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i. INTRODUCTION

HIS article discusses some work of the last few
years on the "space-time" or "integral-over-all-

paths" method in quantum mechanics, considering in
particular its application to problems in statistical
mechanics and its relation to the theory of Brownian
motion. The method was first suggested by R. P.
Feynman in his Princeton dissertation (see also Feyn-
man 1948).'

In its simplest form, the Feynman postulate is that
the propagator or Green's function, K(x't'; x"t"), for
the wave function of a particle, defined by

q( tx') = tK(x't', x"t")q(x"t")dx",

can be written as a certain integral over all paths x(t)
by which the particle can go from the point x" at time
t" to the point x' at time t':

(1.2)

the failure of perturbation theory will make it necessary
to resort to numerical calculation of the appropriate
functional integrals.

Recently the functional integral method has been
applied to certain problems in statistical mechanics,
such as superconductivity and the Bose-Einstein con-
densation. Its usefulness here stems from the fact that
it permits one to consider various aspects of a problem
separately; thus one can, for example, study the motions
of individual particles in such a way that the motions
of other particles, and their coupling through permuta-
tion statistics can be temporarily ignored; or, conversely,
one can concentrate on the permutation statistics if
that is believed to be more important.

In this review we do not attempt to cover Feynman's
various papers on functional integrals, as these are
easily accessible and provide the best introduction to
the subject for physicists. Instead we discuss some of
the more mathematical work, much of which is not
otherwise available in English, but which will probably
be useful to any one who wants to use the path-integral
method.

where the action functional SLx(t)] is defined as usual
by

2. FUNCTIONAL INTEGRALS IN THE THEORY
OF BROWNIAN MOTION

gl

S[x(t)]= I Zdt, Feynman's original discussion of his postulate made
clear its physical interpretation, but did not make very
precise the notion of an "integral over all paths. " The
type of integral which is used in Feynman's theory is
one which was perhaps new in theoretical physics, but
not in probability theory. In fact, the integral over
trajectories introduced in (1.2) is almost the same as
one used by Wiener (1923, 1924, 1930) in studying the
trajectories which arise in Brownian motion. The rela-
tionship between Brownian motion and quantum
theory has been discussed in several recent papers (Kac
1949; Montroll 1952; Gel'fand and Yaglom 1956; and
Saito and Namiki 1956). This section is based on the
paper by Gel'fand and Yaglom.

Consider a particle performing Brownian motion
along the x axis under the action of random impulses
(but not subject to any systematic force) starting at
time /= 0 at the origin of coordinates. On neglecting the
inertia of the particle, the probability distribution for
its position at time t satisfies the diffusion equation

(1.3)

where 2 is the Lagrangian.
The constant factor 2 is chosen to preserve the nor-

malization of the wave function; its actual value
depends on how the integral over paths is defined.

In principle, Feynman's postulate provides an alter-
native to the Schrodinger and Heisenberg methods for
solving problems in ordinary quantum mechanics.
Actually it is so dificult to calculate functional integrals
that no one has succeeded in doing much more than
simply verify that they lead to the same results as the
Schrodinger equation in some particular cases. For a
time there was considerable interest in functional in-
tegrals among field theorists. Although the method is
not as useful for practical calculations as the pertur-
bation theory using Feynman dia.grams (Dyson 1949)
in the cases where the latter method is applicable, it
may turn out that for certain kinds of strong interactions

*This work was begun while the author held a Rhodes Scholar-
ship at Oxford, continued during the tenure of a U. S. National
Science Foundation postdoctoral fellowship at Imperial College,
London, and completed under the auspices of the U. S. Atomic
Energy Commission.

References will be found in alphabetical order in the Bibli-
ography at the end of the article.

Bg/Bt =DB'P/Bx' (2 1)

if the motion is due to molecular bombardment, the
constant can be related to the mass and size of the
particle, and the temperature and viscosity of the
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medium. Equation (2.1) has the solution

jP(x, t) = (432Dt)
—

& exp( —x'/4Dt). (2.2)

We choose units such that D= 4 ~ Then, for the prob-
ability that the value of the coordinate x& of the particle
at time t& will be in the interval a~ &x~ &b~, at time t~

in the interval a~ &x~ & b~, etc. , and at time t„ in the
interval a„&x &b„, where 0&t&&t&« t„, we have
the formula

L3r
"t,(t,—t,) (t.—t. ,)]—'*

xi2 (x2—xi)'

J
exp

al a2 an

(x„—x„,)'
dx, dx„. (2.3)

tn —tn-i

The expression (2.3) may be used to define a measure
on the set of all functions x(r) which satisfy the con-
dition x(0) =0 and we may take the limit as the time
intervals go to zero. Wiener showed that this measure
is completely concentrated on a set of continuous (but
not differentiable) functions. The exponent in the ex-
pression (2.3) is just the kinetic energy integrated over
the path, so that any class of trajectories which have
infinite kinetic energy has zero measure; on the other
hand, the instantaneous velocity may be infinite. This
is because the important paths are those for which
(x —x 4)/(t„—t„ i) is of order (t„—t„ i) & which
diverges in the limit when the time intervals go to zero.

We can use (2.3) to calculate the average value of any
functional of the trajectories:

00 00

J
F{x(r))d„x= ~

—F{x(r))

dx(r) 2

g exp dr g dx(r), (2.4)
0 dT

where S is a constant normalization factor determined
by the condition J'd x= 1.

When F{x(r)) depends only on the values of the
function x(r) at a 6nite number of points, the integral
reduces to an ordinary integral over a finite number of
dimensions. Thus, when F has the form

F{x(r))=x(t )x(t2) x(tk)

we obtain the standard formulas for the moments of a
random process,

Jt'x(t)d x=0,

and in general

Jl x(ti)x(t2) ' ' 'x(t2k+i)d x=0;

r

J
x(ti)x(t2)4—=b(ti, t2) =-', min{ti, t2)

tx(ti)x(t2) x(t2k)Lx =b—(ti,4 .t2k)

P b(tiiti2)b(ti3ti4) ' ' 'b(ti, 2k—lti, 2k)i (2.6)

It is also possible to calculate Wiener integrals subject
to the condition that both end points of the trajectories
are fixed; we then have the so-called "conditional
Wiener measure" on the space of continuous functions
x(r) which satisfy x(0) =0 and x(t) =X. This measure
can easily be generalized to include any other set of
initial and final conditions. Denoting the normalized
conditional measure by d„(&,x)x, we have, instead of
(2.5) and (2.6),

x(ti)d «,x&x= X, — (2.7)

ti
x(t,) X——x(t,) X——

t2k+3
X x(t2k+i) X d„(i «)x=0, (2.8)

tl t2
x(t,) Xx(t,)————X d, &, «, x=b, (t„t,)

t t

ti(t t2)/2t (ti ~( 4) (2.9)

x(t,) Xx(t,) —X— ——

X x(4k) ——X d~«x»=bj(ti, 4 t2k)

=Q b, (t;it;2)b, (t,it, 4) bi(ti, 2jc—iti, 2k) (2.10)

(the summation in the last equation is the same as
before).

As an example of the calculation of average values of
functionals which depend on the entire trajectory,
Gel'fand and Yaglom consider the functional

t

exp X I p(r)x'(r)dr

where jk is a real number and p(r) &0. The derivation
ms.y be found in Montroll's paper (Montroll 1952), so
we simply give the results for the case p(r)=1 which
corresponds, in the quantum-mechanical case, to the
simple harmonic oscillator:

exp l4 I x'(r)dr d„x={secLt(74&)])1
J o

(lk «/2t) (2.11)

where the summation in the last formula extends over
all possible partitions of the 2|tk indices 1, 2, , 2k into

pairs:
(31i32)i (3:i34)i ' ' '(32jc—1,32k).
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t

"exp )(JI x'(r)dr d (, x)x
0

=((V/pr)]cscLtP &)]}&exp —(X'*X' cot(0'*)}. (2.12)

In general we are interested in finding the Wiener
integral of functionals of the form

exp
J()

V(x(r) }dr

and it is usually impossible to do this by the direct
method of finding an explicit formula for the finite-
dimensional integral and then passing to the limit of a
continuous integral. We discuss some other methods in
the next section.

Kac (1949) showed that the function

t

K(X&t) = ~exp —) V(x(r)}dr d~(), x)xJ p

is the solution which tends to zero as x goes to & ~ of
the di fferential equation

()K(X,t)/(tt= ip$8'K(X, t)/(tX'] V(X)E(—X,t) (2.13)

Knowing the fundamental solution (or Green's
function) for Eq. (2.13), we can construct the general
solution for any arbitrary initial conditions $(X,tp)
=A(X):

P(X,t) =J) E(X,t; Xptp)gp(Xp)dXp

The rigorous justification for the foregoing procedure
has been given by Blanc-Lapierre and Fortet (1953) and
Dinkin (1954, 1955), and provides a somewhat more
sophisticated proof of the equivalence of the Feynman
postulate and the Schrodinger equation. It can also be
shown that for to(t&&t

K(X,t; Xp, t())

=J3 K(X)t): Xptp)E(X, t; Xit))dX) (2.14)

which is formally the same as the Smoluchowski-
Kolmogorov relation for the transition probabilities of
a Markovian random process.

and satisfies the condition E(X,O) =5(X), where t)(X)
is Dirac's delta function. More generally, the funda-
mental solution E(X,t; Xp, tp) of Eq. (2.13), which
satisf(es the condition E(X,tp, Xp, tp)=i)(x —xp) when
t=t, , is

~t
K(X,t; Xptp) = JI exp —

J V(x(r)}dr d ~(&,x; i,x)x
to

The only difference between the Wiener and Feynman
integrals is the presence of the imaginary unit in the
exponential. Although one can still carry out the same
type of calculation, two consequences of this difference
should be noted. In the first place, the measure functions
which we usually use are real, nonnegative, and additive,
and we can thus say that the measure of a set of paths
is the probability that the path of the particle belongs
to the set. But if the measure function is complex, this
interpretation no longer makes sense, and in fact the
correspondence between quantum mechanics and clas-
sical mechanics arises precisely from the fact that if h
is very small neighboring paths cancel out (because of
the rapidly oscillating complex exponential) unless the
action integral is stationary in that particular region
of function space. Since the classical path is defined by
the condition that the action integral is stationary, the
quantum-mechanical theory must reduce to the clas-
sical one as ))'t goes to zero. (On the other hand, in the
application to quantum statistics the imaginary unit
disappears and one has again a, simple Wiener integral. )

The second difference is that these rapidly oscillating
integrals are not convergent, though they may easily
be given a definite meaning by adding a small imaginary
part to h or to the mass, and then putting the imaginary
part equal to zero after doing the calculation. With this
prescription for evaluating the integrals (and with the
proper definition of the normalization factor) Feynman's
postulate gives the solution of the Schrodinger equation.

where

x(r) = (2xh/r)pt) P a„Q„(r/t),
nM

y.(Z) =&2 cos)p7rZ; pp(Z) = 1.

(3 1)

(r is a "dummy" time variable running from 0 to t as
the particle goes along the path. ) The expansion for
x(r) is then obtained by integrating Eq. (3.1), subject
to the initial condition xp ——x(0). (This condition fixes
ap and leaves the other a„arbitrary. ) The Lagrangian

3. METHODS FOR CALCULATING
FUNCTIONAL INTEGRALS

The rigorous methods used by Gel'fand and Yaglom
to evaluate the functional integral for the harmonic
oscillator seem to be too dificult to apply to other kinds
of potential functions. We therefore consider some
other methods which may be of use. Davison (1954),
Burton and de Horde (1955), and Davies (1957)
carried out the calculation of these integrals by repre-
senting the set of all possible paths going from xo to x
in time t in terms of a complete set of orthogonal func-
tions; by varying the coeKcients of the functions in the
expansion one runs through all the paths. Thus, they
calculated the action integral for the infinite series, and
then integrated over the coefficients of the functions.
We first consider the method of Davison and of Burton
and de Borde: we write the velocity as
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for the free particle is mx'/2, so we have

t

Ldl=izr P a„'=izrapz+izr P a, z;
h~o o

a ' = (m/2zrkt) (x xp—)

( m ll t" dal t'"da.
K(x,t; x.,o) =

~

t.2nikt& . i ' -„i

The propagator goes to tl(x —xo) as t ~ 0, as required
by Eq. (1.1).

For the harmonic oscillator we have L = (m/2)
X(x' ra'—x') On. using the same expansion as before,
we have

imt (x—xll)' plz
——(*'+»o+xo')

26 t2 3

da„
X

(i I'
exp( — Ldt

I

&k&,

QPr i
+zZ n) 1—

nod]

m ) ~ im
exp —(x—xp)'

t.2nzkt I 2ht

(3.2) (rat ) z (4zrmp *

I [*o—(—1)"*]a. ,
E bt i

m ) * ~ ( Pl-"tz ) imt (x—xp)'
K(x,t;x..o)=~ . I II~ 1-, I -p — -l~'("+»+x")

(2zrikt) ~=l ( n-'zrz) 2A t'

zmra t ~ x +xp —2xxp( —1)"
X exp

krr 4 l nz (nz —(pit/zr)z

mol 'l ' imra
exp [(x'+xo') cot (rat) 2xxp cs—c (pat)]

(2zrik sinpat) 25
(3.3)

In deriving Eq. (3.3) we have used the formulas

exp[i (nxz+ kx) ]dx = (izr/n) l exp (—ik'/4n),

1 1 1=————cot (nz) ——
n=l n'(n —s') s' 2z' 2z 6

(—1)" 1 1 7r'-

=———csc(zrz)+-
n ln (n' =z') s' 2—z' 2z 12

Equation (3.3) is essentially the same as (2.12).
Burton and de Borde point out that one can derive

the energy levels from (3.3) by using the well-known
formula for the Green's function in terms of the wave
functions,

K(x,t; xp, 0)=+„lk„(x)P„*(xp)e ' ""' (3 4)

Thus we have

jfdxK( tx; x,0)=P e ;E„ao—
n=o

mpl q
*

t zmplx'
~~ dX eXp (COtplt —CSCpat)

I2 h i t) ~

—Qe—(n+t)l(y t (3 5)
n~

so that the energy levels are E„=(n+-,')apl.

Burton and de Borde used a similar method for
finding the Green s function for a two-dimensional rigid
rotator.

Davies used a slightly different method, expanding
the coordinate x(t) instead of its derivative in a Fourier
series. Thus Davies includes discontinuous paths,
whereas Davison's method includes paths which are
continuous but may have discontinuous derivatives.
The two methods give the same result for the cases
where they have been applied. Davies used a cosine
series, so that the condition on the end points of the
path resulted in a condition on the sum of coeScients,
which was handled by inserting a delta function in the
integral. We simplify the calculation by using instead
the expansion

(nrrr )
x(r) =—+P a„sin~

t l ( t

where 6 is the difference between the final and initial
values of x. We specialize to the case where the
Lagrangian is L= —,'mx' —-'k(x' —-'6)'

On carrying out the integration, we have

(m kt q kt~ a„
jI Ldr=az~ ——)+

(2t 24) zr .=-".4" n

+—' P [(rrzmnz/t) kt]. —
Qn2

The integration over the a„gives the normalization
factor (which can be shown to be the same as before)
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and we have

l

i pm kt q
k'6't" - 1

K(h, t; 0,0) exp —r9l ———
l

—P
k (2t 24) ~ n'7r' (7r'mn'/t) kt—

i 6'(km)i 1 8 28 ( 8~ '
=exp — —————P l

—
l f(2j+2)

4 g 3 ~'2 i E~&

i a'(km)-'
= exp cot8,

4
(3.6)

where tt= (t/2)(k/m)*' and i'(x) is the Riemann zeta
function. Equation (3.6) is equivalent to (2.12) and
(3.3).

These elaborate calculations tend to obscure the fact
(originally noted by Feynman) that the only contri-
bution to the exponential part of the transformation
function comes from the classical path, for the harmonic
oscillator; the integration over the other paths just
determines the normalization factor, which is already
fixed by the condition (2.14).This can be seen by taking

x(r )=6 sinr(k/m)'/sint(k/m)' (3.7)

which is the classical path for the Lagrangian

L=kmx' ——,'k(x ——,'6)',

and carrying out the calculation as before.
This fact can be proved more generally as follows

(Morette 1951; Kilmister 1957): changing to new
variables r*=r/t and x=x*t (which leaves the action
integral the same), we may write a typical path as

x*(r*)= x,(r*)+f(r*),

where x, (r*) is the classical path and f(r*), is any
function which satisfies f(0) =f(1)=0. The Lagrangian
function may be written

L= ', m(x.+f)-' V(x,+f—)
Assuming that V can be expanded in a Taylor series
about the path x*=x, for all values of 7-* considered,
we have

L= L,+ (mx,f V, 'f)+—2 (mf' V "f')—
', V.'"f'+ .

,-(3.8)

where L, is the Lagrangian calculated as a function of
w for the classical path, and dashes denote differentiation
with respect to x. Hence

S=S0+-,'S2+-.'S3+".
where

1 I

S0= Ldt, S = m —V," 'dh,
0 0

1 1

S,= ~t (mx, f U, 'f)dt= t—m(x, f+x,f)dt
0 0 =

l mx, f]o' ——0.

We see that S0 depends only on x„.if V,"is constant,

4. APPROXIMATE METHODS'

In looking for an approximate method for evaluating
functional integrals, it is natural to try replacing the
infinite-dimensional integral by a finite-dimensional
one. There are several different ways in which this
could be done. Cameron (1951) has investigated two
possible numerical integration rules, which are based
on approximating the functional Ffx (r) ) in Eq. (2.4)
by a finite series of trigonometric functions.

Following Cameron, we define

u, (t) =2' sin( j—2)art; P, (t) = 2l cos(j—~2)~t, (4.1)

2-l sgn(s) (0& lsl &t&1)
4(s,t)=

0 (0&t&
l sl &1)

(4.2)

2 k„.n, (t)
tt' (k t) =tt' (6 ' ' '

k t) =—2
~ 2=j 2j—1

(4.3)

Let C be the space of continuous functions x(t) on the
interval (0&t&1) which satisfy x(0)=0, and let C'

' See also Sec. 8.

then S2 depends only on f, while S3, S4, etc. , are all
zero. In this case exp(iS/ft) splits into a product of
two factors, of which one depends only on the classical
path, and the other only on f. We can now sum over
any set of functions f, , f&, , etc. , and obtain the
result

El x*(1),1; x*(0),0]=A expfiSp/k), (3.9)

where the constant is P, exp[iSg(f)/h] and does not
depend on the end points.

The statement that V" is constant implies that

V =a+bx+-2cx'

which is just the potential of a harmonic oscillator with
arbitrary center of force.

In problems involving other potentials, we might
expect to get a fairly good approximation by using the
classical path to calculate the Green's function; how-
ever, in most problems of interest in quantum mechanics
the classical path itself is a very complicated function
when written in the form x(r), even for the Kepler
problem l though it appears to be simple when written
r(8)]. The technique of expanding around the classical
path is discussed in more detail in Sec. 8.
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be the larger space of functions which are continuous

except perhaps at one point where they must have a
finite jump. The nth approximation to a function x(t)
in C' is

called his "Simpson's rule" is

e.($)dh

tb
1

x"(t)=P a, (t) x(s)a, (s)ds
j=l p

2 . a, (t)
~ P, (s)dx( ). (4.4)

x I=& 2y —1 ~0

When x(t) is the function g(t) defined previously, we

have

1

XJ~ F(f„(),t)+P(s, t) P"(—s, t))ds. (4.10)
—1

This formula was designed so that the extra terms,
after integration, would exactly cancel out the error
due to using the finite series (4.3) instead of the infinite
series, provided that F was a "third-degree polynomial
functional" of the form

2l n, (t)P, (s) sgn(s)
4 "(s,t) =—P

22 —1
(4 5)

s 1 )1
F( )=It+2 "I ( )

The "rectangle rule" for the evaluating functional
integrals gives the expression

I = f e ($)F(f ($,t))dpi . d$. , (4.6)

where the measure function e„(g is defined by (cf.
Eq. (2.3)7

e„(g)=7r ""exp( —pip — —$.'). (4.7)

It is plausible enough (and is proved rigorously by
Cameron) that, provided F(x(t)) is a reasonably well-
behaved functional,

lim I„= f F(x(t))d x,
0

(4.8)

where the right-hand side is the functional integral
which we wish to calculate.

Unfortunately, the limit is not approached very
rapidly; Cameron computed I„for the case

1 -2

F= Lx(s)]'ds
0J

(4.9)

and found that the error incurred by using the n-fold
integral instead of its limit was O(n '), not even
o(n '). (a„=O(n ') means that a number no exists
such that

~
na„~ (E whenever n) np, where X is inde-

pendent of n; a„=o(n ') means that limna =0 as
n —+ oo.j Thus in order to increase the accuracy by one
decimal place one would have to increase n by a factor
of 10, which makes this approximation rather imprac-
tical.

Cameron discovered that by making a slight modi-
fication in the formula (4.6) it is possible to obtain
much more rapid convergence. This modification
involves adding one extra variable, using the functions
P" defined previously; the new formula, which Cameron

g
—

I &
—tt I

Ic(T)=J exp
~

dtds d.x
2v2 "o "o ~x(t) —x(s)~

(4.12)

Gel'fand and Chentsov were mainly interested in finding
the lowest eigenvalue, which is simply

1
Ep(a) = —lim —lnE'(T),

Tears
(4.13)

and they did not give very many details of their
method, although it appears to have given fairly good
results (see also Gel'fand, Frolov, and Chentsov 1958).
Similar methods have been suggested by Kac and Cohen
(1952).

Finally we consider an even simpler method (Brush
1957a) which can be used to estimate functional inte-
grals of more complicated functionals, although prob-
ably not with very great accuracy. It is based on inte-
grating over a set of parabolic paths which satisfy the

&(x(s„)dsi ds„IC„(si . s„), (4.11)

where Ep F(xp) a——nd the coeKcients It„are assumed
to be of bounded variation in s& . s, for every xo.

Cameron showed that, in general, the difference
between I and lim 1 as n ~ ~ was O(n '); and in the
special case (4.9) it was even more accurate than this,
the error being O(n ') with a fairly small constant
multiplying the n '.

It would appear that Cameron's "Simpson's rule"
could be applied to the evaluation of Feynman in-
tegrals, making the appropriate modifications to take
into account the fact that both ends of the path are
fixed, but so far this does not seem to have been
attempted.

The analogy with Brownian motion suggests that
the Monte Carlo method might be used to evaluate
functional integrals. This method has been used by
Gel'fand and Chentsov (1956) to evaluate the following
integral which arises in the theory of electrons in polar
crystals (Feynman 1955):
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given conditions. We illustrate the method for the
harmonic oscillator problem, where

L=-',mx' ——,'k(x ——,'6)'. (4.14)

The particle is required to go from x=0 to x=6 in
time T. We write the path in the form

E(x,t; xo) =
cE) I—xo

t

exp —I VLxo+ x(r)]

Xd~(&; x —xo& x(r) (5.4)

can be written as an integral in function space

and integrate over all values of e. The result is

X(D,T; 0,0) = (const) exp

where the integration is over all continuous vector
functions x(r) on the interval (O, t) satisfying the con-
ditions x(0)=0, x(t)= x—xo. To apply Eq. (5.4), we

note that the Green's function E(x,t;xo) may be
expanded in a double Fourier series of normalized

f~ (k™)'t'1 8 l eigenfunctions of the corresponding elliptic differential
(4.16) operator

where 8= (T/2) (k/m) l.
This result may be compared with the exact propa-

gator (Eq. (3.6)]. Since (1/8 —8/3) is the beginning
of the Taylor expansion of cot8 for 82&m, it is a very
good approximation to the correct result, e.g. , for 8= 1,
(1/8 —8/3) =0.667, while cot8=0.642. The result (4.16)
is also obtained if we integrate over a set of paths of
the form

x(t) = (Dt/T)+a sin(&rt/T). (4.17)

For more complicated potential functions we do not
know how accurate the method is; at least it has the
advantage that it can actually be carried out numeri-
cally for any given potential. This has been done for the
case of two helium atoms interacting with a Lennard-
Jones (6—12) potential (Brush 1957b, 1958).

5. QUANTUM-MECHANICAL PARTITION FUNCTION

We now derive an expression for the partition function
in terms of functional integrals, and show that it can
be written as a power series in h, the zero-order term
being the classical partition function. This expansion
was first used by Wigner (1932) a.nd Kirkwood (1933),
who gave the first few terms of the series; alternative
derivations have been given by Khalatnikov (1952)
and by Goldberger and Adams (1952). We follow the
method of Yaglom (1956).

We consider the partition function for a particle of
mass m moving in three-dimensional space in a potential
field U(x)= V(x&x~x&). It is assumed that V —+ ~ as
x&'+x2'+x3' —+ ~, but is nonsingular everywhere else.
We wish to evaluate

1& 82
L= ——P +V(x),

4 s=& BX2

giving the well-known expression

E(x,t; xo)=g e ""'p (x)rp„(xo). (5.5)

f' f
Q e ""'= ~,

J
E(x,t; x)dx&dxgdx3

n

J ~ J~ exp —
Ji VLx+x(r)]dr

I' ~ ( t

C, ;p p

Xd «, 0&x(r) ~dx&dx~dx3. (5.6))
The eigenvalues of the operator (5.2) are clearly the
same as those of the operator

13 82
L&= ——Q +V

4'=& Bx2
X )

m
(5.7)

since this operator is obtained from II by a chang& of
scale factor in the x;. Therefore we have

ter te -v2
Q= " I I

~
exp — ~ V —&&t(x+x(r)) dr

We now put x=xp and integrate over x, so that we
obtain

Q
—P e e&n— (5.1)

where the E„are the eigenvalues of the operator

$2 3 g2
H= ——P +U(x).

2m s=~ BX2
(5.2)

We use the fact that the Green's function for the dif-
ferential equation

Thus the quantum-mechanical partition function can
be written as an integral over certain imaginary
"motions" of the particle; it may perform conditional
Brownian motion, returning to its starting point after
a "time" &=1/kT.

We now make the substitution

Bv(x,t) 1 ~ 8'p(x, t)

Bt 4 '=& BxP
—V(x) (p(x, t) (5.3)

v2
X,=—hx,

m&
(5.9)
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and then expand the function

(v2)
exp —

I~ V X+( —~kx(r) drJ. (mt)

in a power series in the parameter A; this gives the
required expansion of Q. We use the formulas

exp (—X'/t)
dye (),x) x (r)

where U, =BV/BX; and V;, =O'V/BX, BX, ; we have
integrated by parts, using the assumption that the
potential is unbounded at infinity, to obtain the final
expression.

The evaluation of the next term yields the result (see
Yaglom 1956 for details)

p2

Q, = I (L(P g«dV)P]
8m' ~ & 720

1
d~((;o)x(r) =

c( p (prt) i
(5.10)

+12(PAV)P —8(P gradU)'(PhV)}

Xe erdX)dXpdXp. (5.14)

The zero-order term in the expansion of (5.8) is then 6. IDEAL BOSE-EINSTEIN AND
FERMI-DIRAC GASES

exp) —PV(X)]dX&dXpdXp. (5.11)( m

(2)rpkp)I &

This is the same (apart from a constant factor) as the
classical phase integral.

To obtain the higher-order terms, one simply writes
out the Taylor expansion of the exponential function and
applies the formulas (2.7)—(2.10) for the moments of a
conditional random process. Since the potential is non-
singular, all the odd terms vanish (cf. DeWitt 1960),
so we can write

m
Q=

( ) [Qo+k'Qp+kPQ4+' ' '], (5 12)
I 2~ph'i

We now show how one may use the free-particle
propagator (see, e.g. , Eq. (3.2)] to derive the partition
function for the ideal Bose-Einstein and Fermi-Dirac
gases. This development is independent of the func-
tional-integral formalism, inasmuch as the free-particle
propagator can be derived by other methods (ter Haar
1954, p. 185; Montroll and Ward 1958).

On replacing it/A by P=1/kT, the "thermal propa-
gator" which takes &V particles from a point r at time
P may be written

K"'(r'p'; rp)

=Kp&N&(ri' rN' P; r, .r„P)
N exp( ——,'m(r, '—r,)'/ i(ppp' —p) }

where

Qp= ~ I ~I expL —PV(X)]dX,dX,dX, .~JJ
L(»'~/m) (p' p)]*'—

=g K,(r,'P, 'r, P). (6.1)
The second term is

1
Q, =— I1 I IU, (X)V, (X) expL —PV(X)]dX,dXpdX, ,mJ»

According to Eq. (5.8) the partition function, ignor-
ing statistics, is just

Q= I K&N&(rP; r0)dr

b„ II
I b(ri, rp)dridrp J&JI'JI V )(X)-

0 0 Ko' (ri rNP; r, rNO)d'ri d'rN(N)

IXexpL —PV(X)dX)dXpdXp b.;, I b(r, r)dr
0

= V L25'prP/m]P ". (6.2)

p' t 2
(grad V)' ——t)&V e erdX)dXpdXp

24mIJ J J p

I J/LgradV(X)]'
p'

24m

For particles obeying Bose-Einstein (Fermi-Dirac)
statistics, the wave function of the system, and hence
also the propagator, must be symmetrical (antisym-
metrical) with respect to permutations of the particles.
In terms of the Brownian motion analogy, we may say
that the &Y particles start out at time 0 (corresponding
to infinite temperature) at a specified set of positions
(r, r„) and perform Brownian motion until a time P
has elapsed. One then discards all the cV-particle tra-

yexpL —p V(X)]dX)dXpdXp, (5.13) jectories thus generated except those which leave the
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= (1/.V!) detv(r'P'; rP), (6.3)

which is correct for Fermi-Dirac statistics; for Bose-
Einstein statistics the determinant is to be replaced by
the permanent.

It is convenient to introduce the grand partition
function, which is in this case

.
~f det ii(r, p;r0)d'ri .d'rv. (64)

N=O zVI j
On expanding the determinant (permanent) one obtains

(~1)( )+1)r&(A /t)rt

N=O rt t

(r, ttrt =N)

where

=exp(Z (~s)'+'(A /t)) (65)
t=1

A i= I ~ Ko(riP; r i)0 Ko(r, P;r, ,0)

XKo(rsP; «20) Ko(r,P; ri0)d'r, . .d'r, . (6.6)

Each 3 t can now be represented as a graph on a torus
of tubal circumference P; these graphs were called
"torons" by Montroll and Ward. A permutation cycle
of k particles may be represented by a graph in which
a single "particle" goes around the torus k times.

Evaluation of (6.6) yields the result (contrail and
Ward 1958)

oo

47«P' exp( —tPP'/2«m)dP, (6.7)
(2irh)' ~ 0

and hence

4m V
logO= W ~l P' log(1&a exp( —PP'/2m))dP,

(2n.h)' ~ p

(6.8)

where the upper sign holds for Bose-Einstein statistics
and the lower for Fermi-Dirac statistics. [One abstains
from the final integration in (6.7) in order to obtain
(6.8) in closed form. ]

/. LIQUID HELIUM

In order to investigate the A. transition of liquid
helium, Feynman (1953) tried to use a partition function

iV particles at the original set of positions. Since the

particles are indistinguishable, one must include trajec-
tories for which the final configuration is some permu-
tation of the original one. One is thus led to the prop-
agator (Montroll and Ward 1958)

K'~& («i'. rg', P'; ri r v, P)

1 Ko(r, 'P'; riP) Ko(ri'P'; rvP)

5!Ko(r~'P'; riP) ' ' 'Kp(ri. P'; ryP)

similar to (6.4), representing the effect of interatomic
forces by an "eR'ective mass" instead of a potential
function. The problem is thus reduced to adding up
contributions from various permutations of the atoms.
Kikuchi (1954) simplified this model still further by
considering a lattice system: all the atoms are required
to be situated on a regular lattice at time 0, and must
return to this configuration or some permutation
thereof at time P. In Kikuchi s original model, only
those permutations were allowed which could be made
up of superpositions of cycles in which each atom
moved at most one lattice spacing. The approximate
partition function for this model was

Q-2 g(L)e--'", (7 1)

Q-E g.(L)e-""t'", (7.2)

where $ is the propagator for two-sided polygons, R/2
is the number of two-sided polygons included in a per-
mutation, and gz(L) is the total number of ways that

where A =m'd'k/2A', d= lattice spacing, m'=effective
mass, and e ~~ is the propagator for one atom to move
a distance d in time P. Each permutation in the sum
consists of cycles, or "polygons, " and L, atoms take
part in the permutation. g(L) is a combinatorial factor
specifying the number of ways that polygons can be
drawn, by connecting nearest-neighbor points of the
lattice, so that the total number of "sides" (total length
of all polygons) is L.

It should be noted that (7.1) omits most of the
physical properties of helium, such as phonon and
roton excitations, which are described by other theories;
the assumption is that one can factor out the permuta-
tion part of the partition function and thus pick out the
part which gives the discontinuity in the specific heat.

Kikuchi used an approximate method to evaluate
g(L) and obtained a second-order transition (discon-
tinuous specific heat) at a tempera. ture T= 2.9 (m/m')
K, so that one gets the observed transition temperature

by choosing the ratio m'/m (effective mass over real
mass) equal to 1.3. The shape of the specific heat curves
is fairly good near the lambda point, but at lower tem-
peratures (7.1) predicts a negative specific heat.

In recent work, Kikuchi and his co-workers found a
way to remove the restriction to nearest-neighbor
permutations, and thus succeeded in eliminating the
nega. tive specific heat (see Kikuchi et a/. 1960).

In writing (7.1) it is assumed that the propagator for
all permutations is the same. This assumption seems
most in error for the "two-sided polygons, " in which
two atoms simply change places, since here they must
"go around" each other, whereas in larger cycles the
atoms can move directly from one lattice point to the
next. Consequently, an attempt was made to eliminate
this propagator using the approximate method described
at the end of Sec. 4. If one treats two-sided polygons
separately, the partition function may be written (Brush
1957b)
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polygons can be drawn by connecting nearest-neighbor
points of the lattice so that the total number of sides
is I.and the total number of these sides contributed by
two-sided polygons is R (Brush 1958). The partition
function (7.2) can also be generalized to describe
systems with mixtures of isotopes, or to include the
possibility of vacant lattice sites (Brush 1958; Hecht
1958).

8. ELECTRON-PHONON SYSTEM'

The most extensive application of the technique of
functional integration has been made by Abe (1954).
Abe first derived a path-integral formula for the density
matrix and applied it to the harmonic oscillator;
although this development overlaps some of the
material which we have already presented, it is useful
in understanding the more technical calculation for the
electron-phonon system.

Kith the use of the identity

where (q'I p') has been inserted so that the operator H
can be treated as a c number. (q'I p') is an eigenfunction
of the momentum operator and is defined as

&q'I P') = h (8 6)

Xexp( —Lp"/2222+ V(q)]}dp'+0(«')

1 (2xm) &

expL —(222/2«h2) (q' —q)'
hL «) —«V(q)]+o(«') (8 7)

We now replace 1—«[p'2/2222+V(q)] by the corre-
sponding exponential; the error incurred here is 0(«'),
so that the total error from all the P/« factors is still
only O(«P). We then do the momentum integral and
obtain

1
(q'll —«HI q) =- i" expL~(q' q)

—p'/h]
h~

e ~H=lim(1 —«H)~~', (8.1) On substituting (8.7) into (8.3), we 6nd

the density matrix may be defined as

p(q', qo &)=&q'I« ' lqo)

I(1—«H)(1 —«H)" (1—«H)
I= lim q' gp

J=P/« factors
(8.2)

(For convenience we treat J as an integer. ) According
to the usual rules of quantum mechanics we may insert
a complete set of states, P I ) ( I

between each pair
of factors in (8.2):

p(q'qq, p) =lim I'&q'
l
1—«HI qj 2)dq j2—

p(q', qp, P)=lim I exp-
o~ Z (q*+2—q')'

2&k' '~

dq, dq, dq, , 1
+ p «V(q;) X — —, (88)

1= J~ exp —
~ V(q(r))dr d~(o, qo; p, q')q(T). (8.9)
0

where 1/A —= (1/h) (22r«22/«)'*, and qj—=q'. This expression
is a functional integral of the type discussed in Sec. 2
Lsee (2.3)], and thus in the limit we can write it as

p(q', qo 0) =E(q', qq ,P).
Abe then gave a systematic method for approximating

X(qj,I
1—«H

I qj—2)dq j—2' dq2 the path integral, which is equivalent to an explicit
evaluation of Eq. (3.9). Consider the integralX q211—«H

I qi dq2 q&
—«qo .

Now suppose the Hamiltonian has the form

H—= (1/2222)P, p2+ V(q),

where p, ~ is the usual momentum operator. Then

(8 4) where

y z—i
I=—

J
exp( —f(q, q j)}—g dq;/A, (8.10)

A s=&

m (q+&—q;y '
f(qq q j)—= P —

«I I
+.V(q, )

2h2 g «

&q'I 1 «Hl q)=~ &q'I p')—dp'

&p'll —«C(po'/2~)+ V(q)] I q)

&q'I P')dP'&P'lq)

X(1—«t (p"/2222)+ V(q)]}, (8.5)
~ This section is based on a translation-summary of Abb's work

which was kindly sent to me by Dr. R. Kikuchi.

and 1/A = (1/h)(22rm/«)&. The values of f near its
minimum give the largest contribution to (8.10), so
we expand f with respect to the q, and retain up to
second-order terms. On denoting by q;* the value of q;
which makes f a minimum, we write

f(qqi' ' 'qj) =f(qqlq2 ''qj 2)qj)'—
( g2f

+l 21 —
I tk (8»)

', 2 (Bq;Bq,
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In order to calculate f*, Abe takes the minimum con-

dition,

(ay ~
* m q,

*—
q, ,* m q,+,*—q;* (av

+l
I aq;9 lt' o lt' o E aq;)

(8.13)

and lets ~ ~0, so that it becomes

(m/ft')(d'q/dto=h'(dV/dq); q(0)=qo, q(p)=q (814)

To evaluate the remaining integral in (8.12), one
must reduce the quadratic form in the exponent to a
sum of squares. This can be done by standard methods,
and the result is

e f' (2xmq ~ 1 J—1

I=
l l

~( exp( —Q x,otP)
i=1

(2s.m) & 1
XQ dg, =e '" (8.15)

k (DJ g)&

where

where $,—=q, —q,*. On substituting (8.11) into (8.10),
we have

( 8'f y* 1 &d$;
em ——,

' Zl l ].( —H — (8»)
J „',t (Bq,8q;) A '=~ A

m d'D

5' dt'
=Dl

(O'V )
4 Bq

D(0) =0, (dD/dt)~ o=1 (—8 23)

For the case of a simple harmonic oscillator,

V(q)+-,'maPq', (8.24)

Eqs. (8.14) and (8.23) can be solved exactly, and we
obtain

q(t) = Lqo sinh(ha&(P —t)+q' sinh(hoot)1;
sinh (ttcuP)

D(t) = (1/Ace) sinh(itoot),

The final expression for the density matrix is thus

(2n.m) &

I LD(p, qo'q'))'
t q', q;p)=

m (dqy '
Xexpl — —

l

—
I +VLq(t)] dt

I
(8 )

2It' ddt 3 )

where q is determined by

m d'q 8V
q(0) =qo and q(P) =q' (8.14a)

5' dP Bq

and D is determined by

Dg g= gX, — (8.16)
t (q'qo; p)=

2orI1 sinh(. i'tcoP) .
and the Xi are determined by the equations

Xi=Sr, X;+(1/X; z)=S;; i 2, 3, =, J—1 (8.17)

S,—=2+ (o'A'/m) (O'V/Bq ') (8.18)

In order to determine DJ &, it is convenient to
introduce also

D,=og X;. (8.19)

On substituting (8.18) for S, and letting o —&0, we
obtain finally

m(d D/dP) = 5 (8 V/Bq )o &~o&
D (8.21)

where q(t) is determined by (8.14). The initial condi-
tions for D(t) are found by looking at D&=oS, and
Do o(S,So—1) in the limit o —+——0, and it is easily shown
that D(0) =0 and D'(0) =1.

On combining (8.19) with (8.17), one obtains a differ-
ence equation for D;:

1q
D;s; =

l
g); ll x, +—l=D, +D; (8.20)

X,&

SScd /gap
Xexp ——(q' —qo)' coth

4b 2

AM

+ (q'+qo)' tanh
2

(8.25)

As expected from the proof at the end of Sec. 3, this
approximation gives the exact result for the harmonic
oscillator; (8.25) is equivalent to (2.12), (3.3), and (3.6).

So far we have simply rederived the well-known.
propagator for the harmonic oscillator; however, Abe's
method can deal with the more dificult problem of the
electron-phonon system. He assumes the Hamiltonian
has the form

Meso' p„' )+~
l q '+ l, (8.26)

o E 2 2m)'

where x represents the electron coordinates, and the
index k numbers the phonon modes. U(x), no(x), and
yo(x) are some functions of the electron coordinates
which we do not need to specify, since we solve only the

PsH= p +V(x) +p M( oy„x()xq +op (o)x,p.
i 2tn
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phonon part of the problem. Since (8.26) does not have

any cross terms between diferent modes of phonons,
we may discuss the path integral for only one mode at
a time and drop the subscript k.

The relevant part of the Hamiltonian is then

H(p, q) = +'rp+ V(q); V(q) =
2M

Mco'q'
+Mcuuq. (8.27)

Because of the term linear in p, we do not use (8.8);
instead, we go back to (8.7) and write

(q'I1 cHIq—)

p'
f exp i(q' q)p/h —e ——cyp —eV(q)

hJ 2M

(2~M~ * ~M (q' —q

I
.xp —

I
+ih&

I

—~V(E.h' J 2h2& e )

(8.28)

The exponent in (8.10) is therefore

Me (q,yr —q,
f(« q.)= Z"I +ih~

I +~v(q'),
=o..2A' 4 e )

and the path is now determined by

(d'q/dt') —h'co'q= h'era+ (h/i)dy/dt (8.29)

instead of (8.14). The solution of (8.29) is

qo sinh[hco(p —t)+q7 sinh(heat) sinh(heat)
q(t) = —8

sinh (heep) sinh (hoop)

+hJf (u($) sinh[hcu(t S)7—
—iy($) cosh[her(t —$)]}dS, (g.30)

where

B:h f (u($) sinh[h&u—(P—S)]
~0 —iy($) cosh[her(P —S)]}.

The "classical" path therefore gives a contribution

M (dq
P(q', qo)= limf*= ( ——

I +i' I
+—V[q(i)] dt

2h' (dt )

where

[(qo'+q") cosh(hcuP)
2h sinh(hcoP)

2qoq'+22 q +2Bqp+2C], (8.31)

A=—hJf [a(t) sinh(hest)+iy(t) cosh(hcdt)]dt
0

p t

C= —h'Jf dtJ" dS(u(t) sinh[hcd(P —t)
0 0

—iy(t)] cosh[her(p —t)]}
&&[a($) sinh(hcoS)+iy($) cosh(hcoS)].

The equation for D (8.23) is unaffected by the presence
of the additional term ibad, so D is still given by

D = sinh (/uop)/her

and therefore the density matrix is

t(q', qo p)= e
—c&(s'—qo) (g 32)

2~h sinh(h&uP) .

Further discussion of this problem may be found in
Abe's original paper.

9. CONCLUDING REMARKS

We have not discussed any of the applications of
functional integrals in quantum field theory, since these
applications involve a new mathematical problem, that
of noncommuting operators in the exponent; this
subject was considered outside the scope of the present
study. A partial list of references to papers on field
theory is given in the second part of the Bibliography,
as well as some other papers not specifically mentioned
in the text. For a brief survey Chap. VII in the textbook
by Bogolyubov and Shirkov (1957) is suggested.

It must be admitted that so far no important results
seem to have been obtained by the use of functional
integrals which could not have been obtained by other
methods, and that a considerable amount of work will
have to be done if practical computation techniques are
to be developed comparable to those available in ordi-
nary quantum mechanics. On the other hand, the
space-time viewpoint restores to the physicist some of
the conceptual advantages of classical mechanics, in
which one could imagine atoms following definite
trajectories even if one could not actually see them.
Quantum mechanics replaced this pictorial representa-
tion by an abstract mathematical formalism, which
produced correct results for observable quantities but
failed to give an intuitive understanding of events on
the microscopic level.

Feynman's postulate does not imply that the particle
"really" executes the motions over which one inte-
grates; it simply means that the particle behaves as
tbolgh jt did, and therefore it is legitimate to use
physical intuition in looking for valid approximation
methods. It is hoped that some of the methods of
evaluating functional integrals discussed here may
prove useful to those who are interested in developing
such approximations.
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INTRODUCTION

HIS review provides an introduction to the present
theoretical understanding of certain aspects of the

lattice thermal conductivity of solids at low tempera-
tures. An attempt is made to collect the various methods
used in the analysis of experiments. The adequacy and
range of validity of these methods are evaluated, and
suggestions are made concerning possible theoretical and
experimental investigations which seem desirable.

A few selected topics are discussed thoroughly, in-
stead of attempting a complete survey. This restriction
forces the omission of a detailed discussion of some
interesting topics, such as the interactions of lattice
vibrations with spin waves, excitons, and electrons, but
the author feels that in order to understand these latter
phenomena it is Grst necessary to be able to evaluate
with conGdence the eR'ect of certain defects that are
nearly always present in a crystal. (Detailed comparison
with experiment is not made here. )

Therefore most of this paper is devoted to a discussion
of strain-Geld scattering, mass-difference scattering, and
boundary effects. In order to understand the influence
of these scattering mechanisms on the thermal con-
ductivity of a perfect crystal, it is necessary to give a
discussion of the three-phonon processes which arise
from the anharmonic forces. Much of the discussion is


