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INTRODUCTION

M~NE of the most natural questions when one looks
at the mass of uncorrelated data on elementary

particle interactions' is whether a systematic pattern
is emerging from this complexity. The penetration of
controlled laboratory experiments into the multi-Bev
energy region can only make such a question more
acute. Several attempts' have already been made to
unfurl the underlying symmetry of strong interactions,
such as might exist above and beyond those symmetries,
e.g. , isotopic symmetry, ' which have already survived
experimental tests.

In this article, we sharpen some tools which prove
useful in formulating the consequences of proposed
symmetries of a rather special type, namely, those
symmetries which are characteristic of the simple Lie
groups. Since it is as yet too early to establish a definite

Copyright Q 1962 by the American Physical Society.
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symmetry of the strong interactions, both because of
the lack of experimental data and the theoretical
uncertainties about the way in which the symmetries
will manifest themselves, the formalism developed is
left quite flexible in order to accommodate a wide
range of conceivable symmetries.

Much of the material is an exposition of the theory
of Lie groups and, although most of the results have
been known for many years, several new features
appear. Thus the material on the composition and
decomposition of Lie algebras by point set theory, the
explicit construction of the Lie algebras, the tensor
analysis of the groups 82 and G2, and the possible
physics associated with the group 82 is believed to be
novel. A large portion of the remaining material is
possibly unfamiliar to many physicists (as it was to us),
and so is pedagogical in nature. Although the discussions
are directed primarily to applications in elementary
particle physics, many of the techniques have been
used before in group theoretical treatments of atomic
and nuclear spectroscopy. '

An admirable summary of the elementary properties
of semi-simple Lie algebras is contained in the lecture
notes of Racah, ' which treat both the classification of
semi-simple groups, following Cartan, and their linear
representations. A complete and rigorous derivation
of the properties of semi-simple Lie algebras can be
found in the work of Dynkin, 7 while Weyl's original
work' remains the standard reference on the repre-
sentation theory of semi-simple groups. For the tensor
analysis associated with particular groups and with
the Young tableaux, Weyl's Classical Grottpss and
Grostp Theory atsd Qtearttlrl iVechartics" is recom-
mended. We assume that the reader is mildly conversant
with the group theoretical treatment of angular
momentum as given by Wigner, "for example. Finally,
we give various references" to the basic mathematical
literature.

Se=, for example, G. Racah, Phys. Rev. 61, 186 {1942);62,
438 (1942); 63, 367 (1943); 76, 1352 (1949). T. H. R. Skyrme,
"Lectures in Nuclear Structure (I), General Theory and Shell
Model, " Department of Physics, University of Pennsylvania,
Philadelphia, Pennsylvania, 1958.

~ G. Racah, "Group Theory and Spectroscopy, " Institute for
Advanced Study, Lecture notes, Princeton, New Jersey, 1951.' E. Cartan, These I'aris (1894) reprinted in E. Cartan, Oeuvres
Comp/etes (Gauthiers-Villars, Paris, France, 1952). E. Cartan,
Bull. Soc. Math. de France 41, 53 (1913).

7 E. B. Dynkin, Am. Math. Soc. Translations, No. 17 (1950).' H. Weyl, Z. Math. 24, 328, 377 (1925), reprinted in H. Weyl,
Selecta (Birkhauser Verlag, Basel und Stuttgart, Germany, 1956),
p, 262.' H. Weyl, Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946), 2nd ed.

» H. Weyl, Group Theory aud Quantum 3Iechanics (reprint,
Dover Publications, New York)."E.P. Wigner, Group Theory and Its Applications to Atomic
Structure (Academic Press, Inc. , New York, 1960)."S.Lie and F. Engels, Theoric der Transformationsgruppen
(B. G. Teubner, Leipzig, Germany, 1888—1893). V. Killing,
Math. Ann. 31, 252 (1888); 33, 1 (1889); 34, 57 (1889); 36, 161
(1890). L. P. Eisenhart, Groups of Coetirtuous Traesformatioms
(reprint, Dover Publications, New York, 1961).L. S. Pontrjagin,
Topological Groups (Princeton University Press, Princeton,

As far as the physical application of the group
theoretical methods is concerned, we are immediately
faced with the problem of justifying the specific course
which we pursue in attributing symmetries to strong
particle interactions. The hope that symmetries exist,
other than those associated with space-time structure,
is kindled by the observation that some such "internal"
symmetries are already apparent. First of all, charge
independence has so far run the gauntlet of experi-
mental tests" and has become a commonly accepted
symmetry. In addition, a second kind of symmetry,
slightly more mysterious than the former, is aBorded by
the electrodynamic" and weak-dynamic equivalence"
of the muon and electron. Both of these symmetries
call for a closer discussion.

It is well known that particles belonging to the same
isotopic multiplet exhibit a remarkable similarity in
their strong-interaction dynamics. DiGerences in be-
havior and in mass of isotopic spin multiplet members
are quite naturally attributed to the charge-dependent
electromagnetic interaction, which acts as a weak
perturbation on the strong-interaction dynamics.
Indeed, the breakdown"' of isotopic symmetry ". is
evidenced in the high Z nuclear species where the
coherent Coulomb field no longer can be treated as a
perturbation. By analogy, we may conjecture that a
basic symmetry exists among, say, baryon-baryon
interactions, but that the full force of this symmetry
is diluted by a relatively weak symmetry-breaking
interaction. The answer to the question "under what
circumstances will the symmetry-masking interaction
be minimized)" is not yet clear, since the answer
undoubtedly depends on the speci6c nature of the
symmetry-breaking interaction. Of course, the latter
interaction would most likely, produce the baryon
mass differences besides its other eQ'ects.

In the case of the dynamic symmetry of muon and
electron, no interaction is known which can serve to
break the symmetry and account for the mass difference.
Most physicists seem to feel that a specific difference
in muon and electron interactions will ultimately
emerge even if present experimental circumstances
have not revealed it. If the proposed strong interaction
symmetry resembles that of the muon and electron, it
could conceivably be discernible even in the presence

New Jersey, 1958). H. Freudenthal, "Lie Groups, "Lecture notes,
Department of Mathematics, Berkeley, California, 1960). D.
Montgomery, "Topological Groups, " Lecture notes, Haverford
College, Haverford, Pennsylvania, 1956.

'3 See, for example, J. M. Blatt and V. Weisskopf, Theoretical
Nuclear Physics (John Wiley tk Sons, Inc. , New York, 1952).' J. Garwin, L. Lederman, and M. Weinrich, Phys. Rev. 105,
1415 (1957). G. Charpak, F. Farley, R. Garwin, T. Muller,
J. Sens, V. Telegdi, and A. Zichichi, Phys. Rev. Letters 6, 128
{1961).

'~ M. Ruderman and R. J. Finkelstein, Phys. Rev. 76, 1458
(1949); J. A. Wheeler and J. Tiornno, Revs. Modern Phys. 21,
144 (1949); O. Klein, Nature 161, 897 (1948); E. Clementel and
G. Puppi, Nuovo cim ento 5, 505 (1.948); T. D. Lee, M.
Rosenbluth, and C. N. Yang, Phys. Rev. 75, 905 (1949).
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of baryon mass diGerences, just as is the case with
muon and electron interactions.

In summary, we are unable to give any a priori
justification for the existence of strong interaction
symmetries, but share the widespread feeling that
such symmetries are plausible and not entirely
unprecedented.

In Sec. I, the embryonic elements of the application
of symmetry considerations to elementary particle
interactions are presented to motivate physically the
following sections. Section II is devoted to a necessarily
abbreviated form of the theory of Lie groups, in which
an attempt is made to appeal as much as possible to a
physicist s intuition. There then follows (Sec. III) the
properties and the construction of linear representa-
tions of Lie groups, of which it is hoped that elementary
particles provide an instance. The next two sections
(Secs. IV and V) solve the problem of finding certain
properties of the Lie algebra representations, in
particular, the "weights" of the representations and
the decomposition of direct products of representations
(generalized Clebsch-Gordan series). Two approaches
are employed; one predominantly geometric (Sec. IV),
the second predominantly algebraic (Sec. V). Section
V is essentially the tensor analysis associated with
simple groups. All roads lead to Sec. VI which is
concerned with physical applications of the mathema-
tical complex of the previous sections. From this
summit, we briefly view the expanding vistas of
possible strong interaction symmetries.

I. SYMMETRIES OF THE LAGRANGIAN

The basic idea behind Heisenberg's introduction of
the concept of isotopic spin' was the realization that
the neutron and the proton are, after all, quite similar.
The differences in mass and in electromagnetic inter-
actions are small in the context of the strong inter-
actions. The fact that only two baryons were known
led unambiguously to the assignment of a doublet
structure to the "nucleon. " Later, when strange
particles were discovered, these were found, as is
reflected in the name, to have properties so widely
different from the nucleons that the assignment of the
proton and the neutron to a doublet was retained
without question. When one attempts to introduce
symmetries which treat particles of widely diferent
masses as states of the same field, however, it is not
wise to be so categorical about the number of particles
to be included in the scheme. Specific conjectures are
made in the last section; for the present let e be the
number of baryons treated as states of the same 6eld,
i.e., as belonging to the same supermultiplet. A favorite
choice for n is 8, if all the observed baryons are
included. ""It could be less than eight if the baryons

'6 R. E. Behrends and D. C. Peaslee, reference 2.
'r T. D. Lee and C. N. Yang, Phys. Rev. 122, 1954 (1961).
"M, Gell-Mann, Phys. Rev. (to be published),

separate into two or more supermultiplets, " or it
could be larger than 8 if some hypothetical baryons
not yet discovered are included.

Let lt„a=1, 2, , e, denote the e-component

baryon field, where each component is a Dirac four-

spinor, and let /~= g, ty4 Th.e free Lagrangian is

In the introduction we mentioned several diferent
points of view, according to which the mass diGerences

may be argued to be nonessential in the first analysis.
When the e masses are put equal, m~=m2= - ——m,
Zo is invariant under a set of linear transformations,
acting on the set f,= {Pi .iP„}.In fact, let U s be a
square e)&e matrix, and consider the transformation

where p is real and 'h is unitary and unimodular:

'lit'K='ll, %,t = 1, deal= 1. (I.2)

Invariance under the gauge transformation, represented

by the factor e'&, corresponds to the conservation of
baryons. This conservation law is taken for granted,
and it is therefore unnecessary to include the gauge
transformations in our analysis. From now on we deal
with transformation matrices that are unimodular as
well as unitary. The set of all such matrices forms a
group" which is denoted SU„.

In general, the interaction between the fields will

break part of the symmetry of the free Lagrangian.
Invariance under SU„represents the maximum sym-

metry between the m baryons, and any group of
transformations admitted by the fields in interaction
is a subgroup of SU„.In order to explore, in a systematic
manner, the various groups of interest, it is helpful to
review some topics from the theory of Lie groups. The
basic concepts of the theory of Lie groups and of their

"R.E. Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961).
' This group is called the unitary group U .
~' It is the factor group of U„with respect to the gauge group.

Clearly, Zo is invariant if and only if U is unitary, i.e.,

(U').'(U).'= ~.'.

Hence, in matrix notation

f~ UiP, P~PU ', UUt=UiU=1.

The set of all eXis unitary matrices forms a group. "
That is, if U, V are unitary, so are U V and U '.
Hence Zo is invariant under the group of unitary
transformations (I.1).This group contains an invariant

subgroup, which is usually called the baryon gauge
group. Any unitary matrix U may be written
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II. LIE ALGEBRAS OF SIMPLE GROUPS

An important tool in the study of groups is the
concept of an infinitesimal transformation. Since %. is
unitary, it can be written exp (ie"IA) with IA Hermitian,
where the c~ are a set of real continuous parameters. "
For an infinitesimal transformation the exponential
may be approximated by"

ol
'tt=1+ieAI. A,

s b b+ieA(IA) zz

The set of linear combinations, with arbitrary complex
coeKcients, of the Hermitian matrices I.~, associated
with the transformations 'll, , form the lie algebra of the
group. The tt s determine the (LA), s uniquely, and the
converse is almost true. In fact, the L,g determine the
'h up to a discrete set of transformations which commute
with all the %L."We have taken 8, to be unimodular,
and this requires Lg to be traceless:

(I.A) =0.
According to the fundamental theorem proved by

Lie and Engels, "the structure of the group is completely
specified by the commutation relations among the
"D. Speiser and J. Tarski (to be published).
"Unitarity of 'll requires the (c"I,g) be Hermitian; sometimes

we shall use non-Hermitian Lg, in which ca,se it is implied that the
c~ have appropriate reality properties.

'4 For a more complete discussion see reference 12, or reference 5,
Chap. I."I.S. Pontrjagin, reference 12, Chap. IX, Sec. 54. In the
case of 5U'~, for example, we FInd that it has the same I ie algebra
as the three dimensional rotation group R3, although the two
groups differ in that a rotation by 2n. is the identity transformation
in R, while it is —1 in SUq.

representations are reviewed in the next two sections.
Before that, however, we say a few words about the
problem of writing down interactions. It is convenient
to deal with a simple specific example only, without
any implication that the problems and their solution
are peculiar to this case, or to this point of view. By
way of an example, let us treat the case of a Yukawa-
type interaction, invariant under SU8, between the 8
baryons and a number m of bosons. The interaction
Lagrangian is of the form

&'=4"(I'.).Vs V",

where the sum over 0- runs from 1 to m. The p may
or may not transform under SU8, but once the trans-
formation character of the y is 6xed, generally it is
not possible, to find matrices (I',),s such that 2' is
invariant. In order to answer questions of this kind, it
is necessary to know the theory of direct products and
reduction of representations. This is taken up in Sec.
IV by one method, and in Sec. V by another. The
answer, in the special case mentioned, is that there
exist matrices (I' ),s that make 2' invariant in two
cases only. Either all the q' are invariant under SU8,
or there are at least 63 of them"

generators L,g of inhnitesimal transformations,

PAz+B$ CAB ID (II 3)

where the Cg~a are called the structure cortstaets and
satisfy the conditions

CAB = —CBA (Antisymmetry)

CAB CZB +CBrr CBA
(II.4)

+CD CBB =0 (Jacobi identity).

Many different sets of matrices may be found that
satisfy the same commutation relations (II.3), with
the same structure constants. Such matrix sets may be
regarded as different realizations (or representations,
see next section) of the same set of abstract operators.
The latter, whose only properties are the commutation
relations, is designated by a caret, as 8';, E, etc. , in
order to emphasize that we are not dealing with any
particular realization.

A group is sirrzPle if it has no invariant subgroups"
except the unit element. A group is semi simple if i-t has
no Abelian (commutative) invariant subgroups. We
have disposed of an Abelian invariant subgroup which
is the baryon gauge group at the beginning. The
distinction between groups which have Abelian
invariant subgroups, and those which do not, rests
upon the fact that the Abelian subgroups are most
troublesome to handle from the viewpoint of repre-
sentations. " We therefore restrict ourselves to the
study of simple groups. '8 There are certain cases of
simple or semi-simple groups with discrete trans-
formations added, such as that discussed by Lee and
Yang, " which have equal claim for attention, but
these are not discussed in this paper.

It is worthwhile to draw an analogy between the
possible symmetries of elementary particles and the
three dimensional rotation group in ordinary quantum
mechanics. "" In quantum mechanics, one observes
that when the potential is spherically symmetric,
the angular-momentum operators, which are the
generators of infinitesimal rotations, commute with
the Hamiltonian. Since the three angular momentum
operators do not commute among themselves one
can diagonalize only one of them at a time, call it FI&.

This is a linear operator, and so the eigenvalue of FX~

"A subgroup is a subset of the elements of the group that has
the group property. A subgroup S of a group G is an invariant
subgroup if gSg ' is in S for every g in G and s in S. In keeping
with convention, we shall call a group simple iF the only invariant
subgroup is discrete. The reason for this is that the Lie algebra
of such groups are often simple. (An algebra is s mme pif it has no
invariant subalgebra, .)

27 See reference 5, p. 55.' The study of semi-simple groups can be reduced in a trivial
manner to that of simple groups."E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Ca,mbridge University Press, New York, 1935); A. R. Edmonds,
Angular Momentum in Quantum Mechanics (Princeton University
Press, Princeton, New Jersey, 1957); M. E. Rose, Etementary
Theory of Angular ilAmenlzzm (John Wiley 8z Sons, Inc. , New
Pork, 1957),
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for a compound state is the sum of the eigenvalues
associated with the component states (to be contrasted
with the properties of L', say).

The conservation of the additive quantum numbers
charge and strangeness" (or, equivalently, the third
component of the isotopic spin and the hypercharge)
in strong interactions is so well established that any
group of practical interest must contain at least two
commuting linear operators whose eigenvalues are the
isotopic spin and the hypercharge. I.et us denote these
two operators by H~ and H~. Since the group is assumed
to be the group of the Hamiltonian, i.e., every element
of the group commutes with the Hamiltonian, one can
diagonalize H~ and H2 simultaneously with the
Hamiltonian, so that the eigenstates of the Hamiltonian
have definite eigenvalues of H~ and IX2, proportional
to the I3 and hypercharge quantum numbers.

The number of mutually-commuting linear operators"
is called the reek of the group. Hence the rank of the
three-dimensional rotation group is one. If the rank of
the group is larger than two, there exists at least one
more operator, H3 say, which commutes with H& and H&.

But such an operator can mix states which are de-
generate with respect to H~ and H2 only. Among the
eight baryons, only the A and Z have equal charge
and strangeness. Among the seven mesons no such
degeneracy occurs. Thus, if Ha is independent of H&

and H2, one or more of the following four possibilities
can be considered:

(1) Ha is the same for all eight baryons" and has a
diferent value on a set of other baryons or physical
states;

(2) H3 mixes observed baryons with other physical
states;

(3) H3 splits the A, Zo degeneracy, but is of the form
aH&+bH2 for the other six baryons";

(4) The eight baryons are eigenstates of H3 with
eigenvalues which cannot be written in the form
aHg+bH2+c.

Sometimes (3) and (4) leads to the forbidding of
certain observed processes. "Although we can offer no
arguments against the first two possibilities, we note
that for these cases any group of rank three which
accommodates the baryons will have a subgroup of
rank two whose predictions will be less restrictive. If
any of these should be acceptable, the "parent"
groups of higher ranks should be investigated.

30T. Nakano and K. Nishijima, Progr. Theoret. Phys. (Kyoto)
10, 581 (1953);M. Gell-Mann, Phys. Rev. 92, 833 (1953).

3'To be contrasted with commuting operators of the group,
e.g., Casimir operators which are non-linear in the Lg."Or, what is equivalent, of the form II3=aII&+bH&+c.

~'The eigenstates of H3 would then be linear combinations of
A and Z, as in the doublet symmetry of Pais, reference 2. A
model based on the seven-dimensional rotation group comes
under this category, see R. E. Behrends, and D. C. Peaslee,
reference 2. Pais has shown that the doublet symmetry scheme
leads to difhculties, (which are shared by the R& model), A. Pais,
Phys. Rev. 110, 574 (1958).

III'~Hi7=0. i, g =1, 2,
' (II.5)

The rest of the basis may be chosen to be the r—l
elements E of the algebra satisfying

(IJ„E7= r, (n)E,

where r, (n) is the ith component of the root r(n), that
is, the r, (n) form a "vector" in an l-dimensional root
space. If r(n) is a root, then r(n) =r( n—) is a—lso a-
root, and we denote the corresponding operator by
E . Then it can be shown that

E~&E ~7=C~, ~'H,
&

n=&1, &2, . &-,'(r —t), (11.7)

and that

(E,Es7=C, s&E~, (not summed), (II.S)

if r(y) =—r (n)+r (P) is a nonvanishing root and
)E,Ps7=0, otherwise. These statements can be easily
verified for E3. It is possible to normalize the II;,
such that

P. r, (n)r;(n) = 8,,
Then it can be shown that

so that
C.. .'—=r'(n) = r, (n),

LE.,E .7= r'(n)H, .

(II.10)

(II.11)

Collecting these results, we have the standard form

In the case of the angular momentum, the
commutation relations, or the I ie algebra of the
angular momentum operators, are sufhcient to specify
the physical content of the spherical symmetry of the
system as in the classification of states and deduction
of selection rules, etc. 7Ve now present a way of con-
structing the algebra of all simple groups, specializing
later to those of rank two.

Ke call the number of independent elements of the
algebra the order (r) of the group, or the dimension of
the algebra. A particular choice of r linearly independent
operators forms a basis of the I.ie algebra. As an
illustration, let us take the three dimensional rotation
group E3. The order of the group is three and the

usualy choice of the basis is T, '1„, and T,. Instead,
we may choose a basis as follows. Take an operator
H~ ——T, and consider an "eigenvalue" problem:

[T„Z.7=r(n)Z .
J1

The "eigenvectors" are E+~——T+——'r, ~i T„with "eigen-
values, " r(&1)= &1 (T+ and T are the "raising and
lowering" operators). Here T+, T and T, form an
alternative basis of the algebra. Note that, while T,
and T„are Hermitian in the usual representation, T+
and T are not; instead they are related by Hermitian
conjugation. "

For simple groups of rank /, the basis of the algebra
may be so chosen that II~, II~ are l elements of
the basis and
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of the commutation relations:

l a, ,II;)=0,
l II;,E.)= r, (u)E„, (II.12)

lE.,E .)=r'(u)II;,
LE-A) =&-Pv

if r(y) = r(u)+r(p) is a, nonvanishing root; N s C, s&—.—
The explicit form of c7 p is given in Eq. (II.14).

The graphical representation of the root vectors is
called a root diagram. All simple groups can be classified

by root diagrams. '4 Since roots and structure constants
E p can be deduced simply from the vector diagram
for all simple groups, we describe the vector diagrams
for simple groups of rank two in some detail.
The following theorem plays a central role in the
construction of the vector diagram:

Theorem": If r(u) and r(P) are two roots, then

2l r(u). r(P))/Lr(u) r(u)) is an integer and r(P) —2r(u)
X l r(u) r(P))/l r(u) l' is also a root.

Graphically, this means that a new root r(P) —2r(u)
Xl r(u) r(P))/lr(u) l' can be obtained from r(P) by
reaction with respect to a hyperplane perpendicular
to r(u).

Suppose we have two roots, r(u) and r(P), and let p
be the angle between them. Then it follows from the
theorem that

I r(3)
2

2 r(-2)

0
28'

r(2)

r (-3)
I I

pQ Pz

I r(4)
2

: —,N/X
4 r(-2) r(-3) r(-5) r("6)
I

2 r(-4)
p I

4 pg 4fS 4

(c)

5
r(4) r(2)

&-I) r(I)

I

r(-3)
I I I I I

I I I

2~3

(b)

FIG. 1. (a) Root diagram
for 5U8. (b) Root diagram
for Cs. (c) Root diagram
for G2.

$E~,E ), (JEST,E ),E „), , where r(P)&&r(u)
These series must terminate. A series of E),'s are
generated in this manner. Let

r(lt) =r(P) —mr(u),

r(P) —(m —1)r(u), . r(P), . . ., r(P)+ssr(u)

be the corresponding nonvanishing roots. Then

X-~=+Ls(m+1)~lr(u) I')' (11 14)

Here the signatures of X ~ must be chosen so that

cos p= gyps'Q. (II.13b)

where m and e are integers. From this we further obtain Tp= —Ãp= —Ã p,

A~ p
——Ep, p=E p, .

(II.15)

(II.16)
We see that q can have only the values 0', 30', 45',
60', and 90'. From Eq. (II.13a) one deduces that the
ratios of the lengths of the two vectors are v3 for 30',
W2 for 45', 1 for 60', and undetermined for 90'.

It is easy to see that the only possible two dimensional
diagrams corresponding to simple groups of rank two,
compatible with Eqs. (13a) and (13b), are those drawn

in Fig. 1. The first one corresponds to the three-
dimensional special unitary group SUs(As); the second
to the Ave-dimensional orthogonal group Os(&s),
which is also isomorphic to the two-dimensional
symplectic group Sps(Cs); the last to the exceptional

group G2. The notations in parenthesis are those used

by Cartan. The number of parameters of a group
(order) is equal to the sum of the number of root
vectors and the rank of the group: SUs is a 8(=6+2)
parameter group; 05 a 10 parameter group; G2 a 14
parameter group.

Once the vector diagram of a simple group is known,
it is a trivial matter to construct the standard form of
the commutation relations (12). This is due to the
theorem:

Theorem": Form [Ep,E ), f(Ep,E ),E ), and.

'4 B.L. van der Waerden, Math. Z. 37, 446 (1933).
35 See, for example, G. Racah, reference 5, p. 21.
3' See, for example, G. Racah, reference 5, p. 24.

Equations (15) and (16) give 5 other constants:

& s, i=&s, s=& s, t=&'s,-s=&-s,s=V's (1117)

The roots are
r(1)= (1/&3) (1,0);
r (2) = (1/2%3) (1,V3);

r (3)= (1/2@3)(—1, VS).

(II.18)

The g p and the roots listed above give a complete
set of commutation relations when inserted in Eq. (14).

Ke summarize a choice of the /„p for C~, and for G2.

3' The number of signs that can be chosen independently is the
number of different pairs of roots with positive cz's whose sums
are roots.

As an example, let us construct the standard
commutation relations for SU3. Label the root vectors
as in Fig. 1(a), where the lengths of the r(u) are
normalized according to Eq. (10):

Q r, (u)r;(u)=B;;.

Let us consider l Et,Es). Since r(3)+r(1) is a root
while r(3)+2r(1) is not, we have e= 1; since r(3)—r(1)
is not a root, m=0. Ke choose the sign such that"
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G2.

+—2, 3 +3,—4 +—1,2 +—4,—1

=Ã4, s=& s,s=4s.

+26 +4,—6 +—2, 4 +2,—1 +3,1 +—2, 3

~ It 5,—6 +1,6 +—1,5 +3,—4 +—5, 4

=X s, s=1/2v2;
1Vr, s=lVs, s——X t, s ——Qs'.

(II.19)

(II.20)

III. REPRESENTATIONS OF LIE ALGEBRAS

A. General Properties of Representations

In a previous section we discussed the r infinitesimal
operators of a Lie group and their commutation
relations from an abstract point of view, without
using an explicit form of the operators. In order to
make connection with physical situations, it is necessary
to introduce specific realizations of these operators.
If we associate a matrix with each operator H, and E
such that these r matrices satisfy the commutation
relations of the r operators, then the matrices are said
to constitute a rePreserttatiort of the group. 's In what
follows, the symbols H; and E denote a matrix
representation. The dimension of these matrices Ã is
called the dimension (or degree) of the representation.
If the r matrices of a particular representation can be
simultaneously brought into block diagonal form, by
a similarity transformation, the representation is said
to be decomposable (or fully reducible) into lower
dimensional representations. When this is not possible,
the representation is called irredlci hie."

From the commutation relations, we see that the Lt;
commute among themselves, so that it is possible to
diagonalize simultaneously these / matrices. We choose
a representation in which the H; are diagonal, and
write P for an E-component basis vector. The eigen-
functions and eigenvalues of H; are de6ned by

II,Q= m,f.
The f-component vector m= (mtrtts rttt) is called
the weight, 6 and the l-dimensional vector space spanned
by the set of weights is called the weight space.

In order to develop some physical intuition for what
we are doing, consider the isotopic-spin rotation group.
The commutation relations are the usual angular-
momentum set. We know that only one of the three

)The roots can be read off immediately from Figs.
1(b) and (c).j
C2.

cV24= Ã4 2=S 4, 2= E2 4= N1 4= Ã 2, 1

matrices can be diagonalized at a time (it then cor-
responds to Ht, i= 1 for this group), and the eigenvalues
of this matrix are the components of isotopic spin.
The E1 and E 1 in this case are proportional to the
usual isotopic spin raising and lowering operators.
This algebra is the only simple or semi-simple Lie
algebra of rank one. The three groups of rank two
(i= 2) were given in a previous section, i.e., Bs, Gs and
SU3. For these groups we might identify the eigen-
values of H1 and H2 with the third component of
isotopic spin and with the hypercharge, 4' I'=X+5,
two good quantum numbers for the strong interactions
as well as the electromagnetic interactions. The P's
which would represent the various particles or states,
would then be labeled by their eigenvalues of H;, i.e.,
weights m. The f's having different weights are
obviously linearly independent, so that there are at
most Ã different weights. If a weight belongs to only
one eigenvector, it is called simP/e (for groups of rank
greater than one, not all weights are simple).

Let us consider the weights more closely. The follow-
ing powerful theorem is very useful.

Theorettt4': For any weight m and root r(cr), the
quantity 2m r(cr)/r(n) r(cr) is an integer and m'=m
—r(cr)2m r(cr)/r(cr) r(cr) is also a weight, and has the
same multiplicity as m. It can be easily verified that
this prescription for obtaining I' from m corresponds
geometrically, in the weight space, to rejecting I
through a hyperplane perpendicular to the root r(n).
Weights that are related by a reaction or a product
of reQections are said to be eqlivuleet. ReQections
and the product of rejections give the set of all equiv-
alent weights. We denote by S the group generated by
these reQections. 42

A weight I is said to be highe~ than a weight I' ifI—m' has a positive number for its first non-vanishing
component, e.g. , if m1 —m1'=0 and m2 —m2'&0, thenI is higher than I'. A dominant weight is the highest
member of a set of equivalent weights, and the highest
weight is the dominant weight which is higher than
any other dominant weight in a representation. For an
irreducible representation, the highest weight is
simple. ~ This concept of a highest weight is useful
because two irreducible representations which are
related by a similarity transformation (the representa-
tions are called equisalertt) have the same highest
weight, and vice versa.

With regard to dominant weights, tartan' has
proved that for every simple group of rank / there are
i furtdctmerttat dominant weights M "~. ~ .M&t& such that

' A representation is faithful if the correspondence between
Lg and Lg is one-to-one. For simple algebras, all except the
identity representation {L~=0) are faithful.

3 A noncompact group has no 6nite dimensional unitary
representations (see Pontrjagin, reference 12, Chap. III). There-
fore all admissible groups are compact. Representations of
compact groups are either irreducible or fully reducible.

0 Here S is the strangeness quantum number and N is the
baryon number. This is the usual definition of hypercharge,
although some authors define it as —,'(X+5).

41 See, for example, G. Racah, reference 5, p. 35.
4'This group was 6rst introduced by H. Weyl, reference 8,

(Setects), p. 338.
4' See, G. Racah, reference 5, p. 37.
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anv other dominant weight M is a linear combination It is obvious from the above definition of the character
as a trace that it may also be written as

M=+ z,M&'&—=M(x, . X,), (III.i) X(X;,q)=P y exp(im q), (m.s)

R=2 Z r(~) (III.3)

with X; as non-negative integral coefficients, and that
there exist l fmedumersta/ irreducible representations
which have the fundamental weights as their highest
weights. ~

I.et us return to the isotopic spin rotation group. The
weights ns are &IS (weight space is one-dimensional,
in this case, since the group is of rank /=1). The
weight —I3 is obtained from I3 by re6ection through
the "plane" perpendicular to the root r(1) and I3 is
the dominant weight. For each I3 which appears in an
irreducible representation, there will be a —I3, which
is equivalent and has the same multiplicity. The
fundamental dominant weight is —,

' in order that
2m r(n)/r(n) r(n) be an integer for all weights. The
highest weight is I=X~, where X is a non-negative
integer, and is simple in an irreducible representation.
The corresponding statements for the groups of rank
two are postponed until later.

In order to distinguish the diRerent irreducible
representations of a group. Acyl has utilized extensively
a quantity called the characte~. This, is a function of l
real variables p', -, cp' defined by

X(y', , &p') —= trace exp(fH, y')
=Z. exp&(&'~'). 'j,

where, in the last expression, (H,),~ has been assumed
to be in diagonal form. Since the trace of a matrix is
invariant under a similarity transformation, the
characters of two representations are equal if and only
if the two representations are equivalent. In particular,
a representation and its complex conjugate are equiv-
alent, if and only if the trace is real.

Acyl has given an explicit formula for calculating
the character of any representation of any simple
group, namely,

p(x;)
x(h, q')=, P(X ) =Ps 5s expti(SK) yj, (III.2)

g(o)

where the sum is over the reIIIection operations S
defined above and Bs= +1 for an even number of
reQections and —1 for an odd number. If R is defined by

where the sum is over all the weights and y is the
number of times a weight Ioccurs, i.e., the multiplicity
of the weight. For cp=o, the character is just the
dimensionality of the representation, i.e.,

&(~')=Z v =xP', 0) (III.6)

This may easily be shown to be

+I
x(x,q)= g e'""

so that the multiplicity of each weight is one, y
The dimensions of the irreducible representations are
1V= g(X,O) = 2I+1.

So far, in order to distinguish the various eigen-
vectors, or bases, we have the / integers P ~, ,X~)
which are necessary to form the highest weight M.
These numbers distinguish between representations of
different dimensionalities as well as inequivalent
representations of the same dimensionality. However,
within an irreducible representation, in addition to
the weights we still need ~ (r—3l) more numbers,
p= (p, ~,p~, ,p;~„3n) in order to distinguish the
various eigenvectors of the same weight. Given these
numbers, it would then be possible to determine the
explicit form of the matrix element

4'(M, m,p)P„&(M,m', p, ') =f(M, m, m', p,p, ').

For example, in the isotopic spin rotation group
', (r 3l)=0, so t—hat—we need no "additional numbers.
This matrix element is then the well known"

The above can be exempli6ed by referring once
again to the isotopic-spin-rotation group. There is one
positive root, r(1) = 1, therefore, R= ~~; M =I=V~.
Thus,

K=-,'P, +1)=I+-,'.
Since there is only one reQection,

((),)= s~(&+1) q s—~(&+1)e

where the sum is over the positive roots, i.e., those
roots which have a positive first nonvanishing com-
ponent, then K is R plus the highest weight of the
representation, M

K= R+M(Z„.,X,). (III.4)
44 In fact, every M determines uniquely an irreducible

representation with M as the highest weight.

4'(l, l )I+4 (1,1 ') = E'(I I ') 9+I )j'*~;.r, +-—
%e shall show how to circumvent the task of 6nding
the operators whose eigenvaIues are the p, 's for groups
of higher rank.

Thus far we have used the isotopic spin rotation
group as an example. Let us now demonstrate the
method with the rank two groups SUB, G~, and C2.
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B. Characters of ReI)resentations of SU3

In order to satisfy the condition that 2m r(n)/
r(n) r(n) be an integer for an arbitrary weight
m= (nz&, m)2 and any root, r(n), it is necessary that
m, &= (1/2&3)(a+b) and m2=6(u —b), where a and b

are integers. Thus m= sa (K3,1)+—',b (K3, —1).By n.oting
that 6(W3, 1) and 6(v3, —1) each lie in a plane per-
pendicular to a root, we see that each belongs to a set
of 3 equivalent weights and that each is a dominant
weight of its set, in fact, a fundamental dominant
weight. Thus

M (X1X2) Xl(v3 1)+ ~2 (v3, —1)

The quantity R for SUS is

R=-' 2 r( )=(1/v3)(10)

I

3 I
I

g (~P), II- 6 (JS,I).
(&)

I O I

4. g

(o,a), sr= 3(s,-&).

(~)

so that K is

K= M+R=-', (v3lb, i+v3X2+2v3, Xi—X2).

-I
q

-I 4

I

I

Jm
2 l

Thus, $(X&,X2) may be written

((X&,X2) = exp6if(Xi+X2+2)v3q, + (X,—P„)y,7
—exp —i(—(Ra+f2+2)V3pi+ (Xi—X2) p27
—exp-,'iL P 2+1)v3 pi —(2Xi+f2+ 3)y27

+exp6iI —(X2+1)%3'i—(2Ãi+X2+3) p27
—exp-', ~jP i+1)V3 pi+ (Xi+2X2+3) (p~7

+exp —',iP —(X&+1)&3'&+ P &+2X2+3)F27.

It should be apparent that dividing ((X&,X&) by
P(0,0) in order to obtain the character in the form

exp(im. q) is no trivial matter for this group. In
the next section, we develop a technique for handling
this problem. First let us find the dimensions E of the
irreducible representations. In terms of the character,
X=yP i,X2, yi ——q 2——0). Since $(Xi,X2) is zero for
y»= y2=0, we use I 'Hopital's rule4' to find

E=$1+-,' p. i+X2)7(1+Kg) (1+F2).

The numbers A. » X~ are sufhcient to identify a
representation. For this reason we label the repre-
sentations by D' &p, i,X2) for occasionally by just
D(Xi,X2) or D' ~7. Thus D"'(1,0) denotes one of the
3-dimensional representations, while D&" (0,1) denotes
the complex conjugate (x*) inequivalent 3-dimensional
representation.

Ke note that p*=p only for values of A. »=A. 2."
Thus, only in this case are the complex conjugate
representations equivalent. In Fig. 2 we have drawn
the weight diagrams for a few of the lower dimensional
representations of SU3. The solid lines with arrows
represent the weight vectors while the dotted lines
which are perpendicular to the roots represent the

45 Marquis G. F. A. de l'Hopital, AeaLyse des Inpmie~nent
E'eats (Paris, 1730).

4 This follows from the identity X*/.1,) &) =X(~&,X&) satisfied by
the SU3 characters.

(o, ~), v = -QS.,~).
(3)

6
(b)

(8)0 (I I), Nk( —)() g) ~
I

(e)

I 9 I j
~&e,

o (a,o), %=- —Qe, &).
(6)

(~)

FIG. 2. Weight diagrams
for" SU3. Solid lines with
arrows denote weight vec-
tors; dotted lines represent
the reAection planes.

planes of reQection that leave the weight diagram
unchanged (the set of operations 5 defined above).
The 3-dimensional representations D~' (1,0) and
D&'&(0, 1) are the fundamental irreducible representa-
tions, D&@(1,1) is the regular representation. "

47The regular representation is very important and plays a
prominent role in later sections. It is defined by Jg —+ —Cg,
where the components of the matrix Cg are the structure constants
Cz& . That this is a representation can be seen by rewriting the
Jacobi identity (II.4) in the form Cgg~C~J ~—Cgg~CgI g
= —Cz&~Czzg. It can easily be proved that the regular represen-
tation is irreducible if and only if the group is simple.

C. C11aracters of ReI)resentatlons of Cr2

In order that 2m. r(n)/r(n) r(n) be an integer for an
arbitrary weight m= (m&,m2) and any root, r(n), it is
necessary that nzi ——(1/4 3v) (2a+3b) and m2 ——4b, where
a and b are integers. Thus m= (a/2v3) (1,0)+ (b/2%3)
X (3/2, V3/2). By noting that (1/2v3) (1,0) and
(1/2V3) (3/2, &3/2) each lie in a plane perpendicular to
a root, we see that each belongs to a set of 6 equivalent
weights and that each is a dominant weight of its set,
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in fact, a fundamental dominant weight. Thus

M(hi, h2) = (hi/2v3) (1,0)+ (h2/4v3) (3,v3).

The quantity R for G2 is

so that
R= (1/443) (S,v3),

K = (1/4v3) (2hi+3h2+5, v3h2+v3).

Then, $(hi, h2) may be written

g( „h,)
= {exp/i(2hi+3h2+5) pi/4~3]

—exp[ —i(2hi+3h2+5) pi/4v37}
X{exp Li(h&+ 1)y2/47 —expt —i (h2+ 1)p2/4]}
—{exp)i(h,+3h,+ 4) q i/4v37
—expt —i(hi+3h~+4) q i/4v37}
X{exp)i(hi+h2+2) (p2/47

exp—P i (h—&+h&+2) p2/4]}
+{exp Li(hi+ 1)q i/4v37 —exp L

—i (hi+ 1)q i/4v37}
X{exp)i(hi+2h2+3) q 2/4]

—exp( —i(hi+2h2+3) p2/47}.

solid lines with arrows denote the weight vectors
while the dotted lines, which are perpendicular to the
roots, represent the planes of reIIIection that leave the
weight diagram unchanged (the set of reflections S
defined above). These two representations are the
fundamental irreducible representations of G2, and
Dn" (0,1) is the regular representation. "

D. Characters of Representations of C,

In order that 2m r(n)/r(n) r(u) be an integer for
an arbitrary weight m= (m, ,m&) and any root r(n), it
is necessary that mi ——(2v3) '(a+b) and m2 b/2——v3,
where u and b are integers. Thus, m=(a/2v3)(1, 0)
+ (b/2v3) (1,1). By noting that (1/2v3) (1,0) and
(1/2V3) (1,1) each lie in a plane perpendicular to a root,
we see that each belongs to a set of 4 equivalent
weights and that each is a dominant weight of its set,
in fact, a fundamental dominant weight. Thus

M (hi, h2) = (hi/2v3) (1,0)+ (h2/243) (1,1).
The quantity R for C2 is

R= (1/2v3) (2,1),
so thatThe dimensions X of the irreducible representations

are X=y(hi, h2, q i= y2=0). The result is K= R+M= (1/2v3) (h,+h,+2, h,+1).
X= (1+hi) (1+h2)51+-', (hi+h2)]L1+-, (hi+ 2h2)]

XL1+g (hi+3h2)]L1+-,' (2hi+3h2)].

'tA'e note that y*=y, so that representations related
by complex conjunction are always equivalent.

In Fig. 3 we have drawn the weight diagram for the
7- and 14-dimensional representations of G2. The

4rn2

Then, $(hi, h2) may be written

$(hi, hg)
= {exp'(hi+h2+2) ~i/2v37

—exp) —i(hi+h2+2) p&/243]}
X {exp'(h2+1) v'2/2v37 —exp' —i(h2+1) y2/2v3]}
—{expt i(h2+1) pi/2v37 —exp( —i(h2+1) q i/2v3)}
X {expLi(hi+h2+2) &p2/2v3]

exp( —i(h, +—h +22) y2/2v37}

The dimensions of the irreducible representations,
X=@(hi,h2, pi= y2 ——0), are

E= (1+hi) (1+h2) [1+2 (»+h2)]L1+ 3 (h i+2h.)].

2-

0-

~III,

D (l,O), M=~p (I,O)
(&) ~ I

(a) Frc. 3. Weight dia-
grams for G2. Solid
lines with arrows de-
note weight vectors;
dotted lines represent
the reGection plane.

We note that X*=X, so that representations related
by complex conjugation are always equivalent.

In Fig. 4 we have drawn the weight diagrams for
the 4, 5, and 10 dimensional representations of C2.
The solid lines with arrows denote the weight vectors
while the dotted lines, which are perpendicular to the
roots, represent the planes of reQection that leave the
weight diagram unchanged (the set of reflections 5
defined above). The 4 and 5 dimensional representa-
tions, D&"(1,0) and D"&(0,1), are the fundamental
irreducible representations of 82, while D'"&(2,0) is
the regular representation. "

I

O J.
2 2

D (OI), M=2 (2~2)
(I4)

(b)

2~ml
E. Synthesis of Representations of Lie AIgebras

For physical application, it is imperative to have
explicit matrix representations of the low dimensional
Lie algebras. As has been implied in the preceding
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paragraph, the straightforward generalization of the
favorite method of constructing the matrix representa-
tion of a rank one group is somewhat awkward for
higher rank groups. Of the several alternative methods
which oRer promise, we choose one which has useful
by-products. In particular, the generalized Clebsch-
Gordan coefficients will materialize as part of the
fallout of results.

As a warming-up exercise, we recall certain facts
about the group SU2. I.et the basis for an irreducible
representation D(J), uniquely characterized by the
total angular momentum J(J+1), be labeled as P)(r~
where J is an integer or a half-integer and M runs from
J to —J in integral steps. In particular, select the
spin —', representation D(—',) whose highest weight is
the fundamental dominant weight of 5U~. Then the
representation is given in terms of Pauli matrices":

21e2

I
2 ffmI

(I,O), M 2~~(I,0)~

2-

@5m2

P I (b)

0 (O,I), S!I.(5) ~ I

11= g03 j T+= (1j2v2) (0i+io-,);-
l' = (1/2&2) (0,—io-,)

(I».7)
-2-

-I i 0 I

2
P~I (C)

and the basis is P '*, m=-,', —~i. It is possible to arrive
at a new representation inequivalent to D (-,') by
forming the direct product representation in the space
spanned by the f 'f '*. The action of Hi and T+ on
the product basis is, of course,

T~P„:P '*= (T~P -')P -*'+P l(T~&„'-)
(III.8)T'A-'*= 2- (T~)='4- '*,

A A A

where T~ is T,=II~, T+, or T . The product representa-
tion is, in general, reducible; for example,

P~"= Q (JM I i 2') ,'m')P))(~, -(III.9)
M, J

where (J'M
~

i2nz, —', m') are the Clebsch-Gordan coefficients
which reduce the representation. To accomplish the
reduction, we note that T+ and T commute with T',
and, since the eigenvalue of T' uniquely characterizes
an irreducible representation, they cannot lead out
of an irreducible representation when applied in any
order and any number of times to a single basis vector.
The highest weight M in the product representation

', namely M= —,'+—'„belongs to an irreducible
representation and hence the space spanned by the
vectors generated by application of T+ and T to
PpP, i is irreducible under SU.„. Thus the orthonormal

48 We refer here to the coeff'Icients prescribing the linear
combinations of direct product states relative to which the
representation reduces.

' The operators T+ are usually defined without the factor 1/%2.
Throughout this paper, we shall adopt the sign convention of
Condon and Shortley (reference 29) for isotopic spin. This
implies that all the signs of I+ matrix elements are positive although
the physical particles are sometimes identified as the negative of
the bases de6ning this representation.

vectors

(4 *.'4' .*')= (16-&)-(4-;V +0:9 --.)-—
4—i'=—2(T'-)'(f*,V-*.') =4——'4 ——

(III.10a)

are a basis for an irreducible representation D(1) of
SU2 and the remaining linear independent vector in
the direct product space P 'P„: is

(1!~~)9:0:—C :0::). (I—».=10b)-—

This goo generates D(0) for SU2. The Clebsch-Gordan
coefficients are read off from Eqs. (III.10a) and
(III.10b) while the irreducible Lie algebra follows by
computing the Tz matrix elements by using Eq. (111.8).

To find an arbitrary irreducible representation D(J),
it is only necessary to split oR the highest irreducible
representation of the direct product space

p (i) p (2) ' ' ' p (2 J) = 4k ')' . (III.11)

The orthonormal basis which results is":
4~'= &(J,M) (2'-)' "(A')",

J ~ ~ ~ J
(III.12)

-(J+M)!2~ ~ '
cV(J,M) =

(J—M)!(2J)!
"To derive $(J,M), use the identity

T+T = ', (T+T +T f„+T,)= ', (-T-' T,' f,)-——
to obtain a recursion relation.

0 (2,0), N& ~~ (2,0)

FIG. 4. Weight diagrams for C2. Solid lines denote weight vectors;
dotted lines represent the reflection planes.
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and the operators T„T+, T enjoy the properties:

T P"=$N(J, M)/N(J, 3II—1)7P~-,'
-$Q&(I+M)(J—M+1)7' ' (III.13)

T+f~' $-', =(I—M)(J+M+1)7&/~+i'
TAM'=W'~'

which then gives the constitution of the D(J) wpre-
sentation. We now develop the generalization of the
foregoing conclusions to simple groups of higher rank.

To construct the irreducible representations of Lie
algebras of rank two and higher, we show that all that
is required is:

(a) The / fundamental irreducible representations
whose highest weights are characterized by one of the
l fundamental dominant weights.

(b) a reduction procedure for direct product
representations.

Before deriving the theorems needed to synthesize
representations, a few words on the characterization
of the representation space are in order. In order to
specify the representation of the algebra, it is sufhcient
to give the representations of the basis elements H,
and Z . We define the representation by prescribing
the action of H; and B on an orthonormal complete
set of ket vectors ~{Xi X'},v) spanning the 1V

dimensional representation space (v=1, ,N). When
no ambiguities arise, the ket ~{Xi Xi},v) will often
be abbreviated as

~ {N},v) and even
~
v). Since the H,

intercommute, they can be simultaneously diagonalized,
and, since they are taken to be Hermitian, their
eigenvalues are real. %e choose a representation in
which the H; are diagonal. Thus the label v in

~
{N},v)

stands for a fixed eigenvalue of each of the H; (the
weight m) in addition to other discriminating labels

(g) which are needed in the case of multiple weights.
Furthermore, the matrices E satisfy the relation:
(E )t=E

If ~{N},v) is the basis for one representation of a
Lie algebra and

~

{1V'},v') a basis for a second repre-
sentation, the direct product space spanned by the
basis

~ {N},v; {N'},v') is again a representation of the
Lie algebra whose elements I~ act upon the kets

~ {N},v; {1V'},v') in the following manner:

L~~ {N},v, {N'},v')
=Ig&"&1&" ({N},v; {1V'},v')
+1'"'g)L"'"'~{N}v {1P}v'). (III.14)

Here I.z(~~, 1&~~ and I&&"'~, 1&~'& act only on the X and
dimensional representations, respectively. The

direct product representation defined by Eq. (III.14)
is, in general, reducible in a way which is shown below.

Given the abstract Lie algebra as presented in
Sec. II, we now seek to construct in a systematic way

matrix sets representing the algebra. The method

is essentially predicated upon four theorems:

Thm«m I If H;~m, g)=m, ~m, g), then H,E ~m, g)
=Pm, —r, (n)7E ~m, g).

Proof: $H, ,E 7= —r, (n)E, by Eq. (II.6).

Therefore

H'E. ~m, g)=E-,H, ~m, g)—r;(n)E tmg)
= Pm,—r, (n)7E .fm, g).

We seek the value of a such that the ket aE ~m, g) is
of unit length. Note, incidentally, that aE ~m, g) is
orthogonal to ~m, g) since the H, eigenvalues of these
two states diGer.

Theorem II. If E ~m, g)=0, then the normalization
constant a is a=fr(n) m7&.

Proof: PE„,E 7=r(n) H by Eq. (11.7).

Therefore

(m, g(PE.,E .7(m, g)
=(m, g/E. E .Jm, g)= fu/

—'
=(m, g~r(n) H~m, g)=r(n) m Q.E.D.

In a direct product representation, the greatest
dominant weight M is the sum of the greatest dominant
weights M'" and M'" of the constituent N and N'
dimensional representations.

Theorem III. The space spanned by the basis vectors
generated by application of H; and B, in any order
and any number of times, to ~M) is irreducible under
the Lie algebra.

Proof: ~M) is a basis vector of an irreducible
representation. Hence, the space spanned by application
of H; and E to ~M) provides an irreducible repre-
sentation for the algebra by the very definition of
irreducibility.

The number of orthonormal vectors which span the
reduced direct product space generated in the above
manner is the dimension of the resulting representation.

To construct the irreducible representations con-
tained in a direct product representation, we proceed
as follows:

(a) Select the ket in the direct product space with
the highest weight ~M).

(b) Apply the operators E, E Ee, , to ~M).
Orthonormalize by the Schmidt process all
resulting kets. The orthonormalization is carried
out by using the orthonormal properties of the
constituent representations, i.e.,

({N} {N'} 'I{N} " {N'}, '")
=8p„"8„„". (III.15)

Kets having different weights will automatically
come out orthogonal to each other. The
dimensions of the irreducible representations of
the algebra have been evaluated in a previous
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section from the character of the associated
group so that this information can be used to
predict the number of linearly independent
vectors.

(c) Next, in the subspace orthogonal to that
generated from

~
M), select the ket ~M') with

the highest weight. Generate from
~

M') another
space irreducible under the Lie algebra in the
same way as an irreducible space was generated
from ~M).

(d) The action of the elements of the Lie algebra on
the orthonormal vector basis thus generated is
readily ascertained by noting the action of II;
and B on the spaces from which the direct
product was constructed )E&l. (III.14)j.

Given the l explicit representations characterized by
each of the I fundamental dominant weights, every
irreducible representation of the algebra can be gener-
ated by reducing a suitably chosen direct product.
Let Ol&'& be the matrix algebra D(0,0, ,1, 0),
where the 1 is in the sth position, whose highest weight
is the fundamental dominant weight:

M&'&= (Mi&', M2&'&, M&&'&).

The highest weight of an arbitrary irreducible
representation is M=+, &&,M&'.

Theorem IU. The irreducible representation of the
Lie algebra characterized by the highest weight
M=+. X,M&'& is the first irreducible representation
obtained by reduction of the product algebra

FrG. 5. Action of E on
D&'&(1,0l of SUN.

E( 2

|0 0
H2 ——P.m2(a)(a)(a~=- 0 1 0 .

60 0 —2.

(III.17)

According to theorem I (Sec. III E), when E operates
on a state with weight m, it creates a state with weight
m —r(n). This is symbolized in Fig. 5. Clearly, if
m —r(n) is not a weight, then E ~m)=0. Therefore,
in this simple case, all the constants of proportionality
are given by theorem II (Sec. III E) to be &Lr(o.') m)~.
Hence

Z i
~ {3},1)= Lr(1) m(1) $&

~
{3},2)

=6-&~{3},2),

+—2
~ {3},1)=&r(2) m(1) j'~ {3},3)

the highest weight is the fundamental dominant weight

M &'& = -'(K3, 1) (III.16)

We may write
~ {3},a), a= 1, 2, 3 or simply

~ a) for the
three states, and use the labeling of Fig. 5. Then the
II; are the diagonal matrices whose eigenvalues are the
respective components m; of the weights. That is"

0 0
H, =P.mi(a) ~a)(a~ = 0 —1 0,

2%3 0 0 0

o) X XO('
Y

X~ times
xo;(')x".xo,(')x" x~«)x "xe~').

Y Y

X2 times X~ times

E,
~ {3},2&=Lr(3) m(2)j'*~ {3},3)

=6-:~{3},3).
The phases of E & and E 2 are arbitrary, but once they
have been selected, the phase of E 3 is determined by
the convention (II.17), since

Proof: The highest weight in the product algebra is
M =P, X,M &'. By generating a space irreducible under
the Lie algebra from the ket

~
M), by a generalization

of the procedure illustrated above for the direct
product of two spaces, an irreducible representation
results.

Ke now go on to use the above method to construct
some irreducible representations of SU3, C2, and G~.
In particular, all the fundamental representations
which go into making the direct product representations
will be generated.

F. Matrix Representations of SU&

0
Z,=6-~ t.0

0
Z, =6-~ 0

.1

0 0
0 0 =6-:~2)(1(,
0 0.
0 0
0 0 =6-~~3)(1~,
0 0.

0
E3——6-~ 0

.0
0 0'
0 0 =6—&i3)(2i, E =E

0.

[E &,E2j=ll& i,2Z3 ——6 'E3.

In the form of matrices, (111.18) becomes

(III.19)

(III.20)

The fundamental representations are D"&(1,0) and
D&'&(0,1). Besides constructing these representations
we also reduce the regular representation D&8&(1,1) out
of the product D"&(1,0)D&" (0,1).

D&'& (1,0). The weight diagram was given in Fig. 2 (a);

D&3&(0,1). If tt is a unitary matrix representation of
the group SU3, then 4,*, the complex conjugate
matrices, are also a representation. Let 'll, be of the

"Here m;(a) is the ith component of the weight, gf tQe qth &&pter,
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Fto. 6. Action of E~ on D&8&(1,1) of SU3.

form ~= exp(ic"I x), then tt*= exp( —ie"I~) since
~+=~—'. Hence the "contragredient" representation
of the Lie algebra is I.A'= —I-A where I.A are given in
Eq. (20). In view of the reality of these Lz, we find

The states with weight zero are of the form

Z ~.l(3},~; {3*},~),
a=1

(III.24)

with real coeKcients p, . The transformations of the
states by the Z is given by the action of E on

I {3},a)
and on I(3~},a), and is symbolized in Fig. 6. When
Eqs. (23) are operated on by the A" or by products of
the E, it is easy to see from (21) that the states
(III.24) always occur in such linear combinations that

Hence, only two linearly independent combinations
(III.24) occur in D&'&(1,1), as is in fact obvious from
the fact that. D&'&(1,1) is eight-dimensional. A possible
choice of two orthonormal states is

(III.21)
jV — jV t= jV .

The first of Eq. (21) shows that the weight diagrams
for contragrediently related representations are trans-
formed into each other by reflection through the
origin. Thus we get the weight diagram of Fig. 2(b).
Equation (21) would not hold with a different labeling.
From (17), (20), and (21):

l(8}»&
= «/~2)l:I(3},2 {3*},»—I(3},1;{3'},1)g,

l(8},» (III.25)
=6 'I —l{3},2; {3*},2)- I(3},1;(3*},1)

+2l(3},3; (3*},3& I.

Here the state
I (8},7) has been chosen, in anticipation

of future convenience as the state obtained by applying
E 1 to

I (8},1—). Once
I (8},7) has been chosen,

I (8},8)
is unique. The E are given by their efFect on each of
the product states, for example, using (20) and (22):

&2
I {8}6)=&2I (3}3 (3*},»

=6 'l(3},1 (3*},2&=6 '1(8},1).

1 —1

2vg ( 0 6 21
(III.22)

~.'=-6-"I3)(1I,& '= —6 '*I2)(1l

~ '=-6-:I3)(2I,

I

{3"},2& = —6-:K'
I (3*},1),

I(3'},3)=—6'& 'l(3*}»
I(3"},3)= -6-:~ 'I(3*},» In this way we get

6'*&i=~2I1)(7I+v2
I 7&(4I+ I 2&(3 I+ I 6&(5 I,

6'&2= lv2
I 2&((7 I+~3(8I)

+-:v2(l 7&+v3
I 8&) (5 I+ I3&(4I+ I1)(6I,

6'&3= —2v2 I3&((7I —~3(8I)
+l~2(I7&—v3I8&)(6l+ I4&(5I —I»(1I

This representation is inequivalent to D "& (1,0) because
the set of eigenvalues of H is difFerent from that of H;.
(See also Secs.' III 8 and V.)

D~'&(1,1). The highest weight M of this representa-
tion is Mu&+M&'&, where M "&= i (V3,1) and M&» =—'(K3
—1) are the fundamental dominant weights of D(1,0) and
D(0,1), respectively. Hence D(1,1) is contained in
D(1,0)D(0, 1). The weight diagram is given in Fig.
2(e); we shall label the states as in Fig. 6, writing

I (8},A) for the Ath state.
Each product state I{3},0; (3*},b) has a unique

weight equal to the sum of the weights of
I {3},a) and

I
{3*},b). Conversely, for A = 1, , 6 there is only one

product state with the weight of I(8},A). Hence, with
a choice of phases that turns out to be convenient later:

(III.26)E- =E.t.
The II;, are the diagonal matrices

H; = g m, (A) I
A )(A I, (III.27)

A=1

where m(A) is the weight of the A th state. The phases
here are consequences of the phases in (23).

We found that D"'(1,1) contains only the two linear
combination (25) of the three states (24). The third
linear combination, orthogonal to (25) and normalized,
1s

l(8},1&= l(3} 1 (3*}2)

l(8},2)= l(3} 1 (3*}3)
I (8},3)= I (3},2; {3*}3&,

I (8},4)= —
I (3},2; (3*}1),

I(8},5&= —
I {3},3; (3*},»,

l(8},6&= l(3},3 (3*}». D"'(1,0)SD"'(0 1)=D"'(1,1)0+Du'(0, 0). (III.29)

(III.23)
I {1}1)= (1/v3)Q I (3}ai (3*}g). (III.28)

This is an invariant, E =II;=0. Thus the decom-
position of D(1,0)cmD(0, 1) is
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An easier way of 6nding Dj '(1,1) uses the fact that
this is the regular representation, as we shall show.
The regular representation4' is that in which Lg is
represented by the matrices —(C~)~n whose com-
ponents are the structure constants —C~~ . %hen the
commutation relations are in the standard form (II.12),
the capital latin index A=1, . , 8 is replaced by
i= 1, 2 and n= &1, &2, &3. Thus, referring to (II.12),
the II; are represented by —(C;)z~, whose non-
vanishing matrix elements are —C, = —r;(n); the

are represented by —(C )~~, whose nonvanishing
matrix elements are —C, =+r;(n), —C„'=—r, (n),
and —C p&= —X p. Summarizing

H, = —C,= —P r, (n) ln)(o. l, (III.30)

E.= —C.=++;r;(a) li&&o. l

—~'r'(&) I

—~)(& I

—&n &-s IP) O'I (III 31)

Here, as in (II.12), Iy& is the state whose root is

r(n)+ r(P).
Comparing (30) and (31) with (27) and (26), and

taking r;(n) from (II.18), we find complete agreement
with the following identifications

I

—2)~ I»,
I

—3)~ I3»
I+»--14&, I+»--I5&,' (III.32)

The existence of C means that O'Si(1,1) is equivalent
to its contragredient representation. This is both
displayed and 'proved in (33).

&'=2 ~'(~) l~&&~l (III.35)

z,=6—:I1)(4I,

& = (1/2v3) (11)(31—I »« I)

z,= —6-i
I 2)(3 I,

~ = (1/2v3) (12&&11+I4)&3 I)

=(g )t

(III.36)

G. Matrix Representations of C2

The fundamental representations are Dt'&(1,0) and
D"'(0,1) and the regular representation is Dooi (2,0).

D'4j (1,0):The weight diagram was given in Fig. 4(a),
we label the states as in Fig. 7, I (4),u&, a= 1, 2, 3, 4.
The actions of 8, n= 1, , 4 are summarized in I'"ig.

7; the action of 8 are the same with the arrows
reversed. As in the case of SU3, Theorem II is suflicient
to allow one to write down the explicit forms of E
almost immediately. Thus, the analogs of (17) and

(18) are

The weight diagram for the contragredient repre-
sentation is obtained by reAection through the origin.
In this case we get the same diagram with a diGerent
labeling. Hence, the operator rejecting through the
origin is

C= —f1)(4I+ I4&&1l ~ l2&&3 I
~ I3&&2I.

The phases must be chosen to agree with (21), that is

(III.37)CLgC '=Lg'= —Lz.

(iii 33) The solution is

C= —I1&«I+ I4&&1I+I2)(3I—I3&(2I

(III.38)= —C= —C-'= —Ct

The existence of C means that Dt'j(1,0) is equivalent
to its contr agredient representation. This is both
displayed and proved in (35).

D"'(0,1). The weight diagram is that of Fig. 4(b);
we use the labeling of Fig. 8. The action of E is also
symbolized in Fig. 8. The matrices are obtained

C—1

EgEg E3

2 /jjl2

4 I 4g )( 4
r~

3
Fzo. 7. Action of E on Di'&{1,0) of C~.

Et

I 2

E~

I I
t

t

t

2
r I.3"This operator is the same as will be introduced later as a

"metric tensor. " It could also have been defined by the property
that

z c~al{8},g; {8),ff)=I{i))
1

1~ ~l
4 5 4

lf&~ l~): 11)~—I7),
I2&--I»

The complex conjugate of D&8j (1,1) is related to it by
reRection through the origin of the weight diagram.
This gives the same diagram with a diGerent labeling.
The operator reQecting through the origin is"

C= —l»(4I ~ l»&5I ~ I3)(6I~ l4&&1I

~ I5)(2I ~ I 6)(3I~ I7&(7 I
~ I8)(8I.

The signs are determined by

CL~C '=Lg' ———Lg,

where L~ are the matrices (26), (27). The solution is

C= —
I »&4I —I4)(1I+ I 3)(6I+ I6)(3 I

—I5)(2I —
I »(5 I+ I 7)(7 I+ I 8&&8I

is an invariant. pro. 8, Action of E& on pj'j (0,$) of Cg,
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exactly as before, namely:

H;=P m, (k)!k)(k!,

E =6 '(I »(21+14&(31)
E =6 '(Ii)(31 —13)(31),
E.=6-:(Ii)«I+12)(51),
E4= 6 '(12&(31+13)« I),

=(E )t

(III.39)

(III.40)

H. Matrix Representations of t"2

The fundamental representations are D&~&(1,0) and
D""(0,1), the latter being the regular representation.

D&'&(1,0). The weight diagram is that of Fig. 3(a),
and we use the labeling indicated there, thus 1(7),k),
k=1, . , 7. As in the other examples, Theorem II
(Sec. III E) suffices to determine the matrix elements
of E . The result is

a,=P ~,(u) lu&(ul,

Again the contragredient representation is equivalent.
The matrix C in this case is

C=
I 3&(11+I

1&(51 —12)«I —14)(21+13)(31
(III.41)

D&"& (Z,O). The weight diagram was given in Fig. 4(c).
The highest weight is exactly twice the highest weight
of D&"(1,0), and D&"&(2,0) is contained in D"'(1,0)
D&4&(1, 0). We begin by calling 1(10},1) the state
1(4),1; {4),1). Since the E operate in the same way
on the two factors, it is evident that E 1{10},1),
E E&il (10},1), etc., are all symmetric in the two
factors. Hence we have, with a convenient set of
phases,

{10},1)= I (4),1; {4},1) = —
I

—1)
1(10},2)= 2%21{4),1; (4),2)

+5~21(4)» (4),1)=+
I

—2&,

I {10),3)= 1{4},2; (4),2) = —
I

—3),
1{10),4)= -,'v21(4), 2; {4),4)

+-:i21(4),4 (4),»=+
I

—4),

I {10},S)= I (4),4; (4),4& =+ I+ 1&,

I {10),6)=-',~21{4},4; {4),3)
+~%2!(4},3; {4},4)=+ I +2),

l(10},7)= l{4},3; {4},3) =+ I + 3),
1{10},8)= -',421(4),1; (4),3)

+-:~21(4) 3 {4}»=—I+4)
I {»)9)=2~21(4),1 (4),4&

+-:~21(4},4 {4)1)=+
I »,

1(10},10)=-,'%2!{4),2; {4},3)
+-;v2! (4),3; (4},2)= —12).

The labeling on the right-hand side is the one that
allows us to use Eqs. (30) and (31) directly. The
simplest derivation is by means of Lcf. (V.S)j

6' 2 C.~(E+.)Ml «&=
I ~~);

a, b,d

6i P c„(H;) Iad)=!i).
a, b, d

Ei= (1/2&3(kv211) (21+kv213)(41+13&«1+16&(&I),

E = (1/2i&2) (15&«l+ I
»('11),

E4= (1/2~3) (2v213&(31 —16&(41+ I
1&(61

—2v212&(& I)

E4= (1/2i2) (I 1&(31+12&(41),

E = (1/2&3) (16&(31——:v21&&(41—Y~ I 1)(31+I »« I)

E = (1/2~2)( —l»(S I+ I &&(3!); E-.= (E-)' (»I 43&

The t" operator which changes D(7~ into its complex
conjugate and rejects the weight-diagram through the
origin is defined by

CLgC '= Lg. —
The solution is

c=13&(&I+ I &&(31 —
I »« I

—14&(11

+12)(31+13&(21—16&(61. (»I 44)

D&'4&(0,1). Since this is the regular representation,
the matrices H, and E are given by (30) and (31).
The weight diagram is that of Fig. 3(b).

IV. COMPOSITION AND DECOMPOSITION OF
LIE ALGEBRA REPRESENTATIONS

The basis of the vector space aGording a representa-
tion of a simple group may be characterized by the
simultaneous eigenvalues of the maximum number of
mutually commuting I.ie algebra operators, designated
by the symbols H&, H2, ~ ~, H~ where / is the rank of
the group. However, the characterization of the re-
presentation space basis is not complete if only the II;
eigenvalues are assigned to the basis vectors because
the same set of eigenvalues of the II;, the weight
(mi . mi) —=m, can occur more than once in a specific
representation, i.e., weights other than the dominant
weight PIi. .M'i}—=M are, in general, not simple.
The goals of this section are (a) to find the set of
weights and their multiplicities in every representation,
and (b) to reduce the direct product of irreducible
representations into a direct sum of irreducible re-
presentations. The course which we pursue is a purely
geometric one, and represents an extension of the
classical method.
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B. Algebra of Sets of Points

To illustrate the algebraic manipulations to which
sets of points can be subjected, consider first sets of
collinear points. A set of points on a line with a center

and with signed multiplicities attached to each
point will be associated with a function which is a
sum of powers of a single variable x, as follows:

(a) Each point is associated with a term in the
function; the latter has as many terms as there
are points,

(b) The coordinate of each point relative to the set
center * represents the power of x in the relevant
term,

(c) The numerical coefficient of the term is the
attached signed multiplicity.

Thus the set of points in Fig. 10(a) represents the
algebraic expression 0.3x 4—x '+2x'.

In what follows, only integral multiplicities come
into consideration and if a single point without indicated
multiplicity but with an attached sign occurs, the
associated term in the algebraic expression is assigned
a coefficient ~1 depending on the indicated sign. A
final liberty with the above conventions is to assume
that, in the absence of an indicated center of a point
set, this coincides with the geometric center of the
point set.

Fra. 9. (a) Repre-
sentation set for 62,
(b) representation set
for SU3.
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~These arrays are nothing but the weight diagrams of Sec.
III, with the multiplicities added.

A. Geometric Characterization of
a Representation

Let us restrict the considerations to the groups of
rank two. The seven-dimensional representation of G2
can be characterized by plotting the array of points
(4rsi, 4tss) whose coordinates are the weights of the
representation. "Figure 9(a) shows the resulting array
of points. In this specific example, the multiplicity of
each of the weights is one and so each weight is
associated with one and only one point. When the
multiplicity of a weight is greater than one, this will
be indicated. Such is the case in the eight-dimensional
representation of SU3, for which the associated point
set is given in Fig. 9(b).

Before proceeding with the task of composing and
reducing representations, we introduce the formal
operations on sets of points which are utilized in the
subsequent sections.

(o) ~

09 -I 2

(b) X -e- ~--——o-

+I -I +I +2 yl -I +2 -2

(c) 0—o—————g- —--—m- -e--I- t---I +I -I +I +I +I +I

4 + ~ 0—
+I +I- I -I

+I

+I

+I -I
~-+

+I

+I +I-I
+I -I

+I I
~ % ~

+ I + I + I+ I+ I

I'ro. 10. Algebraic processes on linear point sets.

Addition of two sets of points (P and l') with a
common center is defined to be the union of the two
sets; 1+t'=lUt', the multiplicities adding algebraic-
ally. Subtracli on of two sets of points |and l' is defined
to be the addition of l to the set —l' obtained from t
by changing the signs of all multiplicities.

To 4tsllNPly one set of points t by another set l', the
center of the set l' is placed on each of the points of
the set f' and each term of |' is multiplied by the
multiplicity of the point of l upon which its center
sits. The new set of points obtained in such a manner
is defined to be the product set f Xf'. For example,
Fig. 10(b) is the geometric equivalent of (x '—x)
X(x '+2x')= (x '—1+»'—»')

Division is defined to be the inverse of multiplication.
The most trivial case of division is the case in which
the two sets of points f and l' are identical. The
result of the division l —:l is simply a single point at
the common center of l and l'. In general, one set of
points l exactly divides a congruent set f if the multi-
plicities of every point of l is a fixed multiple Z of its
image point in l'. The result of this division operation
is a point of multiplicity Z which sits where the center
of l' falls when superimposed on l. If the set t' is not
congruent to the set f, it is possible to create a subset
of l, denoted by l" and exactly divisible by l', by
adding and subtracting points, of the same multi-
plicity at appropriate positions in the set i After.
dividing such a subset t"" away, we are left with the
problem of dividing the residual set l —l'" by l'. By
continuing this process, we may ultimately arrive at a
residual set itself exactly divisible by l without
modification. As an example, consider the problem
illustrated in Fig. 10(c) whose algebraic analog is
(x' —x ')/(x —x '). By adding and subtracting a point
of multiplicity +1 at each of the positions —1 and +1
LFig. 10(d)), the exact division can be effected. If
two sets of points are not exactly divisible, division
can still be carried out by adding and subtracting
points to the dividend set ad iefir4it44rN Figure 10(e).
illustrates the geometric method of carrying out the
expansion 1/1 —x=1+x+x'+ . . In what follows, we
use only exactly divisible point sets.

All of the above manipulations are quite trivial for
linear sets of points. However, it is possible to generalize
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(a)

(b)

+I +I

+I +I + I -.!+I

~ ~ ~
+I -I+I

+I +I

4

X

+I +I

+I

~ + ~

2 2

+I +2 +I

(~y"-y+~'y')X(&y'-y+x'y') ~ ("2&+y -2x +g y +2y +py2)

+I

(-y+»'+~y') +(~y+. 'y-y') = (~y-y+xy'+x'y-y +x y )

(called the representation set from now on) and
derive the admissible sets of points constituting a
representation. The fundamental observation is the
following: The character of the representation is the
algebraic expression associated with the representation
set." For a group of rank l the algebraic variables
associated with the representation set may be selected
as x;=e'~'. Recall now that every representation of a
rank two group is characterized by two integers X&

and X~ where X~, X2 run over all non-negative integers.
The genial expressions for the characters of all the
groups which interest us have been given by Weyl. '
Letting X(Xt,its) denote the set of points constituting the
representation, the general expression for X{X,,Xs) is

X(Xt,hs) = $P,t,),s)/$(0, 0), (IV.1)
-I

4

~ + ~ ~

-2 -2
+I +I

+I +2 +I
+I +I

where the algebraic expressions $(Xt,hs) were given in
Secs. III A and III 8. The set of points $(Xt,4) is
called the girdle of points uniquely characterizing a

( 2~+y -2a'+ay2+2y +By~)+(~y~-yp~~y ) ~(~y'-y+~'y )

Fro. 11.Algebraic processes on two dimensional sets of points.
{a)Addition; {bl multiplication; {cldivision.

to an algebra of sets of points in an m-dimensional
space, each point being characterized by a coordinate
m= (mtms m~) and an assigned multiplicity and the
total set being provided with a center. Every such
point is again associated with a term in an algebraic
expression in e variables. For example, the point at
m= (m&m& m&) with multiplicity Ia is the geometric
representation of p~x~ 'x2 ' . .x& '. All algebraic pro-
cesses on algebraic expressions in e variables of the
form P p xt"' x& ' can now be given a geometric
analog.

Since our concern is with functions in two variables,
we illustrate in Fig. 11 some algebraic processes carried
out on sets of points in two dimensions. It is to be
remarked that the operations on the sets of points are
completely isornorphic to the corresponding algebraic
processes and as such are, for example, associative and
commutative.

C. Construction of Weights and Multiplicities
of Irreducible Representations

Our goal in this section is to assign to every ir-
reducible representation of a group a set of points

TAsz, z I. Coordinates of points in the set ((A.I) q) for SU3.

r-~
/

)+
/

+
((0,0)

/ /
)+ /

/-( )+
/ /

+ +

((l,0) & & (t0, l)
/

/
/-( )+

/

/

+ +
/-( / // /

/ )~ /

/
/ / /

/ )+
/ X /

+ / +

gt2, 0) (t0,2)
$(2,I)

FIG. 12. Some girdles of SU3.

representation. We thus see that to generate the
representation set, the girdle $(Xt,Xs) must be divided
by the girdle $(0,0). Since the X(Xt,ks) form a finite
set of points, j(Xt,ks) must be exactly divisible by $(0,0).

To illustrate the detailed mechanics of generating
representation sets, we turn to the groups SU3, C~,
and Gg.

SU3. The coordinates of the six points making up
$(lit, Xs) are given in Table I. They are the values of
the components of (SK) of Eq. (III.4). For SUs the
girdle $(Xt,Xs) forms the vertices of a hexagon which
has the following properties:

{6/&Bla

(Z, +Z,+2)
(xI+1)—(&I+1)—(Z,+X,+2)—(Z,+1)
(&2+1)

6y

(x,-x,)
(X,+2Z,+3)
(XI+2Z2+3)
(~,—x,)—(2XI+/II 2+3)—(2X,+X,+3)

Multiplicity

+1—1
+1—1
+1—1

(a) Every other side is of the same length, either
-',v3 p.r+1) or -'sV3 (),s+1),

(b) The hexagons are always symmetric about the

y axis,
(c) A hexagon is symmetric about the x axis if and

only if X&=X2. In this case, the hexagon is regular
(all sides being equal).
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Fxc. 13. Some char-
acters of SU3 obtained
by the division process.

+
i

+ 4 +

L
+ +

6).o) —: («.o) = X«.o)
+r——a

/ + +
/

/

)+ r—& +(+R )+
/ /

)+ + +

+ +

«~, )) —: 4(o,o) =

+

/-( )+ ~+
/

r' -&

/
/ +

+

Ga,o) —; ((o,o) = Xg,o)

+ + +
'7
/

+'i /+

+

TAsLE II. Coordinates of the point s in the set $(P I,X2) for C..

2V3 y

(F2+1)
(Z,+X,+2)
(&1+&2+2)
(X,+1)

—P,+1)
—(~1+F2+2)
—(Z,+X.+2)
—P,+1)

Multiplicity

+1
—1
+1
—1
+1
—1
+1
—1

If x(Xt,4) is a representation set, then the complex
conjugate representation set Z*()tt,Xs)=x()t&,'At) (for
SUs only) is obtained by inverting the x(Xt,)ts) hexagon
through the origin, and changing the signs of the
multiplicities. An equivalent procedure is to reRect

x(Xt,4) in the x axis and leave the multiplicities
unchanged. Thus, the necessary and sufficient condition
for equivalence of D()tt, ),s) and D*(Xi,)ts) is that the

$(Xt,)ts) hexagon be regular.
Figure 12 illustrates the girdles of some low-

dimensional representations of SUS. Triangular graph

paper is admirably suited for the plot.
The construction of the weights and multiplicities

of a representation is now effected by dividing &P i,)ts)

by $(0,0) and identifying the quotient points as the
representation set. In Fig. 13, we carry out some

representative divisions.

C~. Kith the use of Table II any girdle can be
found; in particular, those illustrated in Fig. 14(a).
The points of $('At, )ts) define the vertices of an octagon
symmetric about the x and y axes. Every representation
is therefore equivalent to its complex conjugate
representation. The sides of the octagon alternate in

length between ts43(As+1) and (s)'(4+1).

I I)-
f(o,o)
+

)+
l I

+
gl, o)

X(o,o)

X(l o)

FIG. 14. Some girdles and
characters of C~. -t' )+

+L.

$(o,))

4
+

L ~
+ +

x (o,l)

f+
I

+4

6),o
(R)

/
+& &+r

++ '+
+

(b)

Figure 14(b) gives the result of dividing the $() t,)ts)
of Fig. 14(a) by $(0,0).'4

Gs. Table III specifies the sets (Ott, )is) as dodeca-
hedrons symmetric about the x and y axis. Thus the
complex conjugate representations are equivalent. As
in Cs and SUs, the sides of the $()tt,Xs) polygon alternate
in length, in this case between -', ()is+1) and s&3(At+1).
Figure 16 contains the representation sets, x(1,0) and

y(0, 1), while Fig. 15 illustrates some girdles.

TABLE III. Coordinates of points in the set &{X&,X&) for Gz.

(2ZI+3X2+5)
(~1+3~2+4)
(X,+1)—(»+1)—{A,+3X,+4)

—{B,,+3x&+3)
—(2ZI+3A, 2+5)—(&1+3~2+4)
—(XI+1)

(X,+1)
P I+3Xg+4)
(2ZI+3A.2+5)

(X,+1)
(X,+X,+2)
(XI+2X2+3)
(&1+2&&+3)
(~,+&2+2)
(F2+1)—(X2+1)—(Z,+Z,+2)—(Z&+2m, +3)—(&1+2),2+3)—(P 1+~x+2)—(X,+1)

Multiplicity

+1—1
+1

+1-1
+1

+1—1
+1—1

'4 The method of dividing point sets by point sets turns out
to be quite powerful. Further details will be found in a paper by
two of the authors (J.D. and C.F.).

D. Reduction of Direct Products of
Relpresenta. tions

In the previous section, we have shown how to
derive all the representation point sets including the
multiplicity assignments. However, for the purpose of
reducing the direct product of representations, only
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t

ta/'

t~

I

FiG. 15. Some girdles
of G2.

/ tr-&

/
+

X(l,O) x((0,~) = f (l, ~)+ $ (0,0)
Fio. 17. Geometric

derivation of girdles in
direct product repre-
sentation of SV~.

If we use the fundamental relation Eq. (I:V.1), Eq.
(IV.2) reduces to

P(Z„X2)XP(Xi', &2')
= 2 ~(Pi,P2)k( i,»), (IV.3)

where we have multiplied both sides of Eq. (IV.2) by
((0,0). Ilecause only the girdles of the irreducible
representations X(pi,p2) occur on the right-hand side
of Eq. (IV.3), we need only carry out the point set
process ($(Xi,X2) X$(X&',X2') —: $(0,0)), and then identify
the girdles and their multiplicities i (p i,p2) in the
resulting set to reduce completely the product repre-
sentations. Use of one of the several alternative forms
of $P.i,X2)X(P &',X2') —: $(0,0), namely

X (l~l)~2) X $(~1 )~2 ) = $ (~l)~2)X P i )~2 )
= g(0,0)y(X&,) 2)xg, i',y2')

will simplify the computations in some cases.
As examples of the reduction process, we carry out

(a) x(1,0)Xy(1,0) and y(1,0)Xx(0,1) in SU2

(b) x(1,0)Xx(1,0) for C2

(c) x(1,0)Xy(1,0) for G2.

Figures 17 and 18 illustrate the reduction processes
for SU3 and C~, respectively. The superimposed girdle

+ +r-g
+g

+

X(l,o)

+ + +
/+ 2

/ r-~t+ +i/+
V
+

X(0.()

FIG. 16. Some characters
of G2.

the girdle $(Xi,X2) associated with the representation
is needed, as we now prove.

The direct product of two representations of a simple
group reduces completely and uniquely into a sum of
irreducible representations some of which may occur
more than once. Letting 2 (pi,p2) designate the number
of times a specific representation y(pi, y2) occurs in the
reduction of a direct product of irreducible representa-
tions, we have the following equality between point
sets

g gl i)X2)SX(Xl pA2 ) Q i (Pl)92)X (Pi)P2) (IV )
PIP2

+ +

/ /
/ y }t/ /

'V
Qs

+

X(l,o)xg(l, o) = f (2,0) +f (o,l)-

diagram of Fig. 15 is the product of $(0,0)Xy(1,0)
Xx(1,0) for G2.

V. TENSOR ANALYSIS OF SIMPLE LIE GROUPS

In this section we present some results by an
alternative, purely algebraic method, which to a certain
extent is complementary to the geometric method.
The specific advantages of the algebraic method is
that it deals directly with the bases of the representation
space (the "wave functions"), and that it gives directly
the explicit form of invariants, product representations
and transformation matrices.

I.et m be the dimensionality of any representation
of some simple I.ie group. The matrix algebra of that
representation consists of Hermitian traceless matrices.
Since the matrix algebra of an m-dimensional repre-
sentation of SU is the set of aQ Herrnitian traceless
matrices, it follows that the group in question is a
subgroup of SU . For example, C~ and G2 are subgroups
of SU4 and SUy, respectively. Therefore the reduction
of a product of several m-dimensional representations
is a refinement of the reduction according to SU . It
is very helpful, then, to begin with a discussion of SU
for arbitrary m.

A. Group SU

«t fa, a= 1, , 222, be a basis for an 2i2-dimensional
representation of SU . The matrices representing a
basis for the I.ie algebra are any set of m' —1 in-
dependent Hermitian traceless matrices. The coetra-
gredie22t representation p is defined by2'

(4'+2 "I-~.')P, y. P(S: 2.~L,„.). (V.1)—
LFor 2i2=3, these representations are those labeled
D"'(1,0) and D&'& (0,1) in Secs. III and IV. The weight
diagrams are those of Fig. 2(a) and Fig. 2(b).$

Next consider the "tensors" p, ,...'/'". These are
quantities transforming in the same way as products of
the representations p, and f'. Thus f,t, has 2222 com-
ponents which transform among themselves like the

55 This will be recognized as agreeing with the definitions of
Eqs. (I.1) and (III.21).
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FIG. 18.Geometric derivation
of girdles in the direct product
representation of C2.

+ + +
x A x

+( &+ +( )+ -( )+V V I

X(l,o) x X(I,Q) x((Q,Q)

+
+ /

y( ~ X )+
I I

+i

X(I,Q) x $(I,O)

the r linearly-independent combinations.

yA LAbatp b L—Aba(g cgd g bede)4
ns

(V.5)

The second equality is a result of the fact that the
matrices Lg b are traceless, and shows that pg depend
on the traceless tensor (3) only. From (2) and (5)
we get

-I' -r'
I I I

+4 +4 )-I 3-

/+

C(&,o) + GO, I)+ QQ, Q)

C~ Ca ~

Thus the trace is invariant, meaning that the m'
dimensional representation |p,b may be reduced into a
one-dimensional representation and the m' —1 dimen-
sional representation whose basis is the traceless tensor

1
P b g bP Pcb dP c

tg
(V3)

Here I' '," is the projection operator

1

m
(V.4)

whose rows are labeled by a, 5 and whose columns are
labeled by c, d.

The proof that (3) is the basis of an irreducible
representation is instructive. First, we show that (3)
is the regular rePreserbtatiorb4r for SU, and that it
contains the regular representation for any subgroup of
SU . Let r be the order of the subgroup, and consider

'~ The only exception is the case a&hen one of the factors is the
identity representation.

"The tensor lt b would be written i{crc),a; {nz},bl in the
notation of Sec. III E. Equation (V.2} is an application of
zq. (ui. ~4).

rB' quantities P Pb, |P,' transforms like P,f', etc. The
tensors form bases for representations called product
represerbtatiorbs; the present de6nition agrees with that
of Sec. III.

Product representations are usually" reducible. The
reduction of second-rank tensors according to SU is
entirely elementary. The tensor |P,b, for example,
transforms according to (1), as follows":

Pa ~ (bac+ie"LA ') (5db —ie LBd )P "
=I{'a +se (LA '5d LAd o ')f —(V.2)

In particular, if we put u=b and sum, we find

pA —+ pA+Ze (LAd LBa LBd LAb )4'c
= PA+&e CAB LndVc
= PA+be CAB PD (V.6)

where
Jab Jab, +4'a, bp

0'ab, = s (0'ab+ fba) &
0'ab= S (0'ab 0'b, a) ~

The symmetric part |p,b, has sm(m+1) components
and corresponds to the Young tableau of »g. 19(a).
The skew part |p, b, has -,'tran(m —1) components and the
Young tableau is that of Fig. 19(b).

Roughly, indices appearing in the same row in a
Young diagram are subject to symmetrization, while

indices appearing in the same column are subject to

~ A readable exposition is given in D. Rutherford; Substitutional
Aealysis (Edinburgh University Press, Edinburgh, Scotland,
1948).

Hence, the qg are the basis of that representation of
the r-parameter subgroup in which the operators L~
are represented by the structure constants Czz, and
that is the regular representation. Equation (5) shows
that this representation is contained in the traceless f, .
In the special case of SU, r =ns' —1, and Lg,~ is the
set of all Hermitian traceless matrices. Hence, in that
case the regular representation q~ is equivalent to the
representation whose basis is the traceless f,b. Since
the former is irreducible" (for any simple group), so
is the latter.

With the proof that (3) is irreducible, the reduction
of P,b has been completed. We can also prove that f
and f are inequivalent. For suppose that they are
equivalent. Then there exists a nonsingular form
invariant matrix dab such that P'=A b|Pb. This could
be used to prove that f b and f b were equivalent,
which is impossible since gab reduces quite differently,
as we shall see immediately. Hence, no matrix exists
for raising and lowering indices.

The reduction problem for tensors of arbitrary rank,
but with all indices either upstairs or downstairs, has
a complete and beautiful solution in terms of Young
tableaux. "We do not present the general theory here,
since it is only of marginal interest, and thus do not
prove that the representations obtained are irreducible.
However, whenever appropriate, we indicate the
connection between the representations and the
tableaux. The complete reduction of the second-rank
tenSOr gab iS giVen by
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—m(m+ I)
I

2

Job,
(a)

—lib(m-1)I

2
fa, b

(b)

FIG. 19. The Young tableaux
related to the reduction of
the second-rank tensor in m
dimensions.

having the -,'m'(m-+1) —m components

I
(~ lt ~ "+~ 8 '),

m+1

and the traceless skew part,

(V.7)

antisymmetrization. The notation is the following:
A comma between the indices separate those of the
first row from those of the second row, a second comma
separates the indices in the second rom from those of
the third, and so on. The completely symmetric tensor
f,...d, is furnished with a, comma to distinguish it from
the general nonsymmetrized tensor f,...z.

Corresponding to the reduction of the third-rank
tensor there are the four Young tableaux of Fig. 20.
The irreducible bases, as well as the dimensionalities,
are indicated; the latter, of course, add up to m'.
Whereas f,b, , and f, b, are uniquely de6ned as the
completely symmetric and the completely skew parts,
respectively, the other two parts have mixed symmetry
and their definition is slightly ambiguous. " This is
due to the fact that they are a pair of equivalent
representations of SU . A possible choice is:

4'b, .= & (4"b. 4".b+4'b-—A-)~—
fee, b b (Pacb 4'bcu+Pccb fbnc) ~

)c /b/c/

~' ill(m+I)(Ill+))
I j ill(Ill l)

t

c c/
0
b

~ lib(m-l)(m«P)
B

gabe, Qo, b,c

FIG. 20. The Young tableaux related to the reduction of the
third-rank tensor in m dimensions.

With this choice the four parts are orthogonal. This
summarizes the complete reduction of p,b,

We have seen how covariant tensors are reduced
according to their symmetry, and how the mixed
tensor P ' reduces by separating the trace. For a
general mixed tensor, judicious use of both operations
gives the complete reduction into irreducibl. e repre-
sentations of SU . The theorem that is needed is that
a mixed tensor is irreducible if and only if; (1) the
symmetry of the lower indices is that of a single
Young tableau, (2) the symmetry of the upper indices is

that of a single Young tableau, and (3) contraction with

respect to one upper and one lower index gives zero.
The tensor fb,' is easily reduced into the following

four parts; the two m-dimensional representations
and fb'=f, b, the traceless symmetric part

A:— (~bV~ "—
& V~ b')

ns —1
(V.8)

which has —,'m'(m —1)—nP components.

B. Gmup 8U3

We have seen how tensors of rank 2 or 3 reduce
under SU . A significant simplification occurs in the
case m= 3, because the Levi-Civita tensors e,~, and 6'",
which equal +1 (—1) if abc is an even (odd) perrnuta-
tion of j.23 and zero otherwise, have only three indices.

The relation between the above reduction of second-
rank tensors and the labeling of representations
introduced earlier is (more information in Table IV):

D@&(1,0) D"&(0,1) D»(0, 1)
(a) (b) (c)

pa, b gab

D"'(1,0) D&'& (2,0) D&'& (0,2)
(d) (e) (f)

(V.9)

A second relation follows from

as we now prove. The erst relation, id.entifying p, as
the basis for D&'& (1,0), is essentially a definition. Then
(9b) follows from the fact that p is contragredient to
p, and D "&(0,1) is contragredient to D&'&(1,0). Next
consider (9c), according to which p, , b is equivalent to
p'. This equivalence is exhibited and proved by the
relation f =b'blab„which ,expresses the three com-
ponents of f in terms of the three linearly-independent
components of pb, , In general, the operation of con-
verting two lower indices on a tensor into one upper
index by means of e ~', is nonsingular if and only if
the tensor is skew in the two lower indices. This
follows from the relation

...~"~=8 "b ~—8 b,". (V.10)

Finally, relation (9e) follows from the fact that f,b, is
(the highest dimensional) part of p, b

In terms of outer products of representations, (9)
shows that"

Dtb&(1,0)SD&'&(1,0)=D (2,0)O+D ' (0,1),

4 A-4' b.&+0 .b.
(V.11)

59 For tensors of higher rank, the ambiguity is much greater.
T. Yamanouchi has prescribed a general procedure which always
leads to orthogonal wave functions in Proc. Phys. Math, Soc.
Japan, 18, 623 (1936); 19, 436 (1937).

)Dt»(1 0)j*=D~»(0 1)

60 The symbol reads "transforms like. "
(V.12)
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TAaLK EV. Representations of 5U3. All mixed tensors are supposed to be traceless, e.g. , $„=0.The missing representation "647) is
D84(3,3) with the basis pa.f ' and the isotopic content 0, ~» ~» 1, 1, 1, —',, ~» ~» —',, 2, 2, 2, cs, ~» 3. The dimension of Dp1,)18) is 8'(X1+1)
X (~2+1)(XI+X212).The regular representation is D (1,1).

Complete Abbr.
designation design

Highest
weight

Flg.
no.

Isotopic
content Basic 8D'(1,0) 8D'(2, 0) 8D'(1,1) D" (3,0)

D'(0,0)
D (i,o)
D3(0,1)
D'(2,0)
D'{0,2)
D'(1,1)
a'0(3,o)
D'0(0,3)

1
3
3Q

6
6*
8

10
10*

(o,o)
-', (v3, 1)
-'(V3, —1)
-', (V3,1)
—'(v3, —1)
—', (v3,0)
—,'(V3, 1)
8 (~3,—1)

0
2(a) O, —,

'
2(b) o,—,

'
2 (c) 0,—,', 1

2{d) 0,—',, 1

22 0,—,',1,—',

0)2)172

Pa
pa

Jab
gab

fa )+A
/abc
gabe

3

8+1
10+8

15++3@
15+6~+3
15'+15
24++6g

6
10+8
15+3

15'+15+6*
27+8+1

24+15*+6+3*
24+21+15*
42++ ]5++3+

8
15+6*+3

15++6+3+
24+ 15*+6+3*
24*+15+6*+3

27+10+10*+8+8+1
35+27' io+8

35*+27+10*+8

10
15'+15
24+6

24+21+15*
42+15+3

35+27+10+8
35+28+27+10
64+27+8+1

D"(2,1) 15 +1)
a"(1,2)
D15(4 0)

D"(0,4)
a'1(s o)

D»(o,s)
D'4(3, 1)

15'
1)

+1)
—,'(v3,

15'* —1)
21 +1)

6(7
21* -1)
24 +1)

072)2)i)»2

0)2)17272

0)2)»2)272

/bc

/abed

/abed e

D (1,3)
D27(2, 2)
a"(6,o)

D g(0,6)
D»(4, 1)

D35(1 4)
D"(7,0)

D36(0 7)
D42(3,2)

D (2,3)
D4'(8,0)

24*
27
28

35

35+

36

36+

42

—,'(v3,
1)

-', (v3,0)
+1)

(v3, —1)
+3)

—', (v3, —3)
+1)

~7(V3,—1)
+1)

—',(v3, —1)
+1)

72) 72)2)2) /abed ef

0)2)2)i)i)
2)2 /bede

fabcde fg

0)-,')-,')1)1)1,
3 3 3 5
2)2)2) ) )2

p d
ab

0,2, 2,1,1,2, 2,2 /bed

0,—,', 2, 1,1,1)-„-,)2 pcdab

D45 (O,8)
D43(5, 1)

D'8(1,5)

-', (v3,
45* —1)
48 +2)

(V3,
48* ——,)

0)2)172)2)2)3)2)4 fabcdefgh

A1111330)2)2)1)1)2) 27 ). a~bcdef
) 72)2)

The reduction of 1t,b was discussed in detail. For ))8=3,

D(» (1,0)8D(') (0,1)=D(') (1,1)0+D(') (0,0),
(V.13)

P 8f' (P ' 83ag:)0+Da'fc'——

The analogs of (11) and (13) for third-rank tensors
are

D(»(1,0)g D(»(1,0)g D(8) (1,0)
—D(1D) (3 P) 0+D(8) (1 1)0+D(8) (1 1)Q+D(1) (P P) (V 14)

)I'a84'b 8 Pc 4'ah cQ+ PabcO+ ga, c,b 0+ Pa, bc&, ,

and

D(»(1,0)g D(»(1,0)g D(»(0, 1)
=D "' (2,1)0+D")(0,2) 0+D"' (1,0)0+ D"'(1,0) (V.15)

fa8$88P P b,'0+/, b'0+Pa: 0+/. b'.

The equivalence of 1( b, , with D(')(1,1) is exhibited by
1t,"=e"~p,b, , (obviously f," is traceless). In (15), by
f,b

' and f, b', we mean the traceless parts (7) and (8).
The equivalence of the latter to D(» (0,2) is displayed
by eb-g b, c 8(3bgzcd —3,+zb~),]=—f'

W, e might .also
argue as follows. Since the traceless part of fb, , is
irreducible, and raising of the lower indices by means
of e"' is a similarity transformation, the result must
be one of the irreducible parts of P . Since the
dimension is —,))8'())z—1)—m=6 the irreducible part
in question must be the six-dimensional symmetric
part P" .

It is clearly possible to convert, in the manner just
illustrated by several examples, any tensor of mixed
symmetry into tensors of lower rank, symmetric in all
upstairs indices and symmetric in all downstairs
indices. For the latter, the reduction is completed by
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separating out the traceless part. Hence, a complete
set of irreducible representations is given by the set of
traceless symmetrized tensors P&...,

'"' ". If Xi is the
number of lower indices, and ) 2 is the number of upper
indices, the irreducible representations may be labeled
D(4,4). Since this is the highest" representation
contained in the product of Xi factors of D(1,0) and X2

factors of D(0,1), the present labeling agrees exactly
with that of Sec. III.

Alternatively, all indices may be lowered, converting
each upper index into two lower ones. Starting with a
symmetrized traceless mixed tensor with ) & lower and
X2 upper indices, this process must give an irreducible
representation, i.e., a tensor with the symmetry of a
particular Young tableau. It is easily verified that the
table in question has two rows, with Xi+X2 boxes in
the first row and A2 boxes in the second row. The
reason why no tableaux with three rows are obtained
is that adding a column with three rows means multi-

plying with the representation P, q„w,h,ich is an
invariant.

The dimension of P,~. .. , , symmetric in Xi indices, is
—,(Xi+1)(Xi+2). Hence f,...,

' ", symmetric in Xi
lower and 4 upper indices, has 4 (X,+1) (Xi+2) (4+1)
X(4+2) components. The tensor obtained by con-
tracting one upper and one lower index has 4) i(Xi+1)4
X(4+1) components. Hence the traceless part has

—',(Xi+1)(4+1)(Xi+4+2) components, and this is
therefore the dimensionality of DP.&,4). The same
result was obtained in Sec. IV by the geometric
method, '4 which is more suited to that kind of
calculation.

The reduction of the product of any two representa-
tions is easily calculated by the above methods. The
results of Table IV have been. obtained by this method
as well as independently by the geometric method. In
Table IV may also be found the "wave functions" for
any representation of SU3 with dimension less than 50.
The projection operators, which effect the symmetriza-
tion and subtracts out the trace, are easily written
down as in (3) and (4), and allows us to obtain the
transformation matrices explicitly. One example may
be sufhcient to illustrate this. The transformation of
the basis (3), obtained from (2) and (4), is given by
the representation

(V.16)

This is the group of 4&(4 matrices that leaves a
nondegenerate skew form h" invariant. " This is

"That is, the one with the highest weight.
"Any skew metric may be transformed into the form

1

evidently a subgroup of SU4, and the reduction of
product representations is merely a refinement of that
carried out for SU, with m=4. The fact that the
form-invariant h ' exists, and may be used as a raising
and lowering operator if we define h b by"

h bh'=8 ',

means that the two representations P, and f' are
equivalent. The equivalence is exhibited and proved
by noting that h 'fb transforms like P . Both f and P'
are (different and equivalent) bases for the representa-
tion denoted D~4'(1,0) in a previous section. Clearly a
tensor of arbitrary mixed rank can be converted into
a tensor with all the indices downstairs. The reduction
problem then consists of two steps: First reduce
according to SU~ (that is, split the tensor into its
various possible symmetry classes, or Young tables),
then separate out the "traces" formed with A, '.
Remembering that k ' is skew, so that taking the
trace on a pair of symmetrized indices gives zero, we
easily find the results of Table V. )The method of the
last section is even easier, and for higher representa-
tions, it is the only practical one. ) As in the case of
SU, , the low dimensionality (4 in this case) allows a
simplification. Thus the completely skew tensor P, z,
is equivalent to P"=e~""P., &,„where e '" is the Levi-
Civita symbol.

I.et Lg b be the infinitesimal generators of the
fundamental representation D&4&(1,0) of C2. The form
invariance of h'b means that

/pb ~ gab &&A (I nhcb+ I b/pc) —/pb

Writing k 'L~, '=Lg", we get

eb L be

Hence the inhnitesimal generators, with the lower
index raised, are symmetric. Hence the number of
linearly independent L~" is 10 which is the order of C~.
In order to obtain a complete set of 16 independent
matrices we introduce 5 linearly-independent skew
matrices 0-, ', i = 1, 2, 3, 4, 5 and choose them so that

o-,~bh, b= 0.

We are now able to understand the reduction of f,q

and the higher tensors in greater detail. We have
already noted that P, , & contains the invariant h"P,&.

The five-dimensional representation, which is the
traceless part of the skew part, can now conveniently
be written

q, =o,'Q b, —i=. 1, , 5. (V.17)

The proof of this statement follows. The six skew
components of f, , q form a basis for a representation,

If h' is as in reference 62, then

This is the choice we have made in Eq. (III.36).
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TABLE V. Representations of Ca[8&g. The bases satisfy the "subsidiary conditions"
babe b

—hacp b
—0 &i b+&.—&i b+. . a —gij'+, . gij'+. .

@ gij+. .
@ gij+ . a 0

Complete Abbr. Highest Fig.
designation design. weight no.

D'(0,0) 1 (0,0)

Isotopic
content Basis D'(1,0) D'(0, 1)

5

D" (2,0)

10

CI D"(0,2)

14

D'(1,0) (18) 4(a) p,p, a[a, a3
2VS

10+5+1 20+16+4 40+16

D' (0,1) (&,1) 4k/) ok, a[0011
2%3

fa, b) Pi 16+4 14+10+1 35'+10+5 35'+30+5

Dso(2 0) 1P 000 —' —'1
(2 p) 4(c) & r )w&2r

2' [0,1,1,13 4 b„v', j,x~ 20+16+4 35'+10+5 35135'+14+10+5+1

D'4(0, 2) 14 (2,2)
2VS

0)2)2)1)1)1
[0,0,0,1,1,2$

35+30+5

D"(1 1)
1

16 —(2,1)2'
I-'1'1'1'1' 3'3'i @A gab e 35+14+10+5 40+20+16+4
L2)2)2)2)2)2 J

D~(30) 2o (3,0)
2@3 E

)0)0)2)2)2)
41)a[a,a)a,

Dbo(0,3)
1

30 —(3,3)
203 E

1)1)1
—',,—,

' [0,0,0,0,
1,1,1,2,2,3$

D"(4,0) 35
1

(4 4)
293

0)0)0)0)0)2)2)2)2)
1,1)1,'-„-'„2[0,1, iPab. d,

1,1,2,2,2,2,2j

D"(2,1)

DN(1, 2)

1
35' —(3,1)

2@3

1
4O —(3,2)

243

1 1 1 I

2)'2)i) ) ) )2)2
[0,0,1,1,1,1,1,. 1,2,2,2$

0)0)-,')-', ) 2)-', )1,1,
i)i)i)i)2)2)2

1 1 1 1 1 1
l 2)2)2)2)2)2)
3 3 8 3 5 Sg2)2)2)2)2)2 J

Pi', 7, k

W'7-,

that is, they transform among themselves. Therefore
the six linearly-independent combinations q, , i= j.,
2, , 5 and h bP a transform among themselves. But
h"P,a is invariant and orthogonal to q, . Therefore, the
q, transform among themselves; that is, the p; form
the basis for a five-dimensional representation. Ke do
not prove here that this representation is irreducible,
but it can easily be seen to be the representation
D"'(0,1) discussed in preceding sections. The way
that the p; transform among themselves is given by

&' Vaa~ &' (4+&e LA—a)(3a +&e LBa )4'cd
—= (6,&+i eALA &)o,"f.a. (V.18)'.

As is the usual treatment of the Pauli o- matrices, we
interpret 0-i ' as a constant tensor. This nomenclature
is justified by noting that the above definition of
lg'7 gives

oi ~ (8c ze LAc )(5d ze LBd )
)(' (3,g+ b ecL .j)o cd oaa,

That is, 0-i ' is form invariant.

This representation Dtb~(0, 1) may appropriately be
called the tiector represerbtati, orb. The form

gij Oi Ojba.ab (V.19)

is clearly symmetric, nonsingular and constant (form
invariant). It may be used to raise and lower vector
indices. For example, we have from (18):

LA =o,ab(LA '3a"+ti:Lda")o'~

Clearly 1.&'& are the 10 skew 5)&5 matrices, and their
skewness is equivalent to the form invariance of g,;.
Hence, this representation of C2 is 82, the orthogonal
group in Ave dimensions. (The isornorphism between
Cs and Bs was pointed out by Cartan. )

To complete this discussion of the reduction of f,a,
we note that the ten-dimensional representation D(2,0),
which is the symmetric part of f,a, is just the regular
representation:

XA=LA V.b.

The a-, ' play the same role here as in ordinary
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spinor analysis, providing the link between the
"spinor" indices u, b, , and the "vector indices, "
i j ~ - . For tensors of higher rank, it may be con-
venient to employ a mixed notation. Thus, the basis
f,k, is equivalent to q, ,; and the basis for D(1,1) is
either

with h."p.k, 0)——
or

with cr'aby;, ~ =0.

D. 610Qp G2

Because G2 is a subgroup'4 of 0~ it is helpful first to
discuss the latter group. The spinor-representation of
07 is eight-dimensional. I.et g be a symmetric non-
singular matrix and g,b its inverse:

gabg g a

We use this tensor to raise or lower indices in spinor
space (i.e. , latin indices a, b, c). Let v;,' be a set of
seven 8X8 matrices that satisfy

gee+. b +.ab +.ba

(V.20)
(v'v, +v,v.).'= —2gv~-'.

The numbers g,j are defined by these equations, once
a fixed g

' and a fixed set of y matrices have been
chosen. The latter should be taken to be linearly
independent; then g;j is a nonsingular quadratic form
with an inverse defined by

g"gja =~a'.

These matrices are used to raise and lower latin
indices i, j, k, henceforth called vector indices. Hence

g
b and g'j are the metric tensors in spinor space and

in vector space, respectively.
The p matrices may be used to construct a complete

set of matrices (64 independent ones) in spinor space.
The 21 independent matrices

6';-'—= kl v, ,v;1.'

are of particular interest. First we note that G,;j ' are
skew and independent of y, '.

G, .ab G . .ba G . .ab& 0

Therefore, the 21 G,,' and the 7 p, form a complete
set. of 28 linearly independent skew matrices. Next,
defining the 35 matrices

G,;k.'—=—.'Lv, v,vk].',

where [V,V,Vk] is the antisymmetrized product of
we note that Gijpb are symmetric and

independent of g ':
G';a"=G;a", GgI "g b=o.

64The 6rst physical application of this fact appears to have
been made by G. Racah, Phys. Rev. 76, 1352 (1949).

Hence, the G;jA,
' and g

' form a complete set of 36
independent symmetric matrices.

As a simple consequence of the "anticommutativity"
of the y matrices, we find

Rj qGki g~iGkj gikGt j+gljRk gkjR tr'

which are the correct commutation relations for the
group of rotations in seven dimensions. " Therefore
the (G,;),' are the infinitesimal generators of that group.

The group G& may now be obtained as a subgroup of
Oq in the following way. "I.et g be a constant spinor.
Of course 07 does not admit such an object, and g is
not constant under 07. However, there exists a sub-

group of 07 that does leave g invariant, and it turns
out that this subgroup is G~. Hence vp is constant with
respect to G& only. The subspace of spinor space which
is normal to q is seven dimensional, and there exists
a very convenient way of labeling the seven components
of P, which span this subspace. For, let ri„' be defined by

Yib g ) 'gia=Piabg =pi gba.,a= . a b . . b .b

Then clearly gi g =0. Hence the seven components
ti,Q, of P are the basis for a representation of that
subgroup of 07 that leaves g invariant.

In order to find the matrices of this group, let us
define

.a bI ijk piab'Qj 'QA: ~

It is not at first obvious how this can be solved for
y, b, since the gi are singular. It is clear, however,
that 7, b is of the form

V;ak = &p,,kriss'rik "+& (ri'srfa ri;sr')—
From the commutation relations we find, with the
normalization

that gi vaja= g;;,

and this immediately gives A =8=1, or

piab =I ijk'g g W /iamb 'gagib.

Using this formula in the anticommutation relations,
we find that the necessary and sufficient conditions for
the F,,k to yield V; k with the defining properties (a)
that the r„,k be totally skew, and (b) that

r '~1'; "+1' ™I';"=8'fi'+5'5' 2g; g'" (V—.21).
Some simple consequences are

0 I'
A,
iI"ja'=6

Although not obvious, it is nevertheless true that the
above properties suffice to reduce the product of any
three F matrices to a sum of terms that are linear in

6' The differential operators (1/i)(x;8; —x,B,) are a realization
of these commutation relations.' The following development was su&gested by the calculations
of: reference 19,



STRONG INTERACTION SYM METRIES

F's. The formula is

F „'F 'F& = —b 'F„'~—b 'F„~'—8 ~F„"—g'~F

+g ir ik+$ ir ki+$ kr ij+gijr k

The generators of G2 are those linear combinations

5'&G,;,~,

that satisfy
5'&G . 'g =0

This is easily reduced to

5'&F;,g= 0.

The general solution (taking S'&= —S&"') is a linear
combination of the following matrices

p(14) { „&' ——-', (s.'s. —|'„s„')——,'r,„„r"',
of which 14 are linearly independent. Hence G2 has 14
parameters, and the generators are

L{mn)a =P(14){mn) Gija

In vector space this becomes

I'(mn) A; =I (mn)a gb 'gk ~
1=T 5 l c

Hence, the generators of G2 is the set of skew matrices
orthogonal to F,;~'.

L( )'&Fgp=0.

The reduction problem for G2 can now be solved.
Let D"&(1,0) stand for the representation f,. The
second-rank tensor is erst split into the symmetric and
the skew part. The symmetric part f;;, contains the
invariant g"P;; and the remaining 27 components form
an irreducible representation that we label D{'"(2,0).
The 21 skew components P, ,, break up into the D(1,0)
r "kf,,—= pk and a remainder with 14 components. The
latter make up the regular representation L{
which we call D{"&(0,1). (These labels agree with those
of the previous sections. )

The reduction of the third-rank tensor f,,k is non-
trivial. First write down all the operators that exist
for reducing the number of indices, that is, all the
form-invariant matrices with 3 to 5 indices:

g —F ijl{: p —rrsjg I{,

——(r jlr k+rjk lr'+r k lr )'&'
A „=,'(r."s„ky, r-„'t ") 1/7g „r'k—,
A =-'(r 'lb k—r 'ib k) —-'r lr, okr '

Here A has been made completely skew in i, j, k,
since any symmetric part would reduce to 8 by use
of (21). We have subtracted the trace A from A „,and
the part A~~F "'A

& from A . In this way we are
assured that A „,"kf;,k and A, 'lk&li,;k are irreducible.
These operators are then applied to each of the sym-
metry classes of Fig. 20. Ke start with the skew part
p, ; k which has 35 components. Applying 8 gives
zero trivially; A, „also yields zero after some calcula-

P(1) kl —(]/7)g, .gkl.
p(7), .kl —kr rklm. (V.25)

tion. Thus we are left with

fi,j,k Amn, Vi,j,kO+Am VijkO+A Vijk&
(V.22)

D{'"(2,0) 0+ D{"(1,0) O+ D"' (0 0)

To each of the two parts f;;,k and p, k,; with mixed
symmetry (having 112 components each), 8, A
and A, „gives D( ), D('7), and D('4), respectively.
The remaining components, of which there are
112—7—27 —17=64, are irreducible. Since this is the
highest representation" in D(1,0)D(0, 1) it must be
D(1,1).Thus

4;;,k
——8„"k4,, kO+A „,'"'4;, , k

Q+ A, „'kip;;, k Q+ "remainder",
(V.23)

D{'&(1,0) 0+D"'& (2,0)O+D{'4) (0,1)
0+ D{"'(1,1).

The "rema, inder" is the tensor f;;,k, that satisfies the
"subsidiary conditions"

, 'k'4'&, k= A, "9'&.k=0

The result for p;k, ; is, of course, exactly similar. The
completely symmetric part p,;k„can be contracted
with 8 only. Therefore, the remaining 77 components
are irreducible. Since this is the highest representation
in (D(1,0)]', it must be D'"& (3,0). Thus

p;;k, ——8 "kp,,k, Q+ "remainder"

D{'&(1,0) O+D"'&(3,0).

The complete results for f,,k are listed in. Table VI.
It may be helpful, to support our claim that our

method supplies explicit matrices of the transformations
for each representation, to write them down for some
of the representations that are listed in Table VI.

Ke found the transformation matrices I ( „),7 for
the representa, tion D{~)(1,0). These are given explicitly
in terms of the F'&~. For the present purpose the tensor
character of the label (nil) on L{ „) is irrelevant,
and it is perhaps less confusing to replace it by a
single index A running from 1 to 14. Then the trans-
formations of the tensors before symmetrization are

a„+~"(L.,"~,'+L., '~,")Wkl,

0', k ~ 0'ik+~" (L~,'f'&, tlk"+L~, "f'&,lf'&k"+L~k"{'&,l&,")Pi ..
The representation D"'&(2,0) is obtained from P,; by
the projection operator that symmetrizes and makes
traceless, namely,

P(27), kl —l
(g kg l+t& lti.k) (1/7.)g. g.kl (V 24)

Hence the matrices for D{")(2,0) are simply,

Lg ~ P(27),,k'(Lgk 5l"+Lgl"Sk ).
We already found the projection operator p(14),,"'
similarly:
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TABLE VI. Representations of G&. The bases satisfy Fi7~$; =gi7pi;, =gi7pi; @=F7~'pi;, f, =gi7@;7h g lp 7 l,, )
——I'7h pi;, l, l

——0.

Complete Abbr. Highest Fig.
designation design. weight no. Isotopic content Basis D'(1,0) g}D'4(0, 1) g D»(2,0)

D7(1,0)
D14(0 1)
D '(2,0)

7

27

3(a)
3 (b) 0,0,0,1,2

0)2)2)i)iri)2)2)2
Pi, 7') +A

27+14+7+1

64+27+7
77+64+27+14+7

64+27+7 77+64+27+14+7
77+77'+27+14+1

D"(1,1) 64

D»(3,0) 77

D»(0,2) 77'

1 1 1 1 1 3 3
2)2)2)2)2)2)2)2)

2)2)2,2)-'„-',

Or0)0)2)2)i)i)i)i)2)
2)2)2)2)2)~r~)2)2)2

0)0)0)0)0)0)1) 1) 1) 2 ) 2 )

2)2)2)2) )2)2) ) )

Pi7, a

It is easily verified that these operators are indeed
projection operators, and that they add up to 6,~6,'.
The reader is now able to write down the matrices for
any one of the representations in Table VI.

VI. APPLICATIONS

A. Introductory Remarks

We have presented the tools that are needed to
construct a physical theory of the strongly interacting
particles. The important question now at hand is to
select the group which is appropriate, make the proper
identification between the basis of the representations
and the physical states (particles, resonances, etc.)
and determine the experimental predictions that ensue.

The myriad of schemes that may be constructed is
limited only by the imagination of the inventor.
Consequently, we have been unable to find a course
between the Scylla of being too abstract and the
Charybdis of leaving out many logical possibilities.
It would seem then, that our purpose is best served
by giving illustrative ex mpaie fsrom which the general
pattern of procedure may be gleaned. It cannot be
emphasized too strongly, however, that all of the

remainder of this section is ogerect for illustration only
We identify the components of the basis of an

irreducible representation of a group with a set of
physical states (particles, resonances, scattering states,
etc.). Since we have only considered groups of "charge"-
space transformations, which commute with every
space-time transformation, each of the physical states
within one irreducible multiplet must have the same
space-time properties, i.e., spin, relative parity, baryon
number, etc. In particular, the square of the total four
momentum, or the mass, of each of these states must
be the same. But a cursory examination of the mass
spectrum of the known baryons and mesons tends to
preclude the possibility that these particles could form,
in any meaningful way, the components of the basis of
an irreducible representation of any group larger than
the four-parameter semi-simple group of isotopic spin
and hypercharge conservation. Namely, the only
apparent approximate multiplet structure seems to be

that associated with isotopic spin. This is the basis for
one possible point of view.

Another point of view can be based on an analogy,
which, if fruitful, would allow us to consider meaning-
fully the baryons as members of a "supermultiplet. "
That the analogy may be misleading, in whole or in
part, is understood; we cite it only as one possible
flight of fancy.

Let us consider again the concept of isotopic spin.
As commonly conceived, the particle interactions break
into an isotopic invariant part and a much weaker
symmetry-breaking part, most likely due to the
electromagnetic field. In the absence of the latter, the
neutron and proton are identified as the degenerate
members of an isotopic spin doublet, a spin 1/2 basis
for an irreducible representation of the isotopic spin
rotation group. Being members of such a multiplet,
all their space-time properties are the same, including
their masses. The main effect of the symmetry-breaking
interaction, in this case, is to remove the degeneracy
in the masses and interactions of the proton and
neutron. This is so, because electromagnetic inter-
actions conserves parity and baryon number, and is
Lorentz invariant, and hence does not change the
other space-time properties of the states, such as spin,
relative parity, and baryon number. That these
statements are independent of the symmetry-breaking
coupling strength is obvious. It is conceivable that the
interaction could change the number of states by
giving rise to some new resonant states. In the isotopic
spin case, it would seem that these new states either
do not exist or are far removed in mass from the
perturbed doublet. Thus, it has been found, since the
proton and neutron are related states even in the
presence of the symmetry-breaking interaction, that
to some extent it is still meaningful to consider them
as members of a doublet. .

One may now carry the analogy over to the case of
some higher symmetry. That is, one might speculate
that the particle interactions split into a symmetry-
preserving and a symmetry-destroying part, the latter
involving some "fields" not contained in the former.
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One such possibility is the global symmetry scheme'
where the bosons involved in the symmetry-preserving
part are only pions, while in the violating part, they
are only E mesons. ' Alternatively, the symmetric
interaction could involve both E and m mesons, while
the symmetry-breaking interaction could be due to
some other, as yet unknown, field. It is this latter
interaction, then, which would be responsible for the
observed mass splittings and other mischief. If the
analogy is not misleading, we may, even in the presence
of this interaction, still speak in a meaningful way of
the "supermultiplets, " the components of the basis of
an irreducible representation. Namely, we are able to
say that all the components must have the same spin,
relative parity, and baryon number. In addition, as
before, we assume that if any new states arise as a
result of the symmetry-breaking interaction, they are
separated by a large mass from the presently known
resonances. " This guarantees that the number of
states will be preserved in the presence of the inter-
action. Thus, by completely describing one component
of a multiplet, we have completely specified all the
other components, except as to their masses and
widths. 0, in addition, we adopt the viewpoint of Lee
and Yang' with regard to relating the widths of the
various components, we are left with the masses as
the main quantum number perturbed by the symmetry-
breaking interaction.

According to the methods developed in the preceding
sections, the components of the basis of an irreducible
representation are identified by the weights I to
which they belong.

For representations of simple group of rank two, it
turns out that at most two linear combinations of H~
and H2 can be interpreted as I3. This is because the
spectrum of I3 must be symmetric about I3=0. For
both SUB and G2 only one of the two possibilities,
namely /3~Hi, are considered; but for C2(B2) either
choice gives rise to reasonable physical models (see
below). In Tables IV—VI the isotoPic conterbt of many
representations are recorded. This is the number of
isotopic spin singlets, doublets, triplets, etc., contained
in a representation. It may most easily be read off the
weight diagram. The number of times that the total
isospin I' is contained is equal to the number of states
with /3 /' minus the number ——of states with /3 /'+1. ——

B. Analysis of Invariant Amylitudes

In most cases, an attempt at a physical theory will

begin with associating a particular representation D~
of some group G with a set of particles called the
"fundamental baryons. " Which baryons are funda-
mental depends on the model; it is not even necessary

6~ See, M. Gell-Mann, reference 2.' Or vice versa, see J. Schwinger, reference 2.
This assumption, or a similar one, is a sine qua woe of any

theory of higher symmetries.

that the "fundamental baryons" be stable baryons.
To fix the ideas, however, we assume that this is the
case, and refer unambigously to "the baryons. " Let
iP, be the wave function for these baryons, that is, the
basis for Dii, and let P be the wave function for the
"antibaryons. " Clearly g is contragredient to f, and
is the basis for Ds.= (Dii)*. The first experiment that
may be discussed, even before introducing the bosons,
is baryon-baryon or baryon-antibaryon scattering.
The relevant four point function is of the form
(suppressing the space-time variables)

8=A..b "(TQtgqV Qd) ), (VI 1)

&&L
—(EA)'0 +0'(E A) 7))-

-(T(~(E.~) V -~'(E .~»7
&& 2—(E A)'9~+4"'(E--&)~7) )

= r'(~) L
—m'(c)+m'(~)7(T O'V bc'V~)), (VI 2)

where m;(c) and m, (d) are the weights of P' and fq,
respectively. Thus, by knowning the eGect of the E on
the basis of the baryon representation, we can determine
an equality between the four-point functions of two
different processes.

As an obvious example of the relationship just
found, consider the scattering P+rb~P+8 and let
the E be the isotopic spin lowering operator. The
above relation then becomes

(~v.v.~.~.) &

=l(/'L(0.V. 0-'4-)64'4. 4-'—4-)7), (VI3)—

which states that the I= 1, I3——1 four-point function is

equal to the I=1, IS=0 function, i.e., that the four-
point function depends only upon I and not upon I3, a
well-known result. The remaining equalities can
obviously be obtained by repeating the procedure of
inserting these commutation relations into the newly
formed four-point functions; this procedure clearly

where the coeScients A,~" must be chosen so as to
make 8 invariant.

Consider first the four-point function for a specified
set of baryons, one of the terms in the sum 0', :

(TO'V b4'V ~) )

A knowledge of the effect of the E on a basis, P„of
an irreducible representation can be used to find
relations among the four-point functions for different
processes. First of all, we insert the operator form of
the commutation relations fE,E 7=r'(a)H; into the
four-point function above to obtain

(~~~to ~~.,E.»~V ) &= '(-)(~(~t ~.H,~tV.))
The E and the II; are linear operators acting on the
product basis as in (III.14). By remembering that
when they act on the vacuum they give zero and that
+a =+ 0) we find
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terminates when we reach the I= 1, I3——1 state in this
example. In the general case, when the E are not just
restricted to the isotopic spin operators, we proceed in
the same manner. Namely, with repeated use of the
general relation we can generate a string of equal
four-point functions. From the example above, it is
clear that this string will terminate after a finite
number of steps since there can only be a finite number
of independent relations. This procedure determines
all the four-point functions which are equal to the
one we started with. Similar statements, of course, can
be made for the e-point function.

If we choose our original four-point function such
that /~ad is a component of the basis of an irreducible
representation (as in the above example), then all the
related four-point functions may be completely char-
acterized by this irreducible representation, which in
turn is characterized by its highest weight. They will
be independent of the other weights (in much the
same way as in the above example, they were char-
acterized by I and independent of I2). If pt'|4 and

belong to two different irreducible representa-
tions, then the four-point functions in which they
appear are, of course, unrelated (just as the I=O
amplitude is unrelated to the three I=1 amplitudes).
Ke now show that it is possible to gain a much deeper
insight into the structure and interrelations of four-
point functions after we have found the most general
matrix A,.2d that makes (1) invariant.

To find all possible solutions of this problem is the
same as determining the one-dimensional representa-
tions contained in D~*Dg~DJ3D~. It is both
convenient and traditional to do this in two steps. For
example, for baryon-antibaryon scattering, one first
decomposes D~* D~'.

Df),Df) Qgy v,D„—— (VI.4)

where the sum is over inequivalent irreducible repre-
sentations, and the v are integers. The invariants in
(1) are then the invariants in

Qg+ v.2(D.D. *), (VI.5)

where each D,D, * contains exactly one invariant.
Techniques for 6nding the v, in (2) were amply
discussed in Secs. IV and V, and many examples were
listed in Tables IV—VI. Although the v. contain some
information that is quite important in applications to
follow, we need a more explicit form of the reduction
for the present purpose.

Suppose that a particular S~-dimensional, irreducible
representation D&, whose basis we label by the letters
p, v, p, ~, is contained in the product D&*DJ3 or
f'pd This means tha.t there exists linear combinations

(0 (')) "iP'Pd )((=1, 2, , 7,, (VI.6)

which transform among themselves according to D~.
The numbers (0„('))," may be regarded as the com-

ponents of a constant (=form invariant) tensor, and
will be called, after proper normalization, an isometry.
Although the name may be new, the concept is well

known, and several examples have already appeared
in previous sections: (1) The Pauli 0,, matrices
connect the product of two spinors to a vector ()Into;f), .

(2) The matrices 1, y„, ',K2(y„y„—-7„y„),y2y„, y2 used
for writing down Lorentz invariant couplings connect
the product of two four-spinors to tensors, (3) The
matrices of any representation D of a Lie algebra
connects the product DD* to the regular representa-
tion (as was emphasized in Sec. V), and (4) Matrices
0.;,~ and F„y were introduced in Sec. V.

The normalization that qualifies these operators for
the title isometry is

(Q (1)) d(Q(1) r) c

(0„(1)),d(0(1)r),fr= P(1)„df
(VI.7)

(P(rr, 1,2)) d f(Q (c,2)) f (0 (c,l)) d

Using (7) we get

(P(rr, 1,2)) d f (0 (rr, l)) d(0(rr, 2—)rr) f (VI.S).

From this we see that P(''') is an isometry. In
particular, if the indices are the same as in E( ' ') we get
back the projection operators. Thus we label the

Here (0(')"),d=g"&(0„("),d When g")' eXiStS; in general
it is the isometry of the representation D&* contra-
gredient to Dl. I It may be proved that DlD)*
contains Dl* if it contains Dl.) The matrix P(1)„"f,in
which c, d labels the rows and e, f labels the columns,
is the projection operator associated with D~. Several
examples of (7) are well known:

(1). -'V2e. -'%2&'d = 8 "

2%2 e,)r, 2V2e'dc= 2 (()(,"(),c—B(,clI ")=P)r,"'

where I'&,"' is the antisymmetrization operator;

(2). 21V2( r;(), 21b&2(o')),' 'r') f, ——
-'W2(~,).'-'V2(~), '=S dS 2—-'S 2c,d=P.~ ~

where the o-; are the Pauli matrices and E,~," is pro-
jection operator that separates out the trace;

(3). In Sec. V, Eq. (V.19) we found that

( )-;p . .„(1)-',ptfk

(1)~rg, . (1)~rp(lrrr P(7) . )rrr

where P(7);2' is the projection operator (V.25) that
projects out the 7-dimensional representation of G2
from D&»@D&».

As in (4), let 0. label the inequivalent irreducible
representations, and write Q( "', ~=1, v, for the
v isometrics associated with each of the v, equivalent
representations D . Then the equivalence between
(0„( "),d and (0„('")," means that there exists a
nonsingular matrix (P( ' ')).d,f such that
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projection operators associated with one of the D, by
E'('' '). Then the properties of the isometrics, and in
particular the projection operators, may be summarized
by

(Q (n, a)) d(Q(n', a')v) c—g,g, g u (VI 9)

(Q (~, z)) d(g(e, g') p) f (P(e, g g )) d f (VI 10)

(p(~, ~, ~')) &f(p(~', c",c"')) ek

=i), 8. ."(P('""'")),'g". (VI.11)

A direct result of Schur's lemma~' is that the most
general form of A, P~ that makes (1) invariant is given
by

(VI.12)
+= E p"""'(W)(p'""') "(4V~)

0'yet K
f

where E " "' are arbitrary and include all references to
space-time coordinates or transformation properties.
Using (10):

g — P Pu, s, s'(Pg (a,z)P)(Pg(n, a')pP) (VI 13)
0'yK

g KyPI

This is the explicit realization of (5). The number of
terms with the same o. is v '.

The number of terms in (13) is P),' and depends,
of course, on the choice of the group G and the
representation D~. The procedure that we have
outlined is a direct generalization of the well known
treatment of isotopic spin. In that case, the index K is
superfluous, since the ), in (4) are always zero or one.
Thus, the summation over tT K K reduces to a sum
over I, the total isotopic spin. If all the f, have isotopic
spin 1/2, (13) reduces to

0.=p'(4 @~~4)(4k~~~'4)
+P'L4l~2(&"—l ' ')4 j

Xy-,~2(S '—-' ')Pj (VI 14)

The process of applying the generator P and 8; to a
basis |tQq of an irreducible representation in (12) or
(13) clearly can lead to any other basis of the same
irreducible representation, but cannot lead out of that
representation. Thus the method that was outlined
following (1) relates four-point functions within each
term of the o' K K sum in (13).In fact, that method is
simply a way of calculating the isometrics. For example,
the relation (3) expresses the fact that the right-hand
side and the left-hand side occur with equal weight
P' in (14).

C. Resonances and Mesons

Scattering in one or more states of o-, K, K' may
exhibit resonances. The resonant states are then

'0 I. Schur, Sitzber. preuss. Akad. Wiss. , Physik. -math. Kl.
1905, p. 406.

multiplets transforming according to D . In order to
determine the possible resonance multiplets and their
transformation properties, it is suKcient to know the
Clebsch-Gordan Series (4). For simple groups of rank
two, and low-dimensional representations, this informa-
tion is contained in Tables IV—VI.

Nothing in our development thus far distinguishes
between stable and unstable resonant states. Therefore,
it is impossible to make any definite predictions about
the number of mesons in a given model. However, in
the limit in which the invariance is exact, the various
resonance states within one multiplet will have the
same mass, width, etc. This might lead one to expect
that if one member of a multiplet is stable, so are all
the other members of that multiplet. If this is true,
the number of mesons will be related to the
dimensionalities of the representations occurring in
the decomposition (2)."

If one likes to write an unrenormalized Lagrangian
involving Yukawa couplings, it is necessary to find the
trilinear invariants involving f„f, and the meson
field. If stable mesons are indeed possible intermediary
states in B—B scattering, then these same trilinear
forms are needed to write the vertex function. This
remains true even if the mesons are regarded as bound
states of the 8—B system. From a mathematical
point of view, these trilinear couplings are already
known. All that is needed is to reinterpret the quantities
(PQ(,) appearing in (12) as the components of the
meson field. For practical purposes, however, it is
convenient to label the mesons by a single index, as
for example &pl', such that each component corresponds
to one physical meson. Let D~ be the representation
for which y~ is the basis. In order for a trilinear invari-
ant to exist, D~ must be equivalent to one of the
terms in (4). That is, an isometry (Q„(~)),~ must exist
such that p" transforms contragrediently to (QQ„(~)P).
Then the trilinear invariants are of the desired form,
namely

(If'.(")4)( ". (VI.15)

Again, insert the operator commutation relation to
obtain

Proceeding as previously, we find

A trivial example is afforded by the pion-nucleon

In the manner of Kq. (1), consider the three-point
function for a specific set of two baryons and a meson,
one component of the general invariant three-point
function (15),

(2'(4'V~v "))
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1
(2'(4,V -~- ))= &TL—(4'4. 0-V—-)~-'j).

V2

Since we have demonstrated the method both in the
case of the three-point and four-point functions, it
should be obvious that this method can be generalized
to e-point functions involving both mesons and baryons.

Let us now proceed to the specific cases of SU3, 82,
C2, and Gg. In the examples contrived for SU3 and G2,
we follow a line of reasoning according to which the
eight known baryons are more fundamental physical
states than are the baryon resonances, (or baryon
excited states). Specifically, no resonance state or
unobserved baryon is to appear in the same multiplet
with any of the eight observed baryons. Such a
distinction is quite unfounded, even though it seems
to be the most fashionable procedure at present. We
remove this restriction in our examples of theories
built on 82 and C2.

D. Model Built on SU3

If we assume that the eight baryons can form the
bases for one or more representations, then the dimen-
sionality of these representations must add up to eight.
An inspection of Table IV for SU3 shows that there is
only one possibility with the correct isotopic content;
the eight-dimensional representation D' i (1,1). This
implies that all the baryons must have the same
space-time properties. If we assume that there are
only the seven known mesons, it is impossible to
assign the correct isotopic content under SU3. In
addition, if we require that the meson-baryon vertex
function does not vanish, which incidentally corresponds
to the existence of pole terms in dispersion relations,
the dimensionality of the meson representations must
be either 1, 8, 10, or 27. This follows from the fact
that the Kronecker product of two eight-dimensional
representations of baryons contains representations of
only those dimensions (Table IV). One possible way
out of the dilemma is to postulate the existence of an
eighth meson which has not been experimentally detected
as yet." This is the approach of Gell-Mann, " which

8 I
I 0-I
~ Xg

2

FIG. 21. Weight diagr'am forDS (1,1) of
SU'3 with bases associated with baryons.
For meson bases, the substitution,

(P,~,=&,=--,z+ zo z- x) ~
(X+,X', —K',K+,~+,~',~,~00),

should be made.

7'See, for example, M. Gettner and W. Selove, Phys. Rev.
120, 593 (1960); J. Poirer and M. Pripstein, Phys. Rev. 122,
1917 (1961).

vertex. Consider
(7'64M-v -') )

and Z as the isotopic spin raising operator. The
well-known result follows

we follow here. It then follows that the meson repre-
sentation is also eight-dimensional, and that all 8
mesons have the same space-time properties. I

For
example, Z and A. have the same parities, and the
parity of (EZ) is the same as that of (~X).1

Because D&') occurs twice in the product D&')D& )

there are two of the isometrics in (1S). To find them
is to make a very slight extension of the tensor analysis
developed for SU3 in Sec. V. The baryon wave function
is written pA, in keeping with our convention to use
capital Latin indices for the regular representation.
The antibaryons are labeled PB. Clearly the structure
constants CBDA supply one of the two isometrics. The
normalization is fixed by the usual definition

gDE CBD CAE

From the commutation relations (II.3) we find

(VI.16)

l~&: l1), l2&, 13&, I4&, is), I6&,

I7&, l8);
l~&: I

—» I

—2» I

—3» —I+1&,
—I+» I+3&, —I1&, —I»; VI.20

»ryons: —l~+&, IP» l~&, l~ &, I=. &, I='&,

l~'), l~&;

Mesons: —le+&, IK+&, IE'), I~-), IK—
),

—I&'& l~'& I~")

The action of the operators H; and E was given
both in (III.26, 27) and in (III.30, 31). Using the
dictionary (20), this is easily translated. The result
for baryons is given in Table VII.

We are now in a position to make the predictions of
the theory. Consider the scattering of a meson 3f and a
baryon 8, M+8 ~M'+8'. The pertinent four-point
function (suppressing the space-time variables) is

(T(A'4 Ar'4A'Ar) ).

The combination QBQAr is the Kronecker product of

CBB tracepLBL——BLA LBLBL—]. (VI.17)

We can define the second isometry by

C'BD" trace/——LBLDL +LDLBL j. (VI.18)

Although these relations are true regardless of which
representation LA occurs on the right, the most con-
venient choice is Di'i(1,0), given in (III.20). Both
gDE and CBDA were calculated in Sec. III F.

The most general three-point function is

(Pl (yBQBBAPA) yD+P2 (yBg BDA PA) (PD ) (VI.19)

where pE= gDEy is the meson held.
In Fig. 21 we have furnished the weight diagram for

D&'i(1,1) with the appropriate baryon symbols. We
associate I3 with V3mi, and Y with 2nz2, and summarize
the relations between the four diferent labels that we
have used:
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TAnr. E VII. Action of E on baryons for D&'& (1,1) in SUB. Table for bosons is obtained by substitution
(P,a,=-',=-,Z+,Z', Z-,A) ~ (Z+,Zo„EO—,Z+,~+,~&,~ ,eo-).

WHO +0

6&E1

6&E 1

2HZ,

MO
M

g0
+vox

V2ZO

2V3E 2

24383

2H2

y0
+@ST
——n1

2

gO
—VSx

L~O2M
—M

MO v2=

two eight-dimensional representations, one for the
meson and one for the baryon. This reduces, according
to Table IV, as follows:

888= 10+80+ 80+ 100+ 10~0+ 27.

There are eight (=1'+2'+1'+8+1') different four-
point invariants, or equivalently 8 independent
amplitudes. 72

So far we have considered the representations for
the known baryons and particles. It is conceivable
that the other representations of this group might also
be realized, not for stable particles, but perhaps for
what we might call unstable particles, i.e., the reso-
nances, excited isobaric states, or whatever. In
particular, we concentrate on the well-known (3,3)
resonance in pion-nucleon scattering and its possible
analogs in other baryon-meson scattering processes.
We have emphasized before the limitations of such a
procedure (see the general discussion of this Section).
We note again that the product representation of one
baryon and one meson decomposes into irreducible
representations of dimensions 1, 8, 8, 10, 10*, and 27.
The weight (nzi, ms) of the compound state s.+p which
is a member of the (3,3) resonance, is sr (W3, 1). This is
the highest weight of the 10-dimensional representation
and one of the weights in the 27-dimensional repre-
sentation. We assume that the (3,3) isobar states are
members of the 1.0-dimensional multiplet.

The weight diagram for the 10-dimensional repre-
sentation is shown in Fig. 22. Besides the T=3/2,
F=1, multiplet, which we identify a." the (3,3) isobar
states (E*), we have a T=1, V=0 triplet, a T=1/2,
I'= —1 doublet, and a T=-0, I'= —2 singlet. The triplet

72It is possible to distinguish between the two equivalent
8-dimensional representations by adding a discrete element
(reQection) to the group. Invariance under this operation would
prohibit transitions between the two octets and reduce the
number of invariant amplitudes to six. See M. Gell-Mann,
reference 18.

T=1, F=O has the same charge quantum numbers
as the excited states F* of the Ax system. "It is very
attractive to consider the I'* as an analog of the E~.
In order for them to belong to the same supermultiplet,
these two multiplets must have the same space-time
quantum numbers. We therefore assume F* to have
spin 3/2 and negative orbital parity.

In order to compare these two states and make
certain predictions which can be veri6ed by experi-
ments, we must assume certain features of the
symmetry-breaking forces. We may assume, after I.ee
and Yang, ' that the symmetry-breaking forces are
short-range in character and that long-range phenomena
are relatively insensitive to them, even though they
must be strong enough to account for the mass
splittings. Then the same cause that splits the baryon
masses is responsible'for the difference of the energy
levels of X~ and F*, while the resonance widths
should be predictable from the symmetry. This is
because the width of a resonance is proportional to
the overlap of the resona'nce-state wave function and
the initial- (or final-) state wave function at the
"channel entrance, " as we know from nuclear
physics, "7' so that the relative widths are essentially
independent of short range effects.

FIG. 22. Weight diagram for
D&10)(3 0) for SU3. The weight
labeled as a=1 corresponds to
the isobar state (S*)++;n=2
to (F*)+.

0 — I
l 3

a! & 2

"M. Alston, L. Alvarez, P. Eberhard, M. Good, W. Graziano,
H. Ticho, and S. Wojcichi, Phys. Rev. Letters 5, 520 (1960).

74 R. G. Sachs, Eucleur Theory (Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1953), Chap. 10.
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II CI'I &&10},~l &~& I
s, (VI 23)~.+~~~

where q= c.m. momentum, E&——baryon energy in c.m. ,
E~——meson energy in c.m. , and the first bracket on
the right is the kinematical factor arising from the
phase-space and the centrifugal barrier for the p-wave;
and C is a quantity independent of the magnetic
quantum number" n. The generalized Clebsch-Gordan
coeKcient ((10},,n~8M& can be read off directly from
the foregoing expressions. We list in Table VIII the
relative partial widths predicted by the SU3 symmetry.
It is interesting to note that, if the mass of m is near
that of the x, the decay process of the P'* can produce
s's copiously, since the branching ratio of F*~ A+s.+
to I'*~Z++vr" is approximately unity. This does not
seem to agree with experimental findings, however.

E. Model Built on C~

For this example we discard the assumption that
diferent components of the same basis of an irreducible
representation must be identified with the baryons
only or with the resonances only. This allows us a
good deal more Aexibility in making an identification
of the particles with a basis. For the purpose of

TABLE VIII. Comparison of relative partial widths of the S*
and I'* resonances. In computing the relative partial widths
q'Es/(EB+Esr) in Eq. (VI.23) are taken from reference 17.

Resonance
energy

(experimental)
Isobar in Mev

(Ã*)++ 1237

, Relative
Disintegration I ((10)~& I E~) I' partial
products, BM o.= 1 n =2 width

1/2

The state corresponding to the highest weight
(Is,F)=(—,', 1) of the 10-dimensional representation is
that linear combination

~~ p~+)+P)Z+Z+),

which is annihilated by E&, E2, E3, and E 3, as discussed
in Sec. III E. Therefore, the normalized state

~
{10},1)

can be chosen to be

I (10},1)=-,'K&l IP~+&—IZ+&+)j. (VI.21)

The state of interest, consisting of Ax+, 2+x, , can
be obtained by operating with 8 s on

~
(10},1&, i.e. ,

I &10},2&= lVSLVSI«+&+ IZ'~+)+v2IP&'&
+&2~ 'E+& [Z+s.e—

&
—%3[Z+BM)g. (VI.22)

The partial width for the transition from a
~ {10},n&

multiplet to a ~BM& state is given by

TABLE IX. Action of E, on baryons for D&'& (0,1) in Cs.

6&EI
6&E I
6&Eg

6&E g A

QE,
6$E 3

MH0

6&E4

6&E 4

AH1 —,'P
2~a. 'p

MH

n1
2

H

MP

MP

MH

QM

HMp

MH

MP

—HQM

illustration, we have chosen one of the many schemes
which might be devised.

Upon inspection of the lower dimensional weight
diagrams for C2 in Fig. 4, we see that the E, A, and
can be identified as the basis of the five-dimensional
"vector" representation, D&sl (0,1), where Is——%3mr,
and F=243ms. By making the association from Sec.
III, (1,2,3,4,5) ~ (P,n, A, ', ), (compare Figs. 8 and
23), we can use Eqs. (III.37, 38) to construct Table IX.
With this assignment, the Z must be componqpts of a
basis for another irreducible representation and as
such could have space-time quantum numbers which
diGer from those assigned to the X—A—™set.
Specifically, this scheme would admit an odd relative
ZA parity and an odd EZ parity relative to mX. 75

From the weight diagrams (Fig. 4), we see that the
lowest dimensional representation in which the isotopic
spin and hypercharge content allows both the m and E
mesons is D" & (Fig. 24). This is a representation
which admits the existence of an invariant effective
Yukawa interaction, because, as may be seen from
Table V, D"'(3D&"=D"'0+D'"'0+D'"'.

In addition to the E and m, however, D("~ requires
three isotopic spin zero mesons, D, with 7=2, 0, —2

(charge, Q=1, 0, —1, respectively). Of the three, the
existence of the charged ones, D+, and the consequences
thereof, have been discussed by Yamanouchi. v' The
prediction of the existence of a neutral particle, D, is
a novel feature of the C2 scheme. Although it is a
neutral isotopic scalar meson, it differs from the m" of
SU3 in that it is a member of a hypercharge rotation
triplet. If the mass of the D' were near that of the D+,
about 730 Mev as suggested by Yamanouchi, " it
would have sufhcient energy to decay into either 2+
or 3x via the strong interactions. The 2x mode, how-
ever, can be shown to be forbidden because of parity
while the 3m mode is allowed only insofar as the
symmetry of Cs is broken (for such a low-energy
process, one would expect the symmetry to be violated

1385
Ax+

z+xp
cpm+
z+~«

1/4
1/12
1/12
1/4

0.38
0.03
0.03

r' S. Barshay, Phys. Rev. Letters 1,97 (1958).Recent experi-
mental evidence is compared with this conjecture in Y. Nambu
and J. J. Sakurai, Phys. Rev. Letters 6, 377 (1961)."T, Yamanouchi, Phys. Rev, I etters 3, 480 (1959').
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to a rather large extent). If it were energetically
possible for the DP to decay into E+X, such a mode
would again be ruled out by parity conservation.

So far, we have not assigned the Z's to an irreducible
representation. The lowest dimensional representation
that can contain them is easily seen to be D(' &. This
implies the existence of baryon resonances, associated
in the same irreducible representation with the Z's,
which have the same space-time properties, e.g. , J= 1/2,
and the following isotopic spin and .hypercharge
assignments: I=1/2, V=1; I=1/2, V= —1; and I=0,
7=2, 0, —2. The first isotopic doublet would appear
as a nucleon-pion resonance, the second as a ™x
resonance, in the J= 1/2 state. The hypercharge
triplet would appear as a resonance in the EE, the EE
and ™E,and the ™Escattering states. As pointed out
before, the masses of such states remain theoretically
unknown.

For demonstration purposes, let us use a combination
of the techniques developed in Secs. III and V to
analyze the product representation P, & =P;f&,

wh'—ere P';

is the basis of the Ave-dimensional representation. We
choose its components as (p, l,h., ', ). According to
Sec. V, there exists a symmetric metric, g'&, which
relates P' with f; In order. to determine the form of g'&'

we first formally form the invariant

FIG. 23. Weight diagram for
D&" (0,1) of Cs with bases associ-
ated with baryons (P, n, A. , ™0,
and " }.

0 8
0

(VI.26)

Specifically, for the 10-dimensional representation, in
terms of BB,

pl —pm+ p X4 $1 4~p+~

This matrix g;; is the same as that introduced under
the pseudonym C in Eq. (III.39). It is now possible to
construct the bilinear forms f for the 10-. and 14-
dimensional representations:

By remembering that this invariant must have a
weight (0,0), it must be a linear combination

X=a p+b 'm+cAA+dp +em"'

Xs 4'4 pP+&~

Xgp ——ass= Xp — A.

Xp=gp'=PA —X

Xg ——PP=Xe+ PA,

In order to determine the coefficients a, b, -, we use
the fact that E x= 0 for any E . The immediate result
ls

y=a( p 'e+AA+p= e—-p). ——

With a normalization such that g'=1, g'&' may now be
written as

(VI.24)

Since the 40-dimensional representation is the
regular representation, these X~, if assigned the space-
time properties of a four-vector (i.e., by inserting a p„
into each term, e.g. , PN -+ pp„e), form the baryon part
of the current which is conserved due to the group C2.
If the spin zero mesons, E, m. , etc. , were considered
compound baryon-antibaryon systems, these X& would,
of course, be the complete conserved currents in the
interaction representation. " In order to avoid being
quoted as not having considered strongly-interacting

so that

(VI.25)

FIG. 24. Weight diagram
for D(")(2,0} of C2 with
bases associated with
mes ons.

0-

D

0

MO

~'jYhe currents can easily be written down in interaction
representation. The transformation to Heisenberg representation
will introduce extra terms in the current, if there are derivatives
of the fields in the interaction Lagrangian.
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r(3)

FIG. 25. Root diagram
for B2.

the root diagram, Fig. 1(b) of Sec. II by 45'. We
recapitulate the procedure of constructing the Lie
algebra, using the root diagram, Fig. 25. In this basis
of the algebra

[Hl,E1J=6 81) LH1)82]= 6 E2)
(VI.28)

PB„g,]=0, [B,g,]=6-&E„",

( - r(-2) r (-4)

I J5r(

and we choose the X p to be

E1,4 1V—1,3 Xs,—4 X1,3 1V—1,2= 1V3,—3——6 &. (VI.29)

where

I=gxgM~ (VI.27)

M =(—3r 3r'3r+D D'D+Z+ ZZ Z+—)
~A gAB~

A simpler method than the above exists for ending
the X&. Since they form the basis of the regular repre-
sentation, they are given by X~ g'1~,3/3 ——where the
I&

' can be read directly from Table IX.The advantage
of the method described above is that we can now
also immediately write down the 14-dimensional basis.

Model Built on 82

Another possible scheme based on the symmetry of
C, (=83) is obtained by rotating the coordinates of

intermediate vector mesons, ~ ~' we point out here that
by the extension to space-time dependent trans-
formations, these ten currents wouM. be coupled to ten
such mesons; this technique is trivially extended to
the other groups.

On the other hand, if the X~ are given the space-time
property of a pseudoscalar, the effective Yukawa cou-

pling between the baryons (1V,h., ) and the pseudoscalar
mesons can be written down. Writing the ten mesons
as a 10-component M~ ——( rr+p, 3r,D+—,D,D. ,Z+,

Z,Z,Z—+), the coupling becomes'3

The highest weight of the representation (Xr,X3) is,
in this case,

M=) /6 —
&(1,0)+)1 /6-i(-', ,-', ). (VI.30)

The dimensionalities of the representations D(X1,X3)
=D(0,0), D(1,0), D(0,1), D(2,0), D(0.2), , are

1, 4, 5, 10, 14, , just as before.
We can identify the A. particle as the basis of the

one-dimensional representation. Inspection of the
weight dia ram, I ig. 26(a), shows that (p,33, 3, ) and

(Z+,Z', —Z', +Z ) can be chosen as the bases of the
four-dimensional representation.

The isotopic content of the five dimensional repre-
sentation of Fig. 26(b) requires, in addition to the
isotopic triplet with F=O, which we identify with

Z+, Z', Z (3r+3r,3r ), two more charged baryons X+
(D-L for bosons) with Ts ——0, F=O.

We now illustrate the tensor analysis of Sec. V on

the basis of this model. Since we have identified the
H; differently than in the previous case (Sec. III G;
Sec. VI E), the matrices derived below are not the same

as before. The ten operators may be represented by
4X4 traceless matrices:

The dimensionality is given by

1V= (1+)%,1) (1+As)L1+-', ()%.1+)%.3)j
XL1+3 (Xr+2),3)j. (VI.31)

(H1).'= 2 (6)& (Hs).'= 2(6)'

(Es).'= 6—l

0 0

0 1 (&3) =2(3)'

0.
1

0

0 —1
0

0.

(VI.32)

0

(E--).'= (E-+)-'= (&.)3'

0.

73 J. J. Sakurai, Ann. Phys. 11, 1 (1960).
R. Utiyama, Phys. Rev. 101, 1597 (1956);S.L. Glashow and M. Gell-Mann (to be published). The latter authors have independently

suggested the B2 and C2 models discussed in this section.
The relation between 3II& and M =g M& is most easily determining by requiring X~X&=g +xzxz to be invariant.
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= —h.o h ts"=8 '. (VI.33)

Note that h-(L;).'= (I.;), ts"
contragredient bases are

i.e., I .ab I .ba The

These matrices may be derived by the method
developed in Sec. IV. The metric h b is defined to be
the skew matrix that makes tt"f fs form invariant.
One can easily verify that

p Hog+gMo H p
is form invariant since the S' operating on it annihilate
it. Therefore, we choose h b to be

Y

n

0-

I

2
0 ~ I~

(a)

X
0

(b)

Fro. 26. (a) Weight diagram for D(1,0) of Bo. For meson bases,
the substitution, (p,l, o, ")~"(E+,E, —Z,&+), should be
made. (b) Weight diagram for D(0,1) of Co. For meson bases, the
substitution, (g+,Z',Z,X+,X ) ~ (s+p', rr, D+,D ), should be
made.

n
Mo

J

We take the five skew 4X4 matrices o-; ' just intro-
duced. in Eq. (V.17), satisfying h,&o;4'=traceho;=0,
to be

~ ab
1 2

o-4 '=1
0 —1

0
.0

0 0

o.2
b 1

~ ab

0 0 —1 0
0

.0
0
0

.0 0 —1 0.

~ ab
3

0
—1

0 '

.0 1 0 0.
(VI.35)

These matrices are chosen such that x;—=p'(o.;) op& representation are obtained by
=g h„(o;)"Ps are normalized bases of the five-
dimensional representation that transform as the

or the
(lt;) = (Zo, —Z+,Z-, —X+,X-)

(M;) = (oro, —or+,or, D+,D );—
Xi—-(pp —ng —gogo+@—g—

)

1 1
xs ———(—np+ —-') x4———( g+ 'p)

1
(pg go@—

)
1

x,=—(—n- ——p-')

g;; =o.; fT;b,= traCe o';o'~

The symmetric five-dimensional metric g;; is defined
as in Eq. (V.19):

M'=g'&M = or+ . (VI.37)
—D
. D'.

The explicit form of the I-~ in the five-dimensional
representation is obtained from (L~) =2a,'o(L~) q'o'

We can go on to construct explicit forms of tensors
ad igggitlgs. The above examples suKce to illustrate
the method.

Let us now turn back to physics. As an example, let
us consider the invariant Yukawa type coupling of the
(or,D) to the (X, ). It is clear that, by construction,
the o; o are just the (0„&'&),o discussed in the early part
of this section where v refers to the five-dimensional
representation and i=@. The invariant coupling is,
therefore,

I= gag. 'PoM',

g
=-((pv p —7 —=.'7 "'+=.-7.-) '

20 —1
—1 0 +%2/(nysP — yg o)or-

—( oysp+ yog)D+h. c j) (VI-.38). .
=g" g"g~~=~'~ (» 36)

0 —1
—1 0,

In this case, the number of independent coupling
The contragredient bases M' of the five-dimensional constants required is one, because the product repre-
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0-

8 0
I

( ~ y i2 2

FIG. 27. Weight diagram for
D(')(1,0) with bases associated with
baryons. For meson bases, substitute

(K+,Ko, Ko,—K+,~+,H, ~ )

(p 0 —y+gsg —
)

6. Model Built on t"2

If we assume that there are eight baryons which can
form the bases for one or more representations, then
the dimensionality of these representations must add
up to eight. An inspection of Table VI for G~ shows
that the only possibility involves two representations,
D "&(0,0) and D&'&(1,0). This implies that seven of the

n This is in accord with experimental observation (see
reference 73).

sentation D&4~*D&4) contains the irreducible repre-
sentation D&'& only once.

There are three independent amp1. itudes for scattering
of (Ã, ) and (X, ), corresponding to the decomposition
(Clebsch-Gordan series) D& &"D&'& = D&'& Q+D&s& C+&D&"&.

Let us consider the process

a+b ~ a'+b',

where a, b, a', and b' label members of the (iV, )
multiplet. The T matrix for this process can be written

(a'b'
I
T

I
ab) =F'8

+F &2. ,b'&i a

+F'(Qgt"&), '(Qg&"&)s, (VI.39)

where the isometric operators (Q~&"&)s are proportional
toLgq '.

10
(Q~ns&)s =& a

(trace X~1.n) *'

Finally, let us discuss the F* isobar states in this
scheme. Since the five-dimensional representation is
the lowest dimensional one with the right isotopic spin
and hypercharge content to accommodate the triplet,
(I"*)+, (F's)s, and (I'*), we propose to identify the F*
with components of a basis of D"'(0,1). We have
already assigned the Z and X+ to a five-dimensional
representation. Therefore, the F*and the Z would have
to have the same transformation properties in charge
space, while their differences would be described by
space-time quantum numbers. An interesting feature
of this model is that the decay process I'*—+ 2+a. is
forbidden by symmetry while I'*—+ A+~ is allowed, "
independent of spin of the F*or the relative AZ parity.
The reason is as follows. The m and the Z are members
of Ave dimensional representations. Since the product
representation D'"D'" does not contain any ir-
reducible D(5), it is impossible for a I"* to decay into
a m and a Z. On the other hand, since the A. particle is a
basis of the one dimensional representation, the
product representation of the A. and the m multiplet
naturally gives rise to a 6ve dimensional representation.

baryons must have the same space-time quantum
numbers; the eighth baryon may have a different set
of these quantum numbers. In contrast with SU3, we
see that there is a seven-dimensional representation
which aHows the possibility of using only the seven
known mesons, i.e. , D&r&(1,0)." In this scheme, of
course, it would also be possible to accommodate an
eighth meson, the x" which would then correspond to
the one-dimensional representation, D&'& (0,0). Until
such time as this meson is experimentally detected,
we shall consider only the known particles. It is again
clear that these seven mesons must have the same
space-time quantum numbers.

In Fig. 27 we have drawn the weight diagram for
the seven-dimensional representation of G2. From this,
it is clear that if we associate 2v3Ht with the operator
for Is and 48s with the operator for Y (hypercharge),
then each of the baryons has a specific weight associated
with it. There remains only the question of the Z' and
A. which both have zero eigenvalues for these two
operators. Since we want charge independence to hold
for the strong interactions (this implies the existence
of the isotopic spin lowering operator as one of the F. ),
the Z' must belong to the seven-dimensional repre-
sentation and that the A is the basis for the one-
dimensional representation. Because the Z and A

belong to different representations, we see that G~ can
accommodate opposite parities for the Z and A. It
predicts specifically, however, that the ZE parity must
be the same as that of Ãx

In order to give the usual isotopic spin and hyper-
charge assignment to the X, Z, and, in accordance
with the association of H~ and H2 with I3 and Y given
above, we must make the following connection between
the states given in Sec. III B and the particles

l~): I1) I2) 13) l4) ls) I6& I7)
8aryons: p e ' —Z+ Z' Z (VI.40)

Mesons: E+ E' —X' K+ —x+

With the aid of this dictionary, it is easy to construct
Table X for the particles from the results of Sec. III H.

We proceed now to analyze the scattering
8+M —+8'+M' in the same manner as described
in the general part of this section. The pertinent
four-point function is

(~ttPs V sr tga4~$&.

The combination pl&/sr is the Kronecker product of
two seven-dimensional representations, one for the
meson and one for the baryon. This reduces, following
Table VI, according to 77=171427. In the
manner described previously, we conclude that there
are only four different four-point functions or ampli-
tudes for the scattering of the seven baryons by the
bosons.

82 The model built on G2 was Grst suggested by Behrends and
Sirlin (reference 19) and, independently, by another of the
authors (C.F.) (unpublished).
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0

(d')=(a'~)= 1

0 —1
—1 0

0 (VI.41)

For further physical predictions, it is necessary to
find the metric tensor. This can be done by noting that
the invariant part of the compound representation
y=g'&'P, p; must be a linear combination of the form

X=apE++bnE'+cZ+~ +dZ ~++eZO~'

+f. E++g'K'.

By use of the fact that E p=0, we can readily find the
coefficients a, b, c. - -, and thereby And

Ke further need to determine the isometrics 6 &F'&~.

This is most easily done by noting that the basis for
the seven-dimensional compound representation is
given by z'=I"&'"f;p&. We proceed by noting that the
y' with the fundamental dominant weight M"& is a
linear combination of the form:

&q=—& =apE +bPE++cZ+7ro+. dZo~y

Since E~X5 and E3X5 would have weights that cannot
belong to D&7), they must vanish. These conditions are
sufhcient to determine the constants u, b, c, and d.
The result is

y'= V2(pE'+ -'E+)—Z+H+Z'~+.

where

0

(O;) = (p, ,=-',=--, —Z', Z', Z-)

0

The matrix F~&'~= —F5&'~ may readily be found from
this expression. By operating on X5 with Es, we find,
)remembering that

&~A= —&~(Z') = —-'V'3p= —-'V'8 4l

It follows that

(4')=(™—~~0 &P —Z—Z' +Z )

t This matrix was introduced in Kq. (III.42).7

p~'+@2'~+—Z'E+—v2Z+E'=X, =X'.

Proceeding successively in this manner, we can
determine all the y', and thereby all the (I'"'). For
convenience, we list these matrices

F7= —rg=

0

I

I

I

I

0 —1
I

I

—v2 0
I

I

I

I

I

I

I

I

I

I

I

I

0 I

I

K2 i

I

v2

I

I

I 1

I0 —1 0.

+@2 0,'
I

I

I

I

I

I

I
0 —1

~ +1 0
I 0.

0
0

F'=F—

—1l
I

I

I

I

I

0

0
0

I

l

I

I

I

K2
I

I

I

I

I

I

0
I

I

I

I

I

I

I

I

I

I

0

0

(VI.42)
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TAnLE X. Action of E on baryons for D&'& (1,0) in Gs. Table for bosons is obtained by substitution

(P a "0 " Z+ Z' Z ) ~ (X+ XD —Xo Z+ s+ so s. ).

2(6)&E&

2(6)&E r

2v2E,
2v2E g

2(6)&EI
2(6)&E I

2v2E4
2V2E 4

2(6)&Es
2 (6)&E

2&E6
242E o

2V31II

V2ZO

MO

1p

p

M

V2ZO

MwO

M

V2ZO

gMO
QM

MwO

H

—VZZO

2M
M

M
w

MP
M

v2'n

QMQ

V2ZO

M

It is now a trivial matter to list various amplitudes in
a compact notation. For example, the invariant
three-point function is

(VI.43)

Another simple example is aGorded by A. production
mesons on baryons, M+8 —+ M'+h. . The four-point
function is

I'*"P(4' lt"V'V' ) ). (VI.44)

With regard to G2, it might be interesting to play
again the game of finding the processes which might
have resonances corresponding to the (3,3) pion-nucleon
resonance. At this point, we re-emphasize, the limita-
tions of this game (see the general discussion above).
First, the product representation of one baryon and
one meson decomposes into representations with
dimensionalities of 1, 7, 14, and 27. But the weight of
the s.+p state, say, which is a member of the (3,3)
resonance, is (1/4V3)(3,43). This is just the highest
weight for the 14-dimensional representation D(0,1)
and it is one of the weights for the 27-dimensional
representation. Thus the (3,3) resonance must belong to
either the 14 or 27 dimensional representation.

Again, as an example, we have drawn the weight
diagram for the 14-dimensional representation in
Fig. 3(b). From this, it is clear that besides the I=
F=1 multiplet, which we might identify as the 3,3
resonance, the isotopic content includes an I= ~3,

I"=—1 multiplet, an I=1, 7=0 multiplet, and three
singlets, I=O, F=2, 0, —2. All of these multiplets
must have J=-,'. The actual product representation
written in terms of the product MB may be found in
the manner illustrated above. Namely, the basis for
the highest weight of the 14-dimensional representation
must be of the form ap7r++bZ+E+. But E, for a posi-
tive root r(rr), acting on this basis must be zero.
Specifically, application of E 5 gives a= —b, so that
the basis for the highest weight is sr&2(P~+ Z+E+). —
The bases for the other weights can be obtained by
repeated use of all the E . In contrast with SV3, the
s.h. resonance cannot be associated with the (3,3) pion
nucleon resonance, since the ~A. resonance must be
7-dimensional which does not contain an I=

~ multiplet.
If the (3,3) resonance were identified with the

27-dimensional representation, we would proceed in
the same manner. The result would be that the (3,3)
resonance would be associated with a diferent set of
isotopic spin multiplets.


