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INTRODUCTION

HIS review provides an introduction to the present
theoretical understanding of certain aspects of the

lattice thermal conductivity of solids at low tempera-
tures. An attempt is made to collect the various methods
used in the analysis of experiments. The adequacy and
range of validity of these methods are evaluated, and
suggestions are made concerning possible theoretical and
experimental investigations which seem desirable.

A few selected topics are discussed thoroughly, in-
stead of attempting a complete survey. This restriction
forces the omission of a detailed discussion of some
interesting topics, such as the interactions of lattice
vibrations with spin waves, excitons, and electrons, but
the author feels that in order to understand these latter
phenomena it is Grst necessary to be able to evaluate
with conGdence the eR'ect of certain defects that are
nearly always present in a crystal. (Detailed comparison
with experiment is not made here. )

Therefore most of this paper is devoted to a discussion
of strain-Geld scattering, mass-difference scattering, and
boundary effects. In order to understand the influence
of these scattering mechanisms on the thermal con-
ductivity of a perfect crystal, it is necessary to give a
discussion of the three-phonon processes which arise
from the anharmonic forces. Much of the discussion is
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applicable to scattering mechanisms not considered
here, however, with little or no modification of the
basic equations.

First, a review is made of the interatomic potential
energy and lattice vibrations. Certain aspects of three-
phonon processes are then discussed. Next the heat
current is calculated in the presence of scattering
processes which can be described by a "relaxation"
time. Following this, a general theory of strain-field
scattering is presented, including a derivation of an
integral equation for the distribution function. The
relation of these considerations to the relaxation time
approximation, and Boltzmann s equation is given.
Application is made to the important cases of strain-
field scattering by dislocations and point defects. An
important diGerence between the thermal resistivity due
to mass-difI'erence scattering and point defect strain-
field scattering is clarified. The relaxation time for
scattering by mass deviations (isotopes, in particular)
is derived. Special consideration is given to boundary
scattering and the associated size eGects. A section is
devoted to calculation of the heat current when many
scattering processes are occurring. A critical examina-
tion is made of the common practice of adding thermal
resistivities, and a resolution to some current confusion
is pointed out. Finally, some other mechanisms of heat
transport are mentioned briefly together with miscel-
laneous scattering mechanisms which may prove of
interest in future investigations. The relevance of
recent progress in phonon drag and radiation damage
experiments is assessed in regard to the understanding
of thermal conductivity.

We have not considered the change in the vibration
spectrum accompanying the introduction of lattice
defects. This is in general a difFicult problem; in certain
cases there may be low-lying localized modes of vibra-
tion, which could provide an important source of
scattering.

It may be helpful to classify the various types of
processes of interest in the study of thermal con-
ductivity. These processes concern the propagation of
energy by the possible unbound elementary excitations,
and the interactions of these excitations among them-
selves and with static structures. (The latter may
possess internal structures, e.g. , impurity states in
semiconductors. ) Most of the excitations or processes
considered are characterized by one of the following
properties: (1) a low-lying continuum of states: acous-
tical phonons, conduction electrons, spin waves, pho-
tons, for example; (2) an excitation energy is required:
optical phonons, ionization of an impurity atom,
Umklapp processes, plasmons, and excitons. The latter
processes usually display an exponential activation-
energy type factor in the probability of their occurrence.
An example of a process which does not fit neatly into
either category is the dispersive scattering of a phonon
by virtual excitation of an electron bound to a donor
atom in a semiconductor.

An excellent presentation of the thermal conductivity
of a perfect lattice is given in Chaps. 1 and 2 of a book
by Peierls. ' Because of the thoroughness of that treat-
ment we try to avoid duplication of the material
covered there. Additional material, including many
references and a discussion of experimental results, may
be found in two review articles by Klemens. 2 3 Of con-
siderable interest is a contribution by Leibfried, who
gives a thorough discussion of lattice dynamics. The
basic paper in this field was written in 1929 by Peierls. '
An informative review article on phonon processes has
been written by Herring. ' An older review by Berman
is still valuable.

I. LATTICE VIBRATIONS

Perhaps one of the most essential features in the
understanding of the solid state is the presence of trans-
lational symmetry. This regularity of the lattice imposes
definite restrictions on any excitation which may be
present in the crystal. In this section we are concerned
with a particular kind of excitation, namely, the collec-
tive vibrational motions of the atoms composing the
lattice.

The potential energy of the lattice may be considered
to be a function of the positions of all of the nuclei of
the atoms composing the solid. Physically, the more
appropriate variables are the relative distances of all
the atoms from each other; however, either set of
variables follow from the other. At absolute zero the
lattice may be considered to be in equilibrium. This
implies that the potential energy is a minimum. The
increase in energy due to arbitrary small displacements
from these equilibrium positions is found by making a
Taylor series expansion of the energy function in terms
of the displacements (or rela. tive displacements); the
first term, aside from the equilibrium value Co of the
potential, is quadratic in the displacements, by the
equilibrium condition. It is an experimental fact that
this "harmonic" potential is the dominant term in this
expansion.

Thus as a first approximation one may regard an ideal
crystal as composed of atoms bound together with
Hooke's law forces. This problem can be solved exactly.
The effects of the smaller (but very important!) terms
in the series (cubic, quartic, etc. , in the displacements)
are then treated as a perturbation on this ideal har-
monic crystal. These terms lead to interactions between

1R. E. Peierls, Quantum Theory of Sohds (Oxford University
Press, New York, 1955).

P. G. Klemens in Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1958), Vol. 7, p. 1.

3 P. G. Klemens, Handbuch der Physik (Springer-Verlag, Berlin,
1956), 2nd ed. , Vol. 14-1, p. 198.' G. I.eibfried, Handbuch der Physik (Springer-Verlag, Berlin,
1955), 2nd ed. , Vol. 7-1, especially p. 290 G.

5 R. E. Peierls, Ann. Physik 3, 1055 (1929).' C. Herring, in Halbleiter end Phosphore, edited by M. Schon
and H. Welker (F. Vieweg and Sohn, Braunschweig, Germany,
1958).

7 R. Berman, Advances in Phys. 2, 103 (1953).
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the harmonic vibrational modes, essential for the under-

standing of thermal resistance, thermal expansion, etc.
Since nearly every textbook on solid-state physics

includes a derivation of the vibrational normal modes
of a crystal, we only summarize the results here, mainly
to introduce the notation used.

We usually consider only the special case in which
there is one atom per basic cell of the crystal. Since we

are primarily interested in low-temperature phenomena,
in which the acoustic branch of the vibration spectrum
is of primary interest, the generalization to more com-
plicated crystals is (for the most part) trivial. The
burden of carrying the extra superscripts necessary for
the description of a general crystal is not compensated
in any way in low-temperature thermal conductivity
problems.

The energy of the crystal in the harmonic approxi-
mation is

stability further restricts the solutions for co' to be
positive. (In certain directions of special symmetry two
of these solutions may become degenerate. ) The solution
with the greatest frequency is called the longitudinal
mode; the other two solutions are "transverse. " These
designations have the usual meaning in the long-wave-
length limit. (The different branches usually do not
cross. ) The problem of the solution of Eq. (1.3) forms
a separate field of physics in itself. We do not discuss
such solutions, but assume in any given problem that
ra(q) is known. For practical applications most of the
calculations assume that the acoustic approximation
&uz= czq (c=velocity of sound) holds. To get an idea of
some models currently employed, and for references to
earlier literature, the recent work of Cochran' on the
vibrational spectrum of germanium is useful. Further
discussion may be found, for example, in works by
Leibfried, ' Born and Huang, ' and Blackman. "

The displacement operator, when expressed in terms
of running waves, takes the form (standard periodic
boundary conditions are imposed)

The first term is the kinetic energy; M is the atomic
mass, u the displacement of the atom at the (equilib-
rium) lattice site m; i, j are Cartesian components of
the displacement vectors u and take on the values

x, y, s, for example. The constant 3 is the appropriate
second derivative of the potential energy, evaluated at
equilibrium. It is related in a well-known way to the
elastic constants' ', further, according to translational
invariance it can only depend on the relative distance
m —n of the two lattice sites. Further conditions follow
from inversion symmetry (when such exists) and con-
sideration of the point group of the crystal. 4

The equations of motion follow immediately from
Eq. (1.1a). They are

3Ium*= —Q Am, "u, '.
n, g

This equation evidently has as a solution the running
wave (i.e., one is to take the real part of this expression)

u '=e; exp[i(q m —cot)],

which yields the secular equation for the frequency ~
as a function of the wave vector q:

~M(o'I —P A,"expLiq (n —m)]~ =0. (1.3)

In this equation 1 denotes a unit matrix in the indices
i, j. There are, in the case of one atom per unit cell,
three eigenvalues of this equation for co'. For these we
introduce the index X, which takes on the values 1, 2, 3.
The three eigenvectors ez(q) correspond to the polariza-
tion vectors of the plane wave solution. These eigen-
vectors are real if the lattice possesses inversion sym-
metry. We suppose this to be the case; otherwise the
reader may supply the necessary complex conjugate
signs. The eigenvalues of a Hermitian matrix are real;

g & 4 2pQQ)q y)

XLa, &, exp(iq m)+a, &*exp(—iq m)]e, ,z, (1.4)

Ho ——P A(u, (a,*a,+-,'). (1.1b)

The term —,'Ace, is the familiar zero-point energy. The
number operator n, =—a,*a, has the significance of the
number of quanta of energy Ace, these quanta being
called phonons. From (1.5) it is evident that phonons
are also bosons. The eigenstates of (1.1a) or (1.1b) are

W. Cochran, Phys. Rev. Letters 2, 495 (1959).
M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Oxford University Press, New York, 1954).
"M. Blackman, Handbuch der Physik (Springer-Verlag, Berlin,

1955), Vol. 7-1, p. 341.
» A. H. Wilson, Theory of Metals (Cambridge University Press,

New York, 1954), p. 251; G. I.eibfried, footnote 4, p. 174; L. Van
Hove, Mass. Inst. Technol. Solid-State and Molecular Theory
Group Tech. Rept. No. 11 (March 15, 1959)~

' See P. A. M. Dirac, Quantum Mechanics (Oxford University
Press, New York, 1947), 3rd ed. , p. 136.

where the sum on q goes over the first Brillouin zone. "
The dimensionless variables a~)„a~),* operate on the

harmonic oscillator coordinates; they are related to the
usual dynamical variables of a harmonic oscillator by a
simple transformation. " They obey the normal mode
equation isa, =

t a„HO]= co,a,. (Hereafter we often
write q for the pair of variables q, X.) In (1.4) p is the
density of the crystal, 0 the total volume, co, the fre-
quency of the qth vibrational mode, q the wave vector,
e, the polarization vector. With the normalization
indicated in (1.4) the commutation relation for the
a, 's becomes simply

La„a, *]=6„; La„a, ]=0. (1.5)

Explicitly, 6« = 8~s 8zz . The energy expression (1.1a)
becomes
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aq*4'(nq„. .
,nq. ,

. )
= (nq+ 1) '4'(nqi, ' ',11q+ 1, ' ' ' ).

(1.6)

a, decreases the number of quanta in state q by one,
and hence is called an annihilation operator. Similarly,

a,* is a creation operator. The properties that we need
are summarized in Eqs. (1.5) and (1.6).

In Eq. (1.4) the operators a, are time independent,
since we are working in the Schrodinger representation.
To achieve correspondence with the classical result, the
time dependence is made explicit by going over to the
Heisenberg representation. This is easily accomplished
by noting that aq(t)=aqe ' ', since iaq=&dqa„etc. On
transforming (1.4) accordingly, the running wave
character of the expansion is made explicit.

The connection with thermodynamics is made by
recalling that in thermal equilibrium the average
occupation of harmonic oscillator states is given by the
Planck distribution law Xq'= (e"~'" —1) '.

Now let us consider the consequences of introducing a
displacement field into the lattice.

In order to maintain this displacement one must
introduce into the Hamiltonian the driving term that
represents the stress field; this additional term is linear
in the displacements (the proportionality constant is
essentially just the stress tensor). Let us write the total
displacement as u +V, where V is the displacement
of the atom at the lattice site m due to the applied stress
(which may be external, or result from a lattice defect).
u is now the displacement from the new equilibrium
position m+V . Since by hypothesis the lattice is still
in equilibrium, the effect of the term linear in the stress
and in u must be just to cancel the linear term in
I 'V ' arising from substituting u +V for u in the
harmonic Hamiltonian (1.1a). The resultant Hamil-
tonian is again quadratic in the new displacements; in
addition, one has a term representing the strain energy.
The new Hamiltonian is diagonal, so that there is no
scattering of phonons by a strain field in the harmonic
approximation. If, however, one considers the anhar-
monic terms (of which we discuss only the potential
cubic in the displacements, which is sufFicient at low
temperatures) a strain results effectively in a change in
the harmonic force constants. (In this regard recall the
standard Griineisen model. ) This change is linear in the
displacement field, and hence destroys the translational
invariance of the harmonic constants if the strain is non-
uniform. This nonuniformity leads to scattering, as
discussed in Sec. IV. To understand physically the
nature of the scattering one may suppose the strain
field to be localized in some region. An incident phonon
wave entering this region experiences a change in the

products of harmonic oscillator states specified by the
set of quantum numbers n, . The simplicity of this so-

called number representation lies in the following
obts. ined from Eqs. (1.5):

aq+(nq. . .nq, ) = (nq) l4 (nqi, .
,nq 1, —),

force constants, which modulation causes scattering.
In the harmonic approximation, the lack of scattering
of phonons by a strain field may be compared with the
analogous case of passing photons through an electric
field. In the latter case photons are not scattered unless
an additional interaction (with the electron-positron
field) is introduced. For lattice vibrations the supple-
mentary field is the anharmonic part of the potential
energy. Indeed, we later see that the matrix elements for
strain-field scattering bear a strong formal resemblance
to the analogous quantities for the scattering of charged
particles by an external electromagnetic field.

If the total displacement V is large (as is the case for
dislocations) doubt concerning the validity of the series
expansions made may arise. This question is dealt with

by the remark that the appropriate expansion variables
are actually relative displacements, although this is
somewhat concealed in the forms used thus far. In order
to emphasize this feature we often choose the anhar-
monic potential to be

1
Vq= —P B ""(u ' u')(u ' —u')(u "——u "), (1.7)

3. QlIL
ijk

where the sum is taken over all pairs in the crystal.
Equation (1.7) is certainly not the most general form
for the cubic term; we have selected only that part
acting directly between individual pairs (m, n), on the
supposition that this is in fact the major part of the
contribution. More general anharmonic potential forms
can be assumed, but at present the poor theoretical and
experimental knowledge of the anharmonic coupling
constants does not justify carrying any more subscripts
than are already present in (1.7). Actually, one can
proceed quite far in a formal calculation of anharmonic
processes, even with a quite general interaction. Com-
promises become necessary when one desires to get
numerical results.

Physically, the constants 3, and 8 „are expected
to be negligible when ~m —n~ is greater than a few
lattice constants. This should be especially true of
8 „. Although the formalism developed later is ade-
quate to cope with long range forces, we usually suppose
that only near-neighbor interactions are appreciable.
This model should be adequate to understand all the
qualitative features of the problem at low temperatures.
To estimate the anharmonicities it is always necessary
to consider the detailed structure of the crystal of
interest. '

A detailed consideration of the influence of distant-
neighbor interactions or specific symmetries of crystals
would obscure the understanding of the physics in-
volved. Hence we must be content with a semiquantita-
tive theory when considering scattering caused by the
anharmonic forces.

To summarize, the eigenstates of the harmonic
problem are phonons which propagate freely through
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the crystal without interaction. Now the anharmonic
term V3 is treated as a perturbation; we see that V3
allows one phonon to turn into two and vice versa.

Standard perturbation theory is not obviously valid,
not due to the magnitude of V3 but rather because the
perturbation extends over the whole crystal. Compare
the present case with the standard scattering problem,
in which the interaction is appreciable only in a finite
region, so that the initial and final states are indeed
eigenstates of H p.

In fact, Van Hove" has emphasized that the funda-
mental difference between ordinary scattering problems
and many-body systems (the latter including 6eld
theory) is just this, that in the latter the potential
extends over the entire volume of the system being
considered, so that conventional perturbation theory is
invalid. In field theory this is spectacularly manifested
by the divergence difficulties.

Clearly, a detailed investigation of this point is in
order. Although Van Hove has justified the use of the
transport equation as obtained with ordinary perturba-
tion theory" Lsee Eq. (3.30)j for similar systems, a
detailed investigation of the "persistent" effects due to
the anharmonic interaction does not seem to have been
made for the steady-state (nonequilibrium) situation.
(The equilibrium properties of the anharmonic crystal
have been discussed thoroughly in the article by Van
Hove. ") Since this has not yet been carried out, in the
next section we sketch the standard treatment' of the
problem. For ordinary impurities and scattering centers,
perturbation theory should be adequate, however.

1( Ib 2( -)'
2 (2pn) eg g"

X (C„,-a,~a, a,"+H.c.). (2.1)

II. THREE-PHONON PROCESSES

The perturbation treatment of the anharmonic
interaction V3 is now discussed. This subject is discussed
thoroughly in footnotes 1 and 4. Furthermore, in
order to understand the effect of impurities and
imperfections on the conductivity, it is essential to
consider the processes occurring in the "pure" anhar-
monic crystal as well, and the mutual inhuence of the
different kinds of processes.

In order to examine the matrix elements of V3, we
substitute the expression (1.4) for u in Eq. (1.7) for
V3. For the energy conserving part we have

once) and the F,'s are just phase factors:

F,=exp(iq m) —exp(iq n). (2.4)

For more general anharmonic forces just replace 8,
in Eq. (2.3) by the appropriate force constant and sum
over any extra indices introduced thereby.

In Eq. (2.1) terms are omitted which create and de-

stroy three phonons, namely, aqaq aq ~ and aq Gq Gq

since they cannot conserve energy. We usually need
only to consider lowest-order perturbation theory. For
a general discussion of the anharmonic effects one must
keep these other terms to allow for the effect of virtual
processes (Appendix D). We use the basic formula of
time-dependent perturbation theory: the probability for
a transition from state a to state b is'4

wb, =(2s-/fb) ~Hb~
~

8(Eb—E ), (2.5)

where one must integrate over a range of final states.
The delta function expresses conservation of energy.
Hb, '=(Vb~H'~%', ) is the matrix element of the pertur-
bation II'.

The complexity of Eqs. (2.2) and (2.3) ought not to
obscure the basic simplicity of the scattering mecha-
nism described by Eq. (2.1). All the complicated effects
are due to the structure of the lattice and the polariza-
tion of the phonons, and are contained in the "structure
factor" C«,".

Equation (2.1) shows that Vb allows for two processes:
either two phonons collide, turning into one (factor
a,*a, a,"), or the inverse process: one phonon breaks up
into two (factor a,a, "a," ). The sum over qq'q" allows
for all possibilities, with the relative amplitude

(
1~
'Cqq'q"

It is extremely convenient, and physical, to represent
the various processes by means of graphs. Every
occurrence of a factor Cqq q is represented by a vertex;
the phonons by lines. (See Fig. 1 for an example. ")

Now we can extract a very important result from the
requirement of translational invariance, namely, the
(seemingly) trivial statement that the potential energy
of the crystal is unchanged under the substitution
m —+ m+na, where n is an integer and a is any lattice
vector.

Equation (1.7) for Vb is obviously unchanged by this
transformation. LPeriodic boundary conditions are
implicit in the expression (1.4) for u .j

All the information concerning the lattice sites of the
crystal is contained in the factor b;,b, Eq. (2.3). Since

where

C«,"=~ e, e, eq bijj, (q,q,q ~,
ijI

b,,b(q, q', q") =Q 8,'&'F,*F,,Fq„

In this equation C«," is given by

(2.2)

(2.3)

F,(m+a, n+a) = exp(iq a)F, (m, n), (2.6)

invariance under the translation operation requires that

b,,b(q, q', q") =exp(ia(q'+q" —q) jb;;b(q, q', q"). (2.7)

In Eq. (2.3) the sum in restricted (each pair counted
'3 L. Van Hove, Physica 21, 517, 901 (1955); 23, 441 (1957).

"L.Schiff, Quantz~zn Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1955), 2nd ed. , p. 199."A good introduction to general scattering theory is contained
in an article by G. C. Wick, Revs. Modern Phys. 27, 339 (1955).
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Thus b;;y is zero unless

exp[ia (q'+q" —q)]= 1,

which is true only if

q'+q" —q= G,

(2.8)

(2.9)

where G is 2~ times a vector in the reciprocal lattice. "
Condition (2.9) is analogous to the conservation of

momentum. The latter, however, is a consequence of
invariance of the Hamiltonian under arbitrary imftni

tesimal displacements.
As preparation for the complicated transport prob-

lems to come, the following simple discussion of the
influence of the anharmonic potential on the propaga-
tion of a phonon may be instructive. First we note the
relation of the entity called a phonon to the so-called
displacement operator U . The phonon itself is just a
plane wave and as such is a certain matrix element of
this operator; if l0) denotes the vacuum state and

l k)
that state with one excitation of type k, then the phonon
is described by the wave pI, .

q ~—= (Ol u~
l
k)=CI,el, exp[i(k m —co~t)];

C&—=
I I

. (2.10)
(2pa)g, Q)

In obtaining this result U has been transformed to the
Heisenberg picture. The constant CI„- is clearly irrelevant
to our considerations. If m is regarded as a continuous
variable x, then yI, (x) obeys the wave equation with
phase velocity &o/k. Actually in thermal conductivity
problems one must use localized wave packets, which
travel with a group velocity C = B~/Bk. We nevertheless
calculate our matrix elements using plane-wave states
such as (2.10), and use the group velocity whenever a
propagation velocity is called for. This is a delicate
point, but is common to all transport problems, so the
reader is referred to footnotes 1 and 17 for further
discussion. (Readers familiar with field theory will

note that the displacement operator u is related to
the phonon wave in precisely the same way that the
electron-field operator is related to the Schrodinger
wave function. The analogy with photons is even closer.
Some simple field-theoretical properties of the displace-
ment field are described in Appendix D.)

Let us examine the hypothetical case in which a single
phonon propagates in an infinite crystal at absolute
zero. As a result of the anharmonic potential, this
phonon does not travel undisturbed but undergoes two
related processes. As already discussed, V3 forces the
phonon to split up into two phonons. The graphical
representation for this process is given in Fig. 1(a).
Further, in second order the energy can be modified

' For a discussion of the reciprocal lattice see, e.g., G. H.
Wannier, Elements of Solid-State Theory (Cambridge University
Press, New York, 1959).

"Progress has been made on this matter recently by E. C.
McIrvine and A. W. Overhauser, Phys. Rev. 115, 1531 {1959).

(a) (b)
FIG. 1. These diagrams represent the eGect of the anharmonic

potential V3 on the propagation of a phonon. (a) shows how the
anharmonic forces can split a phonon into two others. (b) shows
the second-order perturbation theory contribution to the energy
shift of the incident phonon (an eigenstate of Hp) caused by V3.
The lines entering at the bottom label the initial state, those leav-
ing at the top denote the final state, as suggested by the arrows.
(A simple explanation of the use of such graphs in the analysis of
perturbation series is given in footnote 15.)

through the virtual splitting up described by Fig. 1(b).
As is well known, the finite lifetime is associated with an
uncertainty in the phonon frequency. Formally this is
connected with the imaginary part of the self-energy.
Thus we expect a reu/ phonon to be described by

exp[i(k x—(opt) —I't/2), (2.11)

l(kl v
I p k-p)i'

BE2=+-
e(k) e(p,k)+ig—

Now use the identity

(x+ig)
—'=—P (1/x) —in. 6 (x),

(2.12)

(2.13)

where P denotes principal value and 8(x) is the Dirac

where we have written cv as coo—iF/2. Then the wave
dies off as exp( —I' t). We show explicitly that the
imaginary part of the second-order self-energy yields a
value of I identical with the transition rate calculated
in lowest-order perturbation theory, and moreover that
there is a real contribution to the harmonic co(k), whose
eGect is to renormalize the phonon frequency. Then it is
also obvious by a simple Fourier analysis of (2.11) that
I' is the width associated with the phonon wave (2.11).
We use the language of continuous spectra. Let e(k)
=Puo(k) denote the initial phonon energy, and e(p, k)
=A~(p)+Ace(k —p) denote the energy of the two-
phonon state. Then the second-order self-energy is
(g is a positive infinitesimal to define the pole in the
usual way)
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delta function, to obtain

1(kl V, I», k—p)l
ReDEi(k) =P P . (2.14)

e(k) —~ (p,k)

The observed phonon frequency is, to second order, just
the harmonic value plus RedE~(k)/h. By definition of
I', PiI'= —2 ImhE2(k)), one finds likewise

2Ã
I' =—P l (k

l
V,

l p, k—p) l'bLe(k) —e(p, k)] (2.5a)
h u

which is just the total transition probability as com-
puted from (2.5). As might be expected, these con-
siderations extend much further than second-order
perturbation theory. For this analysis the reader is
referred to the work of Van Hove. "

Three-phonon processes in which the total wave
vector is conserved (G=O) are called normal processes.
Collisions for which GWO are called Vmklapp processes
It is seen that the latter are impossible in a continuous
medium. We find that in a "perfect" crystal Umklapp
processes are necessary for a finite conductivity. Thus
both anharmonic forces and a discrete lattice structure
are essential for a noninfinite thermal conductivity, a
point first appreciated by Peierls. ' ' This is only true
for the model of the lattice here contemplated. For
instance in a Quid, intermolecular forces and the
randomness of the molecular distribution gives rise to
thermal resistance. On the other hand, the essence of
the crystalline problem is that of order, and slight
departures therefrom. Hence the often mentioned
analogy of the phonon "gas" is somewhat misleading.

The main quantity of interest, the rate of change of
the number E, of phonons in the state q, A. due to
collisions induced by V, , is given in footnote 1 (see
also Leibfried, ' p. 306). The classification of the
types of processes allowed by the conservation laws
mentioned in the last paragraph is extremely important
in the understanding of thermal resistance. The normal
processes, in which the wave vector is conserved in each
collision, are incapable of producing resistance. In fact,
for normal processes the "crystal momentum"

P=Q, AqE»

is a constant of the motion' if Umklapp processes are
not considered. Thus if P were ever made nonzero (e.g. ,
by subjecting the crystal to a temperature gradient for
a moment) phonons would propagate without resistance
in the absence of Umklapp or other resistance causing
mechanisms. In fact, since Zk and Zco are separately
conserved in this case, one can show that the distribu-
tion function towards which the normal processes tend
is not the equilibrium (Planck) distribution but instead'

.~', (7)= {expL(k~o+X'q)/kT) —1} ', (2.15)

which is characteristic of a drifting gas." (7 is an
arbitrary constant vector with the dimension of a
velocity times A. )

It does not follow, however, that normal processes can
be ignored in calculating the thermal resistance (Ap-
pendix B). This is because the normal processes can
change the distribution of phonons among the various
states, even though they "by themselves" cause no
resistance. For example, consider a frequency-dependent
scattering mechanism: it tends to deplete the population
of phonons in certain states more than others. The
normal processes in a sense "fight back" to refill these
states. In the general case, one must explicitly take all
the scattering mechanisms into account to obtain an
accurate description of the final steady state. Much
work remains to be done on this problem.

Further restrictions on the possible transitions be-
tween various polarization modes follow from the
requirements of simultaneous conservation of energy
and momentum, from an examination of the qualitative
features of the vibration spectrum. " However, these
restrictions are intimately connected with details of the
anisotropy of actual crystals. " A clear discussion of
these questions has been given by Herring. "

We return to a discussion of the coefFicients b,;~. On
introducing a generalized Kroneker delta function A(q),

~(q) =0 q~G
=1 q=G (includes G=O),

Eq. (2.7) can be written as

(2.16)

b;, i, (q, q', q —q') 2i P 8="'{sinLq' (m —n))

—sinLq (m —n)]—sin[(q' —q) (m —n))}. (2.18)

To a good approximation, for low temperature
qa«1; since 8 is small for lm —nl))a, it is a good
approximation to expand the sines. Then the terms

"D. ter Haar, Statistical Mechanics (Rinehart and Company,
Inc. , New York, 1954), Chap 1. 2 is the Lagrangian multiplier
resulting from the extra constraint Zan=constant. The reader will
recognize the close resemblance of the argument Ace+2 q to the
change in Ace under a Galilean transformation."A. Herpin, Ann. Phys. 7, 91 (1952).

20 C. Herring, Phys. Rev. 95, 954 (1954).

b,,&(q,q', q")= A(q —q' —q")b;,i(q, q', q —q'). (2.17)

l
In deriving (2.17) one notes that b;;i, is independent of

G; cf. Eq. (2.3).)
The Umklapp processes resemble the more familiar

phenomenon of Bragg reQection, which also requires a
certain minimum value of q for its occurrence. By
utilizing the 6 function, the sum over q" may be
performed (leaving however, the important sum over G,
but one expects only the smallest values of 6 to be
important).

By means of simple trigonometry one may evaluate
(2.3), finding
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linear in q cancel, leaving

b;,&(q, q', q —q') =i P 8 „"'Lq (m —n)]
mn

X[q' (m —n)]Lq' —q) (m —n)]. (2.19)

The first term is substantially larger than the second,
so put

(2.22)&*~"=g(a;a,a,/a'), g—=g'= (3f/a)

(See Appendix A.) Then

(iVig yC„, =~ ~P(e, a)(e, 'a)(e, " a)
(2a& & ~

X(q a)(q' a)(q' —q) a. (2.23)

In this sum one fixes on one atom and sums over the a' s
connecting it to its nearest neighbors.

Equation (2.23) is unchanged if any of the q's are
changed by a reciprocal lattice vector, as is evident from
inspection of (2.2) and (2.3).

Even this simple case leads to very complicated
expressions. A truly accurate treatment can be achieved
only at the expense of great computational labor. For
the present, the proper attitude might be to consider
coeKcients such g' and f as parameters to be fitted to
the data (or related to macroscopic parameters of
elasticity, Griineisen s p, etc. ) subject to the require-
ment of order of magnitude agreement with the force
constants derived from other experiments or theoretical
calculations. Certainly a computer program for more
accurate coefFicients is not justified until certain matters
of principle are cleared up in the calculation of the
thermal conductivity (e.g. , the applicability of a
Boltzmann equation, the eR'ect of normal proc-
esses, etc.).

A simple argument due to Peierls yields the tempera-
ture dependence of the thermal resistivity due to
Umklapp processes for T((O, where 0 is the Debye
temperature.

Consider the process in which two phonons q& and q&

collide to produce a third, q. In order that an Umklapp
process should occur, the sum of the two colliding

The q dependence of b,;k as obtained in (2.19) does
not depend on the special assumption of forces made.
It follows from the observation that for long wave-

lengths, the relative displacements are proportional to
strains; differentiation of Eq. (1.4) for u brings down
the desired factor q.

An idea of the structure of b,;;I, and C«," is obtained
by considering the special case of nearest-neighbor
central forces. ' For the potential q ( ~

r
~
) between

nearest neighbors (use the chain rule)

8'&'= 8' p/Br, jr;Br)„g'—= y"'(a), f= v "(a);—(2.20)

3f~ aaa), f&"'=
~ g

——
( + (& yak—+& )aJ+&7ka) (2 21.)

a 3 a' a'

phonons must lie outside the Brillouin zone boundary.
Thus one of the phonons must have had a wave vector
of at least a quarter of the minimum total width of the
Brillouin zone.

The position q —6 near the left-hand edge, say, is
completely equivalent to q&+q2=q lying outside the
right-hand side of the zone. Thus the wave vector
essentially fhps over in an Umklapp process.

As T ~ 0 the number of phonons with this minimum
wave vector is

0 —gehrig(q)/kT 1$
—i ~ e

—Are(q)lkr
L (2.24)

since we are keeping cv(q) fixed above some finite limit.
The Debye temperature is O=A&uo/k and we define
n—=cdp/co(q) =2, so

~QIr 0 ~ e
—8/aT (2.24a)

Since in the absence of such phonons there is no
resistivity, the latter must be proportional to this:

W=1/K=e 'ei )Xconst. (2.25)

"R.Berman, F. Simon, and J. Wilks, Nature 168, 277 (1951).~ G. Slack, Phys. Rev. 105, 829, 832, (1957). The isotopic
resistivity was erst reported experimentally by R. Herman, E. L.
Foster, and J. M. Ziman, Proc. Roy. Soc. (London) A237, 344
{1956).

In a more careful analysis4 the "constant" varies with
T. At sufFiciently low temperatures the exponential
factor dominates. (This analysis is a bit oversimplified,
but the conclusions hold. See Leibfried' p. 310.)

The Debye cutoff is &uo ——Cqo, where qo ——(6n'/f)0):; Qo

is the volume per atom, C is some average velocity of
sound. On assuming that the acoustic approximation
co=Cq is reasonably valid for phonons with q -', qo (see
the following), then n=2qo/q, where q is the distance
from the center of the Brillouin zone to the nearest
surface. q evidently depends on the translation group
of the lattice. Because of dispersion, and the approxi-
mations made in obtaining (2.25) one cannot really
take this definition of a seriously; however, one finds for
a simple cubic structure +=2; bcc, a=2.2; fcc, n—2.3.
Some experimental values are o, =2.6 for diamond,
+=2.3 for solid He, a=2.1 for sapphire. "This rough
agreement is probably better than one should expect
from these crude arguments. This exponential behavior
of the conductivity is only observed in a narrow range,
in isotopically and chemically pure crystals. " This
observation of the exponential "dying-out" of Umklapp
processes at very low temperatures is an extremely
important verification of the theoretical foundations of
thermal conductivity.

The fact that E ~ e" implies that substances with
a high Debye temperature have a correspondingly large
conductivity in the exponential range. '

These conclusions have to be altered when the details
of the vibration spectrum invalidate the assumptions
used. Such is the case for Ge, where the determination
of id&(q) from neutron scattering experiments by
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Brockhouse and Iyengar" have shown that the trans-
verse acoustical branch in the L111]direction crosses the
Brillouin zone boundary at an energy of only
0.007 ev 40~. Thus Umklapp scattering may persist
down to temperatures of the order of (—,'0)O instead of

—,'0™as quoted previously. Geballe and Hulp4 discuss
this point.

In the preceding sections we have used unlocalized
(plane wave) phonons with a precisely defined wave
vector. In order to describe thermal conductivity,
where the state of the crystal varies in space, it is
necessary to use localized wave packets. Hence there is
a spread in the wave vector bq, of magnitude

8q 6x 1, (2.26)

if bx is the length of the wave packet. Now if all the
quantities in the matrix elements vary slowly with q,
then the substitution of wave packets for plane waves
causes no change. In particular, consider the factors X,.
Let us write

Eq= X,'+n„ (2.27)

or, using Eq. (2.22),

bx) (AC/ka) (a/T) = (0/T) a, (2.28)

where a is the lattice constant. The relation (2.25) is
usually satisfied.

Consider n, . Later we find that in certain situations
n, is given approximately by

n, ~ r (a&)dE,'/dT,

where r(co) is a "relaxation time. "Evidently if r(&u) is a
rapidly varying function of co, then one must handle the
problem with more care. Physically, some of the com-
ponents of the wave packet may be preferentially
scattered so that the wave packet cannot be considered
as a single unit.

Such a case arises in the case of point defects, where
r(&a) ~co ' (see later sections). The uncertainty in the
relaxation time Ar is

hr r (cv) r((o+ bee) bqd lo—gr 4bq
(2.29)

r r(41) dq q

where bq& T/aO. Now it is necessary to estimate some
mean value of q. We choose that value which maximizes
the energy "density" E(cv) in the Debye theory of
specific heats: omitting the zero-point energy, the total

"B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 108, 894
(1957).

'4T. H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1958).

where n, is the deviation from the equilibrium dis-
tribution fq, '. 1V,'= (e~o~" 1) ' —varies slowly as long
as

6E,=Aber~ —AC6q(kT,

energy of the crystal is'

(T y
3

p
el~ x'

E=9RT'I —
i

I
— dx.

(Oi "0 e —1

Ar/r&3 1, (2.31)

so that for point defect scattering it may be necessary to
take wave packets into account explicitly. The fre-
quency spread imposed by the requirements of localiza-
tion can be of the same order as the mean frequency, for
this case. Then the relaxation time is not well defined. "
In a more satisfactory treatment of thermal conduc-
tivity one might start from an expansion of the dis-
placement operator u in terms of localized wave
packets.

In scattering theory it is well known that one gets the
same answers to all important physical questions with
or without using wave packets; however, this is not the
case in transport problems involving many scatterers
and a nonhomogeneous environment. Apparently no
one has yet presented an adequate solution of this very
difficult problem. "

III. PHENOMENOLOGICAL THEORY

Relaxation Time of a Single Mode

Much of the complexity of the three-phonon problem
(and indeed of most transport problems) lies in the
dependence of the distribution function E, on the
occupation of all the other states as well, as is evident
from inspection of Peierls integral equation. Hence, in
general, the relaxation of a system to equilibrium does
not occur in the same time as would, say, a situation in
which all modes except one (or a small number) are in
equilibrium. (The latter situation might be realizable
experimentally by neutron bombardment. ) However,

2'Even though r fluctuates considerably the distribution func-
tion may be well defined.

Set (d/dx)Lx'/(e* —1)]=0 which gives the transcen-
dental equation

e —1= ~~xe .

The solution is roughly x=2.8 or with qo= (6n )t/a,
a= (0/X)&, O=ACqo/k, q/qo 2.8T——/O.

Most of the contribution to the integral in Eq. (4.4)
comes from the frequency range co =Cq. The correspond-
ing "effective" wavelength X=2~/q is

X=0.6a(O/T). (2.30)

Later we see that most scattering processes are most
effective for high frequencies, so that in the calculation
of thermal conductivity the effective wavelength is
generally somewhat greater than (2.30) indicates.
Equation (2.30) is still a useful indication of the order
of magnitude of the most important wavelengths at a
given temperature, however. On using (2.30) we see
that (2.29) becomes
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Q = —KV'T, (3 &)

where E is the thermal conductivity coefficient and V'

signifies the gradient operator 7,= 8/Bx, etc. In aniso-
tropic media one has more generally

8T
Q-= —2 K-~ (3.2)

p-j. Qxp

'6This treatment of normal processes is due to J. Callaway,
Phys. Rev. 113, 1046 (1959).An earlier discussion of the combined
eRect of normal, Umklapp, and defect scattering was given by
Klemens. ~ 3'~

'7 V. Ambegaokar, Phys. Rev. 114, 488 (1959).

there are certain situations in which the "relaxation time
of a single mode" is the correct r to use for the calcula-
tion of the thermal conductivity. This remarkable result
is valid essentially because of the restrictions imposed
on the possible phonon collisions by the conservation
laws, coupled with a qualitative knowledge of the
dispersion curves co(q). For these considerations it is
essential to examine the anisotropy of real crystals; the
profound effect of anisotropy on the qualitative features
of phonon-phonon scattering was demonstrated clearly
by Herring. "Details of this analysis are straightforward
but require a reasonably lengthy discussion, and are not
reproduced here. The principles involved have been
discussed thoroughly by Herring in footnotes
6 and 20 (the former contains a more elementary
treatment). Here we are content to indicate the physical
reasons for the validity of using the single mode r.

As q ~ 0, the longitudinal modes have much longer
relaxation times than do the transverse modes. There-
fore, in a reasonably pure crystal, the longitudinal
phonons, being much more out of balance than the
transverse phonons at very low temperatures, are most
important in the conduction of heat. Further, because
of the operation of the conservation laws, these longi-
tudinal phonons of small q are only allowed to interact
with phonons of rather larger q, which modes are nearly
in equilibrium. This last result makes the single mode r
for longitudinal modes essentially the same as the "true"
r which takes into account the behavior of all the modes.
At very low temperatures, when the Umklapp processes
necessary to obliterate the heat current of the high q
modes become rare, the above result is no longer true;
but then boundary scattering, or defect scattering,
dominates anyway. Hence the results may be expected
to be applicable to those longitudinal phonons of small

q (more specifically with energy much less than kT) in
the temperature range above the peak in K(T).
Although these modes constitute a rather small fraction
of the total, their effect is significant. Moreover, con-
sistent results are obtained if one assumes the same
single-mode relaxation time for all the modes, ""though
the correctness of this procedure is questionable.

The basic problem is to calculate the heat current Q.
Experimentally one finds that

Q=Q N, ,&(kq)Ci'=CPP(+CPP„
q, X

Pi=+ N, )fiq.

(3.4)

(3.5)

P~ is supposed to represent the total contribution of
the transverse modes; P~ that of the longitudinal modes.
Thus the heat current is given by the sum of the crystal
momenta of the various polarization modes, weighted
with the squared velocities of sound of those modes. LIn
a cubic crystal one can write Q =C'(P~+P, ) where C is
an appropriate average velocity. ] This point of view is
especially useful when considering also the interaction
of phonons with charge carriers, "since in this case the
total crystal momentum of both systems is conserved in
their mutual (non-Umklapp) interactions.

We consider the How of phonons of polarization X and
mean wave vector q through the walls of an imaginary
small volume. In the steady state the total rate of
change must be zero. The number changes for two

2g C. Herring, Phys. Rev. 96, 1163 (1954).

Cases also arise in which the heat current is not linear
in the temperature gradient, but these are not con-
sidered here.

The theorist, besides reproducing the factor V'T, must
then calculate the magnitude and temperature de-
pendence of E.

The "standard" diffusion equation does not hold,
because K(T) depends on position. The correct equation
is obtained by recalling that the basic quantity for
energy flow is the divergence of Q.

In this section we review a method of analysis very
similar to the calculation of the thermal conductivity
of a classical gas. Although many of the difficulties
mentioned in the preceding paragraph are glossed over,
this treatment is to some extent justified by the
reasonable agreement with experiment that can be
obtained with it.

The heat current is

Q=P, N, A(o,C,
=P~ (energy in state q)

X (group velocity of phonon q). (3.3)

The group velocity C~ is defined by C,= Bra,/Bq. In the
acoustic range C,=C&j, where C& is the velocity of
sound for a wave of polarization X; Cq in general de-
pends on the direction of j. Besides a knowledge of the
dispersion relation co&(q) Lwhich we often approximate
by &oz(q)=C&~q~), we need to know the distribution
function Ã„which in turn is the solution of a compli-
cated integral equation. The virtue (and defect!) of the
present method is that the direct solution of this
integral equation is avoided.

The relation of Q to the "crystal momentum" P of
the phonon system that is valid w'hen the temperature
is sufficiently low that the linear approximation co), =Czq
is valid, and C,=Ciq/q, Ci independent of direction
1s
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Relaxation-Time Approximation

As we see in the next section, Eq. (3.6) is a compli-
cated integral equation. Often, however, a good ap-
proximation to (B,V,/Bt), is given by

(8.!V,/Bt), = (hV, ' 1V,)/r (q). — (3.7)

Equation (3.7) says that in the absence of a tempera-
ture gradient any deviation from equilibrium in the
mode q damps out exponentially, in a time r(q).

In the present section we explore the consequences of
Eqs. (3.7) and (3.8). Questions of validity are discussed
later.

From our previous discussion it is evident that the
normal processes must be given special consideration.
The distribution function which is stationary for normal
processes is not 1V,' but rather hV, (X),"Eq. (2.8). 2 is
no longer arbitrary, and will be determined by the
resistance-causing collisions. Thus instead of Eq. (3.7)
we write"

(3 8)

where r~ is the relaxation time for normal processes.
r„describes all processes which change the total wave
vector in the phonon system. To first order in 2,

hV(X)—.V(0)+X. ( Vet/BX) , 0

~Ant//c T

1ih'(2) 1V'+-
kT (e" "r—1)'

Equations (3.6), (3.8), and (3.9) give

AGO 2 q e
C.VT+

kT' rNk T (e —1)-'

(3.9)

reasons: (1) collisions of phonons with each other and
impurities, (2) transport of phonons due to the presence
of a temperature gradient. Contribution (1) we write as
(8Ã,/Bt), and must be calculated according to the
detailed scattering mechanism involved. Contribution
(2) is easily seen to be —Ci 71V,. On using V'hV, (T(x)j
=V'T(dÃ, /dT), we have the Boltzmann equation for
the phonon distribution:

(B,V,/R), C=h, V'T(d'V, /dT). (3.6)

This result is only valid when the distribution func-
tion E depends on the position only through the tem-
perature T(x): hV= 1V(q, T). Later we have to take into
account the fact that boundary scattering occurs only
at the surface of a crystal, which situation leads to an
explicit spatial dependence of the distribution function.
In that case a more complete Boltzmann equation must
be used.

with
x=@co/kT

Here the additional approximation has been made
that dhV/dT=d1V'/dT, i.e. , it is assumed that the
deviation from equilibrium is small.

Callaway" defines a "combined" relaxation time
rp by

1/r& (1/r——~)+ (1/r, ), (3.11)

APC'[(V'T)—/T].
On using q= C&o/C' this gives

x q= —A pC (vT/T).

(3.14)

(3.15)

Therefore Eq. (3.13) gives

(r/r&) —(P/r&) = 1; r = re/1+ (P/rN) j. (3.16)

Happily the constant p can be elimina, ted!
The deviation from equilibrium m, becomes, with

expression (3.16),

m, = —rc(1+ (p/r~) jC VT/e*/(e' 1)']. —(3.17)

Although we have had to start with the complicated
equation (3.8), in the region of applicability of the
approximation (3.9) the net result is the simpler equa-
tion (3.7). The effect of the normal processes is thus con-
tained in the total relaxation time as indicated in (3.16).

For simplicity we have suppressed the polarization
index in the foregoing equations. Each of the relaxation
times r, r~, rq, r„, and P depends on the polarization of
the phonon involved. It is evident that Eq. (3.17) is
valid for all polarization modes (of course, C= Ci).

Whatever trepidations the reader may have experi-
enced on seeing Eqs. (3.7) and (3 8) should be
diminished somewhat by the physical reasonableness of
Eq. (3.12) or (3.17). It is true that r is a complicated
quantity, depending on r&, 7-„, and p; this mess is un-
fortunately necessary because of the E processes which
shufIIe crystal momentum back and forth between the
normal modes.

We are interested in r only as a way to calculate the
distribution function 'V, . It seems possible that the
problem be formulated in a way avoiding the use of a
transport equation, in a form analogous to the recent
expressions" for the electrical conductivity tensor given

2' R. Kubo, Can. J. Phys. 34, 1274 (1956); J. Phys. Soc. Japan
12, 570 (1957); M. Lax, Phys. Rev. 109, 1921 (1958); see alsoF. Englert, J. Phys, Chem. Solids 11, 78 (1959).

and a "total" relaxation time r by writing n, as

ri, = rC V—'T(Ace/kT ) Le "/(e* 1)—'7 (3.12)

The reason for defining r by Eq. (3.12) is that
Eq. (3.8) reduces to

L
—1+(r/rc) j(Ace/T)C VT+ (2 q/rv) =0 (3.1.3)

By symmetry considerations, in an isotropic medium
2 ~ VT so it is convenient to dehne still another
parameter p, which has the dimension of a relaxation
time:
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by Kubo and Lax, for example. We do not investigate
this possibility here.

The constant P is determined by recalling that the
normal processes cannot change the total phonon wave
vector.

This condition is

/- (BN, q /. (N(X) —A, p

I
qd'q—= ~

I

'
Iqd'q=o;all&. (3.18)

& at&A/ J ( TA/ )

The effect of the wave vector destroying processes
(represented by r„, due to Umklapp processes, scattering
by imperfections, etc.) is contained in N, .

In detail, Eq. (3.18) can be written as

~Au/kT X.q q
TC 7'T+ —d'q=0. (3.19)

J ( Are/AT 1)2 k T2 kT ry

On inserting Eq. (3.15) for X.q, Eq. (3.19) becomes

Conductivity

As remarked previously, the knowledge of cV,
=X,'+n, is sufhcient to give the conductivity. In
Eq. (6.2) we have reduced this to a determination of
T=To(1+P/TA/). On examining Eq. (3.3) it is evident
that V, gives no contribution to Q since 8/c/q is odd in
q: all other factors are even. On setting (8/Bq)&ok(q)—=Ck(q), Eqs. (3.3) and (3.17) yield (X is here the
polarization index)

)
C&,. (3.25)

(e«~/AT ])2—
(k~ 2 ~A~/AT

Q= —p Tk(q)CA ~T
q, X

On introducing the heat capacity per normal mode

Equa. tion (3.2) then gives for unit volume

(k~)2 e«~/kT

E.// Qr k(q——) (Ck). (Ck) s (3 26)
kT2 (~A(a/kT 1)2

e*

(e'—1)'

(VT) Cco
xc

I I(T P) —d'q=0, (3.20)
5 T) TvC2.

(/r/~)2 e«~/kT

C,A(/d) =—(Ii«2,X,') = (3.27)
dT kT' (e'"" —1)'

where x=A/d/kT as usual. On extracting constants, and specializing to the isotropic case, Eq. (3.26)
(3.20) becomes becomes

x'e* (T—p)
Id.=o.

(e*—1)' ( TA/ )
(3.21)

On using Eq. (3.16) and solving for the constant p,

X4.-
P= dx-

(e~—1)2 TN

x'e* 1 ( rcq
(3.22)

~o (e*—1)' T,v 4 T//)

PC has the dimensions of a length. At low tempera-
tures T/I V'Ti is of the order of a few centimeters in a
typical experiment.

As r, ~ ~ (only normal processes), P —+ ~. However,
in this case, Eq. (3.22) is no longer valid, since

I Xi ~P
is not small, so that the expansion equation (3.9) is
inadequate. The conclusion that infinite conductivity
occurs in this limit is still valid since 3 may be arbitrary,
while VT ~ 0 (see the following).

The expansion (3.9) for N(0.) is certainly only valid
if the "correction" is smaller than N, (0); on using the
definition (3.14) this condition becomes

PC& (T/I 7'Ti)x '(1—e'), x=Ac«/kT. (3.23)

The function f(x)=x '(1—e')xhas its maximum
f(0)=1 at x=0. Hence the most lenient condition for
the validity of the preceding development is

pc&T/I~TI. (3.24)

IC = Q Tk(q)C, «((u, )C«2 cos2f/;
q, X

(3.28)

cose is the angle between C), and V'T.

The density of states in q space is sufFiciently great
that the sum in Eq. (3.28) may be replaced by an
integral according to the standard relation

Idq.
(22r)2 &

(3.29)

This integral is in general quite dificult to evaluate
analytically, even when drastic assumptions are made.
First, T(q) can assume a very awkward form; see, for
example, Eq. (6.2). Second, rv(q) is usually a compli-
cated function of q and is in turn buried in the incon-
venient functional form C~A(x), Eq. (3.27). This latter
difhculty can be shifted somewhat to another problem:
that of calculating the density of states per unit fre-
quency range, 22(co) 2«Unfortun. ately, this procedure is
not convenient for the problem at hand as it is (for
example) in the evaluation of the specific heat, because
it develops presently that q, rather than ~„ is often the
natural variable upon which 7- depends.

~ For a clear discussion of the principles involved in such a
calculation see G. H. Wannier, footnote 15.

The integral is to be taken over the first Brillouin
zone. The thermal conductivity per unit volume is then

1
d«qrk (q) C,&(k/, )C«2 cos28. (3.30)
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Equation (3.30) then becomes

4~ g tap (X) r(cv)
~'C,a(~) dko, (3.31)

3 (2x)' »0 Cg
where

4—(f(q))=—)fdQ, cos'ef(q).
3

In the special case where r is adequately represented by
a power law such as Eq. (3.35) following, Eq. (3.31)
breaks up into an average of some power of Cq ' and an
integral over ~. In the (fictitious) isotropic case, since
J cos'-Odd=4~/3, we have for Eq. (3.30)

4w 1
E= P fq'—dqCg'(q) r g(q)C, h((o, ). (3.32)

3 (2x)3

Equation (3.32) is similar to the expression for a
classical gas with a constant mean-free path /, heat
capacity C„, velocity v,

E= —,'C,~l, (3.33)

which might be considered to be a definition of t.
Equation (3.33) is often used in the analysis of experi-
ments. While such a procedure generally gives an order
of magnitude understanding of the effect of various
scatterers, it must be used with extreme caution; when
comparing different scattering processes, whose relaxa-
tion times in general have rather different frequency
dependence, the addition of 1/l's (for example) has
at best only qualitative significance. For small q (most
important at low T), Cz is essentially constant in most
materials. For further discussion we often drop the
polarization dependence and put Pq ~ 3. Further put
co=Cd. It is convenient to change to the dimensionless
variable x=hu&/kT to examine the temperature depend-
ence of IC. Equation (3.32) is then

C' (kT) '
I:=

i i, x'rLq(x) 1Cph(x)dx. (3.34)
2x' &AC) ~0

For T«O the exponential dependence of C„h on x alIows
one to set the upper limit equal to ~.

Consider the idealized case in which

r(q) =Aq —"=A(kT/AC) "x—(3.35)

We are generally resigned to using the acoustic
approximation, cv=Cq, subject to reexamination on
application to a given crystal (e.g. , for q&2q, „ the
transverse acoustic mode in Ge has su=const").

Since in the Debye model one cuts off the integral at
some maximum frequency coo instead of a definite qo, it
is often convenient to use the transformation coq(q)
=Cq(8, p)q to obtain

d'q = cog'dcogdQ, /C), '.

Then
~4—n~x

Q~ T3—n dx.
& 0 (e*—1)'

(3.36)

The general case is more complicated since there are
several scattering processes which must be considered
simultaneously. A table of r(co) and X(T) for various
processes is given by Klemens. ' Equation (3.37) is a
useful "rule of thumb"; the actual temperature is some
compromise between the various processes, as discussed
later.

The law (3.37) has only asymptotic validity, since it
has been derived with the acoustic approximation.
Already at temperatures below T of the maximum E,
the Debye theory is known to fail. (Bla,ckman's article"
shows how markedly real spectra deviate from the
Debye assumption. ) When temperatures are sufliciently
high that an appreciable fraction of phonons have non-
infinitesimal wave numbers q, the simpler T' " law may
fail. Thus even to have a qualitative understanding of
the temperature dependence of E(T) one must consider
the actual distribution of normal modes. Since the
latter is very complicated and varies from crystal to
crystal, it is still useful (as in the theory of specific
heats) to consider an "ideal" crystal, having the simple
Debye distribution. This simplifies the task of announc-
ing general results such as (3.37) and considerably
shortens later discussion.

Now that a detailed knowledge of &o(q) is becoming
available for some materials, another method for the
evalua. tion of integrals such as (3.30) becomes available.
It is not necessary to know the density of states as a
function of co, the states are distributed uniformly within
the first Brillouin zone so that a knowledge of a&(q)
enables one to evaluate (3.30), if r(q) is known. In fact,
for strain-field scattering q is the more appropriate
variable than co Lisotope scattering is actually a function
of co; three-phonon processes involve both q and co(q)]
so that if this is the most important process one would
do well to avoid solving for q(co) even if a&(q) is available.
As another example consider again the transverse
acoustic branch of Ge, which is nearly flat in the L1117
direction for q&-,'q, . For this particular part of the
contribution to E one could just put co=constant. The
general case, in which many scattering processes occur,
is truly formidable from any point of view. The labor
involved in making a realistic evaluation of (3.30)
would probably be better spent investigating the
validity of the various relaxation time assumptions that
have gone into that equation.

The integral in Eq. (3.36) diverges if e) 2. This is no
difliculty in practice; the presence of competing proc-

This result is a useful rule to remember the temperature
dependence of E due to a scattering process for which
r ~ q ". This is reliable if rw))r Lace Eq. (6.1) for 7 j:

K~T' " if r~q " and T&&O~. (3.37)
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is a rapidly converging series, x))1. Now

so that the correction to I(pp) is

—AI= )t f(x)e *g(x)dx. —(3.38)

Under the states assumptions 1&)(x)& $(xp)—1. Thus
one may set )=1 inside the integral (3.38). Further
progress may be made by integrating by parts if

~
f'(x)/f(x)

~
&1, x) xp, as is very often the case. (The

differentiated function is then f).
As a simple example with a slightly different function,

namely, the familiar E(x) defined by Eq. (2.28), the
preceding method gives

x' x4 ( 1 )dx= ——xp'e " 1+0( —
I„p e —1 15 Exp)

where J'p is n'/15 and O(1/xp) denotes a (small)
quantity of the order of 1/xp.

esses always introduces a cutoff The net result is a size
effect.""Herring" has shown that for normal processes
rN ' ~ q'T5—,where s depends on the crystal symmetry.
For a longitudinal acoustic mode in cubic crystal
s=2. Then for r~ q ", n) 2, r~ —+ ~~ as q ~ 0 and
r= rc(1+P/rx) ~ rm q

' so that the right-hand side
of (3.36) converges. For lower symmetries s) 2 and a
size dependence follows ""

In a crystal of sufFicient symmetry the normal proc-
esses determine the deviation from equilibrium in the
limit of small q, if the relaxation time for the "resistive"
processes r„fx q ", n & 2. Thus there would occur no
"infrared" divergence in a cubic crystal of infinite size in
which there were, say, only isotopic scatterers, contrary
to what would follow if one naively took 7 ~ r4 in
Eq. (3.36). Actually, however, one rarely observes the
temperature dependence corresponding to r~ because
of boundary scattering, which in real life dominates the
conductivity before the temperature is lowered so far
that defect scattering is negligible.

For the reader interested in performing calculations
we note a way to take care of the fact that the upper
limits of integrals such as (3.34) are actually finite. We
still suppose that xp ——0/T is rather greater than unity,
so that the exponential character of Cph(x) can be
utilized with advantage. These integrals are generally
of the form

xo

I(xp) =
I f(x)g(x)e *dx,
0

where

5(x) =- (1-e-*)-'
= 1+2e ~+3e '~+

Here we are ignoring the subtle questions that arise
in the statistical mechanics of irreversible processes. For
the specific problem of thermal conductivity recent
progress has been made by Brout and Prigogine, "also
Peierls, ' and Van Hove. "

IV. STRAIN-FIELD SCATTERING

In Sec. II we examined the consequences of the
(assumed) existence of a relaxation time for the
various scattering processes. This section presents a
unified exposition of the scattering due to the static
strain fields of crystalline imperfections. The formal
theory is quite simple As in the case of three-phonon
processes, one can proceed quite far in a formal way if
one is content to suppress all ignorance into a single
term (similar to C«p ~ in the three-phonon interaction).
It is essential to have an understanding of strain-field
scattering in order to interpret other effects, for often
one cannot work with materials free of strains. For
example, the experimental results of Sproull, Moss, and
Keinstock32 show that the thermal resistance of dis-
locations can be quite large, a result not expected from
the original calculations of dislocation scattering by
clemens. 33 Thus if the dislocation content and distribu-
tion of a specimen are not known in a given experiment,
care must be taken to avoid strain.

In this section the elastic scattering of phonons by
static strain fields is examined.

The merits of the formulation presented in the follow-
ing are that one proceeds directly from the atomic
coupling constants; the scattering probabilities can be
expressed in a compact form by a method similar to that
used previously for the three-phonon case. The approxi-
mations presently necessary to obtain numerical results
are still crippling; however, these approximations are
deferred to the end of the calculation, where their effect
may be clearly assessed. Further, by using the atomic
approach we can examine structures of the anharmonic
constants (4.11) and (2.2), which may be useful in
planning future evaluations of these quantities. This
subject is especially important for understanding the
efl'ect of point defects, dislocations, and grain boundaries
on the crystal conductivity. It is necessary to make a
remark on the prescription given in the preceding
paragraph. The processes of elastic scattering of phonons
by different static structures are indistinguishable from
each other. Therefore, one must first add the matrix
elements for the various processes before squaring. For-
mally, we find this corresponds to a very simple result:

3' R. Brout and I. Prigogine, Physica 22, 263 (1956). Also of
interest is an analysis of a one-dimensional system by D. K. C.
MacDonald in Transport Processes in Statistical Mechanics, edited
by I. Prigogine (Interscience Publishers Inc. , New York, 1958),
p. 63. A simple discussion of the use of detailed balance for trans-
port problems is given by C. Kittel, Elementary Statistical Physics
John Wiley L Sons, Inc. , New York, 1959), p. 186.

3' R. Sproull, M. Moss, and H. Weinstock, J. Appl. Phys. 30,
334 (1959).

33 P. G. Klemens. Proc. Phys. Soc. (London) A68, 1113 (1955).



PETER CARRUTHERS

100

I

V) 50
IX
Q
O

20

V

10

Z 5

I-

2
O

O

0 1

V

y 0.5
0:
r

0.2

0.1
'I

ENRICHED Ge
/C-" 0.06 T I r

I

NORMAL Ge
E

~ I THERMOMETER ARMS L&
y(0.064 CM} ) 013

HALL L NERNST ARMS
(0.025 CM)

I I l I I I

2 5 10 20 50 100 200 500
TEMPERATURE IN DEGREES KELVIN

FIG. 2. Isotope effect on thermal conduction in germanium
(Geballe and HulP4). Note how much higher the peak conductivity
is in the isotopically pure (96% Ge") sample. The boundary
scattering (E ~ T') is in good agreement with the Casimir theory
(Sec. VII) for the pure sample, but does not approach T3 variation
in the normal sample even at the lowest temperatures attained.

34 P. Carruthers, Phys. Rev. 114, 995 (1959).

the quantity "responsible" for the scattering is the
Fourier component of the total displacement field, the
argument of this being q' —q, expressing conservation of
wave vector. '4

In elastic scattering the number of phonons is con-
served (but the wave vector of the phonon is not).
Elastic processes cannot interfere with inelastic proc-
esses because the final states are difFerent (hence
orthogonal). Likewise elastic scattering cannot inter-
fere with three-phonon processes because the number of
phonons involved is diBerent, so that one cannot have
co (q) = (a (q').

The interference between elastic processes is con-
veniently separated as follows: interference between (1)
scatterers of the same kind (e.g. , an array of dis-
locations), (2) scatters of different kinds. Such efiects can
be taken into account by introducing appropriate form
factors in the matrix elements. Specific assumptions
must then be made to evaluate the scattering, so that it
is important to know (at least qualitatively) the ar-
rangement of defects in a given experimental situation.

Before proceeding to the details it seems advisable to
discuss a typical curve of the variation of E with

temperature. The main features are as follows: at T=0,
K=0; the condu'ctivity rises rapidly to a peak K(T )
for T in the vicinity of 10—30' (the greater 0, the
greater T„),after which K drops ofF again, approaching
a 1(T dependence at high temperatures.

Above the peak Umklapp resistivity is responsible for
most of the resistance. For T«() we have seen that the
resistivity decreases as T is decreased despite the
decrease of the heat capacity as T'. As the Umklapp
resistivity becomes negligible, scattering by defects,
boundary scattering, etc. , determine the resistance. Thus
the temperature range around and below the peak is of
primary interest for investigating the eGect of various
structural and chemical impurities, which depress and
shift the peak in a way characteristic of the imperfec-
tion. At high temperatures T))Q, the resistivity due to
strains is independent of temperature since the distribu-
tion of phonons among the various modes does not
change with temperature, and the scattering probability
is independent of temperature. ' It is possible that the
excitation of the vibrational modes of dislocations
would provide a strong resistance at high temperatures. 35

Figure 2, taken from the work of Geballe and HalP4
on pure Ge, displays many of these features. (At such
low temperatures, the number of conduction electrons
becomes negligible in pure Ge.) The upper curve repre-
sents the behavior of an isotopically pure sample; the
lower, a sample of normal isotopic constitution. (The
scattering by isotopes is discussed in a later section. )
The thermal conductivity of insulators is often rather
large at these low temperatures, being sometimes greater
tha. n that of good electrical (hence good thermal)
conductors.

The problem of scattering by an arbitrary strain field
involves consideration of the change in the potential
energy due to a displacement field V, supposed known
from a calculation in classical elastic theory. The theory
is not restricted to the use of displacements calculated
from elastic theory, but only such results are readily
available. The results of atomic calculations of the dis-
placements due to various defects in any event agree at
large distances from the region of disorder responsible
for the strain. For strain fields whose range is rather
short compared to the extent of the disorder, one cannot
expect the results of elastic theory to be sufFicient. In
particular, the concept of displacement loses meaning in
a disordered region. Thus the present development is
inadequate for this situation. One should be able to
estimate the scattering from such a region by consider-
ing most of the scattering to occur at the surface of the
disordered region (i.e., impose an appropriate boundary
condition). We do not consider the difficult problem
posed by such disordered regions, for the details of the
strain-field scattering are already rather complicated.

The harmonic potential gives no contribution to the
scattering except possibly through the virtual excitation
of some internal (nonphonon) degree of freedom, such
as the oscillations of a dislocation, which must be
investigated separately. For this reason we examine V3.

"A. Granato, Phys. Rev. 111,740 (1958).At present there is no
evidence that these vibrational modes are important in nonmetals
at low temperatures. The situation could be quite different for
metals.
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The expansion of V3 cont iins four t.ypes of contributions
which we write schematically as

ZB V': constant, energy shift

ZBV'U: gives no contribution

ZBV U'-: scatters phonons

(4.2)

(4.3)

ZBU': ordinary three-phonon processes. (4.4)

Equation (4.1) represents a constant energy shift, the
"anharmonic" strain energy, which we can safely ignore
for the consideration of scattering processes. Then there
is a term linear in phonon operators (4.2). If we treat
this term in perturbation theory we see that the first
order gives zero, because of energy conservation. In
second order there are two contributions corresponding
to the order of emission and absorpt, ion of the phonons;
these contributions in fact cancel exactly. A more
fundamental way is to observe that if it had been
included in the Hamiltonian from the beginning, t.he
driving term representing the stress field would have
canceled it ofI' by the equilibrium condition, as occurred
in the discussion of the harmonic approximation.

The perturbation of interest in Eq. (4.3) (the energy
conserving part) is

where

AVg= Q(NgMg ) Cgq'aqGg'
2pQ qq'

Cpp: P Vq —q e,'e, 'b;, &(q, q', q' —q) .
ijf

(4.8)

(4 9)

The consideration of matrix elements of EV3 between
specific states selects just one term out of the sum over

q, q'. The appropriate matrix elements are, using (1.6),

It ((,Vq+1)N, ) '
cV, q= Cq

2pQ ( Qtqcoq )
(4.10)

Wave vector conservation is in general not the same as
momentum conservation, even for long-wavelength

phonons, which interact with the lattice as an elastic
continuum. The running waves carry no momentum;
u is linear in the phonon operators so that (u) =0. This
point, and the transition to the limit of classical elastic
theory, are discussed by Leibfried4 (p. 304).

It is convenient to rewrite Eq. (4.5) in a form similar

to Eq. (2.1) by summing over the Cartesian components

(ij k) Fu. rther, by using simple symmetry properties"
one may show that the H.c. term is identical to the first
term (qAq'):

2 (M.~') *e'e. "
4pQ qq'

ij1.

Ii (iVq(Vq. +1)) &

31s~a' = csu'*I I
~

2pQ 0 Q) qQJq )
(4.11)

V =P Vs exp(iq m), (4.6)

X(a,a, *V& q'b;, (q1, q', q —q')+H. c.). (4.5)

In obtaining (4.5) we have expanded V in a Fourier
series:

On u»ng Eq. (2.5) for the transition probability, the
rate of change of the number of phonons in state q, ) is
[cf. the remarks following Eq. (3.4)]

(BtVq)
I

=P [Prob(q' ~ q)
—Prob(q ~ q')] (412)Eat),

V, =Q ')I d'm exp( —iq m) V . (4.7) or

In obtaining Eq. (4.5) we have used V,=V,* (since
V =V * is real).

The term b„f, is again given by Eq. (2.3).Wave vector
"conservation" follows essentially as in Eq. (2.7). This
conservation law is strictly true only in an infinite
lattice, for if one moves the defect by some number of
lattice constants, the interaction of the defect with the
surface is di6erent. The energy is unchanged by such
a displacement for the following cases: (a) infinite
lattice; (b) short-range strain fields; (c) a sufficiently
homogeneous distribution of defects. These situations
cover all the cases of practical interest; in fact, we have
already implicitly ignored surface eGects by using
periodic boundary conditions.

Since V is a function defined on the (unstrained
lattice) points m (even though we are using elastic
continuum theory to obtain V) the sum on q in (4.7)
extends only over the first Brillouin zone.

Equation (4.5) shows that the lattice absorbs the
amount of wave vector lost by the scattered phonon.

(aN, q

I
=—Zl ltlf'-. I' —lb'.-, I')

(Bt j, pa'
Xb(~, ~;) (4.13)-

or

(BN, q 1

E at 2, 16+p2n

8((u,—(o, )
X d'q' Cqq~ A'q~ —Xq . 4.14

GOqM q&

We note that A has canceled out in the final equation
(4.14). The result is essentially classical, but we believe
the quantum-mechanical treatment is far preferable
for physical understanding. The natural next step,
namely, to represent the strain field as a superposition

"Note that Cqq 0 when q=q', as follows from (2.3) and (2.4).
Now using the definition (2.5), one can see that Cqq&* Cq q&
which proves the assertion. [The necessary relations are that
Vq*= V & and b;;I, (—Z', q, p' —p) =b;;&(p, —p', q' —p) j. (These re-
sults hold true for more general potentials. )
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of virtual phonons, is probably not worthwhile at the
present time. In such a formulation one must retain the
quantum-mechanical treatment.

If we compare this result with Eq. (2.4), where
dNq/dT may be aPProximated by dNqo/dT, we obtain
a linear integral equation for the distribution func-
tion E,:

dx, p

C, vT
dT 16m p'0

a(co co )
xJ d q'p Ic„ I (N, .—N, ). (4.15)

0707

The Boltzmann equation is obtained by setting
the right-side side equal to —R(q), where R(q)
= —C VT(dN/dT) is the rate at which the heat current
delivers phonons to the mode q. Further define the
single-mode relaxation time (i.e., n, =0) by

1
ltd% Z a(coq coq')Pqq'

r, (q) J
(4.22)

Write the net rate of change of phonons in the state
q= (q, lc) due to elastic scattering as

f anode
I

= "d'q' E a(~q ~')Pqq (n' n.)—(4 21)
E at).

dNo/dT =No(No+ 1)(fccd/tcT ) (4.16)

It is convenient to rewrite this as follows: simple
algebra yields 1 1 (anq)

I, n, , =o.
ro(q) n, ( at ) (4.23)

Define g&, (q) by

no = No'(N'q'+ 1)g~(q)

Then (4.21) can be rewritten in the following con-
venient form:

(4.17)

Since N, '=N, ' Eq. (9.9) assumes the form (taking
dIIv2) n, = roR(q)+

Jfd q Q a(Mq Nq )Pqq
X'

(4.24)

kT' Bq, Bx 16m p'0
n, —= roR(q) +(n,). (4.25)

a(cd, —co, )
xJ d'q' ~ I c« I [g,.(q) —g„(q)]. (4.18)

M qGOq&

The presence of the a function in Eq. (4.18) restricts
the contributions to the integral from states q' on the
energy surface. It is often useful to examine the allowed
transitions for possible energy surfaces. This is easily
done by making the replacement

d'q'a(~q —~q ) ~ d~'I as~/aq-'I ', (4 19)

where Ace=—co,—co, measures the departure from energy
conservation and q„' is the component of q' in the direc-
tion of the normal to the surface 5'. This result follows
from

The average indicated in (4.25) is clearly over the
energy surfaces ~=co', weighted with the transition
"probability" P« [For dis. locations, however, the
separation in (4.24) is inconvenient since 1/ro diverges. ]
The form (4.24) is reasonably convenient for solution;
in certain situations it may be solved by iteration, in
this case we write the solution symbolically as

n, =roR+(roR)+((roR))+ . (4.26)

The validity of this expansion depends specifically on
the problem; tests for convergence may be found in
standard references. If (4.26) converges then the relaxa-
tion time, defined by n, = rR(q), is given rigorously by

8[f(z)]=[1/I f'(xo) I]a(x—xo) if f(xo) =0, (4.20) r(q) = ro(q)+ + +
R R

(4.27)

by integrating over q„'.
Equation (4.18) cannot be solved for two reasons.

First (4.18) is not complete since the three-phonon
collisions have been neglected (and generally one has
to add terms corresponding to boundary and "isotope"
scattering). Even if one adds only the three-phonon
term [see footnote 1, p. 49, Eq. (2.76)] the re-
sulting equation is truly formidable. A solution of this
equation, even for a simplified model, is essential for
further progress. Until some such solution is accom-
plished, the following method, which treats some
scattering processes exactly, and others according to a
relaxation time approximation, may be useful.

Since R is essentially C&, cosaf(co), f(co) cancels out of
(4.27) by virtue of the energy-conserving delta function,
and the averages are taken essentially over Tp weighted
by angular factors.

A slight modification covers the case in which there
are additional processes described by a relaxation time.
Let us add to the right-hand side of (4.21) a term

nq/rc On defining r ' = ro '+ r& ', the appropriate
generalization of (4.24) is

nq=rR(q)+rJl dqq g a(cdq co«)Pqq nq —(4.28).
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Van Hove" gives a general argument for the justifica-
tion of the intuitive relation Eq. (4.12).

may rewrite Eq. (4.33) as

Speci6c Cases: Point Defects and Dislocations

In order to apply Eq. (4.22) it is necessary to evaluate

Vq for the given problem. For our purposes the evalua-
tion of b;;& given by Eq. (2.15) is sufficiently compli-
cated. Recall the definition of the quantity of interest
here Lsee Eqs. (4.9), (2.19), and (2.23)j:

)iVigqC„=
~

~g(v, , a)(e,"a)(e, a)
& 2a') ~

X(q a)(q' a)(q' —q) a, (4.29)

where the sum is taken over the nearest neighbors of one
atom.

From Eq. (4.29) it is easy to extract the temperature
dependence of E from a knowledge of the q dependence
of Vq. Assume for simplicity

(4.30)

Then from Eq. (4.29)

For an outside sphere embedded in an isotropic
elastic medium the displacement field is given by"

V(r)=A(r/r')=Ar/r' r&ro
=0 r&ro,

(4.34)

where ro is the radius of the impurity (ro=u) and A is a
constant.

The solution, Eq. (4.34), is characterized by zero
divergence, r) ro (cf. the electric field of a point charge):

where 0. is the number of independent directions in
which V3 is invariant under translation. For example,
for scattering by the stra&i field (not "contact" refiec-
tion) of a platelike object 0 = 2; also, if the plate lies in
the xy plane, q, =q~', q„=q„', q, '= —q, .

Equation (4.33) is useful for estimating X(T) for
strain fields of different ranges and symmetries, since
most of the required Fourier transforms are easily
estimated.

Point Defects

~C« ~'=constXq~ .

Consider Eq. (4.22) for r.
(4.31) 8 )xp 3 3x2

I

—I=—Z ——=o. (4.35)
~iBx, Lr'& r' ~ r4 r

b(co —a)')
t diq~ q6

—m

Cd%

(4.32)

(4.33)

In obtaining (4.33) from (4.32) the 5(co—cv') restricts
the integration to the energy surface, of two dimensions
in q. Note the T —' law, obtained from the T' " law
(Eq. (3.37)j.

This dimensional argument is only true for "three-
dimensional" scatterers and not for two-dimensional
objects with translational symmetry, such as dis-
locations. The reason for this is that when V3 has
translational symmetry (as is the case for a straight
dislocation) there is an additional constant of the
motion. As an example consider a dislocation whose axis
we call s. Invariance under displacements in the s
direction gives q, =q, for all collisions besides the
condition

f q [
=

J
q'

f
.

In passing to the continuum this expresses itself as
a factor 8(q, —q.') in the integral Eq. (4.32); in other
words, the density of states is decreased by one
dimension.

Another conceivable complication is that the simple
power law such as Eq. (4.30) may not be valid, so that
a careful examination of Eq. (4.22) is necessary to
extract the temperature dependence of the conductivity;
however, one can usually speak of an "eGective" m in
Eq. (4.30), in certain limiting situations.

For imperfections for which Eq. (4.30) is adequate, we

Similarly, the rotation V')(V= 0. In his original
formulation" of strain-field scattering, Klemens simpli-
fied the interaction potential in such a way that the
dilatation and rotation appeared, rather than the dis-
placements. This point of view led to the conclusion that
a displacement field such as (4.34) produces no scatter-
ing. The situation is sufFiciently delicate to merit further
discussion. First one notes that Eq. (4.35) cannot be
valid everywhere; that is, the displacement field must
have a source. Previously this source was characterized
as an outsized sphere, although a similar model may be
used to describe a vacancy. We may incorporate this
source into a generalization of (4.35) by using the
restrictions (4.34), but first it may be helpful to call
attention to the analogous case in electrostatics. The
electric field of a point charge is proportional to
K= —V(1/r). Obviously one has V E=VXK=O if
r/0; however, by including the source (the point r=0)
one has V E= —V'(1/r) = 4mb(r), where 5 (r) is the usual
Dirac delta function.

Hence for the Fourier components of E, one has
E,=iq(1/r)~=4ziq/q' and not zero, as would be the
case if the source were neglected. Evidently the dis-
placement (4.34) can be written as V= —AV(1/r) so
that the present problem is directly analogous to the
preceding example, for r) ro. We want to keep ro finite,
however, as it turns out that this has important con-
sequences. In the following the language used is ap-

"J.D. Eshelby, Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1955), Vol. 3.



iio PETER CARRUTHERS

propriate to vacancies. Suitable modifications may then
be made for other cases of interest. First let us justify
the choice v(r)=0 inside the vacancy (r(rp). This is
reasonable upon recalling the form of the scattering
potential, which is linear in the displacement field; for
the case of a vacancy (an inward negative radial dis-
placement) this can be considered as an attractive
potential well. Evidently there is no contribution to the
strain-field scattering from regions with r(ro, so that
even though the concept of a displacement has no
meaning in this region, the choice (4.34) is correct. The
potential-well analogy is useful; for the vacancy the
potential is short range and attractive up to the "radius"
of the vacancy, where the potential rises rapidly to
zero. This latter feature is discussed in more detail later.

Consider a sphere of radius r and outward surface
element dS; Eq. (4.34) shows that

Jl v(r) dS=4prA r)rp,

=0
(4.36)

4riAq it'sinqrpq

nq L. qr, &

(4.38)

The particular form of the factor sin(qrp)/(qrp)
depends on the abrupt cutofI' used at rg. For long-wave-
length phonons (thus for temperatures below the low-
temperature peak) with X))a this factor is just unity;
that is, the waves cannot feel the structure of the core.
At temperatures above the peak there are many phonons
for which this is not true. There the scattering is con-
siderably reduced; the potential-well analogy used
before guarantees that this result is not due to sharp
cutoff. In retaining finite 0 in (4.38) periodic boundary
conditions are assumed; the precise method used cannot
affect the final results. [Incidentally, if one needed
p(r) = i p for r (rp, say, then one should add to the right-
hand side of (4.37) 2pp/r for r(rp and zero for r)rp.
None of the essential conclusions following would be
altered. ]

If we use Gauss' theorem to rewrite the left-hand side
of (4.36) as J'V' vd'x, then the necessary generalization
of (4.35) is

V.v (r) =A P (r rp)/r pP— (4.37)

If one takes the limit r0~0, the right-hand side of
(4.36) approaches 47rA5(r) as required. In a theory in
which V' v is the central quantity the interpretation and
use of (4.37) could be troublesome; however, our need
for it is only to compute v~, whose physical significance
has been previously considered. For this purpose we use
the relation (V v) = —iqv„since (VXv), = —qXv, =Q;
v is parallel to q, so vp=iq(V v),/q'. The discussion of
the role of surface terms in these relations is standard.
Equation (4.37) is used to derive easily

First let us consider the behavior for long wave-
lengths. Then Eq. (4.38) gives vppp 1/q. From Eqs.
(4.30), (4.33), and (4.42) one concludes that

1/r~ q4~ pp'; small q. (4.39)

This result might have been anticipated (falsely!)
from experience with Rayleigh scattering, which varies
with frequency as (4.39). However, it is essentially an
accident that the result (4.39) was obtained, for the
strain-field scattering depends very definitely on the
spatial variation of v(r). Hence the statement that point
defects obey (4.39) because the scattering is essentially
Rayleigh scattering must be regarded as incorrect for
strain fields. (The point is that the strain field is Noi

localized. ) In fact, we find that the strain-Geld scattering
arising from (4.38) is in general larger than the Rayleigh

scattering.
From (4.39) one might conclude that IC(T) pp T ' for

point defect scattering at low frequencies; however, for
X ~ 0, r ~ X 4 is so large that other processes determine
the scattering in these low frequency modes. This
problem is discussed in Sec. VI.

Before calculating 1/r for the displacement field
(4.34) let us estimate the constant A measuring the
strength of the distortion. If at ro the relative atomic
misfit is prp (rp is of the order of interatomic distances
for the problems contemplated here), more precisely
v(rp) =—prp, one has from (4.34)

A = ~ro'. (4.40)

A typical value of e is, say, —,'0."
Now we take up the evaluation of ~C« ~'. As men-

tioned before, Eq. (4.29) is appropriate for nearest-
neighbor central force interactions in a simple cubic
lattice. We further suppose that the energy surfaces of
the polarization branches coincide, that co=cd, c=con-
stant. These simplifications permit the sum over X' to be
performed using the completeness relation

P e&, "'(q)eg '(q) =8„, (4.41)

"Klemens has compiled a table of various parameters such as e,
in footnote 33.

where r, s specify the Cartesian components of the
polarization vector ez. 8„, is zero for r/s, unity for r= s.
If further we define 1/r= p gi 1/ri, then (4.41) can
be used again to remove all of the polarization vectors
from the right-hand side of Eq. (4.22) defining 1/r.
This shifts the difficulty of handling the polarization
vectors to the problem of determining the meaning of
the mean relaxation time defined previously.

For simplicity we set rp equs. l to zero in (4.38) and
calculate the scattering of a truly "point" defect. The
changes brought about by a finite ro is then considered.
With these simplifying assumptions the mean single-



THERMAL CONDUCTIVITY OF SOLI DS

mode relaxation time Lsee Eqs. (4.22) and (4.23)j is 10

1 1 g'A'q'
dt's'f(04')

fp 0 3P'c' ~

2*5'i'"(v' —v.')'
f(0,f)=

I q —q'I'

(4.42)

In the sum i takes on the values x, y, s (taking the
coordinate axes along the cube axes). The differential
cross section for scattering is proportional to the func-
tion f(Lj'). Tp ' reduces to an integral (over the solid

angle) of a rather complicated expression. 0 ' may be
identified as the density of scatterers, so that if there are
p random scatterers per cc, then (see the following) just
replace 0 ' by a. Because of the considerable uncertainty
in the constants g and A, we evaluate (4.42) for the
special case of a phonon traveling down one of the cube
axes. Then the angular integral is 87r/15 and rp is

given by

I
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Whenever possible g should be calculated from an
explicit potential, and care must be taken to evaluate
the importance of next-nearest neighbors and the
particular lattice structure; however, to get an order of
magnitude estimate of (4.43) (see Appendix A), one can
set g= 2+pc'

I p is Griineisen's constant (roughly equal
to 2)j so that (4.43) is

1/rp=3X10'p (yA) cq .

The inclusion of y as a distinct variable is rather super-
Quous, since other factors whose variation has been
neglected vary much more than p when diferent mate-
rials are compared. It is instructive to compare the
present scattering with the "Rayleigh" scattering by a
sphere of radius rp. (Clearly rp is the appropriate
relaxation time to use for the calculation of a scattering
cross section. ) This comparison is made below, where it
is concluded that as long as the relative misfit e is
appreciably greater than —,'p, the strain-field scattering is
much greater than the "Rayleigh" scattering.

(Now Tp is not the appropriate r to be used in calcu-
lating the thermal conductivity, as discussed before. We
note in passing the result obtained if the usual assump-
tion is made' that the only important term in the
expansion of n, in terms of Legendre polynomials is
just P,= cos 8 (here 0 is the angle between q and VT.)
For q parallel to VT, r is calculated to be 4/7 of Tp

given by (4.43.)
From his analysis of the resistivity of the associated

calcium ion-potassium ion vacancy complex in KCl,
Slack" deduced the strength of the co4 scattering.
Klemens' pointed out that this value was about seven
times as large as expected from his earlier calculation. "

FIG. 3. Thermal conductivity of six KCl crystals containing
various concentrations n„of Ca, as measured by Slack.~

It seems that the strain-Geld scattering calculated here
can explain this discrepancy with a modest misfit
parameter p of about p', or if g is twice as large a,s 24ypcP,

yp Before this conclusion should be accepted, however,
it is necessary to make certain that Slack's method of
taking the three-phonon processes into account (taking
r constant'" below cp=kT/5) does not vitiate the
result.

Slack's experimental results are shown in Fig. 3. LThe
curves are much smoother on a linear plot (see foot-
note 22) but the log-log plot is best for comparison
with the other figures herein. i While the depression at
temperatures above the maximum is appreciable, the
low-temperature depression is enormous, though the
data are somewhat incomplete in this region. This
behavior is not that expected from pure co' scattering,
for which the deprsesions above and below the peak are
comparable. (See Fig. 2; actually the most striking
illustrations of this latter fact are given in measurements

"In his important paper" of 1951 Klemens noted that for
sufficiently low frequencies the three-phonon processes dominate in
certain cases. The exact solution was then approximated by con-
sidering the contribution of each process separately, but regarding
the relaxation times as constant below a certain frequency, chosen
as kT//A. According to this procedure one can separate the various
contributions to the resistivity. It is now clear that this approxima-
tion is often very poor, especially for relaxation times which vary
strongly with frequency (isotopes, e.g.). Although a much better
description of the three-phonon process was made available by the
work of Herring~0 in 1954, most published work has continued to
use the older approximation. These experiments should be re-
analyzed. (a) P. G. Klemens, Proc. Roy. Soc. (London) A208, 108
(1951).
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FIG. 4. Thermal conductivity of one crystal of LiF as a6ected
by successive irradiations at room temperature (Pohl~). The treat-
ment for each curve is: A, cleaved and annealed (the dimensions
are 6.7X7.3X40 mm); 8, x rays, nz=4. 2X10" cm 3; C, x rays,
ny =7.1&(10"cm; D, x rays plus 1.5-Mev p rays, nz= 2)(10'8
cm 3; E, partly bleached.

of Williams" and Toxen. ") Although the finite size of
the defect causes the reduction of the scattering of
high-frequency phonons, this does not occur at tem-
perature below about 0/5, which is about 50'K in this
case. Slack showed that the low-temperature depression
was consistent with other evidence that colloidal par-
ticles were formed. While further work is needed to
make this conclusion 6rm, the power of thermal con-
ductivity measurements as a tool for exploring lattice
defects should be clear from this example. It is the
author's opinion that thermal conductivity experiments
will reveal many interesting new aspects of defect
physics. The reason for this optimism is that in low-
temperature thermal conductivity measurements one
can measure the scattering of phonons of diGerent
frequency merely by varying the temperature. Figure 6
is an especially good example of the sensitivity of the
method, as discussed in more detail in the following.

Some interesting features are present in recent experi-
ments by Pohl. 4' Il centers were introduced by x-ray

W. S. Williams, thesis, Cornell University (unpublished);
Phys. Rev. 119, 1201 (1960)."A. M. Toxen, thesis, Cornell University (unpublished).

~R. Pohl (private communication); Phys. Rev. 118, 1499
(1960). This effect seems to be present also in the work of A. F.
Cohen, Proceedings of the Fifth International Conference on I.ozo
Temperature Physics and Chemistry (University of Wisconsin
Press, Madison, Wisconsin, 1958), p. 385. See also footnotes 21
and 40.

and y-ray irradiation. The results (Fig. 4) are not what
one would expect from random point-defect scattering
according to 7- '~ ~', since there is almost no depression
on the high-temperature side, but an enormous reduc-
tion on the low-temperature side. According to both
theory and experiment, the scattering leads to com-
parable depressions on both sides of the peak. Further,
at sufficiently low temperatures the co4 scattering
decreases so that the various curves become asymptoti-
cally tangent. There seems to be no possibility that the
curves of Fig. 4 can approach each other.

One can derive qualitative information about the
frequency dependence of the scattering from Fig. 6,
which compares the F-center data4' (curves B, C) with
the dislocation data of Sproull, Moss, and Weinstock"
(curves D, E). We anticipate somewhat by asserting
that for the dislocations 7. '~ co. Then it is evident that,
since the maxima are about the same for the pairs (B, D)
and (C, E), the F centers scatter more strongly than
dislocations above the peak, and less strongly below.
Thus it appears that the relaxation time obeys 7 ~ Go'

or perhaps co'. Now how could this happen? One
possibility is that irradiation produces the defects in
groups having essentially cylindrical geometry. As is
evident from Eqs. (4.48)—(4.50), this has the effect of
reducing r ' from co' to co', and also by another factor
depending on the precise distribution. If the Ii centers
(interstitials are probs. bly present, too) are indeed
randomly distributed, then Pohl's experiments provide
evidence that the displacement 6eld has a longer range
than (4.36) gives (1/r'). Now if for some reason

v(r) =A'r/r2. A'=er02 (4.44)

'3 By calculations similar to those described following Eq. (6.5),
R. Pohl (private communication) has found that curve P of Fig. 8
can be explained by 1/v =AoP, if curve n (the pure crystal) is fit
to the proper boundary, three-phonon, and residual u' scattering.
The numerical constant A agrees with that indicated in (4.45) with
a reasonable misfit e = 5. This agreement seems to call for a careful
study of the displacement fie]d of F centers to see whether the
agreement is fortuitous. LPrevious calculations have given
e(r) ~ 1/r~, instead of the 1/r implied by (4.45).j

then one Ands r '~co'. A simple calculation almost
exactly like that leading to (4.43) shows that for (4.44)

1/r =1~(g~'/~)'(V'/~'), (4.45)

where the meaning of the symbols is the same as before.
(We have assumed n, ~ cos9 in obtaining this result. )
The ratio of (4.45) to 4/7 of (4.43) is roughly 1/(qro)'
(assuining the same misfit) so that the 1/r scattering is
appreciably larger than that arising from s(r) ~ 1/r2, as
expected on physical grounds. Further experiments and
calculations are in progress to see which, if any, of these
ideas are correct. 4' Another curve obtained by Pohl~ on
the eGect of F centers introduced by additive coloration
in KCl may be of interest (Fig. 5). (It has not proved
possible to color LiF in this way. ) Essentially the same
behavior is observed as in the irradiation experiments.
If precisely the same behavior is observed in more
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(4.48)

This supposes that the displacement field is purely a
superposition of the displacements of the individual
defects. Actually there is a change due to the mutual
interactions, so that (4.48) is reliable only if the dis-
tance between the various defects is not too small. "For
a short-range displacement Geld we can change the
coordinates to prove that

where x is qr&, (4.46b) gives likewise

v, =4'jLtan-'x —x(1+x') ')/q'. (4.47b)

In the limit r~ —+ ~ the previous results are recovered.
It is simple in principle to consider interference efFects

of nonrandomly distributed defects. " The total dis-
placement at point m due to defects at positions n is

2 4 6 8 10 20 40 60 100
TEMPERATURE IN DEGREES KELVIN

V, =Vs' P exp(iq n ), (4.49)

Fn. 5. Thermal conductivity of Harshaw KCl, 4)&4.5X40 mm
(Pohl~). A, cleaved and annealed; 3, after additive coloration,
F-center density, nz =8& 1017 cm 3. Since the surface was damaged
during the coloration it is not known how much of the low-
temperature depression is caused by the change in specular reQec-
tion. Since the crystal is rather large, we expect this influence to
be small.

v(r)= (e "I"/r')r-
v(r) = (e '~"~/r)r".

For (4.46a) the Fourier coeKcient is

v, = A+4(1—x—' tan —'x)/g,

(4.46a)

(4.46b)

(4.47a)

complete photochemical and additive coloration experi-
ments, then it seems unlikely that one can invoke
arguments such as special characteristics of radiation
damage, such as cylindrical distributions. (One must
rule out migration to dislocations during additive
coloration, however. ) In that case one can deduce
scattering laws such as (4.4S) and then try to under-
stand how they might arise. (Incidentally, the mass-
difference effect associated with the F centers is
negligible. )

There is evidence against the formation of large
clusters in the LiF J -center experiments. " Large
clusters would be expected to have a frequency-
independent cross section. The top curves of Figs. 4 and
6 are not really typical of boundary scattering. There
is much specular reflection (the temperature dependence
is not T'), and secondly, the presence of background
impurities prevents the maximum from reaching a high
sharp peak (see the top curve in Fig. 8). Thus the
resemblance of the J -center data to the annealed
crystal data is not signiicant. (In fact, if 1/r ~ co', then
a boundary cutoff is necessary for the low-frequency
phonons, so that there is a size dependence. )

For completeness we include the results for screened
displacement fields:

where V~' is, as before, the Fourier component of the
displacement of a single scatterer. Equation (4.49) is
correct if V ' does not depend on the orientation of the
defect. )For the case of dislocations Eq. (4.49) must be
modified. ") Thus one must insert under the integral
sign of Eq. (4.22) (which determines r) the form factor

F(q—q') =
I 2 expL~(q' —q) n-) I' (4 So)

For a random array, the interference terms cancel,
leaving F=n, where e is the number of scatterers.

This correction does not take into account multiple-
scattering corrections since we have assumed that the
wave approaching each scatterer is just the incident
plane wave. This ignores the fact that the waves from
the other scatterers are also incident on the chosen
defect. In such a case the effective wavelength is changed
in a way that often can be described by an index of
refraction. The present calculation assumes effectively
that for the phonons the index of refraction of the
medium is unity. For large concentration of defects this
approximation is poor. The uncertainty arising from this
is in general much less than that arising from the
approximations made in deriving a result such as
(4.43), for example. An estimate of such corrections is
given in Appendix C, where it is shown that in most
experimental situations their importance is probably
small.

The form factor F(q—q') can be expected to be
important when point defects are allowed to migrate in
the strain fIelds of dislocations. The following "ideal"
experiment could examine this effect. Suppose one had a
number of identical crystals. Deform each under the
same conditions; then introduce the same number of
point defects in each.

Then the crystals are to be aged for different lengths
of time at som~ temoerature which permits substantial
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E=A sin(e)/r, (4.51)

where r is the distance of the defect from the center of
the dislocation, and A is a constant (=10 ~ erg cm).

A (0 for a vacancy or undersized atom,
(4.52)

A &0 for an oversized atom.

Equations (4.58) say that vacancies move to the
region of higher compression.

The Boltzmann factor is

A sing'
N(r, e,T) =n, exp~—

reer )
(4.53)

It has recently been shown" that Fermi statistics are
more appropriate for this problem.

Equations of the type of (4.57) and (4.59) are
extremely useful in understanding the migration of
point defects in the stress field of an edge dislocation. 4'

44 A preliminary experiment of this type has been performed b
Miles Klein at Cornell (private communication). A Mn-doped
NaCl crystal showed a substantially lower conductivity than the
pure crystal (on the low-temperature side of the maximum) ~ After
annealing, the conductivity increased to essentially that of the
pure crystal.

4' A. Cottrell, Dislocation and Plastic Florio in Crystals (Oxford
University Press, New York, 1953), p. 56.

'~ D. N. Beshers, Acta Met. 6, 521 (1958).
47 A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. (London)

A62, 49 (1949); F. S. Harn, J. Appl. Phys. 30, 915 (1959).

diffusion of the introduced point defects. First the
strain around the dislocation is somewhat relaxed (but
not completely) so that the dislocation scattering is
reduced; however, it is possible to have a dislocation
density which is both sufficiently low that dislocation
scattering is negligible and yet sufficiently high to
modify visibly a concentration of point defects large
enough to depress the conductivity. We suppose that
this is the case, and imagine what might happen as we
measure the thermal conductivity of crystals of succes-
sively longer aging time. First there would be some
constructive interference as the defects became closer,
but not so close that their displacement fields are sub-
stantially altered. In this case one would expect the
conductivity to decrease; however, if the specimen is
aged a long time, some precipitation would be expected,
so that this "Rayleigh" scattering (smaller than the
1/r' type strain-field scattering) would give less re-
sistance; the conductivity might approach that of a
pure crystal if all the defects could be accommodated in
the dislocation core. Thus one expects E, as a function
of aging time, Grst to decrease and then to rise to a high
asymptotic value. 44

To understand the tendency of point defects to
cluster around dislocations, we quote the elastic energy
due to the interaction of a spherical point defect with
the dislocation stress field" (for an edge dislocation) in
an isotropic elastic medium:

Another eGect is the clumping together of some of
the defects. " For example, a vacancy and interstitial
generally attract each other, reducing the scattering.

At this point we examine the possible consequences of
the fact that for the strain-field scattering of point
defects the relaxation time is not pure co ' (cf. Eq.
(4.39)]. In particular, it is instructive to compare this
with isotope scattering, which as we see later, should be

.purely rico 4.

There are essentially two reasons why the scattering
of high-frequency phonons is less than estimated by
equations such as (4.43). The finite size of any defect
has the effect of eliminating the large q components from

V~ Le.g. , the factor sin(pro)/(pro) in Eq. (4.40)] cal-
culated for a point source. The precise way in which this
occurs depends upon the detailed structure of the core
of the defect, a problem" we wish to avoid; however,
one can say generally that this detail becomes noticeable
when qu= 1, where c is the range of disorder in which
elastic theory is invalid. Secondly, if qu=1 (a is a length
of the order of a lattice constant), then the expansion of
the trigonometric functions Lsee Eq. (2.14)] which led
to (4.29) is no longer valid.

Therefore, at some temperature of about T=O/5
Lcf. Eq. (2.30)] one may expect the strain-field scatter-
ing probability to be diminished somewhat. The exact
amount of reduction would require a careful investiga-
tion. Fortunately, in many cases of interest for thermal
conductivity, only the Umklapp scattering is important
at such temperatures.

When should one not use the theory of strain-field
scattering? It was indicated at the beginning of this
section that when the displacement field has too short
a range, the scattering by the disordered region re-
sponsible for the displacements is more important. Now
the scattering of long-wavelength waves (i.e., long com-
pared to the dimensions of the disordered region) from
such a disordered region is described by the so-called
Rayleigh cross section. Hence the magnitude of the
strain-field cross section a.pp relative to the Rayleigh
cross section o-g settles this question. To get a rough
estimate of o.qp we suppose that the mean-free path / is
given by Crap, then o.sp ——(ere) ', where n is the density
of point defects. The cross section for the scattering of
sound from a sphere of radius ro is, when P))ro,

op ——(16m./9)(co'ro'/C').

Thus from Eq. (4.45) we have

os p/a a= 150''.

So if e& ~'~, a sF/oa& 1. Although there is some un-
certainty about the estimate of the anharmonicities it
seems that in general one may expect the conclusion to
stand. Interstitials may usually be expected to have
larger misfits than substitutional atoms. Also, the
importance of strain-field scattering is diminished from

8 L. Tewordt, Phys. Rev. 109, 61 (1958).
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that described before if the defects occur as, e.g., an
a,ssociated vacancy-interstitial (or substitutional atom)
pair, as in the experiments of Slack.~ However, these
pairs often have a net e not equal to zero. (The analogous
situation in electrostatics is the field of a monopole plus
dipole. )

When O.zp=az these two cross sections cannot just
be added. When o.z is dominant the scattering is poorly
known, for in addition to the "geometrical" Rayleigh
scattering there is scattering due to changes in force
constants, etc., near the defect. The very dificult
problem of calculating such scattering has been begun
by Klemens. 33 He finds that scattering is of the same
order as O.g, as might be expected.

The conclusion is that, when the strain-field scatter-
ing dominates, the only major barrier to the calculation
of v is ignorance of the anharmonic force constants, a
situation which probably is alleviated in the future by
both experimental and theoretical progress.

Dislocations
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In this section we treat the scattering of phonons by
straight dislocations. Even this idealized case is rather
complicated because of the anisotropic nature of the
displacement field. Because of this anisotropy the relaxa-
tion time is not independent of angle, if only a single
dislocation is present in the crystal. However, for an
experimentally obtainable situation, there are almost
always a sufhcient number of dislocations, oriented at
sufIiciently random angles, that the effective relaxation
time is independent of angle.

The first quantitative measurements of the reduction
of E due to the introduction of dislocations were made
by Sproull, Moss, and Weinstock. 32 (They obtained
a reliable estimate of the density of dislocations
by using etching techniques developed by Gilman and
Johnston. ")The results are shown in Fig. 6; the depres-
sion is very great on the low-temperature side of the
peak.

Since dislocations in crystals generally are in the
form of closed loops, it would be interesting to calculate
the scattering by a circular loop, which contains all
possible ratios of edge and screw components. The dis-
placement field for such loops has been given by
Nabarro. " In this case the translational symmetry of
the straight dislocation is absent, allowing more varied
collisions. Such a computation has not yet been per-
formed. For a loop of arbitrary shape the displacement
field V(r) is quite complicated. One expects, however,
that the precise shape of the loop is important only
when the phonon wavelength becomes as large as the
width of the loop. In the case of plastic deformation,
this is not generally a problem. In quenched crystals,

' J.J. Gilman and W. C. Johnston in Dislocations and Mechani-
cal Properties of Crystals (John Wiley R Sons, Inc. , New York,
1957), p. 116.

~ F. R. N. Nabarro, Advances in Phys. j., 271 (1952).

0.3

2 4 6 6 30 20 40 6080100
TEMPERATURE IN DEGREES KELVIN

FIG. 6. Comparison of the eBect of F centers and dislocations on
the thermal conductivity of LiF. Curves A, B, and C are the same
as curves A, B, and D of Fig. 4. (The n, for curve C of Fig. 6 is
incorrect. ) Curves D and E were obtained by Sproull, Moss, and
Weinstock, ~ who compressed LiF crystals. The dislocation den-
sities for curves D and E are 1.8&107/cm' and 4.6X10'/cm~,
respectively, as measured by etch pit counting. "

however, there is evidence that the dislocations are
present in small independent loops. "

The specific scattering by the core (where the elastic
theory expressions are invalid) is in general small. To
estimate this scattering we can imagine the core to be a
row of vacancies lined up in a row. For an isolated
vacancy we expect v '~M', however, as mentioned
earlier, the lining up introduces translational symmetry,
which cuts dow'n the density of states by one factor of co.
Then

1/r ~ co' core scattering. " (4.54)

The constants could be put in from Eq. (4.47). In the
following we find that for dislocations 1/r ~ u&, so for low
temperatures where the phonon wavelength )))a, the
oP dependence and the short-range nature of the strain
of the core makes Eq. (4.56) negligible.

The "Rayleigh" scattering cross section (per unit
length) of a, cylindrical rod is

0 = (3s'/4) (ala'/C') (4.55)

The scattering per atom differs from the point defects
case by the factor (ignoring numbers of order unity)

"In footnote 2, Klemens calculates 7 (~} by considering the
scattering of the core as due to the mass di6erence of the "va-
cant" core.
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(Q/~). For an edge dislocation the displacement
jield is"

sin28b
V,=—8+

2s 4(1—v)
(4.56)

b 1—2v ( r ) cos28
V„= — log l

—ly (4.57)
2s- 2(l —v) ( ro) 4(1—v)

V, =O, (4.58)

while for a screw dislocation it is

V, = (b/2s. )8

V = V„=O.

(4.59)

(4.60)

b pi —2vq sin8
g(x) =——

l l; R(x) =0;
2m & 1—v) r

and
b cos8

6(x)=0; R =—
2Ã r

for edge dislocations, (4.61)

b sin8
R„=—;R, =O;"2~r

for screw dislocations. (4.62)

First we discuss the scattering by a single straight-
edge dislocation, using the Born approximation. Even
though the long-range nature of the strain may invali-
date this approximation, it seems desirable to give a
careful discussion of this method, in order to understand
the results of any more sophisticated calculation. " In

"W. T. Read, Jr., Dislocations in Crystals (McGraw-Hill
Book Company, Inc. , New York, 1953), Chap. 8.

~ A similar situation occurs in ordinary Coulomb scattering.
Fortunately in this case the Born approximation gives the same
result as the more careful analysis.

ro is the core radius (ro=a), b(b=a) is the Burgers
vector of the dislocation, v is Poisson s ratio (a typical
value is —,'). r, 8 are polar coordinates in the xy plane
perpendicular to the dislocation axis, chosen to lie in
the s direction. For 8= 7r/2, r lies in the "extra" plane of
the edge dislocation. The terms sin28 and cos28 arise
from satisfying the boundary condition of zero stress on
the boundary of a cylinder containing the dislocation. "

These equations show that the displacement field has
a very long range; indeed, for an edge dislocation e„ in-
creases logarithmically with distance. This peculiarity
gives rise to diKculties in the calculation of dislocation
scattering; besides the diKculty that the perturbation is
not localized, one can expect the net scattering to
depend in a critical way on the arrangement of the
dislocations. Equally useful for understanding the
nature of the strains caused by dislocations are the
dilatation h(x) = V' v and the rotation R= V)&v. These
quantities display the basic diGerence between edge and
screw dislocations:

order to make the analysis consistent we supply
(implicitly) a damping factor e "" to the strain field in
order to remove any ambiguity in the handling of
surface integrals. Then the limit p, ~0 is taken. This
procedure accounts crudely for the fact that finite
crystals have zero net surface strain; a phonon created
at the surface is influenced by the strain field only
gradually. This, however, does not guarantee the
validity of the simple theory. Ke return to this point
again.

Kith the foregoing prescription for ignoring surface
integrals, one can use (4.61) to find the fundamental
quantity v, . First of all R(x)=0 implies that v, is
parallel to q.

Define A by the equation h(x) =A sin8/r. The
Fourier transform of sin8/r=y/(y'+x') is easily per-
formed using Cauchy's theorem. For convenience the
volume 0 is considered finite although the domain of
integration is all of two-dimensional space; this aGords
an easy way to keep the dimension straight. At the end
the extension Q~ ~ is trivial. On integrating first
over x, one obtains

dy dxe' "+' "l
Ly~+x2&

Thus

y
=vr ~ dy e'vv& —Ivy*I (4 63)

lyl

l=(sin8 ) 2miq„

E r ), (q.'+q„')

2gz sing
(4.64)

In (4.64) we have defined q by q„=q sing; here q is
actually the two-dimensional "transverse" q. In using
this result we must supply v, with a factor A(q, ) result-
ing from integrating in the s direction; also a factor 0 &

is needed. On recalling our previous assumptions about
the surface terms, one may use h~= —igv~ to obtain

v, = —(2s.A sinyq/Otq')A(q. ) (edge dislocation). (4.65)

Since in using (4.65) we need v~ ~, the conservation of
q, permits the q and q' to be interpreted as the dift'erence
of the three-dimensional vectors (q' —q), etc. For the
screw dislocation only the transform of cos8/r is needed.
This is easily obtained from (4.64) by the substitution
sing~cosy. Since cos%=x/(x'+y'), a change of
(dummy) variables x+-+y leaves (4.63) unchanged if
q, &-+ q„. Examination of (4.64) gives the quoted result.

To evaluate 1/r—=—,
' g 1/rq, we use the assumptions

used in the discussion of point defects. By symmetry @re

expect the dislocation to lie along a crystallographic axis
(called s) and so that again the 2 vectors point in the xys
directions. Making the transition to the continuum
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using Lh(q.)]'~ 2mb(q. ,)/L, where L=0&, noting that

,(qw qw)

p /c„/ =a
g' —q[ S

XLq 'q "(q '
q )'+q 'q "(q —

q )'] (4.66)

B=0gba—; n (=—1—2v)/(1 —v), (4.67)

one finds after some straightforward but tedious
manipulations the Holtzmann equation

dlP 1 t ghat ' q(1 —q.'/q')cvr
dT 0& E p ) 24m.c'

X J
"dy'F (y, y') (nq' nq)— (4..68)

The polarization dependence of n, ' has been ignored;
further, C represents an average sound velocity. F(y, y')
is defined by

F(y, y') =—,', cos'yIg+ ,', sin'yI2, —
1+cos(y+ y')

Ig=
1—cos(y' —y)

Xcos'y'L1 —cos(y'+ y)]', (4.69)

1+cos(y+ y')
I2=

.1—cos(y' —y)

sin' y'L1+ cos(y'+ y)]'.

F(y, y') has a pole of the second order at y= y' which
is a direct consequence of the long range of the dis-
location strain field, reflected in the q dependence of the
Fourier coeflicients. As in the case of Coulomb scattering
this implies a large forward scattering; in fact, perturba-
tion theory is invalid for p= p'. These processes do not
contribute appreciably to the resistivity, however Lcf.
the factor e,' —m, in (4.68)] so that as long as higher-
order processes are small one may expect the solution of
(4.68) to be a reasonable approximation to reality. (It
would be of interest to do the problem without using
plane waves as the zeroth-order eigenfunctions. )

The complicated angular dependence of the kernel
F(y, y') makes the solution of (4.68) formidable and we
do not attempt it. If one defines a relaxation time as
minus (4.68) divided by n„ then one finds that, because
of the strong forward scattering, the "standard
assumption"

n, '
m, ~ 2 (q' —q) =X,—(cosy' —cosy)+X„(siny' —siny)

cannot be valid, because r (q) becomes negative at certain
angles. (Moreover, the integral converges only upon
taking the principal value; such a definition is called for
in this case but the result then depends rather critically
on the particular assumption about the form of n, . The

author has evaluated these integrals but they are not
reproduced, since they are probably not significant. )
The effect of the long range of the strain is to peak n,
more strongly about the forward direction than' is
allowed for in the standard assumption.

As we see later, the introduction of arrays of dis-
locations does not eliminate the pole in F(y, y'). A

possible procedure is to average over y (roughly
equivalent to a random array of dislocations with total
Burgers vector equal to zero) but then one has to deal
with the quantity (Fe), where e is still unknown. LNote
that the standard assumption would give zero average,
since the integral (4.68) would be odd on interchange
of y, y' ]

We meet this situation with the tentative arbitrary
assumption with regard to the factor 1—n, '/e„ this
choice is motivated by two essential qualitative features:
the net scattering probability 1/r must be positive
definite, and there should be no unphysical contribution
from the forward scattering pole. The simplest choice
with these properties is clearly

(1—n, '/n, ) = 1—cos (y' —y).

This is no acceptable substitute for a rigorous solution
of (4.68) (suitably modified to account for other
processes), nevertheless, if the basic equation (4.68) is
adequate then the result obtained should be at least
semiquantitative. With this arbitrary assumption the
details of the angular (y) dependence of 1/r are no
longer significant so that we average over y in (4.68)
after performing the q' integration.

This average is easily performed and gives for minus
the integral 'in (4.68) over e, the result 25~/128.
Assuming for the moment that the dislocations are
randomly arranged with &r = Iq/0& per unit area, one has
for the average relaxation time" (this average hides a
multitude of sins!)

1/r —(e/128C') (gbn/p)'q(1 —q, '/q'). (4.70)

The q dependence of 7- is r '~
q so that when dis-

location scattering dominates all other processes one
expects the temperature dependence

(4.71)

Experimentally, this behavior is observed below the
low-temperature peak in crystals containing a suQicient
number of dislocations. ""Although the scattering is
quite strong in this region, (4.70) is negligible above the
peak in comparison with other processes, which increase
more rapidly with frequency (or with temperature).
When dislocation scattering is the only important

5' The reader should be warned against the conclusions reached
in Sec. II of footnote 34. The method used there violates
periodic boundary conditions and so introduces a singularity into
the strain field, resulting in a large cross section. Dr. H. Bross,
Dr. C. Herring, and Dr. J. Ziman are thanked for enlightening
conversions on this problem.

~' J. N. Lomer and H. M. Rosenberg, Phil. Mag. 4, 467 (1959);
W. Kemp, P. G. Klemens, and R. Tainsh, i'. 4, 845 (1959).
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resistive mechanism one has with 1/r=Dq (average
iirst over q, so that (q.')/q'=-, ';), where D is given by
(4.70) from Eq. (3.32):

En = [3k'f (3)/ir'fi-'D]T'-, (4.72)

f(3) is the Riemann zeta function of argument 3. It is

equal to 1.202. In the general case, (4.72) is not valid
and one must proceed as described in Sec. VI.

For screw dislocations 1/r is not very different from
(4.70).

In trying to compare (4.72) with experiment, we are
crippled by lack of accurate knowledge of the an-
harmonic coupling characterized by the constant g. For
the simple Griineisen model described in Appendix A,
with g=24ypC' and n= 2 (i = ';), one has

1/r =0ribiid' (4.73)

This agrees with the earlier calculation of Klemens33

(with a revised value of the couplings'), who used a
GrOneisen-type model for the anharmonic coupling.
However, in making this approximation we have lost
the advantage of working directly with the atomic force
constants. In fact, the experiments of Sproull, Moss, and
Weinstock" on the resistivity of dislocations in LiF
show (4.73) to be too small by roughly the factor 100.
Experimental results for other substances' " do not
show such a large discrepancy; usually (4.73) is too
small by a factor of 4 to 6. As shown by the present
calculation, consideration of more distant couplings and
diGerences in lattice structure might account for this
latter factor. If the large resistivity of dislocations in
LiF is due to stronger anharmonicities, then the
effective g in LiF is roughly four times as great as in
other substances. " Dislocation experiments in other
alkali halides w'ould be useful for settling this point.

The large thermal resistivity of dislocations in LiF
is not understood at the present time.

Two other points must not be forgotten. These are
that the validity of the Born approximation is somewhat
uncertain because of the long range of the dislocation
strain field (although this difficulty is somewhat
obviated in calculating the net scattering probability)
and secondly, that dislocations tend to be arranged in
definite arrays in crystals. Further work needs to be
done on both of these problems; we discuss both and
give a few useful formulas.

As to the convergence of the perturbation series, the

~ The details of the LiF structure are such that it is essential to
take into account next-nearest neighbors. This can account for as
much as an order of magnitude in the scattering power. A study of
deformation vs quenching could reveal the influence of the dis-
tribution of dislocations in a crystal.

where we have used the result (safely putting the upper
limit equal to infinity)

r" x'e
dk=6f (3).

(e*—1)'

second-order correction to the scattering matrix element
is obtained by replacing C„„by (iC„, is real)

c-c. a (-~."+1)
c„,+

2pQ v" cu (cu cu )
(4.74)

sin(8; —ip, )
i1(r) =4E; .4 = —(bn/2ir). (4.76)

Ke consider only the case where', =o. This corresponds
roughly to the situation in plastically deformed crystals,
e.g. , but not in quenched crystals, where the dislocations
seem to be randomly distributed. AVith this assumption
we can write (4.76) as

~i.i.i(r) =2 ~ (r—r*) (4.77)

Hence the Fourier coefficient of D„f,, ~ is

~ .. (q) =~, 2 ' " (4.78)

Hence v~ is modified by the form factor, which factors
out of the quantity C« . If the positions r; are random
then the square of the form factor is just equal to the
number of dislocations, a result previously used in
writing Eq. (4.70).

If we have AY'+1 parallel equidistant dislocations
(an idealized model of a slip plane) at positions x„=nd;

This is used in Eq. (4.18) which supplies an automatic
cutoff for forward scattering. Since C« is of the form
f(q, q')(lq —q'l) ', where f(q, q') is regular, the singu-
larities of the integrand have the form

[(liI"—ill)(lil" —«'l)(~ —~')j ' (4 73)

The term in the sum q"= q is to be omitted; the zero
of the energy denominator is handled in the standard
way. (The poles in general do not coincide when q and q"
belong to different polarization branches. ) When q and
q" belong to the same branch the integral still converges
by use of the principal value for the angular part
(l q"—ifl =2q sin-,'(p"—p) in this case when lql = lq" l,
e.g.). When q is near q' (forward scattering) the
problem requires special study; we suppose that the
factor n, n, in (4—.18) cancels any such singularities.
The structure of the general term is similar to the simple
example just discussed. Thus while there are probably
no infinities in the expansion, the contributions from the
various poles (due to the long range strain) are larger
than one might expect.

On examining the effect of lining up dislocations in
arrays, we consider only parallel edge dislocations to
simplify the discussion. Suppose the dislocations are at
positions g; and have orientation p; with respect to the
x axis (the angle between the x axis and the Burgers
vector is y;). Then if 8, is the angle between r—ti; and
the x axis, the total dilatation at the position r is
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—N'~n~N', then one finds easily

sin! (N'+i~)qd cosy]
~ ~.i(q)= —~. e

—tiqdccc c' (4 79)
sinI -', qd cosy]

The phase factor may be neglected. The form factor in

(4.79) is familiar from the study of diffraction gratings.
However, we are here interested in the case in which

the wavelength is much less than the spacing d. Let us
call the total number of dislocations N=2N'+1. Then
we must examine the behavior of the function

F (y) = sin'(Ny)/sin'y; y = ~iqd cosy. (4.80)

F(x) has sharply peaked maxima at x= mx, m an
integer. These peaks are of height N', and have width of
order 1/N The a.rea under each is roughly Nv. , so that
the total scattering by the array is proportional to N
(only a finite number of peaks contributes). For large
N we may simplify by using the relation

QO ]
a,.„&(x,y) =Ay P

y'+ (x—nd)'
(4.86)

The sum is easily evaluated using complex variable
theory. The sum is equal to

physical reason is that an (unlocalized) plane wave

spends most of its time, as it were, at distances far from
the dislocation array, at which position the strain looks
more or less like that of N dislocations at the origin. On
the other hand, if there are truly an infinite number of
dislocations, then the lattice is perfect above and below
the array, though with different densities. We prove the
following remarkable result: the scattering by an
infinite array is exactly equal to that of a single dis-
location (except for the density variation, Appendix E).
Although this is rather a useless result it illustrates the
care that must be used in such problems. 'The disloca-
tions are located at the positions y=0, x=md. From
(4.76) we have

lim
~ "mN x'

1 sin'Nx
=S(x), (4.81) cot

2iyd

7r(x iy) '—
d

—cot
m. (x+iy)

(4.87)

so, approximately, Simplification then gives

In actual problems X &8 so ths, t
I
n

I
&d/li in the use

of the summation (4.82). Thus if F(y, &p') is slowly
varying, (4.82) is very roughly d/li times the contribu-
tion of one delta function. If we use q= 2x/X and extract
q, =qx (angular factor) from the remaining 6 function,
we have to order of magnitude

d cosh(2'/d) —cos(2v-x/d)

i1i.i.i
—+ m-A/d y) d, y) 0
—(irA/d) y &d, y &0. (4.89)

infinite array. (4.88)

As y becomes as large as the spacing between dis-
locations, the dilatation becomes constant:

2gN d 1
I ~i.i.i(q) I'-

I
~e I' . -N

I ~.I' (4 83)--
d X q

Thus the scattering is again approximately equal to that
of N independent scatterers. If we define G(p, p')
= F(p, y') (1—n, /n, ), then

I Eq. (4.68)j a more exact
expression is, putting q' —q into the result (4.82),

This constant dilatation means that there is little or
no scattering from regions for which lyl )d. For con-
stant y, 6 varies periodically with x. The minimum
occurs when x= (n+-', )d, the maximum for x=nd. In
fact, we note the curious result

Amex'Dmic=A'=const (fixed y). (4.90)

( 1 y (27rNy Q„G(y, p ) !sing„l '( 1q
(4.84)

E q,d ) &„)
J"G(v, 9 ')de '

~~ denotes the relaxation time for N dislocations, r~, for
one. The quantity p„ is given by

v „=cos—'I cosy —(2n r/ idq)7, (4.85)

and q& is the magnitude of the transverse part of q.
We do not discuss (4.84) further, but regard (4.83)

as adequate for present purposes.
The scattering of N parallel equidistant dislocations

arranged in a slip plane, even for large N, is quite
different from that of an in/nike number of them. The

!X ~ due'"'I
t coshv —cosu)

Ad
dve*'c —~"'~e(v);

2 J
e(v) =1, v&0

(4.91)

Ai,„i(q)=A (2iriq„/q').
= —1, v(0.

Let us introduce the variables u=2m. x/d, v=2'/d,
k = dq /2v, k„=dq„/2v. . Then the transform of (4,88) is

Ad
&i.i i(q) =—

~~
dve'"" sinhv

4~ ~
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positive at x=nd, n=i, 2, , )V and negative at
x= —nd, m=1, 2, ,

—1V (none at the origin). This is
given by

From (4.64) we see that the statement is proved.
Next we consider the scattering by a small-angle grain

boundary, using the usual model of an infinite array of
equidistant edge dislocations. ' "This arrangement is
obtained by rotating each dislocation of the preceding
problem in the same direction by 90'. Then one has

~r tat(q)

cosL(X+-,')qd cosyj —cosL-,'qd cosqr)

sing-,'qd cosy j (4.9g)(y—mE)
A(x,y) =A Q grain boundary. (4.92)~ x'+(y —nd)'

The sum in (4.92) is

x(y ix—) x(y+ix)-—cot +cot

which can be rearranged to yield

Much remains to be done on determining v, (or 6,)
for more realistic arrays (and shapes) of dislocations.

Finally, consider dislocations piled up at an obstacle
(Cottrell"). As an example, we take parallel edge dis-

( . 5) locations located at positions x =e'd, n=0, 1, 2,
and arbitrarily give the dislocation at x„=0 half-
strength (this may be trivially modified). On measuring
all lengths in terms of the parameter d, one finds

s.A sin(2'/d)
a(x,y) = (4.94)

d cosh (2xx/d) —cos(2s-y/d)

The important feature of (4.94) is that

A(x,y) ~ e '*'") x)-d) (4.95)

so that the strain has a very short range. It is obvious
that the dislocations should saturate each other's strain
fields. From (4.94) 6, is equal to that of a single-edge
dislocation; thus the scattering by small-angle grain
boundaries is generally negligible. This explains why
annealing crystals that contain large numbers of dis-
locations can restore the conductivity to that of the
original undeformed crystal. "So far we have ignored
the fact that the lattice has a different orientation on
the two sides of the grain boundary. This results in a
rotation of the lattice, and if the angle of the grain
boundary is su%ciently small, one can proceed as before
(i.e., if the rotation is too abrupt, perturbation theory
fails). The scattering is still small. The first calculation
of scattering by grain boundaries was made by
Klemens. " In approximating the sum (4.92) by an
integral he obtained 6=0, however.

Some results for other arrays of interest are now
given. For an infinite array of screw dislocations
(parallel, lying in the same plane a distance d from each
other) one finds

b sin(2n. x/d)
Z, (x,y) =— ~ ~

—27ry/d

2d cosh (2s.y/d) —cos(2xx/d)

Ay sinh(2P)/2P sin(2n)/2n
a(x,y) =

2rrr cosh2n cos2P —cosh2P —cos2n

with

(4.99)

V. MASS-DIFFERENCE SCATTERING
(ISOTOPE EFFECT)

That fluctuations in the mass distribution throughout
a crystal cause thermal resistance was first pointed out
by Pomeranchuk" who quoted the correct mass and
frequency dependence of r(co). The formula was derived
later by Klemens, 33 who also gave the correct numerical
factors. This mass difference can arise from the presence
of isotopes, vacancies, and interstitials, among other
imperfections. Typical experimental evidence for these
efI'ects is given in footnotes 22 and 24.

It is convenient to separate the Hamiltonian as
follows:

H = Q -', M U '+ Vs
a

(5 1)

n—= L(r+x)/2]&, P= L(r —x)/2]&,

r = (x'+y') l. (4.100)

Figure 6 demonstrates clearly the power of thermal
conductivity measurements as a tool for exploring the
defect structure of insulating crystals. With some
further refinements of both theory and experiment, such
measurements contribute greatly to the understanding
of the nature, distribution, and structure of lattice
defects.

y) d; (4.96) H—=IIp+H'. (5 2)

sinh(2vry/d)

y ~ ~ . (4.97)

b b
R„(x,y) =—

2d cosh(2'/d) —cos(2xx/d) 2d

The harmonic potential V2 is assumed to be unchanged
(valid for isotopes):

Hp—=Q —,'MU, '+ V2'

The dislocations from a Frank-Read source4' have
opposite signs on opposite sides of the source. Thus one
might desire hg for an array of parallel edge dislocations,

H'=—Q -', (M,—M) U,'.
~~ I. Pomeranchuk, J. Phys. U.S.S.R. 5, 237 (1942).

(5.4)
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M is the average mass
1

M—=Q f M;= Q—M„
X n

(5.5)

Z(~~a )'aea'*
4pQ qq'

&&(P AM exp/i(q —q') n)}e, e, +H.c. ; (5.7)

aM.=M.—M. (5.8)

where f; is the fraction of unit cells having mass M;. N is

the number of unit cells in the crystal. We now discuss

the physical meaning of this separation. The lowest-

order energy shift due to H' is zero, so that to this order

the phonon frequencies are correctly chosen. The use of

M in the unperturbed problem corresponds to the fact
that in the range of most interest (long wavelengths)
the phonons do "see" only the average mass. This seems

to be the best one can do without giving a detailed
solution of the vibrational problem. " A similar pro-
cedure due to Nordheim has been used in calculating
the electrical resistivity of alloys. "In this case one uses
the average potential.

On introducing the expansion (1.4) for U,

)Sea, q
&

q E2pfl&

XLa, exp(iq n) —a,* exp( —iq n)]e„(5.6)

the energy conserving part of H' is then

Hence the single-mode relaxation time (set n, equal to
zero) is

1 M

~

"d'q'8(~ —~')
~
m, , ~'.

rp 16'-'p'0 ~
(5.12)

In order to calculate ~m~ ~ ~' it is necessary to
specify the array of scatterers. We evaluate this factor
for randomly distributed defects; such an approximation
may be expected to be better for isotopes than for
vacancies, for example. Separating the terms for which
n= n', one has the equation

(mq ~ ~'=Q(dM, )'

+ Q hM hM, exp/i(q q—)'(n —n')].
n'Qn

The second term vanishes for a random distribution;

P (hM, )' =N Q f,(EM;)',

and further that n, is independent of polarization. In
general the energy surface has a rather different shape
for longitudinal and transverse phonons. "To do better
than the preceding average one must examine specific
crystal structures. The fit made by Callaway'8 to the
isotope scattering data of Geballe and Hull" suggests
that for germanium, at least, this average is a good
approximation.

The completeness relation gives

P(e, e,.)-'=1.

m~ s =—g hM~ expLi(q —q') n]; (5.10)

Thus the scattering of a phonon from state q to q' is
described by the matrix element (bere we set s&, =&a, )

cyclo q
M', , = m, , e, e, $Nq(N, +1)]&, (5.9)

2pQ
with

where we repeat that the deviation AM, is measured
with respect to the mean mass M.

Therefore Eq. (5.12) reduces to"

1 aPQOI'
d'q'b(co, (o;);-

~p 16m' ~

(5.13)

(cjNq) co,'

L at J 16xsp'n
The integral in (5.13) is essentially the density of states

X(e~ e~.)2(n, —n, ). (5.11) n(co) in co space:

The beauty of (5.11) lies in the fact that there are
few of the unknown quantities that make the calculation
of strain field scattering so difBcult. For low frequencies,
however, the scattering indicated by (5.11) is in general
less than for other processes. The completeness relation
(4.41) permits a great simplification of (5.11) if the
relatively modest assumption is made that the energy
surfaces of the diferent polarization branches coincide,

%leo

JI daq'h(co, —&o, ) =
)

~ds'

= 47ra ((a)

1 ojn(co)QOI'

7 0

(5.14)

' For a discussion of such solutions and further references, see
A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. Weiss,
Revs. Modern Phys. 30, 175 (1958); especially Appendix A.

+ See, e.g., N. F.Mott and H. Jones, Theory of Metals and Alloys
(Dover Publications, New York, 1958), p. 296.

The result (5.14) is more general than previous
derivations. In particular we show that 7 p as given by
(5.14) is the true relaxation time. In the usual acoustic
approximation ra=cd (c constant) since J'day'c(co ~')
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=4prq'/c, one has n(pp) =pp'/c' and (5.14) reduces to the
result (5.17). However, in general n(a&) exhibits quite
bizarre behavior, varying from substance to substance.
It would be interesting to make an experimental test of
this feature of (5.14).

In the present case (4.25) is

jtdS'i »(a/8„'i '
(5.15)

where a= rpR'. Th—e solution of (5.16) satisfying
e(p) =0 when 8T/Ox=0 is found by inspection to be
merely m(p) = up. Thus

e,= rpR(q); r—'=D,l"(o4/(4prC'). (5.17)

This simple result does not hold for more general
dispersion curves. Nor in this case is the relaxation time
appropriate for thermal conductivity the single mode
rp, Eq. (5.14), since the integral on the right-hand side
of Eq. (5.16) contrives to remove singularities of np
introduced by n(co). However, in some materials the co'

scattering law fails. One could check on this point by
examining some known n(pp) curves, and measuring X
in the appropriate temperature range.

The expression for r p could be verified by observing
the decay of some phonons introduced into a given
mode q, A, in a crystal otherwise at equilibrium. In fact,
retaining complete information about the polarization
branches [Eq. (5.11)] one could use this method to
measure the density of states after account was taken
of the easily calculable weighting factor (e.e')'.

When boundary scattering is included, using a
constant r p, then for cp=cq (spherical energy surfaces)
Eq. (4.25) has the solution rsp= 7E, so that the simple
relaxation time picture is again suitable. These approxi-
mations give only an approximate picture of reality only
well below the low-temperature maximum, where three-
phonon interaction may be ignored; however, it is un-
likely that a more careful calculation requires any
drastic changes in the picture developed here. If the
array is not random, then one might have some idea of
what the correct probability distribution P(x) might be.
For example, in the case of one type of defect,

Without more knowledge about co(q), it is difficult to
. make much progress.

In the acoustic approximation co = cq this re-
duces to the following simple equation (p=cos8,
Z'= .i~Tide/dT):

(5.16)

where

JP(x)dPx =1V.

LIn the case of diffusion into the strain field of a dis-
location the appropriate probability distribution would
be given by something such as Eq. (4.53).j

The average mass M has been carefully retained in
defining the unperturbed problem. This is because the
concentrations may be quite large. For instance
Williams has measured the thermal conductivity of
various mixtures of KCl and KBr up to concentration
of 50% KBr, at which there is a 25-fold reduction in
the peak conductivity as compared to the natural KCl
crystal. " Presumably, as one further increased the
concentration of KBr, the conductivity would increase
again. Such would not be the case theoretically if one
had insisted on using the pure KCl crystal as the un-
perturbed system, for (hM)' would then be a maximum
for the pure KBr crystal, in the lowest order of perturba-
tion theory. This poor choice of IIp would then require
going to higher orders in the perturbation series to
recover the simple result (5.17), obtained by the choice
of Hp as in Eq. (5.3). Toxen" has measured the thermal
conductivity of various mixtures of Ge and Si, contain-
ing up to 8%%uo Si. Further experimental data and
references for point-defect scattering may be found in
Slack's article. "A theoretical analysis of isotope scatter-
ing in Ge has been given by Callaway" and Herring. "
Further discussion and references may be found in
Klemens' review articles. "The high-temperature resis-
tivity of isotopes has been calculated by Ambegaokar. '~

At sufficiently high temperatures the heat capacity
per normal model assumes the classical value, k. If the
difference between the polarization modes is ignored,
Eq. (3.32) has the simple form

kg/A

X= it OPT(co)dpp.
2x'C ~ p

(5.19)

A reasonable form for the three-phonon relaxation time
in cubic crystals is p.,s '=b(T)cu', where b(T) is some
function of the temperature (the angular dependence of
spy is ignored). When fkp«kT, b(T) is proportional to
T', but this cannot be expected to be true at high
temperatures, where E ~ T '. According to the results
of this discussion, the relaxation time may be taken to be

7 '= b(T)co'+I(u4. (5.20)

This case leads to a simple integral. Equation (5.19)
becomes

X= (k/2x'C) (Ib) & tan —'Lk0/A(b/I) &j. (5.21)

This result may be simplified in the common situation

mp p =AM~ tP(x)e'«p&'*d' ,x (5.18)

~ C. Herring (private communication). This calculation obtains
agreement with experiment using no adjustable parameters.
Similar calculations have also been performed by R. Brout
(private communication) .
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where the Umklapp scattering dominates over the entire
frequency range (see Fig. 4, e.g.). In this case the argu-
ment of the arctangent is small, so that this function
may be expanded. Then if E is the conductivity of the
pure crystal (I=O), the resistipity is

W—= (1/K) (1/K—o)=6K/Ko'
= (2pr /3) (COI/ft). (5.22)

VI. ADDITIVITY OF RECIPROCAL
RELAXATION TIMES

From the defining equation for 1/r it is evident that
when a relaxation time is well defined for all of the
scattering processes under consideration, the total
relaxation time (with the qualifications sta, tes in the
following) is given by

More explicitly, using (5.17) for the constant I, this
becomes T i 7'i

(6 1)

W = (m./6) (Qpl'/C') (0/ft) (5.23)

which is Ambegaokar's result. An important feature is
that the temperature dependence of the three-phonon
relaxation time cancels out for small depressions. LWhen
the conductivity is greatly reduced one must use the
more exact Eq. (5.21).]The result, however, is sensitive
to the power of cu assumed in rph. For instance, if
r,a~op ' instead of op ', the pr/6 in (5.23) should be
replaced by 2pr/5. In fact, Eq. (5.23) agrees rather well
(as it stands) with the results of Geballe and Hull on
isotope scattering in germanium. Experiment gives
W=0.15 cm deg/w as compared with W=0.19 cm
deg/w calculated from (5.23). On the other hand,
Tph ~ co ' gives 5' =0.46. This may be taken as evidence
that the heat-carrying phonons in germanium are
roughly described by the Tpi, ~ M law.

In less symmetric crystals than germanium,

happ

' may
vary as some higher power of ~ for low frequency
(op«kT/fo) phonons. In this case the integral (5.19) does
not converge at the lower limit. This circumstance leads
to a size dependence of the conductivity, as is discussed
in Sec. VII, since the phonons of lowest frequency are
boundary scattered with a constant relaxation time r&.
For our purposes we may cut off the integral at cuI,
where co& is the frequency at which mph is equal to Ty.
For r„h

—' ——b(T)opp, op& is

opi —(br p) (5.24)

In this case (5.19) becomes (opp=kO/k)

k opp(b+Iopi)
E=- log-

2n'Cb
co i(b+Iopp)

(5.25)

In most cases of physical interest coo))co&,. the resis-
tivity is

W= (7r/2) (QpFO/C'k) Dog(kO/hop&)] '. (5.26)

The dependence on the size of the crystal is contained in
ops via (5.24). In conclusion one can expect to learn about
the frequency dependence of Tph by studying the magni-
tude and size dependence (if any) of the high-tempera-
ture resistivity. When the isotopic scattering is not
purely u the preceding equations are to be modified in
an obvious way.

This is because in calculating n one adds up the
probabilities for noninterfering processes, and matrix
elements for interfering processes. Thus, in using Eq. (1)
we must be careful to investigate interference between
all elastic processes (e.g. , strain-field scattering inter-
feres with mass-difference scattering and specular
reHection). In many cases of interest the elastic 1/r's are
additive owing the random distribution of scatterers.

For illustration we write 1/r, for a number of common
scatterers; the coeScients identify the scatterers, the
different types of which are considered not to interfere
with each other. C/L denotes 1/r for boundary scatter-
ing discussed in the next section.

1/r. (q) = (C/L)+I pi'+Pq' jDq
+$N, +U, (T)]q'To '. (6.2)

I. is the Casimir length, roughly a typical dimension
of the crystal; I is the coefficient of the isotope or mass-
difference scattering given by Eq. (5.17); P represents
point-defect strain-field scattering, Eq. (4.43); D is for
dislocation scattering, Eq. (4.70) or (4.84); N is
for normal processes, U(T) for Umklapp processes
(U~e Pt r); s depends on the crystal symmetry and
the phonon polarization. "A typical value is s=2. Most
of these r's are accurate only in the acoustic range where
op= Cq. LExcept for the "isotope" contribution, at
larger co, q is the more appropriate variable, which is the
reason for writing 1/rc(q) in terms of q instead of op.]
Nevertheless this result should give at least semi-
quantitative explanation of experimental data up to
temperatures well above the peak in K(T). Equa, tion
(6.2) for 1/r, (q) should be used in conjunction with
Eq. (3.30) for K(T).

Figure 7 illustrates the variation of some typical
relaxation times with frequency. "

Equation (6.1) does root mean that resistivities are
additive; indeed it is in general a poor approximation to
add resistivities. This is because the frequency de-
pendence of the different scattering mechanisms is quite
different.

The thermal resistivity W isdefinedbyW 1/K The.
correct resistivity is given by

(6.3)

' Some of these data are taken from T. H. Geballe. "
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Hence for thermal conductivity measurements the use-
fulness of the concept of individual thermal resistivities
seems rather limited. Both the measured and calculated
quantities are the same: K(T).

The argument that resistivities are not additive does
not depend on the validity of the relaxation time
assumption. The physical reason is that the predomi-
nant scattering mechanisms are in general diGerent for
phonons of di6erent wavelengths. Addition of individual
resistivities leads to an embarrassing divergence~ when
applied to point-defect scattering, as mentioned earlier.
A natural cuto6 for the long-wavelength phonons is
provided by boundary scattering, discussed in the next
section. Although point defects "by themselves" do not
give a finite thermal resistivity, they nevertheless cause
a depression of the boundary (or dislocation, e.g.)
limited conductivity. (See, however, the discussion at
the end of Sec. III.)

A similar "divergence" occurs if one has only three-
phonon processes. Herring" has found that in many
crystals the elastic anisotropy efI'ectively removes this
sensitive size dependence. The remaining small size
dependence due to boundary scattering had been
observed. ~ A careful analysis of these questions has
been given by Herring. ""

To illustrate further the failure of the additivity of
thermal resistivities we review a typical example: de-
pression of K(T) due to strong mass-difference scatter-
ing in the region above the peak."This also serves to
clarify some current confusion in the literature. We
retain the boundary scattering, which gives rise to a
small size effect. We omit the proof that the term
proportional to P in 7 is negligible, "so that T—T . Then
from Eqs. (3.35) and (6.2)"

C'
~ kT ~

' ~e'rK=—
~2x' EACi ~p

X4 e
iEx. (6.5)

(fx4+gx'+C/L) (e —1)'

Figure 8 shows some values of this integral computed by
Pohl~ for different values of f; g and L were chosen to
fit the data given by the annealed crystal. In this
equation f= I(kT/k), g= LE+U(T)]T'(kT/k)'. Set the
upper limit equal to ~, although we are in a range where
O~/T 10. If the isotope scattering is large, then the

~ Strictly one does not have a divergence but rather a striking
dependence on the size of the specimen. More precisely

"co~dco 1

where L~&. (For a finite crystal the smallest wave vector trans-
porting heat is qp~i/L. )~ T. H. Geballe and G. W. Hull, "Conference de Physique de
Basses Temperatures, " (1956), p. 460.~ We take s=2, appropriate for longitudinal phonons in cubic
crystals. o

while the sum of the resistivities due to the various
processes is

1
P P,=g —cc P I r, (~)C~h(a&)co~dco . (6.4)
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FIG. 7. Some typical relaxation times. Such plots are useful in
determining the relative importance of various processes. These
curves may be moved up and down to account for varying
strengths of the scattering processes by using the formulas in the
text and the following data from which the above graph was
prepared. For boundary scattering the relation rg=L/c was used,
with L=i mm and c=3X10' cm/sec. The dashed line shows
qualitatively how specular reflection may increase the relaxation
time for long wavelengths. The isotope relaxation time rI was
calculated using rI '=Aco4 with A =2.40)& 10~ sec', appropriate
for Ge.'4 The dislocation curve is given by rD ' ——Dco with
D=2.2X10 6, for edge dislocations; 0 =3X10~ cm~, g=240ypc~,
rp=4A, b=rp/2&, p=1.6. Because of dispersion, this curve may
bend downward at the highest frequencies by approximately the
factor qc/co. The phonon-phonon r» is appropriate for longitudinal
phonons in Ge(r»~ T'q'), as deduced from thermoelectric power
measurements (see Geballe). " The Debye frequency cop was
arbitrarily chosen as cop=4X10" sec '; this corresponds to
0=%cop/k=300'K. The frequencies eu which maximize the Debye
distribution E(cu) at 10' and 30'K are given to show how the
dominant scattering mechanisms may be expected to change as
the temperature is lowered. The phonon-phonon curves may be
scaled (approximately) for the different materials by the appro-
priate use of the Debye temperature 0."
factor 1/f makes the high-frequency contribution to
Eq. (6.5) small. Thus it is a reasonable approximation
to evaluate Eq. (6.5) by replacing x'e*/(e~ —1)' by
unity. Then the integrand is a simple algebraic function:

k )kT't' 1 - 2 pCf~ L -&
K=

~

f- . 1+-~
4xCK k) (fg)L gKL)

6.6
k 1 i 2(CI/L)&1—

4n.C PI(1V+U) jLT' (X+U) T'

In the last equation the boundary scattering has been
considered small. We note a few interesting features of
this result. First, the conductivity is inversely propor-
tional to the square root of I, which is proportional to
the concentration of isotopes. The temperature de-
pendence of K(T) is essentially T L; there is a size
dependent correction proportional to T '~'."In order to
calculate the depression DE one must also calculate E
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when the isotope scattering is small; however, Eq. (6.6)
could not be obtained by considering the resistivities
as additive, for in this case

8' ~ I 1, (6 7)

6' P. G. Klemens, Proc. Phys. Soc. (London) A70, 833 (1957)j
J. Phys. Chem. Solids 8, 345 {1959).

66Nor should the expression derived by Ziman" 6' from a
variational principle be used as a quantitative formula for the
thermal conductivity; however, in a recent paper by Ziman and
collaborators' this approach has been refined considerably, and
applied successfully to a very detailed experimental investigation
of the isotope effect in LiF. The theoretical results are in essential
agreement with the previous discussion of the isotope effect using
the relaxation time method.

6' J. M. Ziman, Phil. Mag. 1, 191 (1956); 2, 292 (1957).
68 J. M. Ziman, Can. J. Phys. 34, 1256 {1956).I This expression was also tested in a paper by R. Berman,

E. Foster, and J. Ziman, Proc. Roy. Soc. (London) A237, 344
(1956), who note the lack of agreement with experiment.

70 R. Berman, P. T. Nettley, F.W. Sheard, A. ¹ Spencer, R.W.
H. Stevenson, and J. M. Ziman, Proc. Roy. Soc. (London) A253,
403 (1959).

» A. M. Toxen, Phys. Rev. 110, 585 (1958).

if one could cut ofI' the divergence in E in a convincing
manner. "Thus both the temperature and concentration
dependence are incorrectly given by adding resistivities.
Klemens, "adding resistivities, tried to explain apparent
discrepancies between theory and experiment by invok-

ing higher terms in the perturbation series; however, this
explanation requires different coefficients for different
experiments, for no apparent reason. By comparing the
numbers in the numerical example of footnote
65 one sees that the square-root relationship is well

satisfied, so that there is no discrepancy in the con-
centration dependence given by lowest-order perturba-
tion theory for that case. Klemens also comments on
the apparent discrepancy for point defects, which give
a resistivity consistently greater than computed from

Eq. (6.7). This discrepancy has possibly two origins:
(1) resistivities should not be added (2) the strain-field
scattering of point defects has not been considered by
Klemens. Because of the complicated behavior of the
latter in the region above the peak discussed earlier, a
detailed comparison with experimental data is necessary
to prove or disapprove the second alternative. "

Toxen" noted experimentally that the slope of
logW vs log(concentration) for the region above the
peak is not unity as in Eq. (6.7). The slope is very nearly
—,'. Toxen's plot includes the result of many experiments.
(That the temperature dependence is more nearly T&

than T should not matter much since the plotted data
had roughly comparable temperature and since the
plot was log-log. )

To analyze experimental data given as a plot of
JV, = 8'—8'0, where LUC is the depression of E due to
some added scatterer s, the following approximate
procedure may be used if AE/E is small. The initial
resistivity is Wo=—1/E. With the scatterer present,
W:Wp+W, defines W, . Also we have W= 1/(E —DE)

1/E+AE/E'= W—0+DE/E' showing that the ap-
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Fro. 8. The family of dashed lines, which shows the effect of
scattering according to the law v '= Ico4, was calculated~ from the
expression (6.5), where the parameters L and g' were adjusted to
agree with curve a at very high and very low temperatures, at
which the three-phonon and boundary scattering, respectively, are
supposed to dominate. (0/T) has been set equal to infinity. Curve
n is an experimental curve for a "pure" LiF crystal with the
dimensions 0.74)(0.79X40 mrn, which has been sand blasted and
annealed. ~ The exponential dependence of the Umklapp term
U(T) has been ignored (set equal to unity); the sum of E+U in
Eq. (6.2) is then equal to 1.35)&10~sec deg 3 c~, where c=5)&10»
cm/sec is the sound velocity in LiF. The parameter s in (6.2) has
been chosen to be two, appropriate for cubic crystals. The Casimir
length I. is found experimentally to be 1.55 mm, as compared with
the theoretical value of about 1.33 mm (see Sec.VII).This agree-
ment must be considered to be excellent. The different curves of
the theoretical family correspond to the following values of the
parameter I (in sec ') in Eq. (6.2): curve 1, I=O; curve 2,
I=5X10~' curve 3, I=5&(10 '; curve 4, I=5)&10~;curve 5,
I=5X10 ";curve 6, I=5)(10 ~. It is evident that the curve o.
belongs to the family of calculated curves with a value of I of
about 10~4 sec 3. This is about 10 times the value corresponding
to the natural isotopic consitution of LiF. (This large cd scattering
is probably due to the strains of residual point defects, as was
described in Sec. IV.) On the other hand, the curve p, in which
2.2X10' /cm3 F centers have been introduced by x-ray bombard-
ment, does not belong to the family of theoretical curves.

propriate quantity to be calculated is AE/E'= W, . The
preceding example shows that care must be used in
finding AE. This W, is not equal to 1/E„where E, is
the conductivity with only scatterer s acting, so that the
use of the expression tV=ZS'; is misleading. Since the
additional resistivity caused by a defect is not easily
separated from the other scattering processes in the
"pure" crystal, it seems that at least for large depres-
sions hE, it would be more appropriate to analyze the
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data in terms of hE, or E itself, in the sensitive vicinity
of the peak in K(T).

VII. BOUNDARY SCATTERING; SIZE EFFECTS

Since nature does not provide crystals of infinite size,
it is necessary to consider in some detail an essentially
nonintrinsic effect, that of the geometrical shape and
size on the magnitude of the heat current (Fig. 9).

The necessity for such considerations arises from the
fact that most of the scattering processes have negligible
strength for phonons of sufFiciently long wavelength. If
the temperature is so low that Cr is as large as the
crystal dimension, then boundary effects are important.
This exercise is not altogether unrewarding, however, for
one can learn something about the nature of phonon-
phonon scattering from the size e8ect. Since the
boundary scattering 7. varies rather slowly with fre-
quency, the combined effect of boundary and defect
scattering (the latter usually more sensitive to co) can
be analyzed to give some information on the type of
defect present.

The most salient feature of boundary scattering is
that (in a single crystal) it does not occur uniformly
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throughout the crystal. This makes the distribution
function depend on position, e.g., the phonons at the
boundary may be in thermal equilibrium with the
boundary. Hence the simple Boltzmann equation (3.6)
is no longer adequate. In particular, one cannot simply
add reciprocal relaxation times as for other scattering
mechanisms; however, one can reinterpret the new term
in the more complete Boltzmann equation in terms of an
equivalent relaxation time, i.e., if one uses this effective
7 in the standard way the correct heat current is
obtained. Before entering into these complications,
however, we sketch the classical Casimir theory of
boundary scattering. 7' This analysis provides a reference
point for more sophisticated calculations. We see that
the "naive" result Cq7.~=L, where L is some average
dimension of the sample, is valid when the boundary
scattering is not specular.

Casimir's theory is completely analogous to the
standard theory of blackbody radiation. (The essential
difference between the phonon gas and the photon gas is
that there is an upper cuto8 to the phonon frequency;
however, this is of no consequence at the temperatures
of interest here. )

The temperature is assumed to be so low that the
only collisions made by the phonons are with the
boundary. Casimir further supposes that the scattering
is completely disuse, the incident phonons being
absorbed, and then reemitted with the equilibrium dis-
tribution corresponding to the local temperature. The
specimen is taken to be a long cylindrical rod, whose
axis is in the x direction.

The energy per unit volume with q pointing in the
solid angle dQ with frequency cv in the interval co, ~+dkd,
and polarization X is, using or), =C),g,

sPd(edQ ( Ace

E~(~)d"dQ=
(2~)3C 8 'ehra/kT 1)

(7.1)

(Cz depends on the direction specified by dQ. ) The
phonons contributing to (7.1) can be considered to be
traveling waves of velocity Bco&/Bg~C~ in the low-
frequency limit. Thus if 8& is the angle made by the axis
of the (infinitesimal) solid angle dQ with the normal to
the element of surface dS&, the total energy of all modes
incident on dS~ is

0.1
1 2 4 e S 10 20 40 BO 100

TEMPFRATURE IN DEGREES KELVIN

dF(&a) =P E~(co)C&, cos8idSidcodQ

FIG. 9. The boundary effect in LiF.~ The crystal of curve A is
about 10 times as thick as the crystal of curve B. Considerable
specular reQection occurs in both of these crystals however. After
sand blasting and annealing crystal B displays the conductivity
given by curve C. The effect of thus roughening the surface is seen
to both reduce the conductivity and change its temperature
dependence to a T' variation, consistent with diffuse reQection.
The experimental I. (Eq. 6.5) is about 15%greater than the theo-
retical value. The exact dimensions are: crystals A, 6.7&(7.3X40
mm; crystals B and C, 0.74)&0.79X40 mm.

atda& f fuo
cos8idSrdQ. (7.2)

(2&)8C 2 (es(u kT

On integrating this over all frequencies to obtain the
total incident energy at the specified angles, and putting

"H. B. G. Casimir, Physica 5, 495 (1938). See also R. E. B.
Makinson, Proc. Cambridge Phil. Soc. 34, 474 {1938).
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Q/T= oo, one obtains, in the usual way,

p" dI' 1 ~4k4T4
dF= '

—— d&o =P — cos8idS&dQ. (7.3)
da) & C),2 15h'

In (7.3) T depends on the temperature of the surface
dS&. In the steady state (7.3) is also the rate emitted
from dS&. Consider the transfer of energy between dS&

and dS~, where dS2 subtends the solid angle dQ=dS2
Xcos82/r$2 119 is the distance between the surface
elements dS~ and dS2, and 02 is the angle between ri2 and
the normal to dS2. T2 is diGerent from T~, in general. Let
us write T4(x) = T'(0)+4T'(0) (d T/dx) (x), where x=0
lies in the center of the crystal. This approximation is
good for small constant-temperature gradients. Then
the net heat flow down the crystal is

4m'k'T' ('dT t I' t
x~2 cos8~ cos8.

15k' I dZ&& J r12'

1
XQ dSgdSg. (7.4)

This is proportional to the heat capacity. If one makes
the approximation that the C& are essentially inde-
pendent of angle, or defines a suitable angular average,
then (7.4) becomes

f dT l NC. I' p x~2 cos8~ cos82
dSgdS, , (7.5)

(dZ) 4~ » r12

with the relations

4n4k4q ( 1 lc.=1 114 Z( 15k'J & z C&'j

8=(ZC ')/(ZC ')

(7 6)

(7.7)

Equation (7.5) gives the conductivity in the form
E 3C,8l where the mean-free path l is a constant
given by 3/47r times the integral in (7.5). LOne has to
divide (7.5) by the cross-sectional area to get K.j For
a cylinder of circular cross section one Ands in this way
l =2R, where R is the radius. Hence the eGective mean-
free path is just the diameter of the cylinder.

1
One must

remember the peculiar definition of 8 given by Eq. (7.7)
however. j For a square cross section of side d the
eGective mean-free path is l= 1.id.

Now let us see what may be done to relax the assump-
tions made in the Casimir theory. First, note that the
phonons are scattered by other defects, and by each
other. We have seen in Sec. III that if the relaxation
time approximation is valid, then the total rate of
change of n, can be described by a single "total" r,
which includes the eGect of the normal processes. This
is incorporated in the Boltzmann equation written in
the following. Secondly, it is necessary to consider the

QT d.Vq' Bnq rtq
C — +C + =0.

Bx dT By r(q)
(7.8)

As usual, n, is the deviation from the equilibrium, r(q)
is the total relaxation time defined by Eq. (3.16) C, and
C„are the x, y components of the group velocity (here
given adequately by C =Cq,/q, etc.). In the first term
we have set dN, /dT equal to dN, '/dT; in the second we
have neglected the dependence of 37,' on y, which is
certainly permissible. The first term is minus the rate at

"T.H. Geballe (private communication).
74 R. Berman, F. Simon and J.Ziman, Proc. Roy. Soc. (London)

A220, 171 (1953);R. Berman, E. Foster, and J. Ziman, Proc. Roy.
Soc. (London) A231, 130 (1955).

"The essential features of this approach are given by C.
Herrings2s Sec. VI and Appendix B.

effect of specular reflection of the phonons. At present
no detailed microscopic theory of specular reflection
seems to exist. Nevertheless, it is possible to make
certain qualitative statements, and phenomenologically
to modify the equations accordingly. For instance, it is
plausible that long-wavelength phonons tend to be
scattered specularly more often than short-wavelength
phonons. By "long" and "short" one refers to some
dimension corresponding to the size of the irregularities
characterizing a surface. As an illustration of the reality
of this eGect, an etched surface offers less boundary
resistance than does a sand-blasted surface. Further,
the crystallographic orientation of the surface is
important. " Berman, Simon, and Ziman And that in
diamond the specularity of boundary scattering exceeds
50%.~' They have generalized Casimir's theory to
account for multiple reflection and end eGects, by
assuming that a constant fraction of the phonons are
specularly reflected. While it should be relatively easy to
generalize their approach to include the variation of
specularity with wave vector, it is not clear how one
would account for phonon collisions within the sample.
For this reason we proceed directly from the Boltzmann
equation. "

The thermal gradient supplies phonons to every
element of the cross section at a rate assumed to be
independent of location in the cross section. In the body
of the sample these phonons lose their crystal momen-
tum at a rate described by the total relaxation time r.
In addition the phonons near the boundary tend to be
absorbed, giving rise to a dependence of the flux on the
distance from the boundary. We consider the following
simplified geometry: a plane parallel slab of thickness d,
with a temperature gradient in the x direction. The
y direction is perpendicular to the faces of the slab. The
distribution function has an explicit y dependence in
addition to the implicit dependence on x through
T(x). (Strictly T depends on y in this general situation,
but to a first approximation the results are correct for
small deviations from equilibrium. ) The corresponding
Boltzmann equation is $cf. Eq. (3.6)], for each polari-
zation mode,
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which phonons are delivered to a unit volume of phase
space. Let us emphasize this by giving this term a
special name, R(q):

the general boundary condition

n, (x,o)—=B,(x) (7.10)

R(q)—= C—,(BT/Bx)(dhV, '/dT) . (7.9)

1.0

0.8

0 P.2 0.4
g/d

0.6 O.S $,0

Fzo. 10. These curves show how the distribution of phonons
varies across a slab with faces at y =0 and y =d, for phonons travel-
ing away from y=0, at which surface the boundary condition
n~=O (diGuse reRection with the equilibrium distribution) has
been imposed. n~ is measured in terms of the deviation rR of an
infInite crystal (r is the relaxation time for scattering within the
sample). The number attached to each curve is 7.c„/d=7c sin8/d
Pcf. Eq. (S.»)j.

76The theory of surface vibrational modes has recently been
studied by R. F. Wallis, Phys. Rev. 116, 302 (j.959).

R(q) is known function of x and q, independent of y.
Thus (7.8) is a simple first-order differential equation in
the variable y. The eGect of the boundary is incorporated
into the boundary conditions to be imposed on (7.8). In
Eq. (7.8) let us fix on some phonons of a particular wave
vector q (and some unspecified polarization). Consider
one of the surfaces (y=0) and call the positive y direc-
tion that of the inward normal, so that a phonon with
q„)0 is leaving the surface (y=0). It is easy to see
what boundary condition is equivalent to the Casimir
theory (but now including the effect of processes other
than boundary scattering). This condition is that at the
back surface (for the phonons having q„)0) the devia-
tion from the equilibrium distribution Lappropriate for
T(x)] be zero, i.e., n, (x,O)=0. All the phonons with
q„)0 at position y= d are absorbed (and eventually re-
emitted with q„&0 and the distribution fq, ). In the
more general case thermal equilibrium is not established,
so that n, (x,0) B,(x)=—WO. B,(x) may be expected to be
largest for small q. The x dependence of B,(x) arises from
the temperature gradient, e.g., one may expect surface
vibrations, l modes' (whose mea, n excitation depends on
T) to affect B. The explicit calculation of B, is the task of
a detailed microscopic theory. The solution of (7.8) with

(1 1 q
R(q) = —

I +—1(-n.),
Er r) (7.12)

where (n~) is defined by

and

(n,)= t n, dyds/S
J

Jt (C„(Bn,/By)+C, (Bn,/Bz)]dyds
1

(7.13)

(7.14)

S=J'dyds is the area of the cross section. Thus by a
formal rearrangement of the Boltzmann equation we
find an equivalent relaxation time, i.e., for a uniform
distribution (n, ) the relaxation time defined r '+r, '
with r, given by (7.14) yields the correct thermal con-
ductivity. Equation (7.14) can then be evaluated from
explicit solutions such as (7.11). Now ri, depends on
both q and T, although from our experience with the
Casimir theory we can expect this dependence to be
mild.

The numerator in (7.14) can be subjected to one
integration, or rewritten in terms of an integral along
the path defined by the intersection of the ys plane with
the surface of the cylinder. Then the definition (7.14)
displays how the phonons at the boundary are absorbed.
From the explicit form of n, (x,y) it is evident that
always 5,&rR Lnote that n~(x, ~)=Rr]. The equality
holds for completely specular reQection; then (7.11)
reduces to n, = rR which is the same as without bound-
ary scattering. If the internal scattering processes are
strong so that rC„((d, then ~z, rises quickly from the
value 6, at the boundary to the asymptotic value rR.
(This is always the case at high temperatures. ) For long-
wavelength phonons at low temperatures the opposite
limit obtains and n, increases linearly across the sample.
Thus when B,=O (diffuse boundary scattering) the
rate of removal of the total crystal momentum or of
(n,) LEq. (7.13)] is twice as great for large r as for

is found to be, for C„)0,

n, (x,y) = r(q)R(q)(1 —exp( —y/rC„)]
+B"p( —yi.c.) (7»)

(See Fig. 10.) In (7.11) the x dependence is contained in
R(q) a,nd B,.

Let us consider the generalization of (7.8); for the
second term write C& V'j.n„where J refers to the trans-
verse (y and s) components of C and V'. Then we can
rearrange (7.8) using (7.9) to obtain, after integrating
over the cross section,
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~ 2C„/d as (5=0). (7.18)

The statements made above about the relative magni-
tude of 7.e in the two limits are explicitly verified in
Eqs. (7.17) and (7.18). The most important part of the
directional dependence of we is given by the factor
C„=C sin8, where 8 is the angle between j and VT. This
factor must be included in compounding reciprocal
relaxation times. Consider temperatures so low that
r —+ m [this limit is usually a better approximation
than (7.17) for temperatures of interest here]. If only
boundary scattering occurs then one may define an
(isotropic) equivalent boundary scattering time r& and
mean-free path L by the equation

~t ri, cos'HdQ
L

ie=
C

)f cos'gdQ

(7.19)

From this definition one finds in the limit (7.18)

L= (3zr/8)d —1.18d; r ~ ~. (7.20)

The weight factor cos'8 occurs in order that the thermal
conductivity obtained from either v e is the same. When
r is finite this approach loses significance, however.

Now let us reduce (7.15) to meaningful form when
some specular reQection occurs; 5,/0. In order to do
this we require the behavior of the l'z/Rr appearing in
(7.15). We call that h —+0 as co~ ~ and probably

small r, for a given total crystal momentum (or (zz,)).
Thus for the special geometry considered the total
variation of ~e can be no more than a factor of two.

The explicit formulas for the special case of the slab
contain the essential features with a minimum of
geometrical complications. (For the evaluation of rz in
the case 6=0 for some other geometries see Herring. "
On inserting Eq. (7.11) for zzr in Eq. (7.14), and

dropping all the z dependence, one finds

1 CQ

&e
[1—(8/Rr)](1 —exp[ —(d/r C„)])

1—(rC„/d) [1—(8/Rr)](1 —exp[—(d/rC„)])

(7.15)

where d is the diameter of the slab; the coefficient C„/d
was to be expected from our previous work. Note that

as vR —+ ~, as required. Consider first the
special case 6,=0; and the limits of interest:

1 Cv 1—exp[ —(d/rC„)]
; (8=0) (7.16)

rz d 1—(rC„/d)(1 —exp[ —(d/rC„)])

~ C„/d as r ~ 0; (b=0) (7.17)

1 2C„1
+ ~

; r —& ~, (v ~0, hWO. (7.23)
d 1+(28C„/dR)

The eftect of 8 is to increase the relaxation time. In the
extreme limit co~0 1/ri, =2C„/d; however, in many
situations of experimental interest the term 28C„/dR in
the denominator may not be negligible, even though
5/rR«1.

For large co(r~0) we have already noted that
8, ~0. In fact from Eq. (7.22) we see that an upper
bound to this decrease is given by 8&rE~co' "e ""~~ .
Thus for sufficiently small a& one can ignore h/rR Again.
retaining 6C„/dR we find

1 Cil

Tb ( CQI
1+( ~—

I( dR)

r~0, co~ ~, 5WO. (7.24)

It would be of some interest to try to fit experimental
results for boundary scattering in very pure crystals
with reasonable assumptions about the form of B. The
effect of surface treatment and crystallographic orienta-
tion would presumably be fitted with two phenomeno-
logical parameters 8, (i.e., for each q one has both longi-
tudinal and transverse modes). At very low tempera-
tures in pure crystals of reasonably large size (7.23)
should be adequate. The form of 8 would have to satisfy
the qualitative requirements mentioned above. Without
a detailed study of the scattering mechanism one can
only guess at the form of b„however, from classical
wave theory, for general angles of incidence, an appreci-
able fraction of longitudinal waves leaves the surface as
transverse waves, and'vice versa. Since longitudinal
waves of small q have rather long relaxation times in
comparison with transverse phonons, there should be a
finite range of temperature in which boundary scattering
is negligible for transverse phonons, though important
for longitudinal phonons. Many of the longitudinal
phonons are reflected as transverse phonons which in

approaches a finite limit for co —+ 0. Further, for all the
scattering processes considered here ~~ as co~0,
more rapidly than a&

' (e.g. , dislocations and transverse
modes have ~ '~~, longitudinal modes 7

—'~~" with
zz&2). From the definition of R(q), Eq. (7.9), we find

easily

R(q) ~C,(k/Ace) (BT/Bx) ~~0 (7 21)

R(q) ~C, (A+/lz&)e " z" (BT/Bx) a& —+ ~. (7.22)

The limits 0 and ~ mean precisely that M/kT&&1 or
))1,respectively. Now one always must satisfy 8/Rr& 1.
If we set r '=or" (zz&1, usually), then since 5 is roughly
constant as co ~ 0, this inequality becomes co"+'&con-
stant which can always be satisfied for sufFiciently small
a&. In this limit h,/Rr is rather less than C„b/Rr ~co if
sin8/0. Thus we conclude that
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FIG. 11.The rate at which crystal momentum is pumped into a
given volume element at an angle 8 with respect to the heat
current, is shown as a function of Ace/kT and 9. This crystal
momentum is dissipated by the various scattering processes in
the steady state. The rate of energy input is just chP„ for small g's.
From top to bottom, the curves are for /=0', 30', 45', and 60'.

turn are rapidly brought to thermal equilibrium. It
seems that in this case b, cannot be greater than about
one-half because of this interpolarization scattering. At
very low temperature, however, all modes are equally
out of balance with r= r~ so that the phonon distribu-
tion cannot relax by interpolarization-mode scattering.
jPerhaps a more fundamental phenomenological ap-
proach (or the goal of a detailed theory) would be to
express the scattering interaction as a surface density of
the form P«b(q, q')a;*a„where the a operators have
already been defined. ~b( , q)q~' is zero except on the
surface (it would contain as a factor b(x—x,), where x,
is a surface coordinate). Also b(q, q') is zero unless the
phonons have the proper directions. Lack of correlation
of q and q' would be expressed as a factorization
property: b(q, q') =bi(q)b2(q'); however, this factoriza-
tion would not occur for the polarization indices as
mentioned before. ]

An interesting property from Eqs. (7.21) and (7.22)
concerns the rate at which crystal momentum I' is
pumped into the various normal modes by the tempera-
ture gradient. On using the definition P,=hq~(q),
one finds

In obtaining Eq. (6.6) we found that there was a size-
dependent correction to the conductivity, namely, a
reduction proportional to L '"T '" for crystals for
cubic symmetry, where L is the Casimir scattering
length. This result may be obtained in a more trans-
parent way, using the original formulation given by
Herring, '" who predicted this size effect. (Discussion
of the experimental verification may be found in foot-
note 6.)

Except for very low temperatures T&TO below the
peak To, where modes of all frequencies are limited by
boundary scattering, it is only the long-wavelength
phonons which are influenced by the presence of the
boundary. Further since r increases more strongly with

q for longitudinal than for transverse modes, one may
anticipate that it is the longitudinal phonons which are
scattered by the boundary at temperatures T&TO.
Although the importance of such low-frequency phonons
is relatively small at high temperatures there is a small
but measurable contribution to E by the low-frequency
longitudinal modes. For these modes Ku&(kT so that
their heat capacity is k:

kc'
It =Ic +i~ rg(q)q'dq cos'8dQ.

8~' 4()
(7.27)

Here E& is the contribution of the high-frequency modes
q)q', essentially independent of the boundary. The
desired result is obtained by using the "crude" ap-
proximation ri, '=c/L and setting ri '=r '+ri, ',
where r on the right-hand side refers to all scattering
processes except boundary scattering. (r& ' is negligible
in the evaluation of Ei, .) The same results are obtained
if one sets r&=0 for r) r~ and r&= r for r& r~, except for
a small numerical error, not of significance in comparison
with the approximations already made. ' This approxi-
mation says that the phonons with r)r& do not con-
tribute to E. To find the lower cutoff in terms of q we
set r=r~, where for longitudinal phonons in cubic
crystals r '=Aq'T' is the single-mode relaxation time.
This gives qo

'= (Ari)~Tl Assuming the co. nstant A to
be independent of angle (not really true!) the conduc-
tivity is

kc'

and

P, (q) =k cos'8(8T/8x), Ace/kT«1 (7.25)
E—const-

6n A'"r '"T"' (7.28)

More precise expressions, and results for crystals of
lower symmetry, may be found in Herring's paper. '-'P~(q) = k cos 8(M/kT) g ~"~" .8T/8x

&uu/k T))1. (7.26)

These equations show that for phonons with energies
rather less than kT the crystal momentum supplied to
each mode by the thermal gradient is constant. Less is
supplied to the high energy modes. It is instructive to
make a graph of P /(8T//alx) vs the variable @co/kT
(Fig. 11).

VIII. SURVEY OF UNSOLVED PROBLEMS

The characteristic feature of the calculations pre-
sented in the previous sections is that they all need to be
improved. The calculation of scattering matrix elements
usually was found to be simple, at least in principle;
however, in order to obtain reliable numbers for these
quantities detailed account must be taken of lattice
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structure and the (essentially unknown) anharmonic
force constants, except in the case of isotopic scattering.
Although such detailed considerations do not in them-
selves contribute to our understanding of thermal
conduction phenomena, they are necessary for a truly
quantitative test of the theory. In using these matrix
elements to calculate n, one needs further a detailed
knowledge of the energy surfaces, or co(q), for the sub-
stance of interest.

The next step is to solve the integral (Boltzmann)
equation for the distribution function. As mentioned
before, it is essential to include in this equation the
three-phonon processes. Before quantitative success
may be expected in calculating the magnitudes of E it is
necessary to solve the Peierls integral equation, which
contains in its kernel the anharmonic coefFicients. The
possibility of making a fairly realistic model for the
anharmonic couplings is not so remote as it once was.
Recent measurements of 6-sec order elastic constants in
Ge by McSkimin and Bateman, "using calculations by
Mason, " impose some useful constraints on the an-
harmonic coefficients. Still, however, it is necessary to
use a model. Invention of such a model must be guided
by the symmetry of t~e lattice; considerations of group
theory reduce the number of a priori force constants, but
nevertheless the number of independent anharmonic
constants is not small. (It would be interesting to see
whether the "shell model" of Dick and Overhauser, "
which was applied to the vibration spectrum of Ge with
rather good success by Cochran, ' could be used to
calculate the anharmonic forces. ) Further constraints
may be obtained from thermal expansion and specific
heat data.

If one could construct plausible couplings, it would
be of extreme interest to see whether the solutions
resemble those obtained using the single-mode relaxa-
tion time, and to ascertain the frequency and tempera-
ture range of the correspondence, and the sensitivity of
the results to the nature of the couplings. Kith such
knowledge, one could attack the problem of defect
scattering with more confidence. In the meantime we
can do order of magnitude physics (it is difFicult to see
how the 7. approach could give answers oG by an order
of magnitude) by assuming that a relaxation time makes
sense (as used in Sec. III) and fitting the unknown
constants to the experimental data.

There exists independent evidence for the phonon-
phonon scattering laws. This arises from the circum-
stance that in thermoelectric and thermomagnetic
phenomena' essentially the only unknown is the phonon-
phonon relaxation time. For our purposes it is only im-
portant to know that the important phonons involved
in the phonon-drag effect have energies appreciably
smaller than kT, and this is precisely the range in which

H. J. McSkimin and T. B.Bateman, Bell Telephone Labora-
tories preprint (unpublished)."W. P. Mason, Bell Telephone Laboratories preprint.

~' B.G. Dick and A. W. Overhauser, Phys. Rev. 112,90 (1958).

the single-mode relaxation times should -be applicable.
In fact, it is found that a quantitative fit, to some very
detailed experimental data, is possible by using a
relaxation time" "; however, the necessary q depend-
ence departs somewhat from the ideal laws appropriate
for Ge. In any event it seems risky to extend the ideal
laws to the frequency range important for thermal
conductivity ( kT); even the extrapolation of the
experimental results for r may be unreliable. The use of
these "ideal" laws leads to results consistent with
experiment ""

The nature of our problem is such that a quantitative
test of the theory requires a close examination of the
structural details of the chosen solid. Germanium, which
occupies a place in solid-state physics comparable to
that of the hydrogen atom in atomic physics as a testing
ground for theories, ofI'ers the best chances for rewarding
a concentrated eBort. Its vibration spectrum is being
unraveled both theoretically and experimentally, and
the information on anharmonic forces is rather greater
for Ge than other substances. The possibility of obtain-
ing high-purity samples allows clean experiments to be
made. The electrical properties are extensively studied;
in particular, the phonon-drag experiments are very
sensitive to the behavior of the low-frequency modes.
Finally, more bizarre experiments are possible on the
effect of addition of controlled impurities on the thermal
conductivity (e.g. , the scattering of phonons by im-
purity band electrons seems to be rather strong. ""

This paper is concerned with steady-state situations.
A study of the approach to steady state, or the response
of the conductivity as a function of the frequency of
some applied variable heat source, might yield interest-
ing information, if experimentally possible at low
temperatures.

Recently some intriguing work has been done on the
thermal conductivity of some antiferromagnets"" and
ferrites. "These experiments deserve a thorough theo-
rectical investigation. Figure 12 shows curves obtained
by Slack and Newman for the antiferromagnets MnO,
CoO, and NiO. Not only is there a dramatic dip in E at
the Neel temperature but the low-temperature con-
ductivity is rather low. Further, this dip is not charac-
teristic of all antiferromagnets, for in a curve of E for
MnF2 supplied to the author by G. Slack there is no dis-
cernable anomalous behavior at the Neel temperature.
This diGerence probably may be attributed to the

~ C. Herring, T. H. Geballe and J. E. Kunzler, Phys. Rev. 111,
36 (1958).' C. Herring, T. H. Geballe, and J. E. Kunzler, Bell System
Tech. J. 38, 657 (1959).

~ J. Carruthers, T. Geballe, H. Rosenberg, and J. Ziman,
Proc. Roy. Soc. (London) A238, 502 (1957).~ I. Estermann and J. E. Zimmerman, Carnegie Institute of
Technology, O.N.R. Tech. Rept. No. 6 (1951)."G. Slack and R. Newman, Phys. Rev. Letters 1, 359 (1958)."G. Slack (private communication).

D. Douthett and S. Friedberg, Carnegie Institute of Tech-
nology, O.N.R. Tech. Rept. (1958).
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Fzo. 12. These measurements of the thermal conductivity of
the antiferromagnets MnO, CoO, and NiO were obtained by
Slack and Newman. ~" Note the sharp depression at the Neel
temperature.

' M. Kaganov and V. M. Tsukernik, Soviet Phys. JETP 9, 151
(1959).' C. Kittel, Phys. Rev. 110, 836 (1958).' J. Van Kranendonk and J. H. Van Vleck, Revs. Modern
Phys. 30, 1, (1958).

different structures of MnF2 as compared with Mno,
(or CoO and NiO).

The ferrites examined by Douthett and Friedberg"
also show that different materials exhibit di6'erent
qualitative behavior. The conductivity is rather low, of
the order of mw/cm deg. The interesting fact is that a
magnetic held increases the conductivity in two of
three specimens examined. These authors have given a
theoretical analysis of their results, and conclude that
the phonons carry most of the heat current; however,
much work remains to be done before this conclusion is
accepted. Two recent papers dealing with spin-wave
phonon interactions have been published by Kaganov
and Tsukernik" and Kittel. "References to the older
literature may be found in a review article by Van
Kranendonk and Van Vleck."

These examples serve to illustrate the variety of
interesting results that may be expected in magnetic
materials.

Graphite presents some special problems because of
its cylindrical geometry. In particular, the formulas of
this paper need to be used with some care. Experimental
and theoretical investigations of the thermal conduc-

tivity of graphite are reported in papers by Smith and
Rasor" and by Hove and Smith. "

Very recently Walker and Fairbank" have measured
the thermal conductivity of solid He' containing 0,
0.56, 1.38, and 2.8% He3 in the temperature range from
1.1 to 2.1 deg K. They hnd a substantial resistivity
which does not vary perceptibly with temperature, and
conclude tentatively that the He' atoms are aligned
along dislocations. However, in discarding the isotope
scattering of random He' atoms as the source of the
resistivity, Walker and Fairbank rely on the theory of
Klemens, which predicts that the isotope resistivity is
proportional to the temperature. We have already
discussed the inadequacy of this approach; in fact, the
results of Ambegaokar" indicate that the resistivity of
isotopes is indeed constant appreciably above the low-
temperature maximum. (And remarkably enough, the
very low temperatures of the present experiment are
above this maximum!) Further, the magnitude of the
calculated theoretical resistivity was seen to be in rather
good agreement with the experiment of Geballe and Hull.
If one uses the numbers given by Walker and Fairbank,
the Ambegaokar formula Eq. (5.23) for the resistivity
is about an order of magnitude too small. (Actually the
temperature is too low to use this formula. ) But the
dislocation absorption hypothesis requires a dislocation
density of 3X10"/cm'. This enormous number would
probably produce a large strain-field resistivity, which
does not seem to be the case in view of the fact that the
resistivity is proportional to the He' density. Actually
Eq. (5.26) is probably more appropriate for solid He~,
which has the close-packed hexagonal structure. Before
any definite statement can be made, (5.26) must be
revised, allowing C,q(&u) to depend on temperature.

There are numerous mechanisms of heat transfer, or
scattering mechanisms, which have not been mentioned
here. Radiative transfer is discussed briefly by Krum-
hansl. " Exciton mean-free paths have been estimated
by Ansel'm and Firsov. '4 In general excitons are not
thermally excited at low temperatures (nor is there an
observable excitation of electron-hole pairs). It is easy
to see that the 1/r for the scattering of phonons by the
creation of these last two excitations contains an
exponential activation energy (as was the case for
Umklapp processes). The virtual excitation of impurity
state electrons is not so restricted, however; the calcu-
lation proceeds exactly as in the case of light scattering
by an atom except that one uses the electron-phonon
interaction Hamiltonian.

We have already expressed the need for a detailed
theory of boundary scattering.

Polarons may be expected to scatter phonons by
virtue of the distortion of the lattice associated with

'0 A. W. Smith and N. S. Rasor, Phys. Rev. 104, 885 (1956)."J.E. Hove and A. W. Smith, Phys. Rev. 104, 892 (1956).~ E.J. Walker and H. A. Fairbank, Phys. Rev. 118,913 (1960).'3 J. Krumhansl, J. Phys. Chem. Solids 8, 343 (1959).~ A. I. Ansel'm and Iu. A. Firsov, Soviet Phys. JETP 3, 564
(1956).
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them. We may estimate the importance of such scatter-
ing by comparing the Fourier coeKcient of the dis-
placement field of the polaron with that of a spherical
defect with v~1/r'. This estimate is essentially inde-
pendent of the anharmonic coupling constants. The dis-
tortion is described as a superposition of virtual optical
phonons. These phonons, having frequencies much
greater than the longitudinal phonons of interest in
thermal conduction, can follow the electron adiabati-
cally during the passage of the incident thermal phonon.
The theory of Lee, Low, and Pines" considers only longi-
tudinal optical phonons. Thus one may extract V, from
their expression for the charge density p=edivv/Qp.
For a polaron at rest in the limit of small q one obtains

iQO p1 1q
V,= (

———f; q
—+0,

2qQ Eri' ei ]
where e is the index of refraction and e~ the dielectric
constant. (In an ionic crystal v is the relative displace-
ment of positive and negative ions; 00 is the volume per
call Qo= a'/4= 2ro' in NaC1 type crystals, where a is the
lattice constant and ro the nearest-neighbor distance. )
On using Eq. (4.42) we find, dropping the factor i,

(g 2)

The square of (8.2) gives the relative strength of the two
scattering processes, independent of q and the an-
harmonic coupling, in the limit of small q. Since typical
values of e are e) yg the specific polaron scattering can
be expected to be at least order of magnitude less than
typical point-defect scattering, per scatterer. (For
LiFe'=1.9, ei=9.3.) (In the limit q~ 0 the electron-
phonon coupling ~ q& becomes small. )

A useful way to obtain information on the influence
of crystal structure is to perform experiments on closely
related substances. The results for alkali halides have
been discussed by Leibfried4 and Klemens. ' As suggested
by our discussion of the behavior of antiferromagnets,
anomalous thermal conductivities may be expected in
the vicinity of phase transitions. Some time ago it was
observed (Berman') that in certain dielectrics (HBr,
CH4, NH4C1) Eincreases in the 'region of a specific
heat anomally.

The role of thermal conduction (and thermoelectric
measurements) in analyzing radiation damage experi-
ments has recently been discussed by Geballe. "The
influence of irradiation on K(T) ca.n be very useful
semiquantitative tool for deciding upon the nature of
the damage (just the temperature dependence is very
revealing). Conversely new demands made on the
theory of thermal conductivity in the analysis of radia-
tion damage experiments should lead to progress in
both fields.

' T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
~~ T. H. Geballe, I. Appl. Phys. 30, 1153 (1959).

APPENDIX A. ESTIMATE OF ANHARMONICITIES

Here we indicate some ways in which one may obtain
order of magnitude estimates of the anharmonicity
coefficient g= q'"(a). Ideally the quantity required is
C«(or C«,-), but it seems very difficult to extract
these coeKcients from experiment, especially their
fluctuations in sign )in terms of a Gruneisen y(q) one
would say that the p's fluctuate considerably, even in
sign j.'i In principle there is no real difficulty in evalua, t-
ing the C's theoretically; one just proceeds as in the text,
only with more general forces and considerable patience.
Some special cases have been evaluated recently by
Stern. "The result of the simple model used in the text
was that all results should be correlated with a single
parameter, g= y"'(a). LMore precisely, one also needs
f= ~( )oj

First consider an ionic crystal according to the
classical model, "in which short-range repulsive forces
are represented by a power law. The repulsive force
varies rapidly with distance so that we expect that it
contributes most of the anharmonic force, contrary to
the situation in lattice energy calculations. The inter-
atomic potential is taken to be

v = P./r"a (e'/r). (A1)

In the usual theory the lattice energy is obtained by
summing (A1) over all distinct pairs in the crystal, which
results in two constants: C =Zq =RA„R "—ee'R ',
where R is the equilibrium nearest-neighbor distance,
a is Madelung's constant ( 1.7), and liA „is determined
by the equilibrium condition to be XA —=4ie'/eE" '. n is
found from compressibility data to vary roughly
between 6 and 10. Hence the bulk of the contribution to

"See e.g., T. H. K. Barron, Ann. Phys. 1, 77 (1957).
E. Stern, Phys. Rev. 111, 786 (1958).

"See e.g., C. Kittel, Introduction to Sole(-State Physics Uohn
Wiley Bt Sons, Inc. , New York, 1956), 2nd ed. , Chap. 3.
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XA „comes from nearest neighbors and we may eliminate
A „by dividing XA „by s, the number of nearest neigh-
bors. . Thus

(A2)X=ne'/z~R" '

c'-= s' p" (s/2) /2M, (A4)

where M =m~ 1m2 and primes indicate differentiation
with respect to the argument. A measure of the change
in the force constant when the string is stretched is
Gruneisen's p; defined by p =d 1n&u/d ins. This definition
gives

'r = s q '"(s/2)/4 v'" (s/2).

Elimination p" from (A4) and (A5) gives

y'" (s/2) = 8yMc-'/s',

(A5)

(A6)

which is of the same form and order of magnitude of the
previously quoted result. The three-dimensional prob-
lem differs essentially by having different geometry (the

Hence (Ai) gives the relation

R'p"'(R) = L6—(m+1) (v+2)nz '5e'/R (A3)

This result is sensitive to n; for LiF with n =6, putting
R=a one obtains ga'——10e'/a; for m=8 one obtains
ga~ 20—e'/a; n= 10 yields ga~ —32e'/a. This shows
that the anharmonicities are more sensitive to n than
to p, which does not differ so greatly as do the
preceding g's.

For NaCl, with two ions of comparable size, this
estimate may be realistic. NaCl has n—9 and ga'——26e'/a. For illustration let us compare this with the
value quoted in the text, found by a diferent method,
namely, ~g~ =Ppyc', where P—24. For the NaC1 struc-
ture p=M/2a', where M is the total mass of the two
ions, and a is the interionic distance. For NaCl with
&=58.5 amu, a=2.75 A, y=1.6, and c—3&&10'cm/sec,
ga' is the same computed by both methods for P—30.
For LiF, with a=2.01 A and c=5X10' cm/sec, we find
a rather low P—5. This smallness is to be attributed to
the rather large sound velocity. As mentioned pre-
viously, LiF is a special case; the NaCl value is probably
more typical. In any event it seems that the answers
obtained by the present method are more reliable than
those from the relation g=P&pc', which requires a
dificult estimate of a complicated sum over angles;
nevertheless, it is reassuring that the two methods give
comparable results.

We illustrate the second method by a one-dimensional
model of a diatomic lattice with nearest-neighbor
interactions. The physical principles involved are more
transparent for this case than in the three-dimensional
situation. The necessary equations are lifted bodily from
p. 55 ff of Born and Huang's book. ' The distance be-
tween the atoms of masses m, and m~ is s/2; s is the
lattice constant. The interatomic potential is p(s/2). In
the long-wavelength limit the velocity c of the acoustic
waves is given by

density and the number of neighbors are different) and
the presence of an angular factor multiplying the
equation corresponding to (A5). (See Eq. (2.23), for
example. ] A rough evaluation by the author gave the
result g= 24ypc', but this should not be believed except
to order of magnitude. (See also Klemens' article,
footnote 2.) As mentioned before in the discus-
sion of ionic crystals, it is preferable to have an
explicit potential from which one may compute the
quantity v"'(a) (or better yet, 73""). )For central
forces 8"' is just given by (2.21).]Since the anharmonic
coefficient is a rather more sensitive test of the assumed
repulsive potential, the reader may prefer to replace
the power law by an exponential'. Be "'&. In this case
one finds gR'= —( eo'/ Rz) (ro/p)' using the preceding
argument. Thus the ratio of the power law coupling
constant to the exponential law constant is roughly
(ro/p)"-/g'. Tables of (ro/p) may be found in the book by
Born and Huang; most values lie between 8 and 11.
Thus both methods give roughly the same value for g.
Note, however, that the variation of g in different
materials is rather less for the exponential force; in
particular LiF and NaCl have about the same g.

APPENDIX B. ROLE OF NORMAL PROCESSES
IN ESTABLISHING EQUILIBRIUM

As indicated in the text, in the absence of Umklapp
collisions, in a perfect crystal the total crystal momen-
tum P would be unchanged by the normal three-phonon
processes. However, before one could conclude that the
conductivity were infinite (QWO when VT=O) one
must establish that a finite P implies a nonzero heat
fiux Q.

This result is very different from the usual situation in
the kinetic theory of gases, where the heat current and
momentum fiux are independent quantities (in this
case one usually sets P equal to zero). The fundamental
reason for this possibility is that gas molecules are not
destroyed or created, while phonons (bosons) are not
conserved, but are absorbed, e.g. , at the cold end of the
specimen. This latter distinction gives rise to the
impossibility of maintaining P=0 in the presence of a
temperature gradient.

From Eq. (3.4) one sees that Q —+ 0 if P ~ 0.
This linear relation between P and Q is essentially an

accident, due to the fact that co ~ cq for small q. At low
temperatures one is then guaranteed that the usual
viewpoint is correct, since only small q excitations are
important, but the foundation of the standard viewpoint
on general arguments is somewhat illusory. For example,
if &u=Aq-' instead (e.g., spin waves), then P and Q can
be independent, for P~P, V,q and Q~P V,qq. In
this latter example one must prove that such inde-
pendent solutions satisfy the basic transport equation
(else they would not be solutions); however, the author
is unaware that anyone has proved that such solutions
do not exist for the homogeneous (i.e., BT/By=0)
Peierls integral equation. Such solutions might exist for
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higher q's, where a&(q) generally deviates significantly
from the linear relation co= cd. When the branch is flat
(cf. especially the transverse acoustic branch of germa-
nium) one has 8~/Bq=0 so that Q=O while P may be
finite. This simple example contradicts the usual step
from PAO to QWO. At low temperatures this is the
case only for a small fraction of the phonons, but it is
an important matter of principle that there is no heat
transport in these high frequency modes even when the
normal process fails to restore equilibrium. If one
separates the contributions to E according to frequency,
then in the preceding situation K is not infinite for these
modes. Some further clarification of these points seems
desirable.

The considerations of this appendix were developed
in conversations between Professor R. Brout, tVI. Klein,
and the author.

k"=k'+4xnf(0), (C1)

where n is the density of scatterers and f(0) is the
forward scattering amplitude f(q~q). (There is an
additional factor of order unity in the second term of the
right-hand side of (C1) which is of no consequence here. )
In order for there to be no correction it is necessary that

2~n f/k'&&1 (C2)

For an order of magnitude calculation, we take
~r 4x

( f(0) ~' as an approximation to da/dQ=
~ f(0) ~'.

LSome care is needed when considering strain-field
scattering. This is because in the quantity C«, the
factor b;,& is zero for q= q', while V~, is usually
singular in this case. Therefore the considerations of
this appendix are somewhat formal, pending more
careful investigations. For the case of v(r) ~ 1/r', how-
ever, the limit Cqq is well defined as q'~q so that
Eq. (C5) is valid. 7 For a crude estimate of ~ we take cr
to be a mean-free path (q is larger than this since r ' is
a difference of scattering probabilities). Then if we call

'N' For a thorough treatment of multiple scattering theory see
M. Lax, Revs. Modern Phys. 23, 287 (1951).

APPENDIX C. MULTIPLE SCATTERING
CORRECTIONS

The perturbation treatment given in the text supposes
that the wave incident on a scatterer is the unperturbed
plane wave, unmodified by the presence of the other
scatterers. This assumption may be expected to fail
when the density of scatters is sufficiently high, which
critical density is less for a large scattering cross section
0. In order to get some idea of the conditions under
which such effects are appreciable, we consider the
scatterers to be distributed at random. Then one
requires that the index of refraction k'/k be nearly unity
where kI is the wave number in the medium and k is
the vacuum (i.e., perfect crystal) wave number. The
necessary information is contained in the equation'"

r, =r—n (ther for n=1) wehave1/r, oc -4~cd f(0) ~', or

f(0)—(4n.cr,) (C3)

On using (C3), (C2) becomes (with lt=k —')

X'« l, l/n = (1/n) l, (C4)

APPENDIX D. GENERAL ANALYSIS OF THE
PERTURBATION SERIES

Future developments in both theory and experiment
probably will require a more detailed study of higher
terms in the perturbation series for the scattering
matrix. The wide variety of properties available in
solids should provide an opportunity for testing such
higher order effects. An approach to scattering problems
is obtained here which is more general than was required
in the main body of the paper. For our "low-brow" field
theory a general formal analysis is undesirable and un-
necessary (except for a study of many-body properties")
for the following practical reasons. There are actually
two expansions in our problem: the expansion of the
potential energy into a power series (although some
other torm of this nonlinear response may eventually
turn out to be appropriate), and the perturbation series
itself. There is no guarantee, for example, that a fourth-
order perturbation term in the cubic interaction V3 is
as important as a second-order term in the quartic
potential V4. Therefore the discussion is confined to the
lower orders in the three-phonon and strain-field inter-
actions. (The perturbation for isotopic scattering has

when l,=cr, and l=cr. Since l=l(K) Eq. (4) requires
further rearrangement for specific applications. For
instance, for co4 scattering characteristic of isotopes or
simple point defects at low frequencies the condition
(C4) is independent of wavelength. In this case if we
write 1/r=Aco4=Ac4/K4, (C4) becomes

(nA c')&«1; 1/r =Aco4. (C5)

For the isotope experiments of Geballe and HulP' this
inequality is well satisfied. For take A=2)(10—44 ap-
propriate to Ge" n=10"/cm' "c=3)&10' cm/sec; the
left-hand side is less than 10 ' which is clearly less than
unity. Although the strain-field scattering cross section
is rather larger, per scatterer, than the isotope cross
section, the density is however, usually lower. From
(4.45) it is evident that in most reasona, ble situations
Eq. (C4) or (CS) is satisfied for strain-field scattering.
With Qo 10 cm, c 10 ', and y 2, we find that one
must have n«10"/cm'. Although these conditions are
quite lenient, cr is underestimated somewhat by using
1/r noc On the o.ther hand, we have overestimated C«
(as mentioned before) in the case of strain scattering.
We conclude that for point defects of the usual sort
multiple scattering effects can be ignored in most experi-
mental situations. For scat terers of other shapes (such as
dislocations) Eq. (C1) will probably have to be modified
somewhat.



PETER CARRUTHERS

the same formal structure as V, .) For clarity the various
terms are represented by graphs; these graphs are
similar to ordinary Feynman diagrams"' except that the
time ordering of the vertices is important.

A slightly more general and more symmetric notation
is used here than in the text. On omitting constants,
the perturbation considered is (V,=strain-field per-
turbation)

1
V= Vp+V~= —P Amno'i um'uniuo"

3~ mno

fiuctuation Fig. 13(a) in which three-phonons are
virtually created and then annihilated. This latter
process is of interest in the study of the ground state but
not in scattering problems. The basic strain-field
scattering process is displayed in Fig. 13(b). An
incident phonon q absorbs a virtual phonon q' —q from
the strain field and is scattered to the state q'. The
action of the strain field is indicated by a cross.

The general expression for the transition rate between
two states q, q' of the harmonic Hamiltonian H is
given by

+& P(P Amno'i po )um'un' ('.D1)
mn o

21r",-o =—I(q'I ~Iq&I'b(Eo —E'), (D7)

(Summation on the indices i, j, b is implied. ) The A
coefFicients replace the previous constants 8 of Eq.
(1.7). Since the polarization vectors are odd functions
of the wave vector q, substitution of (1.4) gives the
results

T= V+V(E Hp+iq—) 'T; g —o0. (Dg)

where the "transition operator" T obeys the equation"

1( 5 )& C(q, q', q")

3!E2pQJ oo'o" ((a,co, co, )i

x(,—,')(, —,")(, —,*),

fz C(q,q')
V, = — P (a,—a,*)(a, —a, *),4' oo' ((u~, )&

The interaction V is given by (D1) and contains two
parts. If (DS) is iterated, the standard perturbation
series is generated. This equation shows clearly how the
three-phonon processes modify the propagation of a

(D2) phonon in a strained lattice.
First consider the Born series for the scattering of

"bare" phonons (i.e., ignore Vp). The T matrix is then
an expansion in powers of the strain-field potential V,.
The first three terms are illustrated in Figs. 13(b)—13(d).

in which the quantities C(q, q', q") and C(q, q') are
defined by

C(q, q', q")=~(q+q'+q")

Xg b;,k(q, q', q")e,'e, 'e,"', (D4)

C(q,q') —=E ~(q+q'+q")

XP b;, i(q,q', q")e,'e, 'v, "", (DS)

b*'(q, q', q")—= E A- *"
mno

Xexp(i(q m+q' n+q". o)j. (D6)

The notation (—q) means that the vector q is changed
in sign, leaving the polarization index unchanged.
Equation (D5) displays the possibility of Umklapp-
type scattering by the strain field. For normal zone
structures and at low temperatures (where only small
q's are important) such scatterings are improbable,
because v~ generally is a decreasing function of q. At
short wavelengths, there are some scatterings for which
q+q'+G is very small, leading to a large cross section.
For the present discussion we ignore the Umklapp
collisions.

The fundamental vertex corresponding to V3 was
shown in Fig. 1(a). In addition to this process, and the
second-order process of Fig. 1(b) there is the "vacuum"

' ' R. P. Feynman, Phys. Rev. 76p 749 (1949).

(d)

FIG. 13. (a) shows a Quctuation in the ground state caused by
the virtual creation of three-phonons by the anharmonic forces.
This graph is of interest for a study of the ground state energy but
is not involved in scattering problems. (b) represents the basic
strain field scattering interaction (or scattering by any static
perturbation) in which the incident phonon absorbs a virtual
phonon from the strain field, being thereby scattered to another
state. (c) and (d) represent successive scatterings, corresponding
to higher-order terms in the Born series,
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(a) (b)

(c)

Fxo. 14. These diagrams show some typical examples of the
modihcation of the strain-field scattering by the three-phonon
interaction. (a) and (c) are typical self-energy modihcations (b)
shows how the anharmonic interaction can screen the strain held.
(d) is a "radiative" correction; or else one can say that one of the
virtual phonons in a self-energy bubble has scattered off the
strain Geld.

LNp(x), u((x')7= imp 'Dg((x —x'), (D9)

of the three-phonons created in a vacuum Quctuation

may be absorbed (along the incident phonon) by the
strain field. It is not obvious that these processes are
negligible in comparison with the elementary scattering
process Fig. 13(b), because the effect of the three-
phonon process is artificially suppressed, as far as the
thermal resistivity is concerned, by the conservation
law, at temperatures so low that Umklapp scattering is

negligible. Until a quantitative estimate is made, the
best evidence that these terms are indeed negligible will

probably be the reasonable theoretical success in
explaining the experimental results without taking such
processes into account.

The form of the perturbations (D2) and (D4) makes

it possible to write down the relevant matrix elements

directly.
Finally, consider some properties of the displacement

field operator. The commutator of N~(x) and u~(x') at
two diAerent positions and times are closely related to
the propagation of disturbances in the lattice. LThe

operators have been transformed to the interaction

representation, and so have the explicit time dependence
of Eq. (2.10).7 The commutation laws (1.5) lead directly
to the result (x stands for both x and t)

The influence of the three-phonon processes (in addition
to their effect in a "perfect" crystal) may be found by
constructing three-phonon vertices (in all possible
ways) in these diagrams. We discuss three interesting
examples. First, any line may be modified by the
insertion of a self-energy "bubble" LFig. 1(b)7 as shown
in Figs. 14(a)-14(c). All such graphs are taken into
account'" by renormalizing the phonon energy Dust use
the experimental &o(q) 7; however, the process described
by Fig. 14(d) is an observable process (theoretically
observable, at least!). It is analogous to the radiative
corrections in quantum electrodynamics. "' In the earlier
part of this paper considerable attention was given to
the fact that the "normal" three-phonon processes
conserve the total wave vector. It is now clear that the
strain field can modify the three-phonon processes so
that wave vector is not conserved, as shown in Fig.
15(a), if one of the phonons is scattered by the sr"sin
field. Closely related are the processes displayed in

Fig. 15(b) in which a virtual pair of phonons is created
in the strain field, one of which is scattered by an
incoming phonon; and Fig. 15(c) which shows how one

'~ This is not true for graphs such as Fig. 14(b). The process
shown in Fig. 14(b) illustrates how the anharmonic forces can
screen the strain held, thereby reducing its strength. This process is
similar to the vacuum polarization in quantum electrodynamics.

(a)

(c)
FIG. 15. These diagrams display some ways in which the strain

field modifies the three-phonon processes. In (a) one of the final
phonons scatters off the strain held. In (b) one of two phonons
virtually created by the strain held absorbs an incident phonon.
(c) shows how a "vacuum fluctuation" and the strain held can
collaborate to produce an ordinary three-phonon scattering
process. By including one higher order in the strain field, the non-
Umklapp three-phonon processes do not conserve wave vector.
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where
j.

Di, i(x x'—) =—g ei"(q)eii(q)
0 e, &

sin[q. (x—x') —co (q) (i—t')]
(D10)

[aD»(m n)/al—']~, ,=—hgibm. .
0

(D11)

If x and x' are taken to be two lattice points 1and
n, then the completeness relation for the polarization
vectors enables one to prove

for a wave P(x,t) =P(x)e '"' of constant frequency co'.

5'+ (~%')]4=o.

The sound velocity c is given by an expression of tht.
form c'=8/p, where 8 is some elastic constant and p is
the density. Thus c is not constant in a strained lattice;
both 8 and p can vary. We have already discussed the
effect on "8"of the anharmonic forces (Sec. IV); now
~, ™consider 8 constant and discuss the eBect of density
variations. Evidently p= po(1+6), where A(x) is the
dilatation, and po the normal density. Thus we can write
c'= co'(1+6) ' The index of refraction u= co/c is
(1+6)&.On setting k=co/c, Eq. (E1) may be written as

(P+k')P = —k'-hP. (E2)
Now consider the Green's function

Gii(x —x') —= (0 I T[ui(x)ui(x')]
~
0). (D12)

T is the time-ordering operator and ~0) denotes the
vacuum state. We now ignore the lattice and assume a
continuous unbounded spectrum. One can easily show
that G» obeys the equation [5&4i(x)=—8(x)b(t)]

$~2( iV)+a2/aP]G„, (x) =8.,8&4&(x). (D13)

In (D13) the wave vector k has been replaced by —iV.
This approach enables one to formulate the theory in
an elegant way by focusing attention on the time
development of the displacement operator. For instance,
we can write the general solution as

ui, (x) = &u'"( )x+Q& J~d4x'Gi&(x —x') j&(x'). (D14)

j(x) is the source function of the field, and contains the
strain field and anharmonic eEects. The boundary
condition is made explicit by u'". [For instance, the
incoming wave could be of the form (2.10).]

APPENDIX E. SCATTERING BY DENSITY
VARIATIONS

Another source of scattering in strained lattices be-
sides the modification of the force constants by the
intervention of the anharmonic potential is the density
change associated with the strain. In this appendix we
show that this latter e6ect is much smaller than the
anharmonic scattering described in Sec. IV, at least for
localized scattering centers. Consider the wave equation

For an incident plane wave e'~', the solution to this
equation for the scattered wave is, in the Born
approximation

P..= —[6(k' —k) k'/4n. ](e'"' */r); (F3)

4(q) =
J

"e*& *h(x)d'x. (E4)

Cia =gk'(qV, ). (E7)

The A~ defined by (E4) is related to V~ in (E7) by

/a, /=nq V, . (Eg)

[Recall the 0 in Eq. (4.8)]. Therefore (E7) and (E6)
give

fi/f, =c'p/g = 1/40, (E9)

using g=40pc' (Appendix A). Thus one may generally
ignore the scattering caused by the density variation, in
comparison with that caused by the anharmonic forces.

The scattering amplitude fi(8) is (cos8=k k')

f,(g) = k2Z(q)/—4x, q=1 '—k. (E5)

The differential cross section is related to fi by do/dO
=

~
fi~'. From the matrix elements (4.12) and (4.13) for

strain-field scattering, one finds that (dropping signs)

f.(g)= ~Ci~ ~/4~pc'. (E6)

From Eq. (4.31+e can obtain an estimate of Ci,.i .For a
simple cubic lal. tice there are six terms in the sum;
replacing the angular factors by 3 and setting Ea'=0,
/kt = Jk'(,


