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more frequent use is being made of the density matrix
for describing polarization. These matrices introduce
the Stokes' parameters which, when used as a four-vector,
allow the ordinary polarization-sensitive cross sections
to be written in matrix form. This form is very con-
venient for the description of polarization phenomena
for both electromagnetic radiation and elementary
particles and readily shows the similarity between
these processes and the customary descriptions of
polarized light. The matrix representation of a large
number of polarization sensitive interactions is given
here. With these matrices the general features of the
interactions are readily determined. An introductory
account of the density matrix and the development of
the Stokes parameters is given in a previous paper. '

In quantum mechanics the wave function describing
a pure state of polarization can be expanded in a
complete set of orthonormal eigenfunctions. For elec-
tromagnetic radiation and particles of spin -„ this
expansion consists of only two terms,

a14 I+a24'2.

The wave functions describing pure states may be
chosen in the form

~,=(,') -~ ~.=(", I

On using these, the wave function describing the beam
is given by
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I. INTRODUCTION

Appendix. Transformation of the Stokes Param-
eters under a Rotation of the Coordinate
System. . .

I=&1)=( * *) 1
0

P~ (o.)= (a)~a2*)——
0

P2 = (o.)= (a,*a/) 1

2

0 =QC +QC2

0
= +&+2 ++2+i

Z Ci
0 a2~

=z(a&ag —a2ay ).

(4)

HE usual descriptions of polarization phenomena
require careful consideration of all the angles

involved and the general features of polarization sen-
sitive processes are not readily apparent from the com-
plicated equations that result. In the current literature

~ This work was done under the auspices of the U. S. Atomic
Energy Commission.

This set of four members, called the "Stokes param-
eters, " represents physically measurable properties and
completely characterizes the beam. From the definition
of the a; one sees that I is the total intensity. The choice
of the Pauli spin matrices is such that the Stokes

' G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 399 (1852).' W. H. McMaster, Am. J. Phys. 22, 35j. (1954).
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TABLE I. Comparison of the Stokes parameters.

Stokes parameter Photon observation

Intensity

Particle observation

Intensity

Plane polarization Spin in s direction

P2
Plane polarization at an angle

of ~/4 to the right Spin in x direction

PB

Left circular polarization

Right circular polarization

-1 +1 Spin in y direction

parameter P, represents the pure states P~ and P2. For
electromagnetic radiation these states are usually
chosen to represent two states of orthogonal plane
polarization and for particles they refer to polarization
in the positive and negative s directions, respectively.

Table I gives a comparison of the meanings of the
Stokes parameters for radiation and particles as used
here.

In the application of the Stokes parameters to a
problem it is convenient to write them in the form of a
four-vector:

.P3.

0
represents an unpolarized beam.

,0

&1
0
0.

1

and
0

0.

represent plane polarization or
transverse spin in s and x direc-
tions.

1

0
0

.&1.

represent circular polarization or spin in y di-
rection.

Since the Stokes parameters are dependent upon the
choice of axes, there exists a rotation matrix M which
relates the Stokes parameters in one coordinate system
to those in another system. On considering a second
coordinate system rotated about the direction of
propagation at an angle 8 to the right of the original

As an example of its form, consider the following simple
cases:

coordinate system, then

where
1

M= 0
0.0

0 0 0
coRo sin~ 0
—since coRo 0

0 0 1.

(6)

for rotations about the axis represented by P3, with
oo=28 for photons and oo=g for particles. (Derivation
and discussion are given in the Appendix. ) Thus if in
the old system the values are (I, P, , P2, Po), then, in
the new system of coordinates, the Stokes parameters
of the same beam are

Kith a polarization-insensitive detector we are, in efI'ect,
making a measurement of each of two orthogonal states
and summing. Thus one obtains the formula

tv= (t o o o)(~o).

When photons or particles undergo an interaction
which is sensitive to polarization, then, in general, the

I
P~ cosco+P2 since

—P~ sinco+P2 costs
P3

A rotation in the opposite direction changes the sign
of the sine term as expected.

The probability of detecting a photon or a particle
characterized by the Stokes parameters (1,D) in an
arbitrary beam characterized by the Stokes parameters
(I,P) is given by

W=-,'-(1+I' D),

which, using vector notation, becomes
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Stokes parameters of the initial beam are transformed
into a new set of parameters. The relation between
these two Stokes vectors is given by a transformation
matrix T characteristic of the interaction. That is,

P P

II. PHOTON POLARIZATION

A. Polarization of Light

Since polarization is first studied in optics, let us
start with some examples in this held.

l. Aicol Prism

A Nicol prism with its transmission axis along E&,
i.e., one which passes only light characterized by the
Stokes parameters (1 1 0 0), has the interaction matrix

1 1 0 0

T=, 1 1 0 0
0 0 0 0
.0 0 0 0.

(13)

The zero's of the fourth row and column show that a
Nicol prism is insensitive to circular polarization.

This matrix expresses the cos'P dependence on the
orientation of the electric vector as can be seen from the
following considerations. For the vector expression

E=co&E~+sin&E2,

the Stokes vector is

where T is a 4)&4 matrix.
When we pass a beam (I,P) through a polarizer T

and detect it with an analyzer (1,D) the fractional
intensity detected is given by

w = —', (1,D) T(r).

For an unpolarized initial beam we have

1 1

w=-', (1 1o o)r =-'(1 1o op ' =-'
p 2 2 0 2)

.0. .0.
for parallel transmission axes and

1

lfr=2(1 —1 0 0)T =00
0
.0.

for crossed prisms.
The next two examples are among those worked out

by Perrin. '

0 0 0
0 1 0 0

0 cosf —sing
.0 0 sing co& .'

In particular, a quarter-wave plate with its slow axis
along E& is given by (p =m./2)

1 0 0
0 1 0-000
.0 0 1

0
0

—1

0.
(15)

3. OPlical Actisity

A crystal exhibiting optical activity which rotates
the plane of polarization an angle p to the right has the
interaction matrix

Z. Birefri nugent Crystal

A birefringent crystal which introduces a phase p
between the components of the vibration along two
orthogonal axes has the following transformation matrix
if we take the slow axis along E& ..

and hence

1

(
I cos'P —sin'P
P 2 sing co+

0

p =cos $
.0.

0 0 0
0 cos2$ —sin 2p 0
0 sin2@ cos2p p.0 0 0

(16)

The simplicity of these interaction matrices shows
the ease of treating polarized light in the formalism of
the Stokes parameters.

Thus a polarization insensitive detector measures

W= (1 0 0 0) cos'p =cos'p1
0

„0

For a system of two Nicol prisms, the erst acting as
a polarizer with interaction matrix T and the second
as a detector which accepts polarization characterized
by (1,D), the transmitted intensity is given by Eq. (12).

B. Polarization of Gamma Rays by
Compton Scattering

Next let us consider the polarization of gamma rays
by brompton scattering. The Klein-Nishina formula'
shows that the cross section depends on the directions
of polarization of the initial photon, the final photon,
the initial electron, and the final electron. The most

3 F. Perrin, J. Chem. Phys. 1Q, 415 (1942).
4 O. Klein and Y. Xishina, Z. Physik 52, 853 (1929);Y. Nishina,

ibid. 52, 869 (1929).
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familiar form of the equation is

do ~ k ys-ko k
', ro'~ —-~ —+—2j4 cos'0

dQ Eko)
(17)

where ro es/m——cs is the classical radius of the electron,
0 is the angle between the direction of polarizations of
the incident and scattered beams, kp and k are the
initial and final energies of the gamma in units of mc',
and ko/k=1+ko(1 —cos8) expresses the degradation of
energy for a scattering angle 8.

This form of the Klein-Nishina formula is applicable

only to plane polarizations. The complete equation has
been brought into a convenient form by Fano' and
Tolhoek. ' Here we follow Fano's representation but
use Tolhoek's polarization conventions which agree
with those we have been developing. This presentation
is not complete in that it does not contain terms de-
pendent upon the final state of the electron's spin. A
complete set of terms is given in Tolhoek's article. '

The matrix of the Klein-Nishina formula used here
is a revised form of Fano's original matrix' and is given
in Eq. (18). In the limiting case k= ko~ 0, we obtain
the matrix for Rayleigh scattering:

gi+cos 8+ (kp —k) (1—cos8)
(k t~t sin 8

(kp& 0
—(1—.os8) ( co~+k.).S

sin'8 0 —(1—cos8) (kp cos8+k) ~ S g
1+cos 8 0 (1—cos8) (n Xnp) ~ (kp)& S)

0 2 cos8 {1—cos8) (kp)(a) ' S
', (18)

(1—cosa) (noXn) ~ (hXS) (1—cosa) (kXno) S 2 cosa+ (ko —k) (1—cosa) cosa)

where P~ =+1refers to linear polarization perpendicular
to the plane of scattering, P2=+1 refers to linear
polarization 45' to the right of P~, Pa=+1 refers to
left circular polarization, S is the spin direction of the
initial electron, kp and k are the energy of the incident
and scattered quanta in units of mc', np and n are unit
vectors in the direction of kp and k, and 8 is the angle
of scattering.

The terms involving the electron's spin are contained
in the fourth row and column only, which means that
the interaction between photons and electron spin
occurs only with circularly polarized components of
the gamma-ray beam. This is to be expected since both
polarizations are associated with angular momentum.

The complete cross section analogous to the Klein-
Nishina formula is then given by Eq. (12) which gives
a relatively simple procedure for finding polarization-
dependent solutions. Several examples are given. For
simplicity, whenever only linear polarization is involved
we use just the upper left 3X3 submatrix of Eq. (18)
which expresses Eq. (17).

1. Compton Scattering of Unpotarised Gamma Rays

As a result of Compton scattering the Stokesparam-
eters of an unpolarized beam undergo the transformation

Jt1) (1+cos'8+(ko—k)(1—cos8))so-i sin'8 (»)
L0i &

from which, since P& sin'8, as a result of Compton
scattering, the beam is partially polarized orthogonal
to the plane of scattering.

The degree of polarization as obtained from Eq. (19)
1s

P= sin'8/L1 jcos'8+ (ko —k) (1—cos8)). (20)

Sometimes it is convenient to determine the ratio
of intensities with opposite polarizations in the scattered
beam. This is defined as

p =dos/doo&'

where

(k
do&=-', (1 1 0)T 0 =g —ro'((ko —k)(1—cos8)+2]

(0) &ko

(k t2 k kp
dog = sro'( —

~

—+—,
Eko& ko k

(1I & k &'
do.„=-,'(1 —1 0)T 0 = ', ro'( —[-

(0) Eko)

X$(ko—k) (1—cos8)+2 cos 8]
or

tk~s k ko
do'&& = sros~ —

(
—+——2 sin'8

Eko) ko k
yielding the result

p = L(ko —k) (1—cos8)+2)/
P(ko —k) (1—cos8)+2 cos'8), (21)

where the I. and j[ refer to plane polarization perpen-
dicular to and parallel to the plane of scattering, respec-
tively. When P=1, which occurs for 8=0 and m, the
scattered beam is unpolarized. On using the ordinary
Klein-Nishina formula, the derivation of this result
requires more eBort and a careful consideration of the
angles involved.

The cross section for a polarization-insensitive de-
tector is found to be

('l
o=(10 O)r 0 =-,'ro'I —

I

(0i Ekol

XL(ko —k) (1—cos8)+1+cos'8], (22)

(k)' k kp
o= ,ro

~

—
~

—-+—sin'8,
Ekp) kp k

~ U. Fano, J.Opt. Soc. Am. 39, 859 (1949);Revs. Modern Phys.
29, 74 (1957).' F. W. Lipps and H. A. Tolhoek, Physica 20, 395 (1954).

7 H. A. Tolhoek, Revs. Modern Phys. 28, 277 (1956).
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k
0

plane of scattering is given by

( k)P
a((=-', (1 —1 0)T

or
X [(kp—k) (1—cos8)+4 cos'8 sin'Q]

FIG. 1. Compton scattering of a polarized gamma-ray beam. eo
gives the plane of polarization of the incident beam. (h,ko) is the
plane of the paper and 8 is the Compton scattering angle. Note.
Letters in figures with overhead arrows correspond to boldface
letters in the captions and text.

which is the sum of do-& and do. i f as expected. Here we
have used (1 0 0) as an analyzer, which is the Stokes
vector characterizing an ordinary photon detector, such
as a scintillation counter.

Io=(1 o o)r I =pro'I —
I

or
X [(kp—k) (1—cos8)+2 cos'&+2 cos'8 sin'g7

t
k~o-k

o = —,'rp'I —
I

—+——2 sin'8 sin'y
Eko) kp k

(24)

The probability that the beam is polarized orthogonal
to the plane of scattering is given by

(ky'
o,=-', (1 1 0)T = ,'rp'I —I-

Z. Compton Scattering of a Polarized Beam

For this discussion we use the geometry shown in
Fig. 1. To use Fano's matrix we recall that positive
values of P~ refer to plane polarization perpendicular
to the plane of scattering (i.e., along e,). The simplest
representation of the initial completely polarized beam
is by the Stokes vector (1 1 0), but this is in a coor-
dinate system rotated through an angle @ to the right
of e, (looking in the direction —kp); therefore, we must
rotate the coordinate system an angle P to the left using
the matrix M given by Eq. (7) with the appropriate
change of sign. Thus, using the plane of scattering as a
reference plane, we have

~ ~

~

~

(1'i ( 1 ) (
=M 1 = cos2p = cos'g —sin'P . (23)P «f (—sin2$J (—2 sing co+)

The cross section for scattering is thus given by

(k)' k kp
o «

———,'ropI —
I

—+——2+4 cos'8 sin'p (26)
Eko) .ko

Use is made here of the relation (k/kp)+(kp/k) —2
= (kp- k) (1-cos8).

From Eq. (24) we see that the polarized gamma rays
are preferentially scattered in a plane perpendicular to
the electric vector. This makes it possible to use
Compton scattering as an analyzer in a way analogous
to the Nicol prism of optics. Two special cases are of
interest, and are sketched in Fig. 2. In case I we have

(1)
T 1

«)

and in case II we have

'kp k
+

k kp

0

'k kp—+——2+2 cos'g
kp k

—2 cos8

(27)

where R is the ratio that would be obtained for a beam

These Stokes vectors show that the beam has been
depolarized to some extent in both cases and for the
special case of right-angle scattering, 8=90', the case
II beam is completely depolarized.

To use Compton scattering as an analyzer for plane
polarization, the two measurements shown in Fig. 3 are
made. The partially polarized beam I is Compton
scattered and intensity measurements are made for a
scattering angle of 8=or/2 in the two directions Ip and
I~, where I& is perpendicular to the plane of I and I2.
The ratio of intensities in the two polarization states
along Pr and perpendicular to P&, p is found from

Ig/I p = (pR+1)/(p+8),

or

e
O~

X [(ko—k) (1—cos8)+4 cos'$7 0'
k0 + —9i

ko
o,= xoro' —

I
—+—+2—4 sin'@,

kp& kp k
r(25)

Case I Case II

k0

and the probability that the beam is polarized in the
Fro. 2. Special cases of the scattering of a linearly polarized

gamma ray.
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of scattering). These are expressed by the ratio
p=da&/do„given by Kq. (21) and shown in Fig. 5(c).

5. Effects Dependent on Circular Polarization
and EL'ectron SPin

Compton scattering of a polarized gamma beam by
polarized electrons is given by

C. Radiation from an Accelerated Electron

For the case of an accelerated electron in an homo-
geneous magnetic Geld, illustrated in Fig. 6, the emitted
radiation is polarized. We use the formulas of Sokolov
and Ternov" to illustrate this eGect. After integration
over the energy spectrum, the Stokes vector of the
emitted radiation for the relativistic case is given by

= (1 0 0 0)T( ),
t

ky'
o = 'ro'~ —

(
L-i+cos'8(ko —k) (1—cos8)

Ek,)

+P, sin28 —P3(1—cos8) (ko cos8+k) S). (30)

S'I 0

0.

'1+cos'8+ (ko —k) (1—cos8)
'

sin'8
(31)

,
—(1—cos8)(k cos8+kp)'S

This is accomplished experimentally by using mag-
netized iron in which two of the electrons are aligned
with the Geld. Thus this process can be used as a
detector for circularly polarized gammas. The require-
ment of the additional factor of electron-spin orientation
corresponds to the use of a quarter-wave plate in optics.

Compton scattering of an unpolarized gamma beam

by polarized electrons yields a beam characterized by
the Stokes parameters

fi+ fbi

3 l II (34)

where w=-', (e'c /E')e' is the total energy radiated per
unit time, e the electron total energy in units of mc',
x= E cos8, f~= (Sx'/16)(1+x') t' for polarization J to
the plane of motion, f„=—,', (1+x') '" for polarization
in the plane of motion, and f,= —(4/nVS)x(1+x~) '.
A measurement to determine the degree polarization
of the beam is again given by Kq. (12) and the results
of these measurements are shown in Fig. 7.

Figure 7(a) shows that for radiation emitted in the
plane of motion (x=0) the light is plane polarized in
this plane. For 8 &s./2 (x)0), the light is right circularly
polarized, and for 8)m./2(x&0) the light is left cir-
cularly polarized, that is, the polarization has the same
helicity as the electron's motion.

For the nonrelativistic case, Eq. (34) becomes

which shows that in general the resulting beam is
elliptically polarized, and the backscattered beam, 8=x,
is circularly polarized. The degree of polarization is
given by

'1+cos'8
~

~

1 e'c

s z —2 cosI51~

(35)

( p( (p myp 2+p 2)1 The angular distribution of the emitted radiation is
given by

((1+cos8)'+L(k cos8+ko) S)') ~

= (1—cos8) (32)
(1+cos'8)+ (ko—k) (1—cos8) and

do- c2c p4—= (1 0 0 0) =——(1+cos'8),
dQ R' Sm

for the general case and

2ko(1+kp)
p.= (no S

(1+2ko+2ko2)
(33)

IH. A. Tolhoek and S, R. Degroot, Physica 20, 85 (1954).

for backscattering. For high energies, ko) 1 (i.e.,
greater than 2 Mev), the degree of polarization rapidly
approaches ~no S~ and we can get a high degree of
circular polarization either lef t or right circularly
polarized dependent upon whether the electron spin is
parallel or antiparallel with the direction of the incident
photon.

Polarized electrons can also be obtained by Compton
scattering. The appropriate cross sections and processes
are discussed in great detail by Tolhoek. e

f do. 2 e'c—dQ= ——p',
dQ 3 R'

H z
)l FIG. 6. Radiation of an accelerated

electron in an homogeneous magnetic
Geld. The pho ton is emitted at an angle
8 from the direction of the magnetic
field.

"A. A. Sokolov and I. M. Ternov, Soviet Phys. JETP 4, 396
(&957).

the total radiated energy. The polarization eGect
expressed by Eq. (35) has been used in the analysis of
the Zeeman eGect.
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0.6

X
—X

-3 -2 -I 0 I 2 3 -3 -2 -I 0 I 2 3
(o) PLANE POLARIZATION (b ) CIRCULAR POLARIZATION

FIG. 7. Relative degrees of polarization of the radiation as a
function of @=ecosoc. fq and fg refer to left and right circular
polarization, respectively.

D. Cerenkov Radiation

The polarization eGects for Cerenkov radiation from
particles of spin 2 are given by Sokolov and Loskutov. "
The Stokes parameters for the radiation are given by

2A +B'

(p= (36)

. —Cs.

III. ELECTRON POLARIZATION

A. Coulomb Scattering of Electrons
(Mott Scattering)

Coulomb scattering of electrons is polarization sen-
sitive due to spin-orbit coupling, caused by the inter-
action of the magnetic moment of the electron with the
magnetic field which a moving electron experiences in
the electric ield of the nucleus. The cross section for
Coulomb scattering of electrons was originally derived
by Mott. "The discussion here follows that of Mendlo-
witz'4 and Tolhoek. '" The s axis is chosen as the
reference axis for both the electron's spin and its initial
direction.

The cross section is again given by

=-,'(1,D)T( )
with the transformation matrix

where
e2 t'~* cotPcu~k2 f 1 )

A I1——/d,
c' &0 4c'P' E m'~

I 0 0 D

~, 0 J —T 0T X
0 jp L 0
D 0 0 I.

and expresses the intensity polarized in the plane of
interaction,

s= ~1 represents the longitudinal spin of the electron,
and e= Qe is the refractive index. Equation (36) shows
that the radiation is polarized in the plane of interaction,
i.e., the electric vector is everywhere perpendicular to

'V

the surface of the cone of Cerenkov light as shown in
Fig. 8. The fourth component of the Stokes vector of
Eq. (36) shows that longitudinally polarized electrons
produce circularly polarized light. Ef the electron is
polarized along (against) its momentum, s=1(s= —1),
then the light is right (left) circularly polarized. That
is, the photon has the same helicity as the electron. The
degree of circular polarization is given by

F and G are functions de6ned by Mott" through the
equations

f=I (iq'F+G),
g= Kfiq'F cot(8/2)+G tan(8/2) j.

The F and G functions have been tabulated by
Sherman" for a variety of elements and angles.

Fro. 8. Cerenkov tight
is polarized perpendicular
to the surface of the cone
of radiation.

II.—I~ —CsI'.=
II.+I~ 2A+B

since

and expresses the intensity polarized perpendicular to where g=gi/p and 2~g is the de llroghe wavelength
the plane of interaction, D=i(fg* f*g)=2q' c—sc8LFG*+F*Gj and gives

the polarization perpendicular to the plane of

I3= "co(1——cos'8)d(u, scattering,
c' "o I.=I cos8+(fg*+f*g) sin8 —

2 g' cos8
=GG* sec'(8/2) q'2FF* csc'(—8/2) and gives the

longitudinal polarization,
T= —I sin8+(fg*+f*g) cos8+2~g~' sin8

c f"~x Asco ( cos8 =2iq' csc8(FG*—F*G) and gives the transverse
C=—

I
—

I 1— d(o, polarization in the plane of scattering.
2c& ~0 cp & Pe q'= ( /V)(1-P')',

n= 2/137;

Iz=-,'(1 0 0 1) and Ia ———,'(1 0 0 —1)

~ A. A. Sokotov and I. M. Loskutov, Soviet Phys. JETP 5, 523
(1957); 7, 706 (1958).

'3¹F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929);
A135, 429 (1932).

14 H. Mendlowitz, Am. J. Phys. 26, 17 (1958); H. Mendlowitz
and K. M. Case, Phys. Rev. 9i, 33 (1955)."N. Sherman, Phys. Rev. 103, 1601 (1956).
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n i&n2
n =

sing
FIG. 9. Schematic dia-

gram showing the angles
and unit vectors in-
volved in Mott scatter-
ing of electrons.

pointed out that this can also be accomplished by the
use of a transverse electric field, which changes the
direction of motion of the electron but leaves its spin
orientation in space unchanged. Both methods have
been used experimentally. ""

x'
n &n2

Sherman's function 5 is given by

S=D/I.

In this matrix form it is easy to treat the polarization
efI'ects of any case of Mott scattering. The directions of
scattering and polarizations implicit in the transfor-
mation matrix are shown in Fig. 9. The Stokes param-
eters of the initial beam refer to the directions

, P3.

I+P3D
0
0

D+~2-
and the direction of polarization remains unchanged.
The ratio of the intensities in the two opposite directions
is given by

1. Scattering of a Polarized Beam

If the initial beam is polarized perpendicular to the
plane of scattering, then

Py ~ I1i (z axis)
P2 ~ Il)(lip (x axis)
P3 ~ n= (n, Xn2)/sin8 (y axis)

and those of the scattered beam refer to the directions
where

Ig I+P3D 1+P'3S

I2 I—P'3D 1—P'3S
(38)

P~' ~ n~ (new z axis)
P&'~ nXn& (new x axis)
Pz' ~ n (y axis).

I,=(1000)T
0
.i.

and Iz= (1 0 0 0)T 0

.—1-

The unit vectors n& and n2 represent the initial and
scattered beam with a scattering angle of 8 and define
the (xs) plane.

To illustrate the use of the transformation matrix,
several examples are worked out which correspond to
the usual experimental cases. Longitudinal polarization
cannot be measured by a single scattering experiment
alone, just as circular polarization of a beam of light
cannot be measured by a Nicol prism alone. The longi-
tudinal polarization must be converted into transverse
electron polarization or circularly polarized gammas by
means of bremsstrahlung just as circular polarization
must be transformed into plane polarization by means
of a quarter-wave plate. The longitudinal polarization
can be transformed to transverse polarization by single
scattering as will be shown, and Tolhoek" has

Thus single scattering can be used to determine the
degree of polarization from

Ps (Ii—I2)/S——(Ig+Iz). (39)

This experiment is shown schematically in Figs. 10(a)
and 10(b).

A simple physical picture of the spin dependence of
the scattering can be presented. Consider Fig. 10 (b)
where the spin angular momentum is down; i.e., the
electron's magnetic moment is pointing up. The electron
in its rest system sees an effective magnetic field caused
by the current of the positive nucleus moving toward it.
For those electrons passing to the right of the nucleus
(i.e., scattering to the left) the magnetic interaction
adds to the electric one; whereas for those that pass to
the left the magnetic interaction opposes the electric

—I1
i& 2

1+a)

+a) "12(1-a)

(b) (c)
FIG. 10. (a) Spin "up" component; (b) spin "down" component; (c) resulting polarization. In (a) and (b) we have an analysis of an

unpolarized beam into two independent components of opposite spin. Each component is scattered with a different intensity so that
the resulting beams I& and I2 of the unpolarized beam shown in (c) are partially polarized. The arrows on the beam show
the predominant spin directions.

"J.A. Tolhoek and S. R. Degroot, Physica 17, 17 (1951)."A. de Shalit, S. Kuperman, H. J. Lipkin, and T. Rothem, Phys. Rev. 107, 1459 (1957)."A. I. Alikhanou, G. P. Eliseieu, V. A. Lubimov, and B. V. Ershler, Nuclear Phys. 5, 588 (1958).



MATRIX REP RESEN TAT I ON OF POLARIZATION 17

interaction. Thus more electrons and scattered to the
left, or into the paper.

I f1'+ I g I'

i(fg* -f*g)-
(40)

This shows that the beam is partially polarized per-
pendicular to the plane of scattering with a degree of
polarization

i(fg* f*g)-I'= = =S(8).
I fl'+ I

gl'

Figure 10 illustrates this process. An unpolarized beam
of electrons can be regarded as an incoherent super-
position of two beams of opposite polarization; hence,
the beam can be subdivided into the two components
shown in Figs. 10(a) and 10(b). These two components
are scattered differently, and thus the scattered beams
I, and I2 as shown in Fig. 10(c) are partially polarized
with the predominant spin direction as shown. Since
Sherman's S(8) function is mostly negative, we dehne

Z. Scattering of an Unpolarized Beam

We have seen the analyzing properties of electron-
scattering experiments from the discussion in Sec. III.
A.1; now let us investigate the polarization of an
unpolarized electron beam by single scattering. Since
scattering is sensitive only to spin states orthogonal to
the scattering plane, we expect the scattered beam to
be partially polarized orthogonal to the plane of scat-
tering, which is indeed the case as shown earlier, and is
now demonstrated by means of the Stokes vector:

Fzo. 12. Double-scat-
tering experiment to
measure the longitudinal
polarization of P-decay
electrons.

I

I

Ii

z1

R

For the second scattering, we must rotate our coor-
dinate system an angle about the s' axis. The rotation
matrix is

0
0

co+
—sing

0
0

sing
co+.

which yields

I]
a= M(1 0 0 0)Ts

0
Dy sing
.Dy co+

o = PILI~(1+8 cosP),

where b=S(8&)S(8~). Graphs of b as a function of elec-
tron energy are given by Tolhoek" and others. For
electrons, 5 has its maximum value for kinetic energies
of about 150 kev.

The intensity of the twice scattered beam is given by

1~

0o= (1 0 0 0)T,MT, 0
&0.

so that the polarization effect is readily apparent.

3. Double Scattering of an Unpolarized Beam

Let us consider the scattering geometry of Fig. 11
for an unpolarized incident beam.

As a result of the first scattering, the beam is charac-
terized by

4. Double Scattering of a Longitudinatly
Polarized Beam

As a result of nonconservation of parity, the electrons
emitted in P decay are longitudinally polarized opposite
to their direction of motion and the degree of polariza-
tion is equal to P=v/c. One method of measuring this
polarization is by the double scattering experiments
shown in Fig. 12, where the longitudinal polarization
is converted to transverse polarization by Mott scat-
tering. This experiment was performed by de Shalit"
and the method analyzed by Gursey and Tassie."This
shows how the experiment is treated using the inter-
action matrix and the Stokes parameters. As a result
of the first scattering the beam is represented by the
Stokes parameters

Ii T P
~2

PL

.0. .Di.
Fn. 11. Schematic diagram of the double-scattering experi-

ment with the xs plane being the plane of the paper.
' F. Giirsey, Phys. Rev. 107, 1734 (1957); L. J. Tassie, ibid.

107, 14S2 (1957).
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To describe the second scattering we must rotate the
coordinate system by an angle p= &s./2 since the sec-
ond scattering plane is perpendicular to that of the
6rst scatter. Thus

1 0 0 0 Ig Ig
, 0 1 0 0 PL, l, PLi (g= /2)0 0 0 1 PT.0 0 —1 0. .Di . i.—PT&.

represents the incident beam for scattering into II. and

1 0 0

~, 0 1 0
0 0 0.0 0 1

0 Ig Ig
0 PLi ~, PLi

(~ /2)—1 PTI —Dg '

O. , DI, .PTg.

represents the incident beam for scattering into IR.
Thus the left-right asymmetry ratio is given by

II.—Ig D2TiP
R=

II.+Ig

For this experiment E is positive since D and T are, in
general, negative numbers and P= —P= —1. De Shalit
used a source of 10 mC of P"(P 1) and their measured
asymmetry ratio was 2E=5.4)&10—'.

I
rp' 1T=—
4 y'(y' —1)' sin48 . 0

—B 0
C ~DO

~E 0 (44)

0 0 F.
~ P. Stehle, Phys. Rev. 110, 1458 (1958).

B. Electron-Electron Scattering
(Mgller Scattering)

Coulomb scattering of electrons was seen to be
insensitive to longitudinal polarization; however, longi-
tudinal polarization can be measured by electron-elec-
tron scattering. Stehle" has given a table of the matrix
elements necessary to compute various polarization-
sensitive cross sections. These matrix elements have
been used to find the interaction matrix for Misller
scattering. The matrix presented in Eq. (44) is for the
case where the target electron's spin is either parallel or
antiparallel with the direction of motion of the incident
electron (s axis), and only one of the final electrons is
observed. The Stokes parameters of the final electron
are given in the new coordinate system rotated through
the scattering angle 8 about the Y axis. The xs plane is
chosen as the plane of scattering. With these conven-
tions, the interaction matrix is

where

v'=2m' —1,

2—(y'+3) sin'8'

2+ (y' —1) sin'8'

8(y'+1) cos8'
de= dn'.

L2+ (y' —1) sin'8']'

cosa=
(45)

As an example let us consider the case where the incident
electron has an arbitrary spin specified by the polar and
azimuthal angles g and p, and the target electron is
polarized parallel to the momentum of the incident
electron. This case is equivalent to that considered by
Ford and Mullin" where they chose the incident spin
parallel to the incident momentum and let g and p
specify the spin direction of the target electron. In this
case the differential scattering cross section is

1

sill cosydQ .sinx sing
or

(46)

da fp 1
(I Acosy —B sing—cos@), (47)

dQ 4 y'(y' —1) sin 8

which is identical with Eq. (7) of Ford and Mullin.
For the case where the target electron is unpolarized,

the interaction matrix becomes

I 0 0 G
OCDOT=—

4 y'(y' —1)' sin'8
F 0 0 F

(48)

2' J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955), p. 255.~ G. W. Ford and C. J. Mullin, Phys. Rev. 108, 477 (1957).
In Eq. (7) there should be a factor 4 before sin'8 in the second
term. The factor is correct in Eq. (6).

I=L(2y' —1)'(4—3 sin'8)+(y' —1)'(sin48+4 sin'8)],

A = L(2y' —1)(4y' —3) sin'8 —(y4 —1) sin48]

B=2y(y' —1) cos8 sin'8,

C = 2 cos8(2y2 —1) (2y' —1—y2 sin'8),

D=2y(2y' —1) sin8 cos'8,

E=2(2y' —1)(2y' —1—sin'8) cos8,

F=2L(2y' —1)'—(2y4 —1) sin'8],

&=electron energy in units of mc'.

In Eq. (44), the upper sign refers to the target electron
spin parallel to the incident momentum (+s direction)
and the lower sign is for the antiparallel case. The
variables p and 8 are in the center of mass system. They
are related to the corresponding laboratory variables p'
and 8' by the following formulas":
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1

0
0.1.

I+G
0
0.2F.

(49)

C. Positron-Electron Scattering
(Bhabha Scattering)

The interaction matrix for positron-electron scatter-
ing can be found by using Stehle's" matrix elements.
Again we choose the xs plane as the plane of scattering.
The interaction matrices are given here for the incident
and final positron. If the target electron is unpolarized,
then

I 0 0
rp' 0 L jT—

162(2 1)20 I P
.B 0 0

A

(50)

C.
When the target electron is polarized in the positive
s direction,

where

I M —G A
E L J D

1)2 . B E G C

I=a'+~(b'+c' jd'+e')
A = ', (ce+bd) a', -—
B= ,' (bc+de) a', ——
C= ,' (be+dc)+a'—
D= —,

' (ce—bd),

,' (de bc), ——
F= ,' (dc be), ——
G= ', a(b c+d e), ———
II= ',a(b+c d e), -——
J= ,'a(b+c+d+e), —

IC= &( b'+c' —d'+e'), —
L= —,

' (b' —c'—d'+em)

M = ,' (—b' c'+d'+e'). -—

(51)

where G = (y' —1)' sin48 —(4y' —3) sin'8. This matrix
has the same nonzero elements as that for Mott scat-
tering. Thus, an unpolarized electron beam is partially
polarized perpendicular to the plane of scattering as a
result of Mgller scattering since

1 I
(I) ~0 0

.O. ,F.
From Eq. (48) it is a simple matter to compute the
depolarization of an electron beam as a result of elec-
tron-electron scattering. For the various pure polari-
zation states we have

I 1 I
T1 C TO D

0 D ' 1 E
.O. .F . .O. .F .

and
D. Internal Conversion Electors Following

Beta Decay

One of the results of the nonconservation of parity
in P decay is that the residual nucleus is left polarized
in the direction of the emitted electron. Then, if internal
conversion follows the p decay, the conversion electrons
have a definite polarization. On using the results of
Geshkenbein, "we obtain the Stokes vector of the con-
version electron in the form

A

(
I (A&—2A2) cos8
S (A&+A~) sin8

0

(52)

where 8 is the angle between the emitted P particle and
the conversion electron. The s axis is chosen along the
direction of the conversion electron and the xs plane
is the plane of interaction.

The transverse polarization of the E-conversion
electrons following the P decay of Hg"' was measured
by Alberghini and Steven" using Mott scattering and
they found (A&+A 2) =0.35P.

E. Electrons from Mu-Meson Decay

From the two-component neutrino theory of Lee and
Yang we find that the muons from ~-p, decay are
completely polarized along their momentum vector.
Consequently, the electrons from the decay of such
muons should also be polarized. ""From the cross
section of Okum and Shekhter" we obtain the interac-
tion matrix

'A D 0 0
&~(, ,), E C 0 0
9~4 0 0 B —F

.0 0 F B.
(53)

'3B. V. Geshkengein, Nuovo cimento 10, 375 (1958); Soviet
Phys. JETP 8, 865 (1959).

~ J. E. Alberghini and R. M. Steven, Nuclear Phys. 14, 199
(1959).

~' H. Uberall, Nuovo cimento 6, 376 (1957).
~g L. B. Okum and M. Shekhter, Soviet Phys. JETP 7, 864

(1958).

The small letters refer to Stehle's matrix elements

a=y cot(8/2)$1 —2P' sin(8/2)),

b =cot'(8/2) L1+2P2y' cos'(8/2) ],
c= L

—1+2P'y' sin'(8/2) 7,

d = —y 'Ll+2gy' cos'(8/2) j,
e= —(P'(2y'+1) +cot'(8/2) L (2y' —1)—2P' sin'(8/2)]) .
The interaction matrix for a target electron whose spin
is in the negative s direction can be obtained from
Eq. (51) by interchanging

b and e
d and c

in the expressions for the matrix elements.
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where

e =E,/w, u= m, /w, zu = (m„'+mP)/2m„,
k

S
Jip

S P m, —ZP, '

.FP2+BP3.

where P is the polarization vector of the p meson. The
polarization-sensitive cross section is again given by
Eq. (12). Thus F represents the transverse polarization
perpendicular to the (P,p,) plane and 8 represents the
polarization in this plane.

IV. INTERACTIONS BETWEEN PHOTONS
AND ELECTRONS

A. General

In this section we describe processes relating photons
and electrons. In these interactions the Stokes vector
of an electron (or photon) is transformed into the Stokes
vector of a photon (or electron) by means of an inter-
action matrix in the usual manner

or

(54a)

(54b)

where now we use S; to indicate the Stokes parameters
of electrons and P, for photons. In this representation
the inverse nature of bremsstrahlung and pair produc-
tion appears in the interaction matrix as an interchange
of rows and columns. The similarity of the photoelectric
effect and pair production is readily apparent in the
form of their interaction matrices.

The meanings of the positive Stokes parameters are

Pg.

P2.
P3.
Sg.
S2:
S3..

linear polarization perpendicular to the plane of
the interaction,
linear polarization 45' to the right,
left circular polarization,
spin in the plane of interaction along the s axis.
spin in the plane of interaction along the x axis,
transverse spin perpendicular to the plane of
interaction (y axis).

When the final product is an electron, it is usually
necessary to perform a rotation about the y axis by the
angle 8 of the interaction so that the Stokes vector has
the customary meanings; that is, S& referring to longi-
tudinal polarization and S2 to transverse polarization.
The angles involved for the matrices are shown in Fig.
13. In the matrix form it is quite simple to arrive at
the cross section of a multiple-type experiment. For

and the s axis has been chosen along the momentum
vector of the electron.

Thus the Stokes vector of the emitted electron is
represented by

A+DPj
(a) (b)

FIG. 13. Schematic diagram for the interaction matrices in-
volving electrons of momentum p and photons of momentum k.
The plane of interaction is always taken as the xz plane. (a)
Photons to electrons; (b) electrons to photons.

example, say one would like to measure an electron's
longitudinal spin by measuring the asymmetry of the
Compton scattering of its bremsstrahlung radiation.
In matrix form this experiment is described by

d =-', (1,D)T.3ET( ), (55)

where T~ and T, are the interaction matrices for brems-
strahlung and Compton scattering, M represents a
rotation of the coordinate system to bring the Stokes
parameters from bremsstrahlung into the coordinate
system being used for Compton scattering, and (1,D)
represents the detection apparatus.

'I 0 0 0
2Z2 d$ dk D p p p

137 6y k
i. 0 —I. —T 0.

(56)

"M. Goldhaber, L. Grodsins, and A. W. Sunyar, Phys. Rev.
106, 826 (1957); S. Galster and H. Schopper, Phys. Rev. Letters
1, 330 (1958); E. G. Beltrametti and S. Vitale, Nuovo cimento 9,
289 (1958); and others."T.D. Lee and C. N. Young, Phys. Rev. 104, 254 (1956).~ R. L. Gluckstern, M. H. Hull, Jr., and G. Greit, Phys. Rev.
90, 1026 (1953};R. L. Gluckstern and M. H. Hull, Jr., ibid. 90,
1030 (1953); H. Banerjee, ibid. 111, 532 (1958); K. W. McVoy,
ibid. 106, 828 (1957); 111, 1333 (1958).~ H. Olsen and L. C. Maximon, Phys. Rev. 110, 589 (1958);
Proc. Phys. Seminar in Trondheim 5 (1958) (to be published in
The Physica/ Requiem). The author is grateful for having received
prepublication copies of these two papers and that of footnote
32.

B. Bremsstrahlung

Bremsstrahlung radiation is in general polarized re-
gardless of the polarization state of the incident elec-
tron. Longitudinally polarized electrons give rise to
circularly polarized bremsstrahlung which can be
detected by spin-dependent Compton scattering. This
process has been used experimentally" to measure the
degree of longitudinal spin that beta particles have as a
result of parity nonconservation. "

Bremsstrahlung cross sections showing the depend-
ence upon the states of polarization have been worked
out by several authors. ""The cross sections in the
form developed by Olsen and Maximom" are used here
to illustrate the use of the matrix representation. The
Stokes parameters for the outgoing photon are obtained
from Eq. (54a) using the interaction matrix
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where

$= 1/(1+u')
u=component of p perpendicular to k,

e, k= total electron and photon energies in units of mc',

p = electrons initial momentum,

I= (oP+ oo') (3+21')—2o,o,(1+4u'PI'),
D=goqoouopi',

L=kL(.,+.,) (3+2r) —2.,(1+4u'Pr)],
T=4ko, (1—2P) gr,

k)

F contains the Coulomb and screening eGects and
=inn —2 —f(Z) for no screening and complete

screening; with

n=2o~oo/k=1/5 for no screening, and

n= 111 Z ~/P for complete screening,

f(Z) =Coulomb correction function of Davies, Ilethe,
and Maximon. "

In this representation we are defining the (pk) plane
as the (zs) plane, and the cross section is for the case
where the direction and spin of the final electron are not
observed.

From the interaction matrix of Eq. (56), we find
that the general Stokes vector for the emitted photon is

For the forward bremsstrahlung from longitudinally
polarized electrons, Eq. (57) shows that Po= S&L—,
which means that the sense of circular polarization
(right or left) of the bremsstrahlung is the same as that
of the electron (parallel or antiparallel to its momen-
tum). The amount of circular polarization increases
rapidly with photon energy, and near the upper end of
the bremsstrahlung spectrum it is a maximum. This
maximum is given by McVoy as being

IR II.— (Eo+poc) (Eo+~c')
1+

Is+I' (2Eo poc) (Eo m—c') .

1 (mc')'= 1+-i i, (5S)
2E Z)

where Ig and Il. are the intensities of right and left
circular polarization. For 2-Mev electrons, this maxi-
mum is 97% while at a photon energy of 200 kev, the
polarization is down to about 43% and drops rapidly
for lower photon energies. For high-energy electrons,
Qlsen's cross section shows complete circular polariza-
tion at the high-energy end of the photon spectrum
since, when k=e~, we have

I Ic L o—g'(3+21')
=1.

Ia+Ic I oP(3+2I')

I
D
0.—S)L—S2T.

(57)

The circular polarization caused by transverse elec-
tron polarization is generally small, i.e., ~

L I )
~

T ~, and
T=O for $=-', and k= oq, where the polarization due to
longitudinal spin is a maximum.

which shows that the bremsstrahlung radiation pro-
duced by an unpolarized beam of electrons is partially
polarized perpendicular to the plane of interaction and
that circularly polarized bremsstrahlung can arise only
from a polarized electron. Since the linear polarization
is not dependent upon the electron's spin, the brems-
strahlung from polarized electrons are, in general, ellip-
tically polarized.

Qlsen's cross section shows that the linear polarization
is greatest at the low-energy end of the photon spectrum,
reaching its maximum value for $=-,'at an angle of
emission 0=1/o~. For example, Gluckstern shows that
the low-energy photons (k(o Mev) produced in
aluminum by 2.5-Mev electrons are about 55%
polarized, and for 50-Mev electrons in lead Qlsen finds
about 45% polarization. For low-energy electrons,
Gluckstern and Banerjee's expressions show that at the
high-energy end of the photon spectrum there is some
polarization in the plane of scattering; however, this
eGect decreases with increasing electron energy so that
for high-energy electrons the high-energy bremsstrah-
lung is unpolarized.

C. Pair Production

Pair production is essentially the inverse process of
bremsstrahlung and the interaction matrix is obtained
by inverting the rows and columns of the bremsstrah-
lung interaction matrix and making a change of sign
for the ~2 term. In this case the Stokes parameters of
the electron is given by Eq. (54b):

S P
with

I —D 0 0
2Z

dory

p p p LT= ro' d$—
137 k'

i.'0 0 0 0

(59)

where
I= (c,'+o,o) (3+21')+2o,o,(1+4u'$1'),
D=g...,uogr,

L= kD op oo) (3+21')+2oo(1+—4u'tol'),

T= 4k.,g(1—2g)r,
k= ej+&2."H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. 93,

788 {1954). In this representation the x2', plane is the plane of
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emission, and positive values of P& indicate photon
polarization perpendicular to the plane of emission.

For linearly polarized photons the electron is most
likely to be emitted in the plane of polarization, since
we have the two cases

1

O'Ii=(1 0 0 0)T 0 =I+D
0.

and

Pe
FIG. 14. Schematic diagram for the

study of the angular distribution of
photoelectrons ejected by linearly
polarized photons. P represents the
direction of polarization and P is the
degree of polarization (0~& P ~& 1).

From this interaction matrix the general Stokes vector
of the photoelectron is

1

ag=(1 0 0 0)T =I D-1=
0.0.

1+D PgD —'

—AP3
BP3

0

(61)

which yield the asymmetry ratio

II= (o ax)—/ (oui+ n'x) =D/I

Olsen" points out that E is greatest when the electron
and positron have about the same energy.

In general, the Stokes parameters of the electron
beam are given by

(s =
I—PgD
—P31.
—PBT

0

which show that a circularly polarized photon beam
results in a polarized electron-positron pair. The degree
of longitudinal polarization is just &L/I where the +
sign arises for right circular photons since P3= —1.
The more energetic particle of the pair is polarized in
the same sense as the circularly polarized photon.

1 —P cos2&
P —P sin2& ' (62)

where P is the degree of polarization (0 &P (1).The
differential cross section for a completely polarized
incident photon beam is then

which shows that the angular distribution is dependent
upon the linear polarization of the incident photon and
that polarized electrons are produced by circularly
polarized gammas.

It is of interest to investigate the angular distribution
of photoelectrons ejected by linearly polarized photons,
using the geometry shown in Fig. 14. In this geometry
the Stokes vector of the incident photon is given by

1+D
sin'8 0

r «ps

(137)4 k' (1—P cos8)'
0

Z'

where
1 2

D —— 1 7

k k«(1 —P cos8)

—D 0 0
0 0 —A
0 0 B
0 0 0 .

(60)

2 2—+p cos+
&+1 ke k«'(1 —P cos8)

B= P sin8 1 ~

«+1 k«(1 —P cos8)
I'H. Olsen, Kgl. Norske Videnskab. Selskabs Forh. 31, Nos.

11, 11a (1958).

D. Photoelectric EBect

The similarity between pair production and the
photoelectric effect shows up in that the same elements
of the interaction matrix are nonzero. The Stokes
parameters for the photoelectrons are given by Eq.
(54b) and using the interaction matrix derived from
Qlsen's" cross section for the E shell, we 6nd

do. = (1 0 0 0)T . =1+D+D cos2&,—sin2@
0

da. =1+2D cos2&

and upon substitution of those terms involving the
angular distribution, we find

sin'8 k'
do~ —(1—P cos8)

(1—P cos8)4 4
1 k

+ ———(1—P cos8) cos'8 1 (63)
2

which is the same as that given by Sauter. ~ The
polarization-dependent term shows some interesting
properties. Ef «)5/3 (Eq; )0.33 Mev), there is a
range of values of 8 and k given by

k(k+1)(1—P cos8)=2 (64)

for which the cross section is independent of the
polarization of the photon. For photon energies less
than this critical value, D is positive and the photo-

3'F. Sauter, Ann. Physik 11, 454 (1931);F. Sauter and H. O.
Wuster, Z. Physik 141, 83 (1955).
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electrons are ejected predominantly in the plane defined

by the incoming photon and its electric vector. For
photon energies greater than this critical value, D is
negative and the photoelectrons are ejected in the
plane of the magnetic vector. This effect can be seen if
we define an asymmetry ratio

R= do (0)/da(2r/2) =1+2D, (65)

that is, the ratio of the differential cross section for
ejection coplanar with, and orthogonal to, the electric
vector of the incident photon. This asymmetry ratio
is plotted in Fig. 15 as a function of the incident photon
energy.

This crossover feature of the photoelectric effect
has been verified experimentally by McMaster and
Hereford'4 who used the Compton effect as a source of
partially polarized photons.

Equation (61) shows that photoelectrons ejected by
circularly polarized gammas are polarized. T'he degree
of polarization in the s direction for right circularly
polarized photons is seen to be

Fro. 16. Center-of-mass system for the two quanta annihilation
of positrons. The angles p~ and p2 give the angle between the
polarization vectors of the two quanta k1 and k2 and the plane of
interaction (xz plane).

At the cross over energy and angle given by Eq. (64),
tang=0, which means that under these conditions the
electrons are polarized in the direction of the incident
photon with a degree of polarization

P=A=1,
that is, the photoelectrons are completely polarized. The
spin of the electron is parallel to k for right circularly
polarized gammas and antiparallel for left circular
polarization.

and that in the x direction is

P = —B.

There is no polarization in the y direction. T'hus the
electron is polarized in the plane of emission and the
direction of the spin vector is given by

E. Positron Anmh~lation-in-Flight

For positron annihilation-in-Right we discuss the
center-of-mass geometry shown in Fig. 16. We follow
the general form of Page" and McMaster. " The de-
scription of the photons' polarization is simplified by
defining a set of functions dependent upon these polar-
izations as

8
tanx= ——=—

A

2
P sin8 ——1+P cos8

ke
(66)-(2 2

i
—+P cos0 i(1—P cos8)+—

ke'

po=e Sin/2 Cospy —e COS$2 Singe,

py=e' sin/2 cospy —e co+2 sinpy

p2= co+2 co+~+e' '+» sin/2 sing~,

p3= co&2 co&~—e'("+ » sin&2 sing~,

(67)

K

0
lK

I

ILJ

X
CO

I I I I I I

where the electric vector of the photon is represented by
e=cospe„+singe"e, with e„and e. being unit vectors
in the plane of interaction and perpendicular to it,
respectively, and 8 is the phase angle. For linear polari-
zation (h=O), Eqs. (67) reduce to

PO —S111($2 $1) P2 —COS($2 $1)

p1=»n(&2+$1) p3=COS($2+$1) ~

For a complete description of the polarizations of the

TABLE II. Photon polarization states.

Op I I I Ill s s t 1 s i

0.5 I 5 IO
PHOTON ENERGY, K

Fzo. 15. Asymmetry ratio for photoelectrons ejected from the E
shell by linearly polarized photons for 8=~/2.

State

po
P1
pm

pa

pp $$

0 0
0 0
1 1
1 —1

Linear

p$ $p

1 —1
1 1
0 0
0 0

z
0 0
1 1
0 0

0 0
1
0 0
1 1

Circular
RR LL RL LR

~W. H. McMaster and F. L. Hereford, Phys. Rev. 95, '/23
(1954).

3' L. A. Page, Phys. Rev. 106, 394 (1957).
~e W. H. McMaster, Nuovo cimento 7, 395 (1960).
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two photons ki and k2 we can specify the p's in either
a set of plane-polarization states or circular polarization
states. For the plane-polarization description, let p and
s refer to polarization in and perpendicular to the plane
of interaction, respectively. For the circular polarization
description, let E and L indicate right and left circular
polarization, respectively. "With these conventions, the
values of the p's for each set are given in Table II.

The cross section for positron annihilation-in-Qight
can now be written in matrix form as

d~ (1—= (1,S)Ti
dn

(68)

where S and P refer to the electron and positron, respec-
tively. The interaction matrices have the form

fp

8Pp'-(1 —P' cos'8)'

Hp'+H'
2i (HpH. +H,H„)

2iHpH
0

2i (H,H„HpH, )—
H' —2Hg2 —2Hp'

0
0

2iHpH,
0

Hp' —H'+2Hs2
0

0
0
0

Hp' —H'+2H '
(69)

for the description of circular polarization states of the annihilation quanta, and

Pp

Ty=
8gp'(1 —P-'cos'8)'

Hp'+H2
0
0
0

0
H2 —2H '—Hp'

2H,H,
0

0
2H,H,

Ho' —H'+2H '
0

0
0
0

Hp' —H2+2Hy2

for the description of plane-polarization states of the
annihilation quanta. For a transformation to the
laboratory system one utilizes the standard formulas

On substituting from Eqs. (71), one obtains

da rp2 1 1—Qp'+P'(p&+ pp sin'8)'j
dQ 8Pp2 (1 P2 cos28)2 p2

+P2 sjn28(p12+pp2 cos28) (7'3)

gi,b=tan ' sing(1 —it') &

P+ cos8

where P is given in the c.m. system; E and p are the
total energies in units of mc2 in the lab and c.m. system,
respectively.

The matrix elements of Kqs. (69) and (70) are given
by

This equation shows tha, t in the low-energy limit (8~0)
the photons tend to be cross-polarized (ps and sp). In
the circular polarization description, the photons are
RR and LL, i.e., there is no net angular momentum.

If the polarizations of the two photons are not
observed, then one obtains the differential cross section
by summing over all directions of photon polarization
as given in Table II:

H2 —H 2+H 2+H 2

H p
= (P/p) (pp+ pp sin'8),

H =—pP sin8,

H„=pP sing cosg,

Hs= pp/&.

(71)

do. r p' 1+2/ sin'8 —P —ll' sin'8

dQ 4P p' (1—P' cos'8)'

2. Longitudinal Spins

For the plane polarization description we have

(74)

l. Unpolarized Electrons and Positrons

The di6erential cross section for unpolarized initial
and final spins is obtained from

1
dO p—= (1 5, 0 0) T~
dQ .0.

do 0—= (1000)T Hp'+H'
dQ 0

0.
(72)

H '+HP+PQ. (H' —2H, '—Hp' ) (75)

which leads to the two cases of parallel and antiparallel
spins

for both the linear and circular polarization descriptions.
3~ In this representation, e.g., right circular polarization of both

photons is speciaed by the vectors

e1——$ (e„—ie,) and eg =$(e„+ie,),
thus each photon advances as a right-hand screw.

and
(do./dQ)p. , 2(H '+H„')

(do/dQ), »~ 2 (H pP+H, P).

These equations show that at low energies the anni-
hilation takes place with spins opposed, while at high
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energies annihilation with parallel spins predominates.

In both cases the gammas tend to be cross-polarized;

however, for 8=0, (do/dQ)p„=0. This feature has been

used experimentally to measure the longitudinal

polarization of positrons in P decay."
For the circular polarization description, we have

da/do Hp'+H'+2iP, (H,H„HpH, )—
+2iS (HpH +H H„)

+S,P.(H' 2H ' —Hp') —(76)

which leads to the two cases of parallel and antiparallel

splns

(a) Polarized positrons,
unpo lar iz e d tar g et.

(4) Unpolarized positrons,
polar r. z ed tar g et.

incident on unpolarized electrons, we have

1
Go' —1—=(1 0 0 0)T
dQ 0

.0.

Flc. 18. Circular polarization produced by high-energy positron
annihilation-in-Right when one of the particles is unpolarized. The
electron target is on the left and the positron is incident from the
right.

and

(do/dQ) p„.2 (H '+H„'&2i H,H„),
~(Hp +EP+2iHpH 2iH Hp). (77)

(do./dQ), pp 2 (Hp'+HP &2iHpH, ),

where the upper sign refers to positron spin in the

positive Z direction. For positrons polarized in the posi-
tive Z direction, the ratio of right circular polarization

(RCP) to left circular polarization (LCP) for these two

cases in

(RCPT (1+cos0) '

LCP~ p Ei—cosg&

From this equation one Ands that at all energies the
observed photons are predominantly RCP.

When the target electrons are polarized in the positive
Z direction and the incident positrons are unpolarized,
the cross section is given by

1
dtT 0—= (1 1 00)T ~Hp +H +2iHpH +2iH.H„. (78)
dO 0

.0.
and

(1—P)'+P' sin48/RCP)

k LCP~,» (1+P)'+P' sin'8-

This equation shows that at P=O the photons are
unpolarized, at high energies they are LCP, and for an
intermediate range they are RCP. These two cases are
shown in Fig. 18.

These results are illustrated in Fig. 17 where we see
that the photon k tends to pick up the helicity of the
particle whose momentum is nearly parallel to k.

Many times an experiment is conducted with just
one of the particles polarized. For the discussion which
follows we limit observation to the higher-energy photon
in the direction of the positron's momentum.

For positrons polarized in the negative Z direction 1
da. 0—= (1000)T
dQ 1

.0.

1
da 0

or —= (1010)T
dQ 0

.0.

3. Transverse Spans

The polarization correlations for transverse spins are
readily obtained from Eqs. (69) and (70). Let us
consider the case where one of the particles is polarized
in the plane of annihilation and the electron is un-
polarized. Then

(a) Antiparallel with positive
positron spin

(b) Antiparallel with negative
positron spin.

Thus da/dO Hp'+H' for the plane-polarization de-
scription which states immediately that there is no
polarization correlation; however, if we consider circular
polarization, we have

do/dQ H p'+H'+2iH pH, . (79)
(c) Parallel with positive

positron spin.
(d) Parallel with negative

positron spin.

"See, for example, S. Frankel, P. G. Hansen, O. Nathan, and
G. M. Temmer, Phys. Rev. 108, 1099(L) (1957).

Fn. 17. Circular polarization correlations at high energy for
longitudinal spin. Two values of 8 are illustrated, 81&7r/2 and
82)~/2. The solid arrows designate the directions of the electron's
and positron's spin. The electron is shown on the left.

The maximum polarization effect occurs for 8=7r/2,
and if we define the degree of polarization as

P= (darr do r)/(darr+doz), —

where dorp ——
p (do rprp+dorpz) and dorp(dazr+d. a——zR),

then one finds

(80)
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which states that the gamma ray is predominantly
ECI' and thus partakes in the helicity of the polarized
particle. On the other hand, if one of the particles is
polarized perpendicular to the plane of annihilation,
no polarization correlation exists since

1 1
do' 0 0

dQ
=(1001)T =(1000)T Ho~ jH2.

0 0
.0 -1.

form as .(e) =-;(i, n)T('),

where the interaction matrix is given by

I 0 0 D
1 0 L T 0

0 T L 0
.Do 0 I

V. NEUTRON POLARIZATION

A. General

The presentation in this section follows the develop-
ment of Lepore. " In solving neutron scattering
problems, the wave function solution of Schrodinger's
equation has the asymptotic form

0 =~*""X+(~'""/r) f(~)X

which is the same form as that derived for electron
scattering. The matrix elements for Eq (83.) are given
by

I=AA*+BB*,
L=AA*—BB*,
T=i (AB* BA*),—
D= AB*+BA*.

This shows that the scattering of an unpolarized incident
where p is the spin function of the incident nucleon, beam results in a beam partially polarized orthogonal
and f(0) is the amplitude of the scattered wave at to the plane of scattering with the Stoites parameters
infinity which can be written in the form being given by

f(8)=A(8)+ B(e) e n

for a spin zero nucleus, where n is a vector perpendicular
to the plane of scattering and is defined by

h Xho= nk' sin8.

The intensity of the scattered beam is given by

e(~) = If(e) I'= (A*yB*e n) (A+Be n),
0 (8) = (A*A+B*B)+(A*B+B*A)P n,

(82a)

The positive Stokes parameters in this representation
have the values

I'~ .. longitudinal polarization
I'~ .. transverse polarization in the plane of scattering
P3.. transverse polarization orthogonal to the plane

of scattering.
where P is the polarization vector and is in the e direc-
tion. I'he polarization of the scattered beam is given by The resulting degree of polarization is

P= Lf(~)*ef(~)3/If(~) I'.

The numerator on expansion becomes

$=(A*+B*e n)e(A+Be n),
X=AA*e+AB*(e n)e+BA*e(e. n)

+BB~(e n)e(e n).
Now

e(e n)=n —i(eXn)
(e n)e= a+i(eXn)

(e n)e(e n) =2(e n)n —e.
On replacing e by P, the numerator becomes

cV =AA*P+ (AB*+BA*)n+i(AB* BA*)(PXn)—
+BB*2L(P n) n —Pj. (82b)

Equations (82a) and (82b) can be rewritten in matrix

D AB*+BA*
I'=—=

I AA*+BB*

k
3~
1&n

To observe this polarization one must perform a double-
scattering experiment. This experiment is illustrated in
Fig. 19. The first scattering results in the Stokes
parameters of Eq. (84). The plane of the second scat-
tering is at an angle p to the first plane, so that it is

~ J. V. Lepore, Phys. Rev. 79, 137 (1950); see also, K. B. Fro. 19. Double-scattering experiment. The second scattering
Mather and P. Swan, Nuclear Scatterin (Cambridge University forms a plane (k,k') at an angle p to the first scattering plane
Press, New York, 1958), p. 269. (ko,k)
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necessary to perform a rotation about the 1 axis. Thus
the Stokes parameters for the incident beam in the
second scattering is given by

1 0 0 0 I1 I7

~ I 0 i 0 0 0 0 I
P 0 0 co& sin& 0 D1 sing P'

.0 0 —sing co& . .D7. .81co&.

The intensity of the second scattered beam given by

(r (1=0 0 0) T2MTg
0
0
Oi

(86)

is just

0 =IgIp+D)Dp co&=I)Ip[1+P(eg)P(ep) cospj. (87)

T'he asymmetry of the second scattered beam is
generally determined when both scatterings take place
in the same plane, i.e., /= 0. Then if 02 is taken in both
directions, the asymmetry ratio of the scattered inten-
sities is

R=D+P(~)P(tl. )j/L1-P(~)P(e. )3

B. Small-Angle Scattering

In the small-angle scattering of neutrons in the AIev
range, Schwinger" shows that the resulting neutrons
should be partially polarized due to the spin-orbit
interaction arising from the motion of the neutron's
magnetic moment in the nuclear Coulomb field. For
Eq. (81) Schwinger uses

f(&)=f.(&)+'V-t(&/2)( n),

which yields the matrix elements

I=oG+47ry' cot'(8/2),

I.= oG 4rry' cot'(0/2), —
T= —8z. Re fp(8),
D= 2yka cot(8/2),

where G is the ratio of the actual forward scattered
intensity to that of an isotropic scatterer,

(A )(e2
y=2p&( )(

—Z=1.46X10 "Z cm.

k =p/A.

~ J. Schwinger, Phys. Rev. 73, 407 (1948).

For an incident unpolarized beam the degree of polar-
ization is given by Eq. (85) as

P= L2yko cot(8/2)]/t o.G+4z-y cot(8/2) j. (88)

To estimate the order of magnitude of this polarization,
Schwinger uses the approximations

0=2zR', G=-,'(kR)', R=1.5X10 "A~.

VI. CONCLUSION

By the introduction of the Stokes parameters for the
description of polarization it is possible to express the
cross sections of polarization-sensitive interactions in
matrix form. These matrices reduce the mathematical
description of polarization to a very simple form which
readily points out the general features of the process.
This method has the advantage that it shows the
direct analogy of the polarization of particles and
photons to the polarization of light with which one is
usually familiar. The similarity among the interaction
matrices points out the related phenomena in polariza-
tion processes.
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APPENDIX. TRANSFORMATION OF THE STOKES
PARAMETERS UNDER A ROTATION OF

THE COORDINATE SYSTEM

Under a rotation of the coordinate axes the Stokes
parameters are also transformed. This is accomplished
by the transformation matrix M, which expanded
yields the four equations

I' =m11I+m12P1+ m73P2+m14P3,

P1 m21I+ m22P1+ m23P2+ m24P3

P2' ——m37I+ m32P1+ m33P2+ m34P3,

P3 —m47I+ m42P7+ m43P2 1m44P3,

Let us consider a rotation about the axis represented
by P3. For photons this corresponds to a rotation in a
plane orthogonal to the direction of propagation and
does not e6ect the degree of circular polarization. For
particles, the polarization in the y direction is una6'ected.
Thus the matrix must have the form

'1

3E= 0
0.0

0 0 0
m22 m23 0
m32 m33 0 '

0 0 1.
If we consider ordinary space rotations as indicated in
Fig. 20 and use the identity f= arrl&+a&P p

= b&P&'+b&P p',

"J.T. Sample, Can. J. Phys. 34, 36 (1956).

The angle of scattering which gives the maximum
polarization is given by

tan(0/2) = (y/R) (2/kR) for kR)) 1,

and at this angle neutrons in the low Mev range are
about 100% polarized.

Sample4' has also performed small-angle scattering
calculations and his expression for the di8erential cross
section divers from Schwinger's only in that the
polarization dependent term is about 25% greater.
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I

/
/

/
/ = 2

FIG. 20. bi =ai cos9+a2 sin8;
b2= —ai sin8+a2 cos8.

then one finds as the orientation coe%cients

I'= bib1*+b2b2*= a1a1*+aga2*= I)
P1'= bib1*—bgb2*= P2 sin28+P1 cos28,

P3'= b1b~*+b~b1*= —P1 sin28+P2 cos28,

Pz'=z(bibz* —bzbi*) =z(aiaz azai ) Pz.

Thus, for radiation (whose orthogonal state vectors
correspond to orthogonal space vectors) we have for
rotations about the axis corresponding to P3

0 0 0
0 cos28 sin 28 0
0 —sin28 cos28 0 '

.0 0 0 1.

P1 P2p P2 P1

For particles we are mainly interested in rotations about
the s axis, which is generally chosen as the direction of
motion. The rotation matrix for this case can be obtained
from that first given by a cyclic rotation of the rows
and columns. Thus

1
0

M1 ——
0.0

0 0 0
1 0 0
0 cos8 sin8
0 —sin8 cos8.

For particles, the orthogonal state vectors do not cor-
respond to the space vectors gi and i' representing
spins in the &s direction are orthogonal state vectors
but the two space directions &s are not orthogonal),
so we cannot use the same expansion of b1 and b2, how-

ever, considering the meanings of P1 and P2, we see
that the transformation matrix M is suitable if 28 is
replaced by 8; that is, a 90' rotation performs the
transformations
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I. INTRODUCTION

'HIS paper considers the Hartree-Fock approxima-
tion from two complementary points of view. In

the first, the method is a convenient first step towards
an ab initio solution of the many-particle Schrodinger
equation for a system of fermions. It can be shown that
the Hartree-Fock wave function satisfies mathematical
conditions which ensure that a large class of matrix
elements, in the perturbation solution of Schrodinger's
equation, should vanish. "For this reason it is a useful
zeroth-order wave function in a perturbation calcula-
tion. From this point of view, modifications to the
Hartree-Fock method which simplify the details of
calculations are desirable, if their eBect on the perturba-
tion calculation can easily be evaluated.

From the second point of view, the Hartree-Fock
approximation is the last hand-hold for elementary
physical intuition before it is forced to work directly in

L. Brillouin, Actuelites sci. et ind. No. 159 (1934);R. Lefebvre,
Compt. rend. 237, 1158 (1953).

2 R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 {1955).

terms of the superposition of wave amplitudes that de-
pend on large numbers of independent variables. It can
be argued that any attempt to think in terms of physical
models, rather than pure mathematics, past this point
is necessarily deceptive. In the Hartree-Fock approxi-
mation (or at least in the unrestricted Hartree-Pock
approximation which is discussed in the following) there
is a one-to-one correspondence between particles and
one-particle wave functions (orbitals) which justifies the
loose physical language used in talking about "an
electron in an outer shell, " for example, or "an electron
moving through a lattice. "Furthermore, in the Hartree-
Fock approximation one is free to make up wave packets
from the orbitals, and to localize them both conceptually
and mathematically, so that it is not completely falla-
cious to talk about the force between two particles when
mathematically this is described by the potential energy
integral between density distributions made from the
probability amplitudes denoted by two localized
orbitals.

A modification of the Hartree-Fock method which


