
Perceptron Program (Aeroneutronics, Newport Beach, California,
i960).' A. E. Brain, The Simulation of pleura/ Elements by Electrical
Networks Bused on 2lfulH-A perture Magnetic Cores (Stanford
Research Institute, Menlo Park, California, 1960).

4' We use the term "simple" here in the colloquial sense. The
term is also used with a technical meaning, a precise definition
of which is given in Rosenblatt . The Perceptron of Fig. 4 is also
"simple" in the technical sense.

0.

0

000000
Sensory Retina Associators Response

FIG. 4. Simple perceptron.

associator a„is said to be active and instantly transmits
a signal v„to the response unit. An inactive associator
transmits no signal. The total signal arriving at the
response unit is u=P'„v„,where Q' is taken over the
active associator units. If u) 0, where O~ is an arbitrary
but Axed non-negative number, the response output
is +1. If I&—0" the response is —1. If ~N~ &0' the
response is 0.

In this model the connections C,„donot change.
Therefore A(S;), the set of associators activated by
stimulus 5;, does not change. Thus once the numbers
C,„have been determined (more will be said about
this later) we may disregard the sensory retina
altogether and start with the Venn diagram of Fig. 5.
Let

1 if a„&A(S;)
0 if u„f.A (S;).

The input to the response unit, when stimulus 5; is
presented to the retina is then

+s=Qp t'pepa

This model does not use the known biological facts
of delay, refractory period, and variability of neurons.
We shall see later that these features can be very
helpful indeed, but we now show that even without
them we get very interesting performance.

b. DiscrAninatiort: LeurrIieg by Error Correction,

Let us assign each stimulus to one of two classes,
which we denote by +1 and —1. Say stimulus S; is
assigned to class p;, where p; is +1 or —1. This
dichotomization is then represented by p= (pr, p2,

p;, ,p„).We would like the perceptron, in its terminal
state, to give the correct response to each stimulus.
From Eq. (1) we see that the response to S; is correct
if and only if

pirtr Qp ~peprpi+ O~ ~

Let 8 denote the matrix with elements b„;=e„;p,.
It may happen that no choice of numbers for y„

FIG. 5. Associator units.
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(li= 1,2, ~,jV,) will yield the inequalities

Q„y„b„,&O, i=1, 2, , n . (3)

If this is the case, then the discrimination problem
(p) cannot possibly be solved (perfectly) by this
perceptron, no matter what reinforcing arrangement
is used. However, as will be discussed later, for reason-
able dichotomies in most systems of interest there will
be numbers y„satisfying (3) and hence positive numbers
t', such that

P„y„b„,=1;&—0, i=1, 2, , n . (4)

In particular if the Venn diagram (Fig. 5) has, in each
set A(5;), an associator a„&;i which is in no other
A (S,), then we can simply set y„t;i——(1+8)p; for each
i=1, 2, , n and the other y„'s=0 and satisfy (4).
More generally if the matrix 8 is of full rank and
E ~e then, by the standard theorem in algebra there
will be a solution y= (yt, ,y„, yir. ) to (4). For the
remainder of this section we assume that there is a
solution y to (4).

The error correction procedure is as follows. A stimulus
S, is shown and the perceptron gives a response. If
this response is correct then no reinforcement is made.
If the response is incorrect then the v„ for active
associators a„is incremented"" by pp;. 5' The inactive
associators are left alone. The initial values are
arbitrary, say (vis, ,v„s, .,vz,').

Suppose the stimuli are shown in an arbitrary
sequence, such that each stimulus recurs infinitely
often. %e shall show that after a certain finite number
of steps the machine will thereafter give the correct
response to all the stimuli, so that no further changes
take place. The proof given here is a distillation of a
succession of proofs by Rosenblatt, Joseph, Kesten,
and the author.

4
(1) Let $= $s, where the $; are real numbers;

and, for $/0, f($)=F($)/P; $P. Note that f($) is
constant along each ray, i.e., f(X))=f($) for any XWO.
Thus all the values that f($) takes on are assumed on
the unit sphere P; c,s=1. Since this is a compact set,
we have for all )NO, 0~f($)~M.

Now choose any P such that P, $;*'=1 and each
component $;*&0. If f(P) =0 then BP=O and

(2) At any time t, let x;(t)(i=1,2, ,n) be the
number of times the machine has incorrectly identified
stimulus 5; (and hence has been reinforced, so far, x;
times by amount p,ri). Then v„(t)=v„'+g;e„,p,qx;(t)
If the stimulus S; is now shown to the machine the
input to the response unit is

n;(t) =Q„v„'e»+Q„[Q,e„;p,rix, (t)e»7. (5)

Hence

g„[p,e„,P, e„,p;x, (t)7ri= p ii (t) p, u,', —

where iiP=P„v„'e».
Reinforcement occurs at this stage if and only if

the response determined by (5) is incorrect, i.e. , if

p,N, (t) g O. Thus if reinforcement occurs we have,
from (6),

E.P„Z'b.'x'(&)7~ (o. pn;s)le= »— —

by (4), which is a contradiction. Therefore f($) does
not vanish on that portion of the unit sphere which
lies in the closed first orthant. Hence f($) assumes a
positive minimum value on that set, say ns&0. Since
f($) is constant along each ray, it follows that, for
any vector (NO having each component (;&0, f($) ~ ni.

Therefore we have proved, on the basis of the
assumption that there exists a solution to Eq. (4), that
there is a constant m&0 with the following property.
For any nonzero vector f having all its components
non-negative:

0&~~f(~)~m.

8 R. D. Joseph, Cornell Aeronautical Laboratory Report No.
VG-1196-6-7. See also Ph.D. Thesis, Cornell University, Ithaca,
New York, 1961.

4' F. Rosenblatt, Cornell Aeronautical Laboratory Report No.
VG-1196-G-4 (February, 1960).

"Other schemes for the amount of reinforcement have been
investigated. " In particular, the system in which the inactive
connections suBer a decrement in such a way that the sum of the
input connections at each response unit remains constant is
called a "p system" in contrast to the "cx system" described in
the text. The "I' system" on the other hand, conserves the sum
of the output connections at each associator. Another system
which has been studied is the "P system" in which the e„cannot
exceed a certain bound. Another modification, in which each
connection v„suffers a decay proportional to v„will be used in the
paper which follows. In the interest of simplicity of presentation
we do not go into any of these here."R. D. Joseph, Cornell Aeronautical Laboratory, Project PARA
Technical Memorandum No. 12 {May, 1960)."R. D. Joseph, Cornell Aeronautical Laboratory, Project PARA
Technical Memorandum No. 13 {July, 1960).

Suppose that reinforcement takes place. I.et us
consider the change in F(f) as ( goes from

I' i (xi,xs, ,x;, ,x„)——
to

for 0~k~ i. We have

=2K. (4 2'b. 'x'),

= 2 E.b» Z' b.'x'+2k Z. 4P,
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and in the interval from Fi to F2 we have, using (7)

gjv—&2 Q„b„Q,b„,x,+2hN, &2D,+2hÃ, ,
g$.

Hence

(C+Nh)e
Q h„&—
v=1

(9f)

x)+1 gP—8$, &2 (D,+tV, h) dh

& 2D,+N, &max, (2D,+N;) =D.

where iV; is the number of associators activated by S,.
Therefore the change in F($) as $; is varied from x,
to x,+1 is

Thus the process terminates if

v=1

diverges and the h„are bounded. This last condition
can clearly be weakened to the condition that for
arbitrarily large values of K:

The total change in F from the beginning of the
training, x'= (0,0, ,0) to the state where

x=(xi x) x x )7 ) ) &) ) rt/

is
F(x)—F(0)=F(x)=P hF&D P; x, .

max(h, )
(v=1, , E) rm

E Em
where r&1;

Hence
F(x) D Qx, Dm

0&m& f(x) =
' x" .s" ' s'

where the last inequality follows from Schwartz's
inequality:

~ P x '= Q 1' P x ~~ (P x )2

Therefore

P, x, & (I/mg) max, L2 (0—p,u,")+gN,). (9)

After at most this many corrections there will be no
more; i.e., the machine will thereaf ter give only
correct responses. It has learned the dichotomy.

The above can be generalized so that instead of the
corrections all having the same magnitude g each time,
they have magnitudes h&, h2, , h„, . , where the h„
are bounded and

v=1

diverges. The analysis is analogous, with i1x;(t) in

Eq. (5) replaced by X;(/), the absolute magnitude of
reinforcement applied up to time t as a result of in-

correct responses to stimulus 5,. Analogous to (8)
we get

gF&2(O p.~.o)h +h 2lV;& (C+Nh)h„,

where C=max, 2(O p;uf), N—=max;N, , h=the maxi-
mum h, used to date. Then, summing as before, we

get after E corrections

F(X) (C+Nh)Q h. (C+Nh)eg h,
m&

Q;XP Q;XP (P;X;)'
(C+iVh)m

for then we get from (9')

K C
Q h, &-

m(1 —r)

Various modifications and generalizations of the
fundamental theorem expressed in Eq. (9) have been
obtained. """We confine ourselves here to the following
remark.

The condition for the existence of a solution is,
from (3):

sgn Q„e„;7„=p;.

Hence, with a fixed Venn diagram, the number of
dichotomies which the machine will be able to learn
is equal to the number of orthants (in e space) which
can be entered by linear combinations of the Ã row
vectors of the matrix e„;.An upper bound for this
number" shows that it may be considerably less than
the 2" possible dichotomizations. However most of
these dichotomizations are "unreasonable" and could
not be learned by humans either. As an example of the
power of the machine, the Mark I was shown the
twenty horizontal bars (4X20 retinal units) and the
twenty vertical bars (20X4 retinal units) with the
dichotomy being that alternate bars were in opposite
classes. This should be a dificult dichotomy, since bars
with the greatest overlap are in opposite classes
(compare the discussion below). The Mark I learned
this dichotomy perfectly after seeing 214 stimuli,
requiring 600 sec of reinforcement in all. (In this
experiment the reinforcement rule was to hold on the
reinforcement until the sign of the response changed). "
It would be interesting to compare this performance
with that of a human subject on the same problem.

~' R. D. Joseph and L. Hay, Cornell Aeronautical I.ahoratory,
Project PARA Technical Memorandum No. 8 (1960).
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c. Forced Jearrlieg.

In the forced lear-ming reinforcement rule the v„of
each active associator is incremented by pp; each time
S; is shown, regardless of the machine's response. The
input to the response unit when stimulus S; is presented
to the retina is again given by

(~)= + Z. .2' .' ' '(~) (1o)

+11
+21

e31

+12

m22

+32

R14 Ã15

f523 'g24 '025

%34 Pl'35

has for its i—jth element p;e;;p;. The desired dichotomy
having been specified, we can relabel the stimuli with-
out loss of generality, so that all those in the +1
category come before all those in the —1 category.
Then the matrix 8~8 has the appearance

where x, (t) now denotes the number of times the
stimulus S; has been shown, up to time t. Suppose that
at some time T, x;(T)=p,T, for i=1, 2, , n. The
vector

—@41 —%42 —'P$43

PZ51 %52 853 054

@45

655

where U= B~B,

2

p= '. p'~0 &'P'=»

corresponds to the relative frequencies of occurrence
of the various stimuli

'S1
S2

S;

S„
The condition for the response to S; to be correct
is p,u,)0, i.e.,

p,~ 0+gT P„p;e„;Q; e„;p;P;)O. (11)

Inequality (11) will hold in general for large T,
if and only if

P„p,e„,P; e„;p;P,)0. (12)

Thus, if the perceptron can learn this dichotomy
under forced learning, for some choice of p, we can take
y„=P;e„;p;p;to satisfy (3). Therefore it will learn
under error correction. Conversely if the machine can
learn the dichotomy under error correction then from
(5) starting with zero initial values, the x; obtained by
the error correction procedure will yieM a frequency
vector

P;=x;/P; x;

satisfying (12). To summarize: If the perceptron can
learn a dichotomy under forced learning, it will learn
it under error correction. If it can learn it under error
correction it can learn it under forced learning for some
choices of the frequency vector, but not in general
(see below) for others. Thus the error correction
method is a more generally effective method than
forced learning.

Let K denote the matrix whose elements are
rs,;=n;;=+„e»e„;Note tha. t e;; is the number of
associators activated by both S; and S;; i.e., the
number of elements in A (S~)AA. (S,). The matrix BrB

and where we have assumed, for purposes of illustration
that there are three stimuli in the first class and two
in the second. Clearly if there is any negative entry in
U then there is some frequency vector p for which (12),
which now reads

(13)

will fail to hold for some j. If the stimuli are "equally
likely" to occur, (p,= 1/e) then (13) is the requirement
that each row sum of U is positive; or roughly, that
each stimulus has a greater intersection (in the
associator set) with its own class than with the opposite
class.

If the stimuli are presented in random order, with

p; the probability of occurrence of S;, then, in (10),
x;(/) and I;(t) are random variables, with the expected
value of u;(T) again given by the left side of (11).
Using Tchebyche6's inequality, rigorous bounds on
the probability of error as a function of time can be
obtained. " By using a normal approximation, an
estimate of the learning curves (Probability of correct
response vs t) have been found. "The success of the
perceptron at this type of learning has led to its being
applied as an engineering pattern-recognizing device.

The entries of the X matrix, for a given set of stimuli,
stem from the connections C „and the threshold 8. By
fixing these suitably we could "gimmick" the K matrix
to fit our needs. )For example by taking C,~=1 for
those sensory units s which are activated by S1,.
C,1

———1 if s is not activated by S1', and setting
8&———,

' P, (C,&+ ~C.&~) we can be sure that associator
a1 responds to stimulus S1 and only to S&. If we now
want an associator a„to respond to S1 and to S2 and
to no other stimulus we could use a preliminary layer
of associators and the connection scheme (Fig. 6),
where a2 responds only to S2 and 8„=1.Similarly we
can deal with the other logical functions. Thus in fact,
using the preliminary layer of e associators, we can fix
the number of elements in each subset of the germ

F10. 6. Associators and
connection scheme.
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diagram (Fig. 5), and thus control the K matrix. ]
However we take the position that we want the
perceptron to react equally well when the set of stimuli
S~, , S„arenot specified in advance. Thus an X
matrix that leads to interesting results for a pre-
assigned set of stimuli may be poor for a different set.
For this reason the C.„aretaken at random. The
resulting entries in the K, matrix become random
variables which have been studied' and tabulated in
some detail. '4 From these data it is possible to select
design parameters and to predict performance of
perceptrons constructed in this way. " These results
have been verified and elaborated by simulation
testing of Perceptrons' "as well as by experiments on
Mark I." (Actually, by the use of a reinforcement
scheme applied to the C,„analogous to that used on
the v„,the perceptron can improve its sensory connec-
tion scheme for a given problem. ' We shall not go into
the analysis of such systems here).

d. Geeeralim, tioe.

The simple perceptron we are here analyzing exhibits
a good deal of generalization, i.e., correct response to a
stimulus it has not seen before. Examination of in-
equality (13) reveals the reason for this. If the stimulus
has considerable overlap with some of the members of
the same class and very little overlap with members of
the opposite class it will give the correct response on
the basis of having seen the like stimuli. To illustrate
with an extreme example suppose the X matrix has
the following appearance

1. 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1

.0 0 0 0 0 1 0 0 1

In the matrix each stimulus overlaps (in the associator
set) with its two nearest neighbors but with no others.
(The retina in this case is conceived as being

FIG. 7. Stimulus pattern of
circles and squares.

'4 F. Rosenblatt, Cornell Aeronautical Laboratory Report No.
VG-1196-6-6 (May, 1960).

~5 R. D. Joseph, I.R.E. 1960 Convention Record, 2, New York,
(1960).

'6 F. Rosenblatt, Proc. I.R.E. 48, 301 (1960).
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FIG. 8. Q;; as a function of c.
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cylindrical; patterns which go o6 the right edge
reappear at the corresponding point at the left edge.
In this way each stimulus has exactly two nearest
neighbors. ) Then, starting with zero initial values,
once the machine sees one stimulus and is reinforced
it will give the correct response to its two neighboring
stimuli even if it has not been shown these previously.
While this type of X matrix is a gross oversimplification
of those obtained in practice, it illustrates a basic
mechanism which is operating here as we show next.

Suppose that we are interested in discriminating
squares from circles, all of unit area. In Fig. 7' it is
clear that the circle C~ in the upper left of the retina
has many more sensory points in common with the
square S than it has with the other circle C2. Why
should the machine tend to classify the first circle C&

with the second circle C2 rather than with the square S,
with which it has the greater retinal overlap?

To answer this, let us use some typical data. Suppose
the connections C.„aremade by taking at each
associator 5 inhibitory and 5 excitatory inputs
connected randomly to the retina. Further suppose
that 0=5 and the total retina is of area 10/3. Then
the probability Q;; of the associator being activated by
both of two stimuli S; and S; is a function of the
retinal overlap c of the stimuli, S; and S; as shown in
Fig. 8 (the data for Fig. 8 are taken from the tables"
mentioned earlier).

With an extremely fine lattice spacing on the retina
the overlap between any one of the circles and any one
of the squares is less than 91%, as can be verified by
elementary geometry. Thus for a circle and a square
we are always to the left of point 3 in Fig. 8, and the
probability of an associator being activated by both
is less than 2&(10 4. If the circles can be displaced by
very small amounts we will ha, ve close to 100% retinal
overlap between a circle and a nearby circle; con-
sequently we are near point 8 in Fig. 8 with the
probability of the associator being activated by both
circles greater than 4)&10 4. If there are, say, 3000
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associators, then the expected number of associators
activated by any speci6ed circle and square is less
than 0.6. On the other hand, each circle has neighbors
for which the expected number of associators activated
by it and a speci6ed neighbor is greater than 1.2.
Therefore it is plausible that the matrix X should
have an appearance not unlike that indicated in Eq.
(14) and the possibility for generalization is present.
%e reiterate that this is a gross oversimplification of
what happens in the actual examples that have been
dealt with in practice, but it illustrates a mechanism
which makes some dichotomies "natural" and others
"unnatural. "

The effect operating here depends on the maximal
overlap between stimuli of opposite classes being less
than the maximal overlap between members of the
same class. This effect can be sharpened, for example,
by replacing the solid stimulus 6gures by their
boundaries (with some small width). For example the
ratio of the amount of overlap between any circular
ring and a square ring to the overlap between neighbor-
ing circular rings clearly tends to zero with the ring
thickness, instead of the 91'Po of the solid figures in
the above example. The process of "contour extraction"
can be realized by simple neuronal circuitry. For
example if the output of each sensory unit is nullified
by the stimulation of its four nearest neighbors then
the 6gure will be replaced by its boundary. Another
arrangement is to take account of a relatively long
absolute refractory period and small rapid random
motions of the retina, such as the human eye makes.
After a short instant, the figure will again be replaced
by its contour. Other similar pattern property filters" "
can be used to organize information at the sensory
level, resulting in enhancing the eGect under discussion.

The performance of the perceptron can also be
improved by modifying the two-valued nature of the
output of the associators by taking into account the
magnitude of the input in excess of the threshold. ' '8

We shall not go into this here.
The above discussion is concerned with "perfect"

or 100% performance. The perceptron will emit a
response in any case and, under much more general
circumstances, the performance will be "better than
chance. " Sy putting several "better than chance"
machines in parallel and using, say, a "majority
decision" rule for the 6nal response, considerable
improvements in performance are obtained. Often,
however, better performance results from combining
all the associators of the parallel systems into a larger
single set of associators. "Learning curves, " giving
the probability of a correct response as a function of
training time, have been obtained by analysis as

'7 M. Babcock, A. Inselberg, L. Lofgren, H. von Foerster, P.
teston, and G. Zopf, Tech. Rept. No. 2, University of Illinois,
1960."R. D. Joseph, Cornell Aeronautical Laboratory, Project
PARA Technical Memoranda~ go. 11 (March, 1960).

f Psycho. logica/ Testing.

While it is possible on the basis of the analysis
indicated to estimate the performance of simple
perceptrons, experimentation with Mark I has suggested
various "psychological" experiments on that machine.
We cite some of these results. "Figure 9 compares the
"forced learning" with the "error-correction" procedure.
The same perceptron is "trained" by each method and
"tested" at various times. During the testing, of
course, no reinforcement is applied.

FORCED LEARHING

% CORRECT OF EIGHT lETTERS

OH TEST

100 ~

CORRECTIVE TRAIHIHG

OF EIGHT LETTERS

75 "

50

25 "
CHANCE EXPECTANCY

I I I I I I I

0 10 20 30

TRAINIHG EXPOSURES
TO EACH LETTER

I I I t s

10 20 30

TRAIHIHG EXPOSURES
TO EACH LETTER

FIG. 9. Learning curves for eight letter identification task
(each letter upright, but in a variety of locations).

5' See, F. Rosenblatt, in The Mechanization of Thought Processes
{Her Majesty's Stationery Once, London, England, 1959).

F. Rosenblatt, Cornell Aeronautical Laboratory, Project
PARA Technical Memorandum No. 2 (October, 1958),

indicated above and also by simulation and by Mark I
experiments. ' '8 The results justi6ed the approximations
of the analysis as well as indicating the ability of the
machine.

The simple perceptron discussed here generalizes on
the basis of retinal overlap. The four layer system
which will be described and analyzed in the paper
which follows" generalizes also on the basis of temporal
contiguity.

e. SPontaneols Organisation

The spontaneous organi-zation program consists of
showing the machine stimuli, letting it compute its
own response, and reinforce in accordance with that
response. The only contact between the experimenter
and the machine is the presentation of the stimuli.
Although it is true that for certain special cases and
with certain modi6cations' the simple perceptrons
d.escribed here do make interesting dichotomies, they
do not do so in general. """The four-layer systems
described in the next paper (and more generally the
cross coupled systems') do make interesting spontaneous
classi6cations, as will be shown there. Since it is the
spontaneous classification that corresponds to the
rnachine having an "original concept, "we see that we
shall have to look to the paper which follows for this.
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FrG. 10. Learning curve for 26 letters, each in standard position;
corrective training.
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Figure 10 shows a learning curve for recognition of
all 26 letters of the alphabet in one standard position.
For this experiment the coding of the outputs of five
binary-response units was selected in a quasi-optimal
manner.

To study the effects of random noise in the stimulus
pattern, the target stimuli were taken as the letters E
and X, with a small amount of retinal shift allowed.
Noise in the target display is illustrated in Fig. j 1.
The effect of the noise on performance is illustrated
in Figs. 12(a) and 12(b). An additional disturbance,
in which the trainer makes errors (when deciding what
reinforcement to apply, he misidentifies the stimuli)
at random 30% of the time, is introduced in Figs. 12 (c)
and 12(d). In Fig. 12(c) the perceptron does better
than the trainer and in fact rises to the same level of
performance as in Fig. 12(a).

In Fig. 13 damage to the machine is simulated by
removing association units at random from a perceptron
already trained on E—X discrimination. The decline in
performance is gradual rather than sudden and varies
with the amount removed. Since the memory does not
operate by comparison wi th a stored file of patterns,
but rather is distributed throughout the structure we

get behavior here analogous to I ashleys' law of
"Equipotentiality and Mass Action. "

More advanced perceptual problems, such as figure
ground determination, relations among objects in
complex fields ('the square is inside the circle, ' 'the

Fzc. 12. Effects of noisy display and imperfect trainer
on learning of "E"-"X"discrimination.

tree is behind the dog') and so on, are beyond the
capacity of the simple perceptron considered here, but
it seems possible that the richer models will be able to
perform these functions. '

g. Slit)ls ÃodaBti es.

Ke have described the stimuli as visual patterns on
a retina. Other interpretations of the input patterns
are equally possible.

If, for example, each sensory unit has as its source
of activation, the output of some "property filter, ""
then a "stimulus pattern" on the retina represents a
listing of the presence or absence of the various proper-
ties. Similarly as far as the logic and functioning of the
simple perceptron are concerned the stimulus patterns
could represent, for example, the magnitudes of the
Fourier components of a sound wave or the combina-
tions of taste sensors activated by particular food
preparations. The analysis wouM be similar to that
given above. Indeed a simple perceptron had consider-
able success in selecting medical diagnoses where the
sensory input was the patient's coded clinical signs
and symptoms. "

Sy putting several perceptrons in parallel one may,
with cross connections, obtain condhtioned re/exes,
assori a/i on between stimulus patterns of different
modalities and so on. '

The perceptron might also be used as the perceptual
input to the first stage of a "heuristic logic" machine.

10. Current Research

BOUNDARY

OF RETINA

In all of the problems discussed so far, we have been
concerned with an ins/aetaneols pattern. If on the
other hand our interest is in the properties of a temporal
sequence such as is involved, e.g. , in speech recognition
or the sequence of nerve impulses being fed back to the
brain as a muscle movement is performed, then the

FIG. 11.Example of a noisy target display.
' A. E. Murray, Cornell Aeronautical Laboratory Report

PE-1446-6-1 I,'November, 1960).
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I'ro. 13. EGect of association unit removal on
trained "E"—"X"discrimination.

simple perceptron of Fig. 4 is no longer adequate. We
shall find certain temporal e8ects in the paper which
follows, but for others it is necessary to introduce time

delays into the system. ' A speech recognizing perceptron
which utilizes such delays is currently being built at
Cornell University.

Other activities now in progress' include quantitative
studies of cross-coupled and multi-layer systems (by
means of analysis and digital simulation), studies of
selective attention mechanisms, the effects of geometric
constraints on network organization, new types of
reinforcement rules, and attempts at relating this
research to biological data. Work is also in progress on
development of electrolytic and other low-cost inte-

grating devices and additional electronic components
necessary for the construction of large-scale physical
models.

It is clear that we are still far from the point of
understanding how the brain functions. It is equally
clear, we believe, that a promising road is open for
further investigation.

REVIEWS OF MODERN PHYSICS VOLUME 34, NUMBER 1 JANUARY, 1962

:.erce &tron.
H. D. BLOCK, B. W. KNIGHT, JR., AND I'. ROSENBLATT

Corrsell University, Ithaca, Sex York

1. INTRODUCTION

HE preceding paper' presented motivation and
background for the general subject of perceptrons

and gave some analysis and results for a simple three-
layer perceptron. While it has been shown there that
it is possible to associate any arbitrary set of responses
to an arbitrary set of stimuli in a simple three-layer
perceptron, such a perceptron characteristically requires
a large representative sample of each kind of pattern
(e.g. , letters "A" and "B"),covering all parts of the
retina, before it will recognize an arbitrarily positioned
stimulus which is similar to one which it has seen before.
In other words, a three-layer perceptron has no concept
of "similarity" based on any criterion other than the
intersections of sets of retinal elements. In a previous

paper, ' Rosenblatt has shown that a "cross-coupled
perceptron, " in which A units are connected to one
another by modifiable connections, should tend to
develop an improved similarity criterion for generalizing
responses from one stimulus to another when exposed
to a suitably organized environment. In this paper a
simpler network, consisting of four layers of units but

*Research sponsored by the Ofhce of Naval Research.
' H. D. Block, Revs. Modern Phys. 34, 123 {1962).
~See, F. Rosenblatt, in Self-Organising Systems, edited by

M. Yovits and S. Carneron (Pergamon Press, New York, 1960).

without cross coupling, is analyzed in a more rigorous
fashion, and is shown to possess the same property.

The perceptron of the present paper is "self-
organizing" in the sense that during the training
period the experimenter does not tell the machine the
category of each stimulus. As the analysis below will

show, the only contact between the experimenter and
the machine is the presentation of the stimuli.
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FIG. 1. Organization of four-layer series-coupled perceptron.

2. THE MODEL

The model to be analyzed here is a four-layer
perceptron of the schematic type S—A' —A' Ry as
indicated in Fig. i.




