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I. PAST CONTRIBUTIONS AND PRESENT PROBLEMS
OF THE THEORY OF MOTION

Importance of the Problem of Motion in the
Early Days of General Relativity in
Emphasizing the Great Scope
of This Theory

ENERAL relativity and the quantum theory of
the atom, both born in World War I, and surely
destined some day to be married in high state, have
grown at very different rates, and raised different de-
grees of expectation at the several stages of their
careers. The quantum principle was overshadowed at
first by the drama of relativity ; however, it has steadily
grown in power and scope and usefulness, until now
there is no part of physics that does not acknowledge its
suzerainty. Relativity, on the other hand, quickly and
dramatically encompassed the description of gravita-
tion, of gravitational waves, and of the three still better
known and more easily testable predictions of general
relativity. Thereupon productivity in the field began to
languish. Only in the last few years has it once more
become widely appreciated that in general relativity
Einstein gave a kind of master theory of physics out of
which many deep meanings and rich physical conse-
quences are still to be read.! In the intervening decades
the vision had become dimmed of what Riemann had
earlier sensed and of what Clifford had still more ex-
plicitly in mind?: “I hold in fact (1) That small portions
of space are in fact of a nature analogous to little hills on
a surface which is on the average flat; namely, that the
ordinary laws of geometry are not valid in them. (2)
That this property of being curved or distorted is con-
tinually being passed on from one portion of space to
another after the manner of a wave. (3) That this
variation of the curvature of space is what really hap-
pens in that phenomenon which we call the motion of
malter, whether ponderable or etherial. (4) That in the
physical world nothing else takes place but this varia-
tion, subject (possibly) to the law of continuity.”
Faith in this concept of a geometrodynamical universe,

* Prepared in recognition of the 62nd birthday of Leopold Infeld
on August 20, 1960.

t On leave of absence at the Department of Physics and the
Radiation Laboratory of the University of California, Berkeley,
spring semester, 1960.

! One summary of recent developments in general relativity is
to be found in J. A. Wheeler, Nuovo cimento Suppl. 7 (1960);
s(t;egg.;;o C. W. Misner and J. A. Wheeler, Ann. Phys. N. Y. 2, 525

*W. K. Clifford (1845-1879; creator of the Clifford numbers),
Proc. Cambridge Phil. Soc. 2, 157 (1876), (read 1870). See Mathe-
matical Papers by William Kingdon Clifford, edited by R. Tucker
(Macmillan and Company, Ltd., London, 1882), for this paper and
for Clifford on Riemann’s famous lecture of 1854.
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disappointed in the long lull that followed the first
exciting days of general relativity, was sustained by
nothing so much—until recent times—as the idea’~ to
derive the equations of motion of concentrations of
mass-energy from the field equations themselves. No
such derivation is possible in a linear theory like
electrodynamics, as is well known. The electromagnetic
field due to a solitary particle of charge e; in motion

3 A. Einstein and J. Grommer, Sitzber. preuss. Akad. Wiss.
Physik math. K1. 2,235 (1927) : motion of concentrations of mass-
energy concluded not to be arbitrarily specifiable without violating
field equations.

4 A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 65
(1938); L. Infeld, Phys. Rev. 53, 836 (1938); A. Einstein and L.
Infeld, Ann. Math. 41, 455 (1940); Can. J. Math. 1, 209 (1949):
equations of motion of pointlike singularities derived from the field
equations as an infinite series in powers of the ratio (particle
velocity)/ (velocity of light).

8V. A. Fock, Zhur. Eksptl. i. Teoret. Fiz. 9, 375 (1939); J. Phys.
U.S.S.R. 1, 81 (1939); The Theory of Space Time and Gravitation,
translated by N. Kemmer (Pergamon Press, New York, 1959),
with minor changes from the Russian edition of 1955; Revs.
Modern Phys. 29, 325 (1957): problem of motion of spherically
symmetric nonrotating bodies of finite size. See also N. Petrova,
J. Phys. U.S.S.R. 19, 989 (1949), for second approximation; V. A.
Fock, Doklady Akad. Nauk U.S.S.R. 32, 28 (1941), and Compt.
rend. acad. sci. U.R.S.S. 32, 25 (1941), for first integrals of the
equations of motion; and I. G. Fichtenholz, Zhur. Eksptl. i.
Teoret. Fiz. 20, 233 (1950), for Lagrangian form of equations of
motion in second approximation.

6 L. Infeld and A. Schild, Revs. Modern Phys. 21, 408 (1949):
derivation of equations of motion of an infinitesimal test particle
in a given background metric.

7 L. Infeld, Acta Phys. Polon. 13, 187 (1954); Revs. Modern
Phys. 29, 398 (1957) ; Equations of Motion and Gravitational Radia-
tion (Polska Akademia Nauk, Universytet Warszawski, 1959):
treatment of the singularities as & functions.

8 See also L. Infeld, Acta Phys. Polon. 10, 284 (1950); and L.
Infeld and A. Scheidigger, Can. J. Math. 3, 195 (1951), for other
aspects of the theory of motion.

9 A. Papapetrou, Proc. Phys. Soc. (London) A64, 57 (1951):
another type of derivation of the equations of motions of finite
masses from the field equations.

10 A. Papapetrou and W. Urich, Z. Naturforsch. 10a, 109 (1955);
and V. P. Kashkarov, Zhur. Eksptl. i Teoret. Fiz. 27, 563 (1954):
Derivation of corrections to equations of motion when masses are
rotating or endowed with a dipole moment.

11 E. Corinaldesi in Jubilee of Relativity Theory, edited by A.
Mercier and M. Kervaire (Birkhiuser Verlag, Basel, 1956), p. 125:
derivation of equations of motion of two masses from field equa-
Eiolrés by methods analogous to those used in the quantum theory of

elds.

12J. Callaway, Phys. Rev. 92, 1567 (1953) : proof that Einstein’s
so-called unified field theory leads to the wrong equations of
motion for charged concentrations of mass-energy, in the sense
that the object moves in extremal electromagnetic fields as if
completely uncharged—an argument against that theory.

3D. M. Chase, Phys. Rev. 95, 243 (1954): shows that the
standard 1916 general relativity predicts a motion of a charged
lconcentration of mass-energy which agrees with the Lorentz force
aw.

14 R. W. Lindquist and J. A. Wheeler, Revs. Modern Phys. 29,
432 (1957): derivation directly from the field equations of the
equation for the expansion and recontraction of a closed universe
constituted of a regular lattice of mass centers—a derivation
employing the concept of a ‘‘Schwarzschild lattice cell” analogous
to the Wigner-Seitz approximation in solid-state physics.
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x=2x;(f) can be added to the field due to a particle of
charge e; in motion x=x,(f), and the sum satisfies the
electromagnetic field equations, despite the fact that the
particle motions themselves are no longer correct when
the interaction between them is allowed for. Not so in
general relativity! The nonlinearity of the field equa-
tions is such that these equations cannot be satisfied
unless the concentrations of mass-energy move in the
proper way. In general relativity for the first time one
therefore acquired the possibility to derive the equations
of motion from the field equations.

Difficult Problem of Models for the Concentrations
of Mass-Energy Whose Motion is to be Analyzed

The several techniques developed to derive the equa-
tions of motion all deal with bodies endowed with mass,
and yet all seek insofar as possible to avoid the issue of
the internal constitution of these bodies. That question,
it has been supposed, must wait for an explanation of
the elementary particles.

Fluid Masses

To secure a provisional model for masses in motion,
Fock® and Papapetrou® therefore considered each mass
to be a collection of fluid. The stress-energy density of
the fluid Tp serves then as source of the gravitational
field seen outside of that mass, in accordance with
Einstein’s field equations,

Rap—382sR= (87G/c*) Tas. (1)

This approach has the virtue of avoiding all singularities
in the metric. The internal degrees of freedom of the
concentration of mass energy depend in a vital way upon
the equation of state assumed for the fluid; and fluid
physics is outside the domain of the pure geometro-
dynamics of Clifford and Einstein. Or as Infeld, another
leader in the study of this subject, puts it, “Einstein
always thought that to use (1) ... instead of the source
free field equations is somehow in bad taste, because we
do not know in (1) what Tss is, and we mix a geometrical
tensor on the left side with a physical tensor on the
right side.”

Masses Regarded as Singularities ; Difficulties
with This Concept

Einstein, Grommer, Infeld, and Hoffmann, on the
other hand,®4%% keep to pure geometrodynamics, but
can do so only at the cost of having to assume that all
the moving concentrations of mass-energy are asso-
ciated with singularities in the metric. The consequences
of this assumption for the derived motion are the same—
up to the order of approximation so far investigated, the
eighth order in v/c—as for the assumption of fluid
masses. However, a deep question of principle stands
out from this analysis. If singularities are to be admitted
at all, what kind of singularities are to be allowed? If
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every kind of singularity is admitted, then in effect the
field equations are abandoned. It is reminder enough on
this point to consider the difference in electrostatics
between the equations of Laplace, V2¢=0, and of
Poisson, V2= —4mp. As soon as solutions of the former
equation are admitted of the type 1/7, then also solu-
tions are allowed of the form }_  e;/7, and by extension
solutions of the form

1= frlflpgd?'xg. (2)

But this function satisfies Poisson’s equation, with
arbitrary p(x). In other words, the equation of Laplace
has been abandoned. A theory that set out to deal with
one entity finds on its hands a second entity. If singu-
larities are admitted, the properties of the sources can-
not be discussed adequately entirely within the frame-
work of the theory; or in other words, the theory is no
longer complete. If singularities are tolerated in general
relativity, then the completeness of this theory is even
more thoroughly shattered. There does not exist today
even the beginnings of a comprehensive analysis of the
kinds of singularities which may arise in solutions of
Einstein’s field equations.

Difficulty in Giving a Well-Defined Meaning
to the Concept of “Locally Spherically
Symmetrical Schwarzschildian
Type of Metric”

To demand of each singularity that it shall be “of the
Schwarzschild character,” and “spherically symmetri-
cal,” is not a well-defined requirement for two reasons.
First, the Schwarzschild metric admits an infinite
number of modes of departure from sphericity even
when it stands alone.!® Second, under the influence of
other concentrations of mass-energy there are forced
departures from sphericity. Similar departures occur in
the case of the electric potential

= el/r+z Cnmrnyn(m) (0; ‘P) (3)

arising from a point charge at the origin plus other
charges elsewhere. Here there is a meaning to speaking
of spherical symmetry; all dipole potentials and po-
tentials of higher multipole order

r Y (6, 0) 4)

are excluded. The exclusion of these terms in a well-
defined way is possible only because the center of charge
can be approached indefinitely closely for investigation.
The Schwarzschild metric, on the other hand, has no
center to approach. For example, at the value 7=0 of
Schwarzschild’s time coordinate there is a smallest
possible centered sphere that one can draw; it has the

' T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957):
small first-order departures from the Schwarzschild metric; A.

Peres and N. Rosen, Phys. Rev. 115, 1085 (1959): influence of
second-order terms.
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proper area
areamin=4r’min’=4r- (2Gm/c?)% (5)

Consequently to bring up nearby masses perturbs the
metric by an amount which cannot be made negligible
in comparison with the effect of the concentration of
mass-energy under consideration. This perturbation
even deforms the limiting sphere into a new shape.

Even the Mass of One Concentration of Mass-
Energy Not under All Conditions a
Well-Defined Quantity

There is a final reason to question the existence of any
well defined way to speak of “allowable singularities.”
Consider the situation when two regions of Schwarzschild
character move directly towards each other. Then it
seems impossible to prevent the amalgamation of the
two regions of strongly deformed geometry. But as soon
as this possibility is admitted, it would seem necessary
to admit that the inverse process can take place:
breakup of one concentration of mass-energy into two or
more. In other words, it would appear that the concept
of “number of singularities” is not even definable. More-
over, there does not seem to exist any justification for
tagging concentrations of mass-energy with individual
mass values, m,, mq, - -+ which are assumed to be con-
stant for all time. Electric charges are another matter.
The integral of the electric flux over a surface surround-
ing two objects is strictly equal to the sum of the
integrals taken around the two objects separately, or

€= 61+82. (6)

The mass, on the other hand, is defined by the rate at
which the metric approaches flatness—if it does—as is
seen in the factor (1—2Gm/c%) in Schwarzschild’s ex-
pression for the metric. When the region of space under
study includes fwo concentrations of mass energy, then
the mass as so defined is not the sum of the two masses
individually. Instead, it is clear from the simplest
analysis of the interaction energy that the total mass
have a value of the order

€162 Gmlmz
m~m1+m2+[————
712 712

+%(m1+m2)‘1m1m2(v2—v1)2]/g2, (7

It is no longer possible to define the mass associated
with either object in an unambiguous way.

Mass Always to Some Extent Ambiguous
when Surrounding Metric Is Not
Asymptotically Flat

The lack of definition in the value of the mass can be
stated in more general terms. An object of mass m has
linear dimensions at least of the order L~Gm/c?. Over

dimensions of this order the metric of the surrounding
space, with Riemann curvature tensor R%";, deviate
from flatness by amounts of the order

RegnL2, (8)

This same quantity governs the fractional ambiguity in
the mass in different kinds of observations. This lack of
definability of the mass is completely insignificant under
any conditions that one now knows how to realize. It is
nevertheless crucial as a matter of principle for two
objects separated by distances of the order of their own
gravitational radii. Then the two objects become so
blended that there is no way to give a clear meaning to
the mass of any “part” of the system. Then also it is
impossible to know what one should mean by ‘“‘equations
of motion” of concentrations of mass energy, much less
to derive such equations.

II. PURELY GEOMETRODYNAMICAL
MODELS FOR MASS

Geons

In view of the difficulties in the theory of motion as-
sociated either with the idea of masses of liquid or with
the concept of moving singularities in the metric, it is
significant that there exists a purely classical and
singularity-free model for a concentration of mass
energy : a geon.'®!® Such an object consists of a circu-
lating distribution of electromagnetic wave energy, or of
gravitational wave energy, which holds itself together
by its own gravitational attraction for a time very long
in comparison with travel times through the geon. It is
a self-consistent solution of the field equations. The
static or effective average gravitational field serves as
wave guide to contain the radiation. The radiation—and
the radiation alone—in turn serves as the source of this
field. The accelerations needed to hold radiation in a
circular track of radius R are of the order of ¢%/R,
whereas the acceleration available from a mass M is of
the order GM/R>. The equality of the two demands a
geon mass of the order

M~ (c/G)R. (9)

When the radiations circulating in the geon all have
reduced wavelengths of the same order

A=\/2r, (10)

and when the radiations are confined to a spherical shell
of thickness ~X&, then the rate of leakage of energy from
the system is governed by a penetration factor of the

16 J. A. Wheeler, Phys. Rev. 97, 511 (1955) : structure and modes
of transformation of geons in general, and integration of equations
for simple spherical geon. See also F. J. Ernst, Jr., Phys. Rev. 105,
1662 (1957), for variational treatment of the structure of a simple
spherical geon.

17 E. A, Power and J. A. Wheeler, Revs. Modern Phys. 29, 480
(1957) : thermal geons.

18 F. J. Ernst, Jr., Phys. Rev. 105, 1665 (1957); Revs. Modern
Phys. 29, 496 (1957): toroidal geons.
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Gamow type,
exp(—4.56R/X). (11)

When the wavelength is very short compared to the
radius, the decay rate is negligibly small.

Comprehensive Character of General Relativity
in View of Geon Concept; Nature of the
Description of Motion That It Gives

The existence of geons gives to classical general rela-
tivity a comprehensiveness that had not been expected
in the beginning. Einstein’s theory accounts not only
for the fields produced by concentrations of mass-
energy, and for the motions of such masses, but also
supplies one mechanism for a concentration of energy to
hold itself together. To the outside the geon manifests
mass, but inside there is nowhere that one can put his
finger and say “Here is ‘real’ mass!”” There is in principle
no sharp distinction between geons as collections of
radiant energy, susceptible to decay and transmutation
processes, and the ‘“free’”” waves that pass through the
space between geons, undergoing scattering, absorption,
or reemission processes. Legalistically speaking, the
state of the universe of classical physics is described by
the singularity-free electromagnetic and gravitational
magnitudes at every point, and by nothing more.

Geometrodynamics and Its Bearing on the
Problem of Motion

The word ‘‘geometrodynamics” has been used to
describe that formulation of the standard 1916 Einstein-
Maxwell theory which excludes from attention all
“real” masses and “real” charges; that is to say, all
objects and phenomena in which the quantum of action
plays an important part. Geons and the motion and
transformations of geons belong in this sense to geo-
metrodynamics. These objects must be massive (> 10% g)
and enormous (> 10" cm) if they are to satisfy the con-
ditions for a classical analysis. Therefore they have not
the slightest direct connection with the world of ele-
mentary-particle physics. This circumstance means that
the problem of motion of classical masses can be recon-
sidered and in principle for the first time fully analyzed
within the closed and logically self-consisient framework of
geometrodynamics. Here no attempt is made at such a
complete treatment, a treatment which would lean
heavily on the work of Einstein, Infeld, Fock, and
others. Instead, this article merely sketches out some
points of view and principles which would seem funda-
mental to any geometrodynamical analysis of the
problem of motion.

Concepts of Configuration, Initial Value Data,
and Initial Value Equations

Nothing is more central to the geometrodynamical
picture than this, that the configuration C (Table I) of
the system is completely specified on any spacelike
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hypersurface o by the three-dimensional geometry in-
trinsic to that three-space, and by the values of the
electric and magnetic fields throughout that three-
space, and by nothing more. Anything stated or derived
about motion from geometrodynamics must be stated or
derived out of this way of speaking.

To specify the entire dynamics of the system it is
enough to specify nearly identical intrinsic geometries
for two three-spaces, and nearly identical divergence-
free magnetic fields within each of these two three-
spaces. This is the Lagrangian or sandwich formulation
of Sharp, so far established only when the conditions on
the two surfaces are nearly identical, but presumed to
hold under more general circumstances. Alternatively, a
Hamiltonian formulation is available, in which twice as
many data—coordinates and momenta—are specified
on a single surface. This is the formulation in which
Lichnerowicz established the central theorem of geo-
metrodynamics': regular initial value data that satisfy
the “one-time” initial value conditions of Table I, plus
the field equations of Einstein and Maxwell, allow one to
calculate the evolution of the geometry and the electromag-
netic field for a finite time into the past and the future.

Case of Special Simplicity : Time-Symmetric
Initial Value Data

It is fortunate that there exists a special type of initial
value situation which illustrates the ideas of geometro-
dynamics with particular simplicity. In this so-called
time-symmetric initial value problem? it is given that
the electric field is zero on the initial three-surface, and
it is given in addition that this initial surface, whatever
its intrinsic three-geometry, has zero extrinsic curva-
ture: ®K ;. =0; three-surface of time symmetry. Under
these circumstances several of the initial value condi-
tions that are listed in Table I are satisfied automatically,
and the remainder make only two requirements: first,

divH’'=0 (12)
[or in geometrized units, with
H’ (gauss) = (¢2/GHh (cm™)
=3.49X10* gauss cmh’, (13)
demand
divh’=07; (14)
and second,
(intrinsic scalar
® R= | Curvature invariant
"~ |of three-surface of
time symmetry
=2(8xG/c*) (H'?/8x)=2(h")2. (15)

1 A, Lichnerowicz, Théories Relativistes de la Gravitation et de
U Electromagnetisme (Masson et Cie, Paris, 1955); also Problémes
Globaux en Méchanique Relativiste (Hermann, Paris, 1939);
J. Math. pure appl. (9) 23, 37 (1944); Helv. Phys. Acta Suppl.
1V, 176 (1956).

% J. Weber and J. A. Wheeler, Revs. Modern Phys. 29, 509
(1957); Dieter Brill, Ann. Phys. 7, 466 (1959); Huzihiro Araki,
ibid. 7, 456 (1959).
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TasLE L. Concept of configuration C for three kinds of system compared and contrasted. /2 and / denote electric and magnetic fields;
@ gz, the tensor that describes the geometry intrinsic to a three-space; and @Ky, the tensor (“second fundamental form” of differential
geometry) that gives the extrinsic curvature of a three-space; that is, that tells how this three-space is imbedded—or to be imbedded—

in a surrounding four-space.

Single
System particle Electromagnetic field Geometrodynamics
Specification of time Time t=¢' Spacelike three-surface o: “Surface” and “field on surface” speci-
ak= x4 (10,0,W) fiable not separately but only in combina-
tion: The three-dimension geometry G’
Specification of configura- =y Magnetic field in o: or ®g./(u,0,w) and the magnetic field
tion C at this time H=H'(u,p,w) H=H’(u,2,w)
Data adequate to forecast x(t)=x' H (ono’)=H’ ¢’ and H’
dynamics, at least when and and and
given for times or three-sur- x()=x" H (ong¢”)=H" G and H"®
faces not too far removed
from each other (Lagrange
or “‘sandwich” formulation)
Hamiltonian or ‘‘one-time” () =2 H (ono’)=H’ ®g; and @R/
formulation and and and
pt)=p’ E (ono”)=F’ H and E
Conditions on specification No conditions div H'=0; div H'=0;
of sandwich data div H”=0v div H"=0;
None on § and G’
Conditions on specification No conditions div H'=0; div H'=0; div E’'=0;
of Hamiltonian data (‘‘one- div E’'=0 intrinsic trinsi 8nG/ct ) d
time” initial data) scalar gﬁrrmts‘l;e times
curvature | — inv:;liant = | energy
invariant of o’ density
of o’ g on o’
Three additional conditions on extrinsic
curvature set by Poynting flux.
Number of distinct *? ac 43 o 853

histories®

a See J. A. Wheeler, Nuovo cimento Suppl. 7 (1960).

b In addition, there are conditions of compatibility between H’ and H” (or between G’ and G’’) whose number is of a lower order of infinity than the

number of points on ¢’ or ¢”’.

¢ Proof given by David Sharp, A.B. senior thesis, Princeton University, 1960 (unpublished).
d Proof given by Y. Fourés-Bruhat, Acta Math, 88, 141 (1952); J. Ratl. Mech. Anal. 4, 951 (1956).

If these conditions for a time-symmetric initial value
problem are satisfied by a regular metric ®g;; and a
regular magnetic field H’, then the field equations
guarantee the existence of

(1) a uniquely determined four-dimensional history
free of singularity for a finite time and

(2) a coordinate system (not unique!) such that the
metric for this four-space, and the electromagnetic field,
satisfy these symmetry requirements:

goo(T,2,3,2) =goo(—T, %, ¥, 3) ;
gom=gmo(T,2,3,2) = —gmo(— T, %, ¥, 2);
gmn(T)2,3,5)=—gma(—T, x, 3, 3);
H(T,x,y,2)=H(—T, «,v,2);
E(T,x,y,2)=—E(—T, x, v, 3).

(16)

Here E and H are understood to be the electric and
magnetic components of the field in a frame of reference
of constant 7.

Three Examples of Time-Symmetric
Initial Value Situations

It may be appropriate to illustrate the machinery of
the time-symmetric initial value problem by three
simpler examples before looking at a time-symmetric
geometrodynamic formulation of the problem of motion.
All of these examples assume zero electromagnetic field,
so that only a single requirement is imposed on the
intrinsic geometry of the three-space of time symmetry :
It must have zero intrinsic curvature invariant.

Case of Spherical Symmetry Formulated as an
Initial Value Problem Completely
Free of Singularities

Example 1. Metric spherically symmetric at the
moment of time symmetry. Write

ds*=y*(x,y,2) (dx*+dy*+dz?)
=y (1,0, ¢) (dr*+r2d62+7? sin%d o?). (17)

Then the condition of vanishing scalar curvature in-
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variant, ® R=0, demands

vz =0. (18)

The only solution with spherical symmetry can be
written in the form

y=1+4(m*/2r). (19)

Here an arbitrary constant multiplicative constant has
been thrown away because it affects only the scale in
which lengths are measured. The constant

m*(cm)=Gm/c?= (0.74X 10728 cm/g)m(g) (20)

is a geometrical measure of mass. It kas to be positive
if the inlrinsic geometry is to be free of singularity. The
proper circumference of a circle with coordinate value 7

is
(21)

This quantity has a minimum value of 4xm* for
r=m™*/2. It measures the size of a throat which connects
two Euclidean spaces.?' Alternatively and more physi-
cally, the throat can be regarded as a wormhole*? con-
necting together two regions of one otherwise Euclidean
space—regions which are so far apart that neither per
turbs the other. The geometry is everywhere regular. It
is enough to write

circum =272 =2x[r+m*+ (m*2/4r)].

r=m*2/4y (22)

to discover that the metric looks the same in terms of 7,
as it does in terms of r. Small values of » are not as-
sociated with any singularity at all, but only with very
great distances in the other quasi-Euclidean space. The
metric in the initial three-space at the moment of time
symmetry is seen even better to be regular when 7 at
this time is expressed in terms of a regularizing variable
u—most appropriately the variable # of Kruskal?:

L(r/2m*)—1] exp[r/2m*]=u2. (23)

2 A, Einstein and N. Rosen, Phys. Rev. 48, 73 (1935); C. W.
Misner and J. A. Wheeler, Ann. Phys. N. Y. 2, 525 (1957).

2 J. A. Wheeler, Phys. Rev. 97, 511 (1955).

2 M. D. Kruskal, as reported by J. A. Wheeler, International
Conference on Relativistic Theories of Gravitation, Royaumont,
June, 1959; Phys. Rev. 119, 1743 (1960); see also C. Fronsdal,
Phys. Rev. 116, 778 (1959); also C. W. Misner and J. A.
Wheeler, footnote 1, pp. 390-395. Misner is the first to have de-
rived the everywhere regular expression for the initial three-
geometry directly out of the initial value equations themselves:
C. W. Misner, Phys. Rev. 118, 1110 (1960). This method of find-
ing the geometry, as described in Eqgs. (17)-(19) of the present
text, is so simple that it appears worthwhile to note its generaliza-
tion to the case where spherical symmetry is maintained but
charge is present in the sense of ‘“flux through the wormbhole.”
Then the geometrized electric field e has to satisfy the condition
dive=0, or 4m(y*)%e=flux constant=4wrg*, or e=g¢*/y*s2. The
other initial value requirement, Eq. (15) (with electric field in
place of magnetic field) leads to the equation

— 85V = 2g" /.
Here the expression on the left for the intrinsic curvature invariant
is most quickly recalled—apart from the factor eight—from two
circumstances: (1) the intrinsic curvature vanishes when V% is
zero; and (2) this curvature has the dimensions cm™2, or ¢y, That

solution of the differential equation which is asymptotic to unity
has only a single constant of integration, the geometrized mass,
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This implicit relation provides two values of « for every
valuc of 7 greater than the minimum value—one lying
on the upper extension of the throat, the other on its
lower extension—but only a single value of » for each
value of #. Let » and f denote those positive functions of
u which are implicitly defined by the above relation and

by

2= (32m*/r) exp(—r/2m*). (24)
Then the metric on the initial spacelike surface is
ds?= f2(u)du+72(u) (d60>+sin%0d p?). (25)

Here % runs from — e through the throat at #=0 to
u=-+; f(u) runs from small values up to 4m* and
then back down to small values; and (%) runs from
large value down to 2m* and back up to large values.

Time Development of this Spherically Symmetric
and Initially Nonsingular Metric

The evolution in time of this completely regular
geometry is specified in a completely deterministic way
by Einstein’s equations,

R, —38mR=0. (26)

This determinism is in no way lessened by the circum-
stance that the field equations leave quite open the
choice of coordinates which are used in describing the
resulting four-dimensional space-time continuum. The
solution is simplest in Kruskal’s coordinates # and v, one
spacelike and the other timelike, and the usual polar
coordinates 6 and ¢; the four-metric is

ds?= f2(u,v)(du?—dv®)+r2(u,) (d62+sin20d p2). (27)
Here 7 is now a function of both % and v, defined by
L(r/2m*)=1] exp[r/2m* |=u2—12; (28)
and fis in turn defined as a function of % and » by (24).
m*:
y=[1+m*/2r)2— (¢*/2r)?]%.
Limiting values are
y=1+4m*/2r
for the case of zero charge, ¢*=0, and
Y= (14+m*/r)t
for the case of maximal charge, ¢* = =-m. The resulting expression
for the metric,
ds?=y*(dr*4-r%d6?+12 sin¥d ),
is a well-known way of rewriting the space part of the Reissner-
Nordstrgm generalization of the Schwarzschild solution,
ds?=— (1-2m*/R+¢**/R?)dT?+ (1—2m*/R+¢**/R2)"'dR?
+ R2(d6?+sin®0d o?).

The two-coordinate systems are related by the formula R=y?r.
The circumference of a circle about the center of symmetry is

2rR=2my%r=2x[r+m*+ (m*2—gq*?) /4r].
The throat is located at
Tthroat= (mtz__q*ﬁ)i/Z.

One mouth of the throat corresponds to 7>7ihroat, the other to
r <ftnroat- The space approaches Euclidean flatness of 7 — « and
for r — 0, just as it does in the case where there is no charge.
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Relation to Schwarzschild Solution

Kruskal shows that the four-metric (27) is equiva}lent
to the usual expression for the Schwarzschild metric,

ds?=—(1=2m*/r)dT?
+ (1=2m*/r)"'dr*+r2(d62+sin%0d ¢?) (29)

in the region where the Schwarzschild expression is
defined; but shows also that expression (29) fails to
cover a great portion of the four-dimensional continuum
where the intrinsic geometry is really regular. For ex-
ample, (29) covers only one sheet—from the throat on
out to great distances—at the moment of time sym-
metry T=0 or »=0; and as the time coordinate v
advances, expression (29) covers even less than the
entire upper sheet out from the connecting throat to
great distances.

Shrinkage of the Throat
The throat diminishes in circumference,

proper length
of circumference
of throat
=277 (u,v) 0={41rm* at 9=0
= ~2m*(1—12)} for v — +1

as time goes on. The curvature invariants become
greater and greater and go to infinity as v approaches
+1 (future) or —1 (past). There is only a finite length of
proper cotime,

(30)

proper cotime at 1
throat (#=0) from =f f(0,0)dv=2mm*, (31)
v=—1 to v=+41 -1

during which the intrinsic geometry at the throat is free
of singularity.

Conclusions from Schwarzschild-Fronsdal-
Kruskal Metric

Conclusions. (a) Even simple situations force one to
consider geometries whose topology is non-Euclidean.

(b) The initial value problem provides a useful way
to speak about the Schwarzschild metric.

(c) An observer at the throat finds that the intrinsic
geometry associated with this metric becomes singular
after a finite proper time. Therefore the dynamics of the
geometry cannot be further analyzed in this particular
case without going outside of the framework of classical
general relativity. In this respect there is a close analogy
with the problem of an electron losing energy by
radiation and spiraling in towards a nucleus—its final
state, too, cannot be properly treated within the frame-
work of classical mechanics. This circumstance is no bar
to posing the problem of the time evolution of the initial
three-geometry (23); it is only a warning that quantum

considerations cannot be escaped* when the lapse of
proper time at the throat approaches the critical value
Tm*.

(d) Until the quantum analysis is pursued to quanti-
tative conclusions, it is difficult to say what eventually
happens to a single Schwarzschild throat. Therefore it is
still more difficult to follow the evolution for all time of
many such throats, as would be required if one were to
try to treat the problem of motion of many masses in
terms of Schwarzschild-like regions in the metric.

(e) Itis really not possible to derive the equations of
motion of concentrations of mass energy from the field
equations in any rigorous way ‘‘representing matter as
singularities” for three reasons:

(i) For a finite proper time the Schwarzschild
metric is no! singular at all. Instead, it belongs to a
multiply connected topology. It is impossible to hide
this topology in any legalistically correct analysis of a
space endowed with one or more such centers of mass.

(ii) When the metric does become singular after a
finite proper time, there is no known way to foretell
what happens next. What can be meant by “equations
of motion” under these circumstances?

(iii) The dynamics of even a single Schwarzschild
concentration of mass-energy cannot even in principle
be expressed in the form of equations for the time rate of
change of three coordinates alone. The metric field
demands for its specification an infinite number of de-
grees of freedom-—degrees of freedom which describe
gravitational waves in the field of force of a Schwarzschild
throat?®

Initial Value Problem for Wormhole Metric

Example 2. The Schwarzschild metric can be con-
sidered to describe a “wormhole”’?? connecting two re-
mote regions of one Euclidean space rather than a
“bridge” between fwo Euclidean spaces.?! When the two
mouths of the wormhole, instead of being very far apart
in this Euclidean space,26 have a limited separation, then
the curvatures in the space around each mouth reinforce
each other in the region between them. If no additional
sources of curvature are present, such as free gravi-

# For further discussion of this point see footnote 1.

% T. Regge and J. A. Wheeler [Phys. Rev. 108, 1063 (1957)],
analyze weak gravitational waves in the Schwarzschild metric.
This analysis cannot be carried through in a completely unambigu-
ous way because it is not clear what boundary conditions the
metric perturbations must satisfy at the boundary where the
intrinsic curvature goes to infinity. Just as the ultimate fate of a
Schwarzschild throat cannot be determined from classical geo-
metrodynamics alone, neither can the problem of small departures
from sphericity be given a completely definitive treatment entirely
within that framework of ideas; however, the initial value problem
associated with such first-order departures from sphericity can be
treated apart from all such issues about singularities and deserves
detailed consideration. A. Peres and N. Rosen [Phys. Rev. 115,
1085 (1959)7, discuss some of the corrections which have to be
applied to the weak wave analysis when the effective energy con-
tent of the wave—a second-order effect—is taken into account.

26 The distance through the wormhole is not the quantity of
interest here—it may be very short—but the distance measured
through the nearly Euclidean space.
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tational radiation, then the curvature changes with
time in this intervening region, and elsewhere, in such a
way as to describe the acceleration of the two mouths
towards each other.?” It is convenient to take as starting
moment of the analysis the instant when the two mouths
have reached a maximum separation and are starting to
fall back towards each other. This loose way of speaking
can be translated into precise terminology. Let a time-
symmetric initial value problem be assumed. In other
words, let a definite three-geometry be specified (a)
which is everywhere regular, (b) which describes a
wormhole with two mouths at finite separation, and
(c) which satisfies the initial value requirement on the
three-dimensional scalar curvature invariant,

®R=0. (32)

Then the future (and past) evolution of the real
geometry—not the coordinate system—is completely de-
termined by Einstein’s field equations. The situation is
so like that of a Schwarzschild throat with mouths at an
infinite separation that one can hardly doubt that the
same kind of singularity develops here as there after the
lapse of a finite proper time. Therefore no solution of the
dynamic problem valid for all time can be expected
within the framework of classical geometrodynamics.
Nevertheless it is of interest to see even for a finite
proper time in what way the problem of motion makes
sense.

Great Freedom in Specification of Initial Value
Problem ; Gravitational Waves

To demand of the initial three-geometry the time-
symmetric condition ® R=0 and a wormhole topology—
and even on top of these to demand axial symmetry
about the most direct line between the two mouths—
does not uniquely determine the initial three-geometry.
For example, a great variety of axially symmetric
gravitational waves can be superposed on the two-
mouth geometry. Moreover, no unique and intrinsically
geometrical (coordinale free) prescription? has ever been
given to sort out gravitational waves from such gross
disturbances in the metric. It is quite possible at the
present time to believe that in principle no way can
ever be given to make this discrimination. Then one
initial three-geometry is as good as another. In other
words, the dynamical system is characterized by an
infinite number of degrees of freedom, no one of which
can be distinguished from the others and no one of which
can be said lo describe ‘“‘the motion of a mass.”

Misner’s Analytic Specification of Initial Value
Data for Wormhole Problem

One can, however, introduce purely mathematical
restrictions which simplify the initial value problem

27 C. W. Misner, Phys. Rev. 118, 1110 (1960).

28 The prescription in footnote 27 depends—that article makes
clear—upon a particular choice for the canonical variables.
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without in any way making ‘“‘the motion of the masses”
any more definable in terms of a few distinguished
coordinates. Misner has given a most interesting treat-
ment of the wormhole initial value problem.? He cuts
out all but a minimal arbitrariness in the initial geome-
try by limiting attention to three-metrics representable
in the form
dSurg:fb"(u,a)dSDz, (33)
where
dsp*=du*+df*+sin®0d o*(—po<u<mo).  (34)

Then the requirement ®R=0 gives a simple linear
second order equation for & which—with appropriate
boundary conditions—leads Misner directly to a solu-
tion containing only two adjustable constants:

+o0
d=a! 3 [cosh(u+2mu,)—cosd] .

n=—w

(35)

These constants, the scale factor ¢ and the ratio factor
ko, are fixed as follows according to Misner by the de-
mands that (a) the total mass of the system—as de-
termined at a great distance [(u2+46%)*— 0] by its
Schwarzschildean rate of approach to flatness—have a
specified value m(g) or Gm/c?=m*(cm) and (b) the dis-
tance from the throat of the metric, out through one
mouth, out through the quasi-Euclidean space, into the
other mouth, and thus automatically back to the throat
of the metric, have a specified value L(cm). These two
requirements give two equations for the constants ¢ and
wo. These equations are most readily formulated by way
of a parameter % and its complement &’= (1—k2)} such
as is familiar in the theory of the complete elliptic
integrals E(k) and K (k); thus,

L= (4a/m)K(F)E(k); (36)
m*=4a i (sinh7ue)™!; 37)
wo=wK(k)/K(F). (38)

The ratio of the prescribed L to the prescribed m* fixes
ro and k; then either L or m* fixes a.

Evolution in Time of Wormhole

The evolution in time of the three-geometry thus
specified can be found in the beginning by power series
expansion and thereafter by electronic computation.®
The intrinsic geometry of the resulting four-space is
completely determinate, regardless of the freedom of
choice that is open as to the coordinate system to be
used to describe that geometry. This geometry contains
within itself the story as to the change of the distance L
with time and the generation of gravitational waves by

» C. W. Misner, footnote 27.

% Considerable unpublished work has been done on both
methods of approach by Richard Lindquist. To him and to Pro-

fessor C. W. Misner, appreciation is expressed for numerous dis-
cussions of this problem.
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the two equal masses as they are accelerated towards
each other. From the work of Einstein, Infeld, and
Hoffmann, and others, it is clear that the motion ac-
cords qualitatively in the beginning with that to be ex-
pected from Newton’s equations of motion. However,
that there is any such thing as a legalistically correct
derivation of the equations of motion from the field
equations—or even such a thing as a legalistically defined
equation of motion—is denied in this example by con-
siderations of the same kind as those which came up in
the preceding example.

No Unique Way to Exclude Gravitational
Radiation

(a) There is no unambiguous way to sort out the
relevant degrees of freedom from those associated with
gravitational radiation.

No Unique Way to Describe Distance to
Extended Geometrodynamical Objects

(b) The distance L of Eq. (36) provides only one of
many possible definitions of distance.

Infinite Number of Degrees of Freedom

(c) There are many choices of initial metric com-
patible with a given L and a given total mass—choices
which were not written down only because of a desire
for an example mathematically easy to discuss.

No Natural Spherical Symmetry;
Throat Nonspherical

(d) The geometry of the throat at the moment of time
symmetry [deducible from (33) and (35) by setting
u=(2n+1)uo] is not spherically symmetrical; the two
mouths interact with each other and distort their com-
mon throat. The metric on this throat is

+x
dsehron®=0a*{ 2 [cosh(2n+1)uo— cosf1}+

n=—x

X (d6*+sind %)
or
dstnroat=2a[2 1 —%2 ;5 sin2(/2)+- - - J*
. X (d6>+sin®d &)t (39)
with

Yi= X 1/sinh*(n— Lo,
n=1

The deformation of the sphere can be examined by
calculating its Gaussian curvature as a function of posi-
tion; that is, as a function of the colatitude 8. For a
2-manifold imbedded in a Euclidean 3-manifold this
curvature is governed by the product of the two prin-
cipal radii of curvature and has the value

1/p1ps=—@R/2. (40)

The present throat is ot imbedded in a Euclidean
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3-manifold, but its intrinsic 2-geometry is still well de-
fined, and the right-hand side of (40) can be evaluated
in terms of the square bracket in (39):

—@R/2
=—(1/4¢’[ Psin6)(d/do)[ T'd[ 7sinb/db

21 X2
= (1/4a T 1442 =10
(1/4a* )[ 5, o

= (1/m*)’[1+angle independent terms
— (3m*/16L%) sin®+---. (41)

Appreciation is expressed to Mr. Fred Manasse for
pointing out that the deformation shows up only in the
third and higher orders of m*/ L, as is also to be expected
on simple arguments based on the 1/(distance)® de-
pendence of tide producing forces. The curvature is
evidently greatest for §=0 and §=m. In other words,
the interaction between the two mouths deforms the
throat from a sphere to what is approximately—for not
too small separations—a prolafe or cigar-shaped ellip-
soid. This result shows in explicit form that centers
of gravitating mass cannot in general be treated as
spherically symmetrical.

sin®+- - - ]

Again Intrinsic Singularity in Geometry
after Finite Proper Time

(e) There is every reason to believe that the metric
becomes singular after a finite proper time, thus making
it impossible even to speak in classical terms of the
further development of the motion.

Example 3. Geons. Does every metric become singular
in the course of time and therefore lead always to a
situation where classical geometrodynamics can no
longer be applied? The conjecture has recently been put
forward that this is always the case in the closed uni-
verse' with the topology of the three-sphere S%, such as
isof the greatest interest in connection with cosmological
questions. However, in an asymptotically flat space,
time-symmetric examples can be given in which not
only is the initial three-geometry completely free of
singularity, but also there is every reason to believe that
the geometry remains free of singularity for all time. The
simplest example of this kind is a gravitational wave
endowed with axial symmetry which converges from
great distances towards a limited region of space,
implodes to a configuration of extremal energy concen-
tration, and then spreads out again to infinity. Brill
has shown how one can describe such waves at the

moment of time symmetry in terms of the metric of
Bondi

ds*=y [P 0G0 (dz24-dp?) +-p2d o2 ].
He has shown that every such wave (a) which has an

“energy distribution factor” ¢;(z,p) limited to a finite
region of space

(42)

01(z,0)=0 for (p>+22)i>a< (43)



72 JOHN A.

and (b) which satisfies the initial value equation

®R=0 (44)
or
(1/)(8/3p)p(8¢/dp)+ (0%/02*)
+p72(0%/3 )+ A1 (p,2)Y =0, (45)

with the “energy distribution source factor” &; defined
by

48, = 3%,/ p2+ 9%,/ 322 (46)
and (c) which is everywhere regular, and asymptotically
flat in the sense

m* 1
¢ = 1+—-+terms of order — and higher, (47)
( 2

=) 2r r

—but not everywhere flat—necessarily has a positive
definite mass:

m*=(1/27) f (V Ing)odpdzdo>0.  (48)

He and Araki® prove, moreover, that there exist solu-
tions which satisfy these requirements. From this cir-
cumstance it follows that one can construct masslike
concentrations of gravitational energy without having to
appeal to solutions of the Schwarzschild type which
become singular after the lapse of a finite proper time.
Moreover, geons appear so far to be the only purely
geometrodynamical entities which go through their
entire time evolution without singularity. Therefore
these masslike concentrations of energy would seem to
provide the only legalistically pure foundation that is
available to test what shall be meant by the concept of
‘“‘equations of motion.”

III. BEHAVIOR OF GEONS IS INCONSISTENT WITH
THE THEORY OF MOTION IN ITS PRESENT
INCOMPLETE FORM

List of Effects Considered

The conventional derivation of the equations of
motion from the field equations has already had to be
viewed with caution because (1) certain kinds of dis-
turbance in the metric evolve within a finite proper
time into a singular state beyond which no purely clas-
sical analysis of their further development in time is
possible. Geons illustrate four additional respects in
which the usual treatment of the equations of motion
would seem questionable: (2) the mass is not constant,
(3) the mass can accelerate itself by a kind of rocket
effect, (4) the structure of certain kinds of geons is
sensitive to external fields to an extent for which there
is no place in the usual analysis of the equations of
motion, (5) all the moments of the distribution of mass-
energy in a geon cannot be obtained by simple volume
integrations, nor can these objects be treated as &
functions.
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Leakage; Imploding Wave vs Proper Geon

The usual analysis of the equations of motion assumes
that the mass of the moving object remains constant.
However, leakage of energy out of a geon is unavoidable,
and leakage changes the mass of the geon. The usual
treatment postulates a space that is asymptotically flat.
A classical geon in such a space ultimately diffuses away
its energy to an infinite state of dilution. Only the rate
of this leakage, not its existence, can be affected by the
design of the geon. There is a great variety of geons
which are allowed by the field equations. The simplest
to discuss are those which possess a moment of time
symmetry. The condition of these geons is completely
fixed by the specification of the initial three-geometry—
and the magnetic field, if any—at the moment of time
symmetry. The rate of leakage is highest for gravita-
tional waves whose effective propagation vector is di-
rected most nearly radially. Consider, for example, a
single nearly spherical pulse of gravitational radiation.
Let it implode to a state of maximum concentration and
spread out again. It maintains anything like the state of
maximum concentration only for an interval of cotime,
AT =cAt, of the order of the pulse thickness itself. The
concentration of energy has so transitory an existence
that it is only as a matter of principle that one might be
tempted to name it a “‘geon.” In contrast, the radiation
in a proper geon travels around nearly at right angles to
the radial direction and under suitable conditions holds
together for a time very long in comparison with the
time to go once around. Not all geons are characterized
by a moment of time symmetry, but for those geons
which do possess such symmetry, the equations

®R/2=(87G/c*) (H?/87)=h2 (49)

and

E=0; divH=0 (50)

provide the only legal requirements on the three-di-
mensional geometry and the field at the instant of turn
about. Up until this moment the geon is slowly sopping
up inward directed radiation coming from great dis-
tances, and growing in size and mass. After this instant,
the geon is leaking energy and gradually dropping in
size and mass. This behavior is consistent with the
theorem of Lichnerowicz and Papapetrou, that there
exist no periodic and singularity-free solutions of the
equations of general relativity.

Mass In Equation of Motion Cannot
Be Precisely Constant

For all geons, then, time symmetric or not, energized
by gravitational radiation or electromagnetic radiation
or any mixture of the two, the decay rate is finite. The
mass that appears in the equation of motion is not a con-
stant except when considered at an incomplete level of
approximation. The approximation is very good [cf.
Eq. (11)] when the wavelength of the trapped radiation
is short compared to the size of the geon. But in principle
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there is no nonsingular localized and purely geometro-
dynamical object to which one can point which has for
all time a sharply defined mass.

Propulsion by Leakage Radiation

Leakage phenomena have a second consequence for
the equations of motion. The escaping radiation may
come preferentially from one side of the geon and propel
it like a rocket through space at ever increasing velocity.

Construction of Geon with Rocket Property

There are several ways to construct a geon with a
rocket property. One of the simplest starts with a large
geon in which all the radiant energy is concentrated in a
ring or torus of minor radius small in comparison with
its major radius. Around one point on this ring is
centered a second and much smaller toroidal geon, with
its plane perpendicular to the two opposite directions of
circulation or radiation in the larger geon. This second
geon is not so small that it actually infringes on the
active region of the larger geon. For simplicity it is
taken to have such a large ratio of R/A that leakage out
of it is negligible compared to leakage out of the larger
geon. That leakage is governed by the effective re-
fractive index barrier about the larger geon. This pri-
mary barrier is cut down significantly in thickness in the
neighborhood of the second geon. Moreover, this barrier
was already thinnest on the outward curve of the pri-
mary geon. Therefore radiation escapes preferentially
from one region on the outside of the primary geon.
This “bright spot” serves as rocket engine to propel the
combined geon system through space

Description in Terms of Radioactive
Cascade of Photon Emissions

The oriented emission of radiation can be restated in
quantum language. The geon emits photons prefer-
entially into a certain direction. Recoil from these
radiative processes drives the geon in the opposite direc-
tion. The geon does not follow a simple equation of
motion because it so frequently undergoes radioactive
decay. Such decay is the normal property of a geon.

No Classical Geon Free of Decay

Can a geon ever settle down to a ground state? Only
then can it fully comport with the assumption always
tacitly made in trying to derive the equations of motion
from the field equation: that disintegration is impos-
sible. The answer to this question is incomplete, but it is
enough for the present purpose. No classical geon is ever
free of decay. Such geons have masses greater than
10® g, radii greater than 10! cm, and field strengths less
than the critical limit, &.:;1=4.42X108 gauss or es
v/cm, at which electron pairs are produced out of the
vacuum in great numbers. Geons with lesser dimensions
and greater internal fields conceivably exist in principle,

but their properties are completely unknown. There is
no reason to believe they are stable. Neither is there the
slightest evidence that they have any direct connection
with elementary particles. Moreover, even if a suffi-
ciently small quantum geon should be stable, its equa-
tion of motion would not admit of derivation entirely
within the framework of classical geometrodynamics.
Therefore in any purely classical general relativity
treatment of the problem of motion it would appear es-
sential as a matter of principle to allow for emission of
radiation from the masses under study.

Usual Analysis Neglects Mass Buildup and Mass
Decay by Overlooking Radiation of
Short Wavelength

At what point is the radiation left out of account in
the usual derivation of the equations of motion? In the
calculation of surface integrals extended around the
centers of mass to evaluate momentum and energy, no
account is taken of possible disturbances in the metric of
wavelength very short in comparison with the charac-
teristic Schwarzschild lengths #;*(cm) associated with
the masses in question. It is not right to leave such
waves out of account because they describe the change
in mass of the geon and its rocket propulsion properties.

Sensitivity of Some Geons to Internal Rearrange-
ment and to Disintegration by Even
Weak External Fields

There is a third respect in which the usual equations
of motion have to be viewed with caution. They purport
to describe, among other features, the motion of a con-
centration of mass-energy in a background field. There
is no reason to question the qualitative correctness of
the conclusions in the approximation in which geon
leakage and geon breakup phenomena can be neglected.
However, it is appropriate to note that the probability
of leakage and breakup can be greatly affected by the
background field itself. It lowers the barrier against
leakage in some portions of the geon and raises it in
others—the net result generally being to increase the
rate of leakage. The effects can be even more extreme
when the geon suddenly passes from a region where the
metric is flat into a region of strong curvature. Then a
large amount of radiation may be spilled out of the
system. A thermal geon'” is particularly susceptible to
this kind of breakdown. It is loaded up with radiation to
the limit it can hold. Entry of such an object of dimen-
sion L into a region of curved space alters the metric
components from their previous values by amounts of
the order

Regvs L2, (51)

In consequence, the geon spills out nonuniformly in
direction fractions of its entire radiative content of the
same order of magnitude. Other kinds of geon are caused
to undergo fission into two or more parts.
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Influence of an External Field on Leakage of
a Simple Spherical Geon

Even the simplest kind of geon, a spherical geon, is
susceptible to at least two kinds of internal alteration as
a consequence of entry into a region of curved space.
First, the rate of leakage is, in general, enhanced—and
in a one-sided way, so that a rocket effect results.
Second, the internal energy content may be drastically
rearranged. Both effects can be discussed in a little
more detail.

The leakage effect in a spherical geon involves a
Gamow type of penetration factor. In such a geon the
metric can be written approximately in the form

ds?= —e’dT*+eMdr*+r2(d6>+-sin%0d ¢*),  (52)
where
1-2m*/r for r>2.25m*+e
1% for r<2.25m*—e (53)
¢ = rounded for r very close to 2.25m*, °
transition®
(1=2m*/r)=t  for r>2.25m*+e
1 for »<2.25m*—e
e abruptly rising for 7 very close to 2.25m*. (54)

function, in-
creasing nearly
eightfold®

The distance-dependent factor R(r) in the electromag-
netic vector potential satisfies the differential equation

d’R/dr*24[A2—1*2%"/r*]R=0, (33)
where dr* is an abbreviation for
dr¥=e vy, (56)
The factor
I*2=](l+1) (57

is connected with the number of nodes / in the angular
dependence of the trapped radiation. Very nearly one
can write

[r— ( wave number of circumference
radiation in active zone / \ of active zone

_ ( wave number) (27r times >
Y \far away Schwarzschild coordinate r
:37'13(:f,ive/x
= (27/4)m*/x. (38)
The factor in square brackets in (55),
[ J=821— 2Tm*/4r)2(1—2m*/7)], (59)
is negative from just outside the active zone,
r1=(9m*/4) (60)
out to
ro=(2Tm*/4)[(11/12)— (1/6)]. (61)

The amplitude of the electromagnetic potential falls off
exponentially in this region. The rate of leakage is

3 Detailed behavior in this transition region has been de-
termined by an electronic computer and is given in footnote 16.
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governed by the Gamow factor
T2
2= exp— (2/A) f [(27m*/4r)2(1— 2m* /) — 1]'dr
71

=exp(—4.56r1/R)

=exp(—10.2m*/R). (62)

When the geon moves into a region of substantial
curvature, the metric from the geon on outward deviates
from the ideal Schwarzschild character. The disturbed
state of the metric is analogous to the state of the
electric potential around a point charge when that
charge moves into the neighborhood of charges and
conductors. The potential in that case changes from
(e/7) to

(e/1)+ 2 nm Camr™ ¥ 2™ (6, ¢)

in the case of a nearly static environment, and to
(e/7)+>_ 7 car " Pr(cosh) (64)

when that environment has axial symmetry. Similarly
here in the case of a nearly static environment of axial
symmetry the metric outside the geon is altered'® to an
expression of the form

ds?=—[(1=2m*/r)(2m*/r)?
X0 @anPu®(1—r/m*)P,(cosh) JdT?
(1= 2m*/ )= 2m*/1)2 (1= 2m* /)
X0 @nPr® (1—12/m*) P, (cosh) Jdr?
+[1+similar terms proportional to the a, ]
X r2(d§2+sin%d o*) +2dTd o (r/2m*)?
XY nbiF(n+2,1—n, 4, r/2m*)
Xsinf(d/d) P,(cosh). (63)

Here P, (x) is the associated Legendre function, with
the value 3(1—x?) for n=2 and 13x(1—a?) for n=3;
and F is the hypergeometric function

1+[(n+2)(1—n)/4](r/2m*)+ - - -. (66)

The perturbation in the metric alters the penetration
factor (62). The theory of this alteration resembles the
theory of alpha decay of deformed nuclei.?? To a first
approximation the alteration in the decay rate is de-
scribed by an effective penetration factor, evaluated by
calculating the Gamow integral straight through the
most penetrable part of the deformed barrier to the
“bright spot” on the surface where the rocket effect is

#D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953)
(especially Figs. 30 and 31 on p. 1133); J. O. Rasmussen,
University of California Radiation Laboratory Unclassified Rept.
UCRL-2431 (1953); J. A. Wheeler in Proceedings of the 1954
Glasgow Conference on Nuclear and Meson Physics, edited by E. H.
Bellamy and R. G. Moorhouse (Pergamon Press, New York,
1955), p. 38; R. F. Christy, Phys. Rev. 98, 1205(A) (1955); J. O.
Rasmussen and B. Segall, zbd. 103, 1298 (1956) ; V. M. Strutinsky,
Zhur. Eksptl. i Teoret. Fiz. 30, 411 (1956); P. O. Fréman, Kgl.
Danske Videnskab Selskab. Mat. fys. Medd. 1, No. 3 (1957); C.J.
Gallagher, Jr. and J. O. Rasmussen, J. Inorg. & Nuclear Chem. 3,
333 (1957); J. O. Rasmussen and E. R. Hansen, Phys. Rev. 109,
1656 (1958); J. O. Rasmussen, ibid. 113, 1593 (1959); 115, 1675
E%gggg, R. K. Chasman and J. O. Rasmussen, sbid. 115, 1257

(63)
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concentrated. The perturbation changes the penetration
factor from something of the form exp(—2/,)
=exp(—2I/X) to something of the form

exp— (1/X) 211+ (a4 2 +b.B,) ). (67)

Here the coefficients 4, and B, can be evaluated once
and for all, whereas the coefficients a. and b, depend
upon the strength and form of the external perturbation.
The analytical character of (67) has the following conse-
quences for a spherical geon of definite size and mass.

(1) If the wavelength of the trapped radiation is also
specified, then there exists a certain critical strength for
the coefficients in the external disturbance,

An™~ An,crit= 7\/11 ny
bn'\’bn’critE K/Bﬂ)

such that a power series development of the decay rate
makes sense for values of these coefficients less than the
critical values.

(2) If a sequence of geons is considered in which A
decreases by a factor 2 from each member in the
sequence to the next, then a development of the decay
rate in powers of a, and b, is not possible for the entire
sequence of geons, no matter how small the coefficients
a» and b, in the external perturbation may be. This
circumstance shows that a power series development of
the equations of motion of geons in powers of the curva-
ture of the background metric is the less justified in
principle—though the more justified in practice—the
shorter the wavelength of the trapped radiation and the
smaller its rate of escape.

(68)

Changes in Internal Structure Can Also Be
Brought About by Background Field

In addition to altering leakage rates and inducing
rocket propulsion, in a nearly spherical geon a back-
ground metric can produce drastic changes in internal
structure. In a nearly spherical geon the photons course
around in all directions which are contained within the
thin spherical zone of substantial activity. The photon
orbits are unstable!¢ with respect to rearrangement in a
toroidal geometry. In the rearranged geons part of the
radiation goes around the ring one way; the rest, the
other way. The extra gravitational attraction between
beams of radiation going in opposite directions gives
this configuration enhanced stability.

Altered Response of Rearranged Geon
to External Fields

The toroidal configuration has an extremal quadrupole
moment. In consequence of this moment the response
of the geon to external gravitational fields is different
from the response of the original nearly spherical geon to
the same fields. The external fields also, in the course of
time, change the orientation of the quadrupole moment.
To date no attempt appears to have been made to derive
either effect as a consequence of the gravitational field
equations. However, similar phenomena associated with
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the next lower moment of a concentration of mass-
energy have been well studied.” The moment of angular
momentum is affected in orientation by the appropriate
derivatives of the background metric; and the pull of
the field gradient on this moment produces a corrective
term in the equation for the motion of the center of mass
itself.

Moment of Momentum Not Changed in
Lowest Approximation

The moment of momentum, lower than the quadrupole
moment by one order in powers of the linear extension
of the geon, is also simpler than the quadrupole moment
in this important respect, that it is less susceptible to
being changed by the action of weak slowly varying ex-
ternal fields. The collapse of a nearly spherical geon into
a toroidal configuration, promoted by a weak disturb-
ance from outside, does not alter the moment of
momentum to the lowest order of approximation. A
nonzero value for this approximate integral of the field
equations implies a definite orientation for the torus
after the rearrangement reaction has taken place, and
implies that more radiation goes around in one direction
than in the opposite sense. No such approximate con-
servation law would seem to exist for the higher mo-
ments of the system—of which the quadrupole moment
has the greatest influence on the response to a slowly
varying background metric. In conclusion, then, (a) it
appears necessary to suppose that a weak external field
can promote a disproportionately great change in the
quadrupole moment of the concentration of mass
energy; (b) this change in quadrupole moment does
alter the effective equation of motion of the mass; and
therefore (c) the traditional development of the equa-
tions of motion in powers of the external perturbation
would seem ill-adapted to describe the motion to all
orders of approximation.

Effect of Irradiation by Fields of Short Wavelength,
and Leakage of Short-Wave Radiation,
on Moments

Not mentioned here is the influence of ingoing radia-
tion of short wavelength, or outgoing leakage radiation,
in altering not only the mass of the system—as already
discussed—but also the first and second moments of the
energy distribution. These effects, quite different from
those that have to do with the response of the geon to a
slowly varying background field, also find no natural
place in the traditional analysis of the equations of
motion.

Moments Not Definable by Simple
Volume Integrals

Geometrodynamics changes in many ways one’s views
as to what any derivation of the equations of motion can
and should prove. Let one last change be mentioned: a
change in what one means by a “moment” of the
distribution of mass-energy. In flat or nearly flat space
it is natural to define an energy-momentum four-vector
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—and thereby a mass—through integrals of the form

P,= f T audS*. (69)
Here the integration goes over a three-dimensional
spacelike hypersurface, and the element of surface has
the form

dS*=grdS,;

dS,= (—g) [ vaByldxdxPdx".
In this expression the symbol [0 1 2 3] has the value 1
and the general symbol changes sign on interchange of

any two indices. Similarly a four-tensor of angular mo-
mentum is often defined in a flat space:

(70)

M,,,,=f(x,‘T,,—-x,Tp,)dS”; (71)
and likewise higher moments. However, a geon is a
region of space where the metric departs very greatly
from flatness. In the center of an ideal spherical geon the
quantity geo=grr has only one-ninth of its value out-
side. A very great error can therefore be made in
idealizing the metric as flat in any calculation of the
mass or higher moments of the distribution of mass-
energy. Only because the metric deviates from flatness
is it possible for two apparently contradictory expres-
sions® for the mass of an ideal spherical electromagnetic
geon to agree with each other:

Me=— f (T pT)4mr*dr (72)
0

and

Me=—2 f (ToTyMetgapdy,  (13)
0

The metric enters in an important way in these con-
siderations because gravitational forces are so important
in holding the geon together.

Deviations from Flatness Essential in Resolving
Lorentz-Poincaré Paradox of Structure
of Charged Object

How essential it is to allow for departures from flat-
ness in analyzing the energy and momentum of the
system shows up even more decisively in another type of
geometrodynamical object. The mouth of a wormhole
endowed with a flux of electric charge furnishes a
classical model'¢ for a classical charged body. Such an
object has not the slightest direct connection with the
quantized charges of the world of elementary-particle
physics.3 However, this classical model resolves for the
first time in one self-consistent way the paradox first

# See footnote 17, based on R. C. Tolman, Phys. Rev. 35, 875
(1930); see also L. Landau and E. Lifshitz, The Classical Theory
of Fields (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1951), fé) 309 and 323; also C. W. Misner and P.
Putnam, Phys. Rev. 116, 1045 (1960).

# Footnote 1; also J. A. Wheeler, Ann. Phys. N. Y. 2, 604
(1957).

brought clearly to light by Poincaré and Lorentz.3®
They considered a concentration of electric charge
moving through space as a unit. They evaluated the
integrated energy and momentum associated with the
electromagnetic field of the object. They showed that
integrals of fensor quantities did not transform under
change of reference system as do the components of a
four-vector. They noted that these quantities in and by
themselves therefore do not supply a proper account of
the momentum-energy four-vector of a system endowed
with mass. They concluded that the analysis could only
then be self-consistent when it took into account the
stress-energy-momentum tensor of that field, over and
above electromagnetism, which held the charge together.
This stabilizing force comes from the metric itself in a
wormhole that traps electric lines of force. In this kind
of object the electric and gravitational forces are already
automatically balanced. The mass is read off directly
from the asymptotically Schwarzschildean behavior of
the metric far from the mouth of the wormhole.

Volume Integrals Not Appropriate as Means
to Calculate Moments

Any attempt to express the mass of the wormhole
mouth as an integral of some quantity over the interior
would seem to be completely out of place. There is no
well-defined “interior.” The space is doubly connected.
The further such an integration attempts to probe “into
one mouth” of the wormhole, the more the region of
integration extends out of the other mouth, into a space
more and more nearly Euclidean, and of ever greater
volume. It would seem equally inappropriate to express
the moment of momentum and higher moments of such
an object as integrals. They are better defined in terms
of the asymptotic character of the metric, just as the
moments of a distribution of electric charge are definable
in terms of the coefficients ¢nm in the expansion for the
potential outside:

o= (e/r)+ (prtpyy+p.2)/r*+- -
=Zn.m Cﬂmr—n_lyn(m) (0, 90)' (74)

The same remarks apply to a geon which derives all or
part of its mass from its content of gravitational
radiation.

IV. CONCLUSIONS

Effects Which Must Be Taken into Account in
an Improved Formulation of the
Theory of Motion

In conclusion, the standpoint of geometrodynamics
brings to light some aspects of the problem of motion
which are not usually considered, but which would seem
inescapable in any legalistically accurate analysis: (1)
evolution of certain kinds of disturbance in the metric
(Schwarzschild solutions; wormhole solution) within a

# H. Poincaré, Rend. Palermo 21, 1906; H. A. Lorentz, Verslag.
Kon. Akad. Amsterdam 26, 981 (1917). For a survey of this
problem, see A. Pais, Developments in the Theory of the Electron

(Institute for Advanced Study and Princeton University, Prince-
ton, New Jersey, 1948).
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finite time to a state of infinite curvature beyond which
no purely classical analysis of the situation is justified;
(2) leakage of radiation out of other kinds of geometrical
objects—geons, some of which can be free of singularity
for all time—which thereby lose the possibility of having
masses and moments of momentum which are sharply
conserved for all time; (3) radiative propulsion of a kind
not normally included in the equations of motion; (4)
responses of moments and leakage rates to an external
field which are also not envisaged in the usual deriva-
tions of the equations of motion from the field equa-
tions; and (5) structures which are not adapted to
analysis by “8 functions” or by simple volume integrals
of a “density of mass energy.” In pointing out these
effects it is not the intention to question the usefulness
of past treatments of the problem of motion. On the
contrary, they have had a most inspiring effect in
bringing to light the true nature of Einstein’s theory.
Moreover, it cannot be doubted that their predictions
are correct to a high degree of approximation in many
cases. However, the point here is this, that some change
in method or in principle or both must be required for a
deeper analysis of the problem of motion, else effects
(1)-(5) would already have found niches waiting for
them in the treatment.

Geometrodynamic Foundations for
Theory of Motion

It would appear that a reanalysis of the problem of
motion within the framework of classical geometro-
dynamics must have these properties:

(1) It must start with the initial value data on an
initial spacelike hypersurface.

(2) Tt must demand that these data satisfy the initial
value equations of Foures and Lichnerowicz.

(3) It must trace out the evolution of the metric and
the electromagnetic field in time from the field equations
of Maxwell and Einstein.

(4) It must do this in such a way as to be able to
speak of concentrations of mass-energy under conditions
where this concept makes sense.

(5) The analysis must not be capable of development
in power series with indefinitely high accuracy, else to
the concentrations of mass-energy would be attributed
a sharpness of definition which they do not have and
cannot have,

Nature of Series Expansion of Equations
of Motion

In connection with the appropriate form of mathe-
matics for analyzing the problem of motion it is most
instructive to consider by way of analogy a well known
problem in quantum mechanics?®® the perturbation of
the levels of a harmonic oscillator, with potential
V©@= (m/2)w*x? by a weak supplementary potential of
the form

V= —na?, (75)

% Max Born and Pascual Jordan, Elementare Quantenmechanik
(Springer-Verlag, Berlin, 1930), chapter on perturbation theory.

One can apply the familiar apparatus of perturbation
theory and develop the typical energy level in a power
series in \,

E,=E,Q4\E,O+NE, D+ ... (76)

This procedure makes good sénse for many purposes;
however, in principle, it is completely nonsensical. For
any given A>0, no matter how small, one can always
find a value of x so great that the potential has passed its
peak and descended to a value lower than the energy in
question. Consequently, the states in the potential
minimum are not stable, but are subject to leakage
through the barrier. The legalistically correct machinery
of analysis is no longer a countable set of bound state
eigenfunctions, but a continuous infinity of wave func-
tions that belong to a continuous spectrum. For narrow
ranges of the energy, these wave functions are large in
the region of the potential minimum, but this is a dis-
tinction of degree, not of kind, from other ranges of the
energy. The power series (76), at first convergent, is
ultimately divergent—reasonably enough, because it
purports to give a value to something that does not even
exist! But the first terms in the series are often more
useful than the continuum analysis—especially when
supplemented by a calculation of an appropriate Gamow-
Condon-Gurney leakage factor. By analogy (Table IT)
this circumstance suggests that the usual power series
derivation of the equations of motion from the field
equations give reasonable results provided that only the
first few terms in the series are taken, and provided that
the resulting equations of motion are supplemented by
factors and terms correcting for leakage of mass, for
rocket propulsion, for internal rearrangement reactions,
and for the interaction with the environment of mo-
ments, natural and induced. It is not excluded that all
these terms can be brought into evidence by some auto-
matic and unthinking type of series development, but
the analogy with other problems suggests that each kind
of effect requires a separate kind of analysis best to show
it forth. Such a situation, if it obtains, is in no way
unusual. It is a characteristic of a rich physical theory—
as for example Maxwell electrodynamics—to show a
variety of effects, many of which require very different
mathematical techniques for their elucidation (scat-
tering of light; polarization; reflection, refraction and
absorption; etc.). Such a situation is all the more to be
expected in general relativity because it is the widest in
scope of all physical theories and because it is thoroughly
nonlinear in character.

Existence of New Effects in Elementary-Particle
Physics Suggested by Present Geometro-
dynamical Discussion of the Problem
of Motion

Unusual about geometrodynamics is the circumstance
that only enough is known about its machinery today to
trace out its implications at a classical level—at a level
of not much direct relevance to experiment. This limita-
tion is not a bar to seeing interesting effects at work at a
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TaBLE II. Analogies between two mathematically similar problems
which have absolutely no direct physical relation to each other.

Perturbation in quantum
mechanics that converts
a discrete spectrum
into a continuum

Equations of motion of
concentrations of
mass energy

Power series

Legalistically

Starts as if convergent,
then diverges; but first
terms are nevertheless
very useful.

Description of decaying
state in terms of super-
position of eigenstates of
the energy in the contin-
uous spectrum; or more

Series in powers of the in-
teracting masses presum-
ably divergent but never-
theless useful.

Time-dependent solution
of the coupled equations
of Einstein and Maxwell,
completely specified by
the initial value data on

generally, in terms of a
solution of the time-de-
pendent Schrédinger
equation.®

metric and electromag-
netic fields on initial
spacelike hypersurface.

Analysis more ac-
curate than power
series but less com-
plicated and more
useful than fully
precise treatment

Allowance for leakage out
of geon—and internal
transformations of geon
due to external perturba-
tions—by leakage factors
of the Gamow type, calcu-
lations of polarizability,
and other mathematical
techniques harmoniously
adapted to the physics of
the situation.

Complex energy value
found from fitting to-
gether JWKB approxi-
mate wave functions in
the several regimes of x,
thus leading automati-
cally to a penetration
factor of the Gamow
type.

s H. Casimir, Physica 1, 193 (1934); see also H. A. Bethe, Ann. Physik
4, 443 (1930); G. Breit, Phys. Rev. 40, 127 (1932); and especially G. Breit
and F. L. Yost, ¢bid. 48, 203 (1935).

classical level. Some of these classical effects already
have well-known analogs in the quantum world of ele-
mentary particle physics: (1) the existence of concentra-
tions of mass energy; (2) the existence of charge; (3)
leakage of radiation from a geon, the classical analog of
spontaneous radiation from a quantum system; (4)
breakup of a geon into two or more parts, the classical
analog of the radioactive decay of a particle. Analogs of
other classical effects have not so far been seen in
elementary particle transformations: (1) one-sided
“rocket” propulsion, i.e., emission of a succession of
quanta into the same general solid angle; (2) response
of decay rate to external fields, particularly inhomogene-
ous gravitational fields; and (3) spontaneous internal
rearrangement catalyzed by presence of an inhomogene-
ous environment.*” It is not impossible that one can gain
some very distant insight into the reasonableness of
these processes for elementary particles by studying
further the conditions under which they are significant
for geons. Whether or not this is true, the further study
of the problem of motion on the basis of geometro-
dynamics would seem to offer rewards for the future as
rich as those that Einstein, Infeld, Fock, and others
have won in the past.

SUMMARY

The problem of the motion of concentrations of mass-
energy is discussed within the context of geometro-
dynamics—that formulation of standard general rela-

% For reasons to suspect that nucleons are crushed out of exist-
ence and converted into radiation of zero rest mass under condi-
tions where the pressure is far above the value in the nuclear
interior, and where the metric changes percentagewise very rapidly
in a very small distance, as at the center of a star of critical mass,
see B. K. Harrison, M. Wakano, and J. A. Wheeler in “Onzidme
conseil de physique Solvay,” La structure et Iévolution de Punivers
(Editions Stoops, 78 Coudenberg, Brussels, 1958); also footnote 1.
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tivity in which attention is restricted to curved empty
space, free of all singularities and of all ‘“‘real masses,”
which lie outside the framework of classical physics.
Mass in classical geometrodynamics derives only from
the mass-energy of collections of gravitational radiation
and electromagnetic radiation; charge, only from the
flux of lines of force through “wormholes” or topological
handles in the space. Legalistically speaking, the state
of the system is described by giving on two nearby
spacelike surfaces ¢’ and ¢’ the intrinsic three-dimen-
sional geometry @G’ and ®G”| and the magnetic field H’
and H”, and nothing more. The whole evolution in time
is then determined by the field equations of Maxwell
and Einstein. Then only for the sake of convenience is
there ever any reason to bring up the question of equa-
tions of motion of masses: under circumstances where
concentrations of mass-energy hold themselves together
for relatively long periods of time. Two models of such
masses are considered for the insight they throw on the
validity of the usual derivations of the equations of
motion. One, Schwarzschild-like concentrations of mass-
energy, evolve within a finite proper time into a (1)
singular state beyond which no purely classical analysis
of their further development in time is possible. This
and other circumstances make it doubtful that the con-
cept of ‘“equations of motion” has any well-defined
significance for such objects. Of the other model, a geon,
there exist many types, some of which are free of
singularity for all time. The motion of geons can be
described in terms of the concept of “equations of
motion” only when that description is corrected for
effects which are neglected in the usual derivations of
such equations: (2) slow dissipation of mass by leakage;
(3) self-acceleration by one-sided emission of leakage
radiation; (4) changes in structure or disintegration
induced by even weak fields arising from the environ-
ment; (5) departure from anything resembling a é-
function structure or from a structure all of whose
moments can be calculated by simple volume integra-
tion. It is concluded that all five effects must make their
appearance in any really correct classical derivation of
the equations of motion from the classical field equa-
tions. The analysis has nothing whatsoever directly to
do with the quantum world of elementary particles; but
just as effects (2) and (5) have their analogs in ele-
mentary-particle physics, so it is suggested that the
quantum analogs of effects (3) and (4) may also reason-
ably be anticipated for elementary particles under ap-
propriate conditions. It is also suggested that some
preliminary insight into the character of such quantum
effects may be won by a more detailed analysis of the
classical problem. Also discussed is the character of the
expansions which appear in the usual theory of motion,
and which—it is reasoned—must ultimately diverge and
become meaningless. Further accuracy in analysis can
then only be achieved by returning to the logical
starting point: the initial value data of pure geometro-
dynamics, and the field equations that govern the time
rate of change of this geometry.



