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I. INTRODUCTION

A. Background.

r iHE nucleon-nucleon, pion-nucleon, and kaon-

..nucleon interactions are at present imperfectly
known. The structure of complex nuclei is also not
completely understood. Information on both the two-

body interaction and the structure of complex nuclei
could be obtained from (say) nucleon-nucleus scatter-
ing, provided that a theoretical method exists for
separating the nucleon-nucleon force e6ects from the
structure effects. %ith a theoretical expression avail-

able for the nucleon-nucleus cross section in terms

of the nucleon-nucleon cross section, the data from
nucleon-nucleon and nucleon-nucleus scattering experi-
ments could be used to gain information about the
nuclear structure; inversely, data from nucleon-nucleus

scattering experiments and independently obtained
knowledge about the nudear structure could be used to
determine particulars of the nucleon-nucleon force. A

relation between the nucleon-nucleus cross section and
the (on-the-energy-shell) nucleon-nucleon scattering
amplitude could be used in the same manner, but in

this case there would be the additional complication of

the determination of the relative phases of the nucleon-

proton and nucleon-neutron amplitudes.
The simplest complex nucleus available as a target is

the deuteron. The deuteron should be an advantageous

target for the type of analysis just mentioned not only
because of its relative simplicity of structure, but also

because it is such a loosely bound system; i,e., the

average separation of its constituents is large com-

pared to the range of the two-body interaction and its
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binding energy per particle is small. It would be ex-

pected that each of the nucleons in the deuteron would
scatter the incident particle in a manner not much
diGerent from the way a free nucleon would scatter the
incident particle.

The problems of nucleon-deuteron, pion-deuteron,
and kaon-deuteron scattering are three-body problems;
they have not been solved exactly. Aside from this
basic fact, many of the physical details involved con-
tribute to their complexity. For example, in the nucleon-
deuteron system the identity of two of the nucleons, the
spin dependence of the nucleon-nucleon interaction, the
presence of tensor forces and exchange forces in the
nucleon-nucleon interaction, and the importance of
E-wave and higher-order partial-wave scatterings must
all be taken into account. Nevertheless, many varied
and clever approximations (the resonating group
structure method, ' the Born approximation, ' the high-

energy approximation, ' the impulse approximation, '
several variational procedures') have been applied to
these problems.
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One of thc approximations that has been applied to
all three of the problems is the impulse approximation, "

In this, the incident particle is viewed as scattering
from the deuteron by scattering once from either of the
two nucleons in the deuteron; each of these scatterings
is viewed as the scattering from a free nucleon whose
momentum distribution is that of the actual bound
nucleon. The only role played by the intradeuteron
potential is the determination of this momentum dis-
tribution. This approximation does indeed lead to an
expression (for example) for the elastic neutron-
deuteron scattering cross section in terms of the
nucleon-nucleon cross sections and a form factor for
the deuteron structure. But this approximation neg-
lects "potential" effects (those effects of the intra-
deuteron potential other than the passive role men-
tioned above) and multiple-scattering effects; i.e.,
efI'ects due to the incident particle's scattering more
than once from the individual target nucleons. This
paper analyzes these multiple scat terings.

B. The Present Work

Inclusion of the multiple-scattering terms compli-
cates the problem enormously. Because of this and the
fact that it has been possible in the past to include the
effects of spin, isospin, and the identity of particles
once the basic problem has been solved, only the case
of scalar particles interacting through scalar potentials
is considered. As a further simplification the adiabatic
approximation for the motion of the target nucleons is
made. The basic problem then is just the scattering of a
scalar particle by two scalar potentials; the latter are
assumed to be spherically symmetric. Even with these
restrictions the total scattering amplitude cannot be
expressed in terms of the amplitudes for scattering from
each target particle individually without further
assumptions.

The problem treated here no longer describes the
physical situation for nucleon-deuteron, pion-deuteron,
or kaon-deuteron scattering. Direct application to
nucleon-deuteron scattering is ruled out because the
identity of two of the particles is not taken into ac-
count. However, with the addition of spin and isospin
considerations, application has in fact been made to
pion-deuteron' " and kaon-deuteron" scattering for
moderate energy of the incident particle; i.e., the
energy of the incident particle is high enough to make
the nucleons appear to be stationary, but yet not so
high that it causes a nucleon, when struck, to recoil

violently. Because the recoil of t.he .u.uclcons is not
t.aken into account, the application to scattering of the
pion, whose mass is much smaller than that of the
nucleon, is more justihable than application to scatter-
ing of a kaon whose mass is approximately half that of a
nucleon.

This discussion begins with the problem of the
scattering of a scalar particle by one scalar, spherically
symmetric potential with a finite radius. Several
methods of obtaining the scattering amplitude for this
problem are briefly reviewed; o8-origin-centered and
off-energy-shell amplitudes, as well as the separable
potential approximation for the scattering amplitude,
are given. Application of these methods is made to the
square well potential.

With this as a background, methods developed
previously by other authors for obtaining the total
scattering amplitude in terms of the individual scatter-
ing amplitudes are applied to the problem of S-wave
scattering by each of two spherically symmetric po-
tentials of finite radius. A method for solving this
problem using the total Green's function for scattering
from one potential is also presented. After a test of the
separable potential approximation for S-wave scatter-
ing by two completely overlapping identical square
wells is made, the relationships among the various
methods of solution are discussed.

In Appendix A the integrals needed to evaluate off-
energy-she11 scattering amplitudes for a square well
potential are evaluated. In Appendix 8 one of the
methods used to treat S-wave scattering by two
potentials is generalized to include the scattering of all
partial waves.

II. SCATTEMNG BY ONE POTENTIAL

The problem discussed in this section is that of the
scattering of a particle of mass m and energy E by a
potential V(r) . The Schrodinger equation for this
problem is

(fi'/2m) I V '+ k' —U(r) }l/l(r) =0
~h««=

I
r

I
and

U(r) = (2m/fi') V (r),
k'= (2m/fi') E.

The desired solution to Kq. (1) is the sum of an inci-
dent plane wave with wave vector k; and a scattered
wave which is finite at the origin and which, for large r,
is an outgoing spherical wave;

6 G. F. Chew, Phys. Rev. 80, 196 (1950);G. F. Chew and G. C.
Wick, ibid. 85, 636 (1952); G. F. Chew and M. L. Goldberger,
ibid. 87, 778 (1952).

K. A. Brueckner, Phys. Rev. 89, 834 (1953);90, 715 (1953).' S. D. Drell and L. Verlet, Phys. Rev. 99, 849 (1955).
9R. M. Rockmore, Phys. Rev. 105, 255 (1957); 113, 1696

(1959)."V. DeAlfaro and R. Stroffolini, Nuovo cimento 11,447 {1959)."T.B. Day, G. A. Snow, and J. Sucher, Nuovo cimento 11,
637 (1959);Phys. Rev. 119, 1100 (1960).

where
&(r) =0'(r) =

I
k')+4"'(r),

I k;)=exp (ik„' r),

(finite as r -+ 0
1t-(r)~I

r 'e"f(kf k )—

(2)
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P;(r) =
~
k;)+ dr'g&(r, r') V(r')f;(r'), (4)

Equation (3) also serves to define the scattering
amplitude f(ky, k;) from the initial state with wave
vector k; to the final state with wave vector ky, in
which energy conservation requires

~
k~

~

=
~
k; )

=k.
Equation (1) can also be written as an integral

equation which incorporates the boundary conditions
of Eq. (3); i.e.,

P (r) =

E=O

sinbi«(ka) 7&ii (i ) —ji(ki ) I Pi(pz, ,),
r&a (10)

g(21+1)l'+' itki'i"(kr) I'i(pi, ,), r~a
3=0

where the free-wave Green's function @(r, r') is
defined by

(fi'/2m) I
V' '+k'}g/, (r, r') = 8(r —r'),

and the requirement that gq(r, r') as a function of r
have the same asymptotic behavior as f"(r). The
application of (5'/2m)$I7, '+k'7 to both sides of Eq.
(4) and the subsequent use of Eq. (5) yields Eq. (1).

It is well known that gi, (r, r') is given by"

2m exp(lk (
r —r' ()

4gr5'
f
r —r'

/

Substitution of Eq. (6) into Eq. (4), the taking of the
limit r—+~, the use of

exp(ik (
r—r'

~)lim, =exp( —ik~ r')r ' exp(ikr), (7)[r—r')

and comparison of the resultant expression with Eq.
(3) gives

f(kf) k ) = —(2m/4m fi') dr' exp( i' r—') V(r') P;(r') j

The following discussion is devoted to obtaining
several alternative, but of course equivalent, explicit
expressions for f(ky, k;). This discussion is limited to
potentials which not only are spherically symmetric
but which also have a finite radius; i.e., V(r) = 0 for
r& e.

A. Solution from Matching at the Potential Boundary

One method of solution is the usual partial wave
analysis. Since this is a well-known method, "only the
results are given here. These results are

f(kg, k;) =k—'Q(2l+1)ijiP, (p„I„,.),
E=Q

gt= e'I sinb~,

tan 8 i=, „, . (13)
kji'(ka) yii" (a) —Pii" (a)ji(ka)

ke, '(ka) yii" (a) —yii" (a) e, (ka)
'

Here 8~ is the phase shift of the /th partial wave;
Ei(p,„) is the lth Legendre polynomial, p,,„being the
cosine of the angle between x and y. The functions
ji(x), n&(x), and k&&'&(x), are respectively, the lth
spherical Bessel function, the 1th spherical Xeumann
function, and the 1th spherical Hankel function of the
6rst kind. "That solution to the 1th radial Schrodinger
equation for r ~ a which is finite at r= 0 is denoted by
piP(r). In Eq. (13) "prime" denotes differentiation
with respect to the argument of the function.

The coefficients in Eqs. (9) and (10), as well as the
relation given by Eq. (13), were determined by
matching at r=a the value and first radial derivative
of f;(r) for r &a to the value and first radial derivative,
respectively, of f;(r) for r &' a.

(12)

B. Solution from the Total Green'8 Function

p;(r) =~ k, )+ dr'G&(r, r') V(r') exp(ik; r'); (15)

i.e., application of (fi2/2m)LV', '+Jp —U(r)7 to both
sides of Eq. (15) and the subsequent use of Eq. (14)
yields Eq. (1).

The total Green's function has the following explicit
form":

An alternative method involves the use of the total
Green's function Gi(r, r'). This Green's function is
defined by the equation

(6'/ ~) IV''+k' —U(r) IG„(r, ') =8( —r'), ( 4)
and the requirement, that G&(r, r') as a function of r
have the same asymptotic behavior as Il "(r).With this
Green's function, Eq. (1) and the boundary conditions
of Eq. (3) can be combined into

4'(r) = . G, (r, r ) = (2 /4. V) g(2l+1) r, (,„„,)G,«&(...),
Z=O

g(2l+1) i'e" iLcos8& ji(kr)
l=0

—sinbiiii(kr) 5Pi(pi„,), r ~ a

"See, for examp]e, L. I. Schiff, Quantum 3IIechgnics (Mcoraw-
Hill Book Company, Inc. , New York, 1955),2nd ed. , pp. 162—164.

"For example, see reference 12, pp. 100—107.

G &" (r, r') = (r"6) 'xii~(r&)x2i'(r&), (17)
"See, for example, reference 12, pp. 7"l-79 for the definitions

and properties of these functions.
'"" Phillip M. Morse and Herman Feshbach, 3Eethods oj Theo-

retical Physics (McGraw-Hill Book Company, Inc. , New York,
1953), Vol. I, pp. 791—895.
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where r&(r&) is the lesser (greater) of r and r', xii"(r)
and xai" (r) are linearly independent solutions of the
radial Schrodinger equation

1d I d l(3+1)——
I

r' —— +O' —U(r) XP(r) =0, r&a,

(18a)

In this result

bi =—kei'(ka) Pii" (a) —pic'(a) Ni(ka) =b—i(n, k, u), (23)

ci—=kj,'(ka) pic(a) y ii"'(a)j, (ka) =—c,(n, k, a), (24)

di—=4'2P'(a) ki&'&(ka) kk—i"&'(ka) pi&" (a) =d—i(k, n, a).

(25)

The left-hand side of Eq. (21) is the Wronskian of the
@P's; these functions were chosen to be linearly inde-
pendent, so that X '80. Equations (22) give Gqi'&(r, r')
only for r'&a; this is the only region of interest, since
in Eq. (15) Gq'i&(r, r') appears multiplied on the right
by V(r') which was assumed to be zero for r') a.

The rest of the procedure for 6nding the scattering
amplitude consists of the substitution of G'(r, r') as
given by Eqs. (16) and (22a) into Eq. (15), the
evaluation of the integral by standard techniques, the
taking of the limit r—+Do, and the comparison of the
result with Eq. (3). The resulting expression for
f(kg, k;) is

1d I d l((+1)——
I

r'—— +k' XP(») =0, (r ~a), (18b)r' dr( dr r'

and 6 is the Wronskian of these two solutions evaluated
at r=r'.

The particular solutions to be used are determined

by the boundary conditions on G&&'&(r, r'); i.e. ,
G i'&(» r') is finite at r=O and G i'&(»—&", r') r 'e'"'
The solution y«'(») is chosen to satisfy the first bound-
ary condition, and Xi/(r) is chosen to satisfy the
second. It is assumed that pig(r) and p2, '(r) are linearly
independent solutions to Eq. (18a) such that Pi&"(r)
satisfies the first boundary condition. It is known'4 that
ji(kr) and ei(kr) are linearly independent solutions to
Eq. (18b) with kii &(kr) =ji(kr)+in&(kr) satisfying
the second boundary condition. This means the x~'s

can be written as

OO ( —~)
f(kg, k;) = k

—'Q(2l+1) Pi(pp, p,.)
l=o

' '
(c,+ibi)a'

'AiyiP(r), r&a
Xii"(r) = '

Biji(kr)+Ciei(kr),

'DS '()+Ee "(),
Fikio&(kr),

r&a

r&a
X'i"(r) = (19b) r"QiP(r') U(r')j i(kr') dr'= cia', — (27)

a
X»"PiP(»') U(r') ji(kr') dr' (26)

0

(19a) With the aid of the differential equations satisfied by
pip(r) and ji(kr) the integral in Eq. (26) is found to
be given by

The coeKcients j3~, C~, Dg, and B~ can be eliminated
from Eqs. (19) by the requirements that both XP's be
continuous and have a continuous 6rst derivative at
r=a.

Kith the aid of"

so that f(kr, k;) is given by Eq. (11) with

gi=ici[Cl+$bl j ' (28)

From Eqs. (13), (23), and (24) it follows that Eq. (28)
is identical to Eq. (12).

j,(x) e,'(x) mi(x)j i'(x—) =x-', (20) C. Solution from the t-Matrix Formalism

$1/(r)&2,"(r)—&2P(r)pi&"'(r) =X 'r ', A=const, (21)

(where again "prime" denotes differentiation with
respect to the argument) the Wronskian ~ can be
evaluated. Substitution of the resulting expressions for
gli" +2&', and ~ into Eq. (17) yields

&'=
I k')+g~V4*; (29)

i.e., g" is an integral operator with kernel@(r, r'). This
equation. is then solved for P;,

A third method is the t-matrix formalism. " This
begins with the writing of Eq. (4) in the symbolic
form

~or r'&a&r

G""(», r') =L(«+'bi) a'j '4»"(r') ki'"(kr) (22a) This yields

Por r, r'~ a

Gq&'&(r, r') = I-(ci+ibi) a'] '4'iP(r&)

P;= L1—ggV7-'
I
k;). (30)

Xr-d&$1 P(r&)+(ci+ibi) 4'2i'(r~) ]. (22b)
Xexp( —», ~ r') V(r') Ll —g V] '

I k')
—= —(2~!4 &') &kr

I
VL1 —g"Vj ' Ik*) (»)

'6 Equation (20) is given in reference 14, while Kq. (21) can
be easily derived from the fact that the @&~'s satisfy Eq. (18a). ' B.A. Lippman and J. Schwinger, Phys. Rev. '79, 4/9 (].9/0).
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so that
4,= I k;&+g~&i I k'&,

gI A, =Ga~,

(35)

where both sides of this equation operate on
I
k;). This

equation, when combined with Eq. (32), yields

4= VL1 gI, Vj '=—V I 1+gi V[1 gI Vl 'I =—V[1+g»ij
ol

ti, = V[1+GiVj. (36)

It is now a relatively simple matter to evaluate the
matrix element in Eq. (33) .

D. Off-Energy-Shell and 08-Origin-Centered
Amplitudes

The application of these methods to the problem
of scattering from two potentials is complicated by two
facts. In the first place, only over-all energy conserva-
tion can be required. If the incident particle scatters
off the target by, for example, scattering from one

potential into an intermediate state and then scattering
from the other potential into its final state, the energy
of the intermediate state need not be the same as that
of the initial and 6nal states. Such scatterings are
called off-energy-shell scatterings. An expression for a
general off-energy-shell scattering amplitude can be
obtained by defining the operator ti, by Eq. (32) with

the understanding that this equation now holds inde-

pendently of the state upon which it operates. " The
general off-energy-shell scattering amplitude is then

given by

Mth the f matrix 3& defined by

ted=V[1 —giV) ', (32)

where it is understood that $1, operates to the right on

I
k, ), Eq. (31) reduces to

f(kf k ) = —(2m/4irk') (kf
I i.

I
k') (33)

The matrix element in this last expression can be
evaluated by expanding the operator in Eq. (32).

The operator t~ can also be found in terms of the
total Green's function. In symbolic form Eq. (15) reads

y, = lk, &+G.V Ik, );
i.e., Gi, is an integral operator with kernel Gi, (r, r').
But from Eqs. (29), (30), and (32) E. The Separable Potential Approximation

Because it has been proved applicable to nucleon-
nucleon, " pion-nucleon, " and pion-deuteron" scatter-
ing, the separable potential approximation (SPA) is
described briefly.

The first step in the SPA is the replacing of the local
potential V(r) with a nonlocal potential, or else the
assumption is made that the two-body potential is
nonlocal in the first place; i.e.,

V(r)P;(r) = dr'V(r, r')P;(r'). (39)

The second step in the SPA is the replacing of the
kernel V(r, r') by a separable kernel; i.e.,

V(r, r') = P,v(r)n(r') (40)

where X is a normalizing constant. These last two equa-
tions yield

V(r) 4.-(r) =»(r) 0', (41)

dr'i (r') P;(r') . (42)

Substitution of Eq. (41) in Eq. (4), multiplication of
the result by iI(r) and integration over r gives

where
g;= [1—Xgi,g

—'s(k;), (43)

v(k, ) = drv(r) exp(ik; r),

for scattering from the potential V;(r —Ri) centered at
r=R; (from here on the energy dependence of the
3-matrix is suppressed), and t;,0 is the 3 matrix for
scattering from this same potential centered at r=o,
then

(p I » I
q&=exp[~(q —p)»)(p I &,o I q&

With f; and f; o defined in an analogous manner, it
follows that

f (p, q) = —(2~/4~&') (p I
&

I q&

= —(2m/4irk') (p I ti, o
I q) exp[i(q —p) R;]

=f,o(p, q) «r [~(q-p) R3. (3g)

f(p, q) = —(2'/4m'') (p I A, I q&, (37)

where p=
I p INk and q=

I q INk. This equation also

holds when p and/or q are equal to k.

Secondly, although each potential is spherically

symmetric about its own center, neither potential is in

general centered at the origin. This complication is

easily handled because the value of the matrix element

in Eq. (37) is independent of origin. If t; is the t matrix

'8 N'. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).

But from Eq. (41) and Eq. (8)

f(&& k)= —(2~/4 e)g ~( —k)
so that with Eq. (43)

2m s( —kr) s(k;)
krfi' j.—)gI,

'" S. Yamaguchi, Phys. Rev. 95, 1628 (1954).
'0 A. Wentzel, He1v. Phys. Acta 15, 111 (1942).

(44)
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Equation (44) is also the result obtained for the
scattering amplitude if V(r) is a local potential with a
shape v(r) and normalizing constant X; i.e., Eq. (41) is
interpreted to mean

j(p, q) =k 'Z(2i+1)ni(p, q) &2(~.,),
2=0

(53)

along with Eqs. (A4) and (A5) of Appendix A, gives

(45)
where

V(r) =l)v(r),
where

drv(r) =1; (46)

i'; is still given by Eq. (42), but it is now merely the
average of the wave function over the shape of the
local potential. In this case Eqs. (41) and (42) con-
stitute an approximation which is only valid under
certain conditions. From the physics of these two
equations it is clear that these conditions should be
roughly ku«1 and Upu'«1, where a is the range of
V(r) and Vo ——(62/2m) Uo is in some sense the depth
of V(r).

Uo ci(n, p, a)
e(P, q) =ni(q, P) = kUoa'

(n2 q2) p2 q2

Uol ci(q, k, a)+ibi(q, k, a) j
(ct+ib2) (u' —q') (u' —p')

It is easily seen that for q= p=k Eq. (54) reduces to
Eq. (28).

Finally, the SPA can be applied to the square well.
From Eqs. (45), (46), and (47)

(3/42rao, r ~ a
v(r) =' (55)

F. Application: Square WeB Potential i), = —(42.a'/3) Vo. (56)

U(r) = (2m/FP) V(r) = ~

(0
(47)

The solution to the 1th radial Schrodinger equation
with this potential which is finite at the origin is"

where
0»"(r) =j 2(ur),

u= [Uo+koj'.

iipt22'(r) =nj 2'(nr) .

(48)

(49)

Equations (48) and (50) are all that is needed to make
the results of Sec. II(A) appropriate for the square well.

The results of Sec. II(B) can be applied to the square
well by the use of Eqs. (48), (50), and

$2i (r) =222(ur), &22 '(r) =n222'( r);u(51)
i.e., 222(nr) is a solution to Eq. (18a) which is linearly
independent of ji(ur) .

An explicit expression can also be obtained for the
off-energy-shell, square well scattering amplitudes.
From Eqs. (36) and (37)

j(p, q) = —(2m/4~@) (p ~
V+VG, V

~ q)

= —(2m/42252) dr exp( —ip r) V(r) exp(iq r)

These techniques are applied here to the square well
potential

—Uo= —(2m/P) V(), r &a

These relations and Eq. (42) lead to

)P;(r) =P;= (3222/cokna') j2(ua), r ~ a. (57)

A numerical comparison of this result with Eq. (9) in
the region O~r & a shows that Eq. (57) is a good ap-
proximation when

ka«1 and o.a &1. (58)

These restrictions merely mean that inside the potential
the total wave function is approximately equal to its
average over the shape of the potential provided that
the wavelength outside the potential is large compared
to the radius of the potential and that, inside the
potential, the wavelength is at least as large as the
radius; i.e., the wave function is a slowly varying func-
tion both inside and outside the potential.

III. SCATTERING FROM TWO POTENTIALS

The problem under consideration now is that of the
scattering of a scalar particle by two spherically sym-
metric potentials. The Schrodinger equation for this
problem is

(F2/2m) I V '+k' —U2(~ r—R2 ~)

—U2(~ r—R, ~) Iy;(r) =0. (59)

In this equation the origin is the midpoint of the vector
R joining the centers of the two potentials, r is the
position vector of the incident particle, R; is the
position vector of the center of they'th potential, and

R= R2—Rg =2R2= —2'.
-pfirir' erp( —rp r) V(r)G (r, r') V(r')

The desired solution to Eq. (59) has the form

0'(r) =
I
lr')+4"'(r),

XexP(2q' r ) (52) where
pcc (r) .F (Q Q .) r 2Ci)er . —

Use of the results of Sec.II(B)applied to the square well,

(60)

(61)

(62)
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i.e., F(kr, k;) is the scattering amplitude for this
problem for scattering from the initial state

I k;) to the
final state

I kr). The goal of the following calculations
is to obtain an expression for F (kr, k, ) in terms of the

f&,p(kr, k ) &
j= 1, 2, the individual origin-centered

scattering amplitudes for scattering from potentials one
and two.

Several methods for solving this problem are pre-
sented for the case of S-wave scattering; i.e., each
potential scatters only S waves relative to its own

center. It is assumed that the two potentials are
identical; this is not a necessary assumption, but it
makes the form of the equations somewhat simpler
than otherwise.

A. Point Potentials

From the discussion in Sec. II(A, B, and F) the
details can be filled in. That Eq. (63) is the solution
to the Schrodinger equation outside the potentials
and for S-wave scattering by each potential, can be
seen from Eq. (10) and the identity kp&'&(a) = —ix
exp(ix) .

Equation (64) stat:es t:hat the amplitude of the wave
scattered by potential one is the 5-wave scattering
amplitude for this potential times the wave incident
on this potential evaluated at the position of this
potential. This also follows from the discussion in
Sec. II: From Eqs. (2), (16), (22a), (28), and Sec.
II(F), it follows that for a square well centered at
p=0

P"(p) a) = —(re/4vrkcpa') (e'"~/p)

The simplest case is that of S-wave scattering from
two point potentials. Hrueckner' discussed this problem
in 1951;his derivation is given below.

The wave function outside the potentials is written
as the sum of the incident plane wave, a wave scattered
from potential one, and a wave scattered from potential
two; i.e.,

exp(ik I
r —Ri I)

P, (r) =exp(ik; r)+Ap
Ir—R,

I

exp(ik I
r—R, I)

I
r—Rp

I

this being the general solution to the wave equation
outside the potentials for S-wave scattering by each

potential. The outgoing amplitude Ao is given in terms

of the total wave amplitude at R& by

exp(ik I
Ri—Rp I)

Ap= —exp(ik, 'Ri)+Bp, (64)
k I

Ri —R,
I

where (imp/k) is the 5-wave scattering amplitude for

potential one: from the assumption of identical po-
tentials, (gp/k) is also the 5-wave scattering amplitude

from potential two. Similarly

exp(ik I
Ri—Rp I)

Bp= exp(ik; Rp) +—Ap . (65)
k I

Ri—Rp
I

When Eqs. (63), (64), and (65) are solved for the

scattering amplitude the result is

gp' exp(2ikE) -'
(kR)'

X —
I exp[i(k; —kr) Ri]+exp[i(k; —kr) Rp]I

k

+[imp' exp(ikR)/O'E][exp[i(k; Ri—kr RQ)]

+exp[i (k; R2 kf R,)]I,'(66)

where Z=
I
R I.

X &ti'jp(np') U(p') P'"'( y'), (67)

so that
Up ji(na) /cpn —&1,

8'(c) = (n /k)4'"'(0)~ ' exp(iki ),
or with Io=r —R;,

0-(I r —» I) = (np/k) 4'"'(r =») ' —.(6g)
exp(ik I

r —R; I)

Ir —R;I

The realization that the wave incident on one potential
is just the original plane wave plus the wave scattered

by the other potential gives an immediate explanation
of Eqs. (64) and (65).

Finally, from Eq. (62) and Eq. (7), Eq. (63) implies

F(kr, k;) =exp( —ikf Ri)Ap+exp( —ikf Rp)Bp. (69)

Equation (66) follows directly from Eqs. (64), (65),
and (69).

Bruckner's result for F(kf, k;) can be interpreted as
follows: The 6rst two terms in the numerator of Eq.
(66) are the single-scattering (or impulse approxi-
mation) terms; i.e., the incident particle scatters once
from either potential, and the amplitude for each of
these scatterings is shifted in phase because the po-
tentials are centered at r=R~ and r =R~, rather than at
r=0. The next two terms in the numerator are the
double-scattering terms; i.e., the incident particle
scatters from potential one (two), propagates as an

where P'"'(ti) is the wave incident upon the well; it is
legitimate to use the entire incident wave in Eq. (67)
since only its S wave part will survive the integration.
It is assumed now that the range of U(p') is small

enough to allow the removal of the incident wave from
the integrand. The remaining integration can be per-
formed and the result is

p-(p) a) = (imp/k) p'"'(0) [Up ji(na) /cpn jp 'exp—(ikp) .

The taking of the limit of a point well, u—+0, Uo—+~
(which means that the previous manipulation is exact),
results in



outgoing spherical wave E'exp(ikE) until it scatters
from potential two (one). The denominator represents
all higher-order multiple scatterings; the four diferent
phase factors in Eq. (66) come from the four different
possibilities of the initial and final scatterings being
from potentials one or two.

B. Solution from the t-Matrix Formalism

In 1955 Drell and Verlet' calculated the scattering
amplitude F(ky, k;) by using the t-matrix formalism.
A somewhat expanded form of their derivation is given
below.

For the case of scattering from two potentials
U~(r —R)) and Vo(r —Ro), Eq. (4) has the symbolic
form

The interpretation of this result in tcrirns of sii)gle,
double, and multiple scatterings is apparent.

The use of the closure property

dy I y)(y I= dyexp[iy (r—r')]=(2w)'()(r —r'),

permits Eq. (75) to be written (through double-
scattering terms) as

F(') (kf, k,)
= —(2~/4~&') I (kr I

t~
I k')+ &kf I

to
I k') I

—(2~/4~&') (2~) " dvd&I &kf I t~
I v)(v I go I »

The solution is

y'=[1—
g (v,+v,)]- lk, ),

(70)
x &~It Ik;)+(k& It I ~)&~ lg I »&~ It Ik;)I. (76)

The Green's function go(r, r') can be written as the
Fourier integral"

which gives for the scattered wave

4-=go(vi+Uo) [1—go(vx+Uo) ] '
I
k') (71)

Use of the usual noncommutative algebra gives

govt[1 —
g) (V).+vs)] '

=g) Vx[(1—govo) (1—gov). ) —govog(, vi] '

=g) U&[(1—govt) —ggtogovg]
—'(1—govo) '

=g),4[1—gotogo4] '(1—govo) '

= ggt). [1 g)etog) 4] (1+goto) r (72)

where, independent of the state upon which it operates,

t;= V;[1—g&v;] ', j=1, 2, (73)

is the oG-origin-centered t matrix for scattering from
V;(r —R;). The last line of Eq. (72) follows from

(1—govo) '=1+govo(1 —govo) '=1+g),trge

Substitution of Eq. (72) as it stands, as well as with
1g-+2r into Eq. (71) yields"

P-(r) = —(2m/4or5') dr',exp(ik
I
r r' I)—

X I [1—t)g) togo] '4(1+goto)

+[1—tobago] 'to(1+gob) I I k;).
Use has been made of Eq. (6) and the operator identity
A[1—BA]—'=[1—AB] 'A. The scattering amplitude
obtained from this last equation is

F(ky, k;)
= —(2m/47rt)o) (kr I [1—tgg)' togo] 't) (1+goto)

+[1—togotggo]-'tr(1+g)rh)
I
k, ). (74)

'D. Park, Compt. rend. 245, 291 (1957} also obtained this
result.

s(q —x)= ——(2m) '--
1).'—(k+i o) ' (78)

From this relation, Eq. (38), Eq. (60), and Eq. (76), it
follows that

F(') (kr, k,) =exp[ —i(k, —kf) R/2]fq, o(kyar k;)

+exp[i(k; —kr) R/2]to, o(kf, ke)

4or dy exp( —iy R)
+exp[i(k, +kg) R/2]

Xf~ o(kr, 'r) fo o(r, k;)

(2or) ' y' —(k+io) '

Xfo,o(kfr y)fz, o(yr k;). (79)

The first two terms are the single-scattering terms,
while the integrand contains the double-scattering
terms. For example, the 6rst double-scattering term
reads as follows: The incident particle with momentum
k; scatters from potential two into an intermediate
state of momentum y; it then propagates in this
intermediate state until it scatters from potential one.
The total amplitude for this process is found by inte-
gration over all intermediate momenta. This last
statement means that, even though the propagator in
the integrand is peaked at y'= k', the scattering ampli-
tudes in the integrand are o6-energy-shell amplitudes.

2m dq exp[iq (r—r')]
gor, r' =— ', o-+0+ 77

bio (2or) g q& —(k+.i,) o

i.e., c)0 and the limit &~0 is taken after the integration
is performed. This expression for g), (r, r') leads to

(r ~ g ~

p. ) fgrdr exp=( —(r r')g (r, r') erp(ip. r')
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fp(k, y) =fp(y, k) =fp(k, k) =gp/k,

fp(k, y) =fp(y, k) =0 for yak.

(81)

(82)

The first form states that the off-energy-shell ampli-
tudes are the same as the energy-conserving ampli-
tudes, while Eq. (82) states that the off-energy-shell
amplitudes vanish.

The substitution of I. into Eq. (80) leads to

00
ay 2'

. ,i p(v~)fp(k, v)fp(v, k) = (gp'/k) I(k2z'),
zr p y' —k+zp '

where

i ~ peI(kE) =-
2~kR y' —k ie '

X [exp (ipR) —exp ( —z'yE) ]
= (M) ' exp(ikR).

Equation (80) can then be written

Fz"'(kf, k') = (np/k)

(83)

X (exp[z(k; —kr) R/2]+exp[ —z(k, —kr) R/2]}

+(zip/k)PE ' exp(ikE) [exp[i(k~+kf) R/2]

+exp[ —z (k;+kf) R/2]}. (84)

On the other hand, the form for the scattering
amplitude given by Eq. (82) means that the factor
[y' —(k+ip)'] ' in the integrand can be replaced by"
(pri/2k) 6(7—k). This yields

Fzz&'& (kr, k;) = (zzp/k)

X jexp[i(k; —kf) R/2]+exp[ —p(k; —kr) R/2]}

i sinkR+ (qp/k) '
f exp[i (k,+kf) R/2]

R

+exp[ —i(k;+kg) R/2]}. (85)

All the higher-order multiple-scattering terms can be
evaluated in the same manner as the double-scattering
terms by using, in addition to Eqs. (81) and (82), the

The assunipt. ions of 5-wave scat. teriz&g and identical
potentials permit the reduction of Eq. (79) to the form

F&'& (kr, k;) = }exp[i(k; —kf) R/2]

+exp[ —Z(k; —kf) R/2]} (zzp/k)

+}exp[i(k;+kr) R/2]+exp[ —p(k~+kr) R/2] }

co py2dy

. ,job'&)fp(» v)fp(v, k), (8o)
zr p y' —k+ip '

where fp=fz, p fp p-—
Drell and Verlet considered two approximations for

the amplitudes in the integrand of Eq. (80):

approxlma t,jons

I. fp(7, y') =fp(k, k) =gp/k, (86)
II. fp (7, y') =0 for y or y'W k. (87)

Summation of all the multiple-scattering terms leads to

Fz, zz(kr, k;) =[1—(np/k)'Wz, zz']-'

X (gp/k) ( z exp[i(k, —kr) R/2]

+exp[ —i(k;—kf) R/2]}

+ (gp/k) Wz, zzjexp[i(k;+kf) R/2]

+exp[ —i(k;+kr) R/2]} ), (88)

where the "propagators" 8'z, zz are given by

Wz ——e'"~/R Wzz = i sinkR/R. (89)

Drell and Verlet pointed out the following features of
Eq. (88). If the propagator Wz is used the resulting
expression for F(ky, k,) is the same as that obtained
by Brueckner [Eq. (66)] and it has the same fault;
i.e., in the limit R—+0, when the two wells collapse to a
single well centered at the origin twice as deep as either
of the original wells, Eq. (88) yields the incorrect
result Fz~. If the region kR &1 is important, then
Eq. (88) with Wz as the propagator is a poor approxi-
mation. If only terms through double scattering are
included and H/z is used as the propagator, then, in
this same limit, Pz—&~, which also is not correct. If,
however, Wzz is used in Eq. (88), then

Fzz ~2(gp/k) [1+zqp]/[1+gpz],

which at least reduces to the correct values for qo((1.
A third approximation method, the SPA, was also

used by Drell and Verlet to evaluate F(k~, k;). This
work is discussed later.

C. Solution from Matching at the Potential
Boundaries

In 1957 Eyges" presented a method for solving
nonseparable boundary value problems for those cases
in which the nonseparable boundary is a sum of
boundaries, each of which by itself constitutes a
separable problem. This method is illustrated below
for the problem of 5-wave scattering from two identical,
nonoverlapping, spherically symmetric potentials.

The Schrodinger equation is again Eq. (59) with
the boundary condition given by Eqs. (61) and (62).
Here, however, the additional restriction that R& 2u is
imposed, where u is the radius of each of the potentials.
The general procedure for the scattering of all partial
waves is first to write the solution P, (r) in. the region
outside both potentials as the sum of the original plane
wave and a scattered wave from each potential:

4'(r) =
I
k;)+4'"(r-R )+A"(r-R ). (90)

The scattered wave from the jth potential ( j= 1, 2) is

22 ] . Eyges, Ann. Phys. 2, 101 (1957).
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then written as a linear combination of the partial wave
solutions for the scattered wave when only the jth po-
tential is present. Next, the solution. ft, (r) inside each
potential is written as a linear combination of the
partial wave solutions for the problem when each po-
tential is present by itself. Finally, the coeKcients in
these linear combinations are determined by the usual
continuity requirements on the wave function and its
first radial derivative at the boundary of each potential.

Foi' S-wave scaftci'ing by cRcll potcIll. lR1 Eq. (90) is
identical to Eq. (63):

f (r) =exp(zk'r)+Hopi ' cxp(ikpi)+Bopz ' exp(zkpz)

P4 ZI» Iz& (91)
where p;=

~ y; (
=

~
r—R; ~, j = 1, 2. Equation (9) can be

used to write the wave function inside the jth potential

4'(el) =ZDI.@II'(ai)I'I(f.;P;), Pi~o, j=1, 2 (92)
3=0

To dctclIIllnc thc coefficient Ao and Bo thc wave
function lnsldc and outside thc jth potcntlal must bc
expressed in terms of p, so that the continuity condi-
tion on p; and its derivative with respect to p; Rt the
boundary p;=a can be easily applied. To accomplish
this, Bauer's" formula is used in the form

exp(ik; r) =exp(zk; R;) exp(zk; fi,)

=exp(ik; R;) Q(21+1)i'jI(kp;)EI(Zip, .„.),

(93)
and the relation'4

exp(ik
~
fi;+R ()

I t +RI

=ikg(21+1)jf(kp )hi&'&(kE) PI(fz II ) E)p (94)
l=o

is also used. Substitution of Eq. (93) and Eq. (94) into
Eq. (91) gives" for j=1
ff'(ei)

00 ( 4'= exp (ik; R,) Q (2l+1)i'ji(kpl)
~

I'I 0(LI„.„)
&21+1

+(4zr) ~Aopi ' exp(ikpi) F0,0(Lp,i)

+zkBDQ Q jI(kpi) hi&'&(kR)

X4n. l I, "(LIIP,.) FI, (LI„p„), a&PI&A, (95)
"See, for example, Gerald Goertzel and Nunzio Tralli, Some

3/Xathesnatical methods of Physics I'McGraw-Hill Book Company,
Inc. , New York, I960), p. 16I.

24 This relation can be derived easijy from Eq, I'77) with th.-

help of Bauer's formula.
For the de6nition and properties of the spherical harmonics

Yg,~(I. „) used here see A. R. Edmonds, Angular Mo~nentum
in Quantum Mechanics (Princeton University I ress, Princeton,
New Jersey, 1957). The notation J.,„means the angular co-
ordinates of y with respect to x as polar axis.

where th.e spherical harmonic addition Iornlula

kr
&'I(z ~.,) = Z FI,-*(L»;)1'I,-(LI;.,) (96)

21+1 „=)
also has been used.

The continuity conditions at p&=a can now be
Rpphcd to Eq. (92) wifll j=1 Rlid Eq. (95). A siIIiilai'

analysis can be performed for j=2. The resulting
expressions connecting Ao and Bo are just those given
in Eqs. (64) and (65). Consequently, F(k~, lr;) is
given by Eq. (66).

The key point is that the potentials are nonover-
lapping. This allowed the use of Eq. (92) for the wave
function inside each potential. If the potentials over-
lapped, the region p;&e would not possess spherical
symmetry about p;=0, so that Eq. (92) would no
longer be the correct expression for f; in this region.

D. Solution from the One-Potential Total
Green's Function

In this section a third method of solution is presented;
one that also is applicable only for nonoverlapping
potentials. The starting point is the Schrodinger
equation (59) with the total wave function iP; given
by Eq. (90) . T1M boundary condlflons Ri'c

'finite at
~

r—R ~=0 j=1 2

[
r—R; J

' exp(ik [ r—R; [)
as

]
r—R;[-+~

(97)

and the no-overlap condition E&2e is assumed to hold.
The total wave function can also be written as

4, (r) =4'"'(r-R ) +A"(r-R ), j = 1, 2, (9g)

whcrc

ft '"'(r—R ) = exp (zk,'R;) exp[ik,' (r—R;)j
yy„-(r —R;—[R„—R;]), zz~j, (99)

is the wave incident on the jth potential; i.c., the wave
incident on each potential is the original plane wave
plus the wave scattered from the other potential.

Because the potentials do not overlap the Schro-
dinger equation in the region outside U2 is

(&'/2ziz) I ~.,'+k' ~i(zl) Iff'(f. i) =o, (1oo)

where the variable has been changed from r to y~
——

r —Ri. From Eqs. (98) and (99), p;(fil) is the sum of
an incident wave

4'"'(fl) =expLz&' (ei+RI) J+6"(fl—R), (1o1)

and a scattered wave. The first term on the right-hand
side of Eq. (101) clearly satisfies the free-wave Schro-
dinger equation and, in fact, so does the second term.
Tllls last follows fi'oIII tile facf, that lpz (pi —R) is 'tllc
wave scattered by Uz, i.e., once fz" is outside Uz it is a
free wave. This being the case, Eq. (100) can be
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~vritten as

(&'/2~) {'7.,'+k' —Ui(P1) I4'1 (~1) = I'1(pz)A'"'(ez)

Equation (102) can be converted into an integral
equation by using the total Green's function formalism
of Sec. II(B). The result is

6-(ez) = diaz'G2(ez, ez') l'1(ez')

symmetric and proportional to x 'e . This means

( 91) =~2pi exp(zkpi)

=Ao
~

g2+R (
' exp(ik

~
p2+R ~), (106)

P2 ( p2) IiOP2 exp (zkp2)

=82
~ yz

—R
~

' exp(ik
~ gz

—R ~), (107)

where the coeKcients Ap and Bp are to be determined.
From Eqs. (16), (22a), (28), (103), and (107),
$1-(pi) for pi) a is given by

&& {expLik; (yz'+Rz) j+$2"(gi' —R) ), (103)

where G2(yz, yz') satisfies

Zgp
&1-(gz) =—,{exp(ik; R,)I,+82I2I,

4x'cpQ

where

(108)

(&'/2~) {~p, '+k' —Ui(P1) IG2(ez ei') = &(91—91')
d~, '~,,"(p,') U, (p, ') e„p('k;. (109)

and the boundary conditions of Eq. (97); i.e., G2 (gi, yi')
is the same total Green's function as that used in
Sec. II(B).

In 'analogous fashion $2"(y2) in the region outside Ui
is given by

(P2) dg2 G2(f21 t12 ) l 2(P2 )

)& {exp{zkz (y2'+R2) ]+$1"( g2'+R) I, (105)

where y2= r—R2.
Equations (103) and (105) constitute a pair of

coupled integral equations for the scattered waves

f2'; j=1, 2. Furthermore, the implicit restrictions on
these equations, Eq. (103) valid only for p2)a, and
Eq. (105) valid only for pi)a, can be dropped. This
follows from the fact that, for example, once
is outside U2 by its de6nition noting more can happen
to it; it is true that $2" can be regarded as imping-
ing on U» and being scattered by this potential, but
this process is a contribution to $1" rather than a
modification of $2". The result is that Eqs. (103) and
(105) are valid even when the potentials overlap. "
When, as has been assumed, the potentials are non-

overlapping, however, the form for each of the scat-
tered waves is known, so that this pair of equations
can be solved.

In both Eqs. (103) and (105), the plane-wave term
on the right-hand side is just the single-scattering
(impulse approximation) term; e.g. , in Eq. (103) this
is all that would appear inside the braces if potential
two were not present, The other term in each of the
integrals represents all of the multiple-scattering terms.

To illustrate the method of solution, the case of
S-wave scattering is again considered. From the results
presented in Sec. II(A) it is known that, for 5-wave
scattering from a spherically symmetric potential
centered at x=0, the scattered wave is spherically

"See Sec. III(K).

I2= dpi'y12'(pz') Ui(pi')
i

gi' —R
i

'exp(zk
i

gi' —R i).

where
4"=

~
k~)+4$1gÃ1+4$2gÃ2, (113)

dry;(r R,)P, (r), j=1, 2, —(114)

and w;(r —R;) is V;(r—R;) normalized to unit volume

integral with normalizing constant X;. From the
averaging of Eq. (113) over vz there results

4'1 exp(zki'R1) &1(kgb) +~141gk +lI2$2gk p (115)
"The use of Kq. (94) is restricted to S-wave scattering. A

more general method, applicable to higher partial waves, is given
in Appendix B.

(110)

The use of Bauer's formula in Eq. (109), the perform-
ing of the angular integration, and comparison of the
result with Eq. (27) gives

I» = —4m'cpu~.

From Eq. (94), Bauer's formula, and Eq. (27), Eq.
(110) reduces to"

I2 = —kn ikk2"' (kR) cPuz. (112)

The substitution of Eqs. (111), (112), and the de6ni-
tion of Izz"&(kpz) into Eq. (108) leads to Eq. (64).
Equation (65) can be derived in a similar manner.
The resulting expression for F(kf, k;) is again that
given in Eq. (66).

E. The Separable Potential Approximation

The third approximation used by Drell and Uerlet'
was the SPA. Their derivation of F(kr, k;) for S-wave
scattering from identical potentials proceeded in the
following manner.

The use of Eq. (14) and the application of the SPA
to each potential term individually leads to
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where

v (q) —= d e' (e ) exp(zq e ), j= 1, 2, (116)

so that Eq. (122) becomes

k' "jp(qR) jzo(qa)
prjzo (ka) q' —(k+ip) ' (124)

drdr'v, (r R—;)g&(r, r') v;(r' —R;).
Evaluation of this integral for R(2a and, the taking of
the limit R—+0 gives for the region ka«1'

Similarly,

IPp exp (ik, Rp') vp (k;) +XzPz@"+upgo". (118)

6
Wzzzk ':—+i+0(~)+

z ogx
(125)

From the asymptotic form of Eq. (113) it follows that

&'zzz(kz, k,) = —(2zzz/4zrP) Pzgvz( —ky)

&&exp( —i' Rz)+XzPzvz( —kr) exp( —i' R&) j. (119)

Equations (115) and (118) can be solved for Pz and Pz.
Substitution of the results into Eq. (119) gives Eq.
(88) with Wz, zz replaced by Wzzz,

2m gjz; 2m gy

4zr5' vz( —kr) vz(k;) 4r5' vz( —kr) vz(k;)
'

(120)
and with

2zrz v;( —kr) v;(k, )
(vo/k) =f;,p(kg, k;) —= — X,

' '. . . (121)
4m%' 1—);gI,~~

The accuracy with which the SPA result approxi-
mates the correct expression for F(ky, k;) depends on
whether or not the potentials overlap. For any two
spherically symmetric potentials Eq. (94), Bauer's
formula, and vz(q) =vp(q) =v(q) =v( —

q) can be used
in Eq. (120) to obtain

CO

Wzzz=v '(k) pr ', . jo(qR)v'(q)- (122)
—a& q

—k+zp

As Drell and Verlet pointed out, for nonoverlapping
potentials Wzzz reduces to the exact value R ' exp(ikR) .
This follows from the fact that v'(q) is an even, analytic,
oscillatory function of 2qu so that, first, for q large and
complex the R-dependent term in Eq. (122) deter-
mines the behavior of the integrand, and second,
v'(q) can be removed from this integrand and evaluated
at q=k.

The case E&2a is much more complicated. Only the
special case of low-energy (ka«1) S-wave scattering
from two completely overlapping (R=0) identical
square wells is investigated here. For this case P (kr, k;)
is calculated through double-scattering terms first
using the SPA and then exactly.

The double-scattering terms in the SPA are given by

&zzzn(kz, k;) = (gp/k)'Wzzz I exp[i(k;+kr) R/2]

+exp[ —i(k,+kr) R/2j I. (123)

From Eq. (55), for a square well

a

v(q) = drv(r) exp(iq r) =3a ' r'jp(qr)dr
0

= 3(qa) 'jz(qa)

where x= ka.
On the other hand from Eqs. (53), (54), and (80)

the exact double-scattering terms are given by Eq. (123)
with 8'&» replaced by 8',

Up' jp(qR) cop(n, q, a)8'=
g dg

prep — Lq
—(kPzp) ]Lq ~]

(126)

where, from Eqs. (24), (48), and (50),

co(zz', q, a) = qjo (qa) jo (cza) —ajo (aa) jo(qa) ~ (12i)

Evaluation of the integral in Eq. (126) and the taking
of the limit E—&0, gives for the region x=ku«1,
y=na —1 (which, from Sec. II(F), is the region where
the SPA is applicable to the square well)

j/ 4 z +M X 3+0( —
p) +

-o jz(X)
'

6jz'(X)z((1
(128)

F. comparison of the Various Methods

The relationships among the various methods can
be summarized as follows:

1. Brueckner's point potential calculation is merely a
special case of the more general calculation of two
spherically symmetric nonoverlapping potentials. The
reason that the S-wave scattering amplitude from two
nonoverlapping potentials has the same form as that
from two point potentials is that, because the po-
tentials do not overlap, each potential has incident
upon it the scattered wave from the other potential in
the region where the scattered wave is a function of the
potential parameters only through the combination p0.

2. The t-matrix formalism used by Drell and Uerlet is
the most general and the only method by which the
case of overlapping potentials can be treated exactly.
The reason why their approximation I (II) gives (does
not give) the correct result for the scattering amplitude
from nonoverlapping potentials can be found from a
consideration of the integral in the double-scattering

28 This result also is contained in reference 8.

A direct comparison of Eq. (128) with Eq. (125) shows

a marked. disagreement. This indicates that the SPA
as applied to two local potentials is not a good approxi-
mation when the potentials overlap.
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term of Eq. (80). From Eqs. (34), (36), and (38),

fo(y, lr, ) = —(2m/4~5') (y I
V+ VGV

I
lr;)

= —(1/4~) (v I ~V'), (»9)
which for 5-wave scattering reduces to

f(v, &)= (4—) f«'~ v( *'v—&)&(~)0'( ), '

the coefficients has already been done in constructing
the Green's function. Also, the physical picture of the
multiple scatterings is somewhat clearer in the Green's
function method than it is in Eyges' formalism.

5. The basic equa, tions of the Green's function
method are contained in the general formalism used by
Drell and Verlet. This can be seen as follows: Eq. (70)
can be written as

where P;,0(r) is the 5-wave part of P;(r). The use of
Bauer's formula and the performing of the angular
integra, tion gives

where
4 '=

I
Ir')+6-+A",

4 "—
g V 0 *—g1 V~l I ir')+4 "+4 -1 j=1 2gn

ol

From this it follows that fo(p, k) is an analytic, oscil-
latory function of pa. From Eq. (129) it is clear that
fo(y, k)=fo(k, y) so that the product of these two
functions is an analytic oscillatory function of 2pa.
If jo(yE) in the integral in Eq. (80) is written as a
sum of exponentials, then from the above remark, so
long as E)2a, the E-dependent terms determine the
behavior of the integrand for y large a,nd complex.
Thes= facts, along with the remark that fo(y, k) is an
even function of y, imply that the fo(y, k)fo(k, y) can be
taken outside the integral in Eq. (80) and evaluated a,t
p=k. The remaining integral is easily evaluated, and
the usual result for nonoverlapping potentials is ob-
tained. A simila, r argument holds for the higher-order
multiple-scattering terms. The key point is that all the
integrals in these terms can be evaluated without
decomposing the amplitudes fo(p, q) into their con.-

stituent parts. Under this condition fo(P, q) is an
analytic function of P and q. It is because Drell and
Verlet's approximation I (II) sa, tisfies (does not
satisfy) this analyticity condition, that their approxi-
mation I (II) gives (does not give) the correct scatter-
ing amplitude for nonoverlapping potentials. This leads
to the conclusion that if an approximation is to be used
for fo(p, q) such as to represent the case of overlapping
potentials, then the approximate form of fp(P, q) must
be nonanalytic with respect to P or q.

3. It follows from the preceding discussion that
Brueckner's point potential calculation, as well as the
calculations of Secs. III(C and D), include the con-
tributions from oR-energy-shell t-matrix elements. How-
ever, in the sense that for nonoverlapping potentials
the incident particle propagates between collisions as
an outgoing spherical wave with an energy equal to the
incident energy, the multiple scatterings are on the
energy shell scatteriegs. These two statements merely
reflect the fact that it is necessary to use all momenta

p, including those with peak, in the Fourier integral
representation of r ' exp(ikr).

4. The advantage of the total Green's function
method over Eyges' method is that the former contains
fewer undetermined coefficients at an intermediate
stage. This is because part of the work of determining

so that from Eq. (32) and the relation gI, V;= GI,tq there
results"

A-= G'V~I:I k')+y2-j,

6-=G~V~LI k')+Pa-j.
If these last two equations are expressed in explicit
form, the first in terms of pi and yi' and the second in
terms of I02 and g2', the resulting expressions are just
Eqs. (103) and (105).

6. From a physical viewpoint the reason why the
SPA result reduces to the same form as the correct
answer for the case of nonoverlapping potentials is that
the SPA approximates the wave function only in the
region inside ea,ch potential. When the potentials do
»ot overlap, neither potential "knows" what is hap-
pening to the wave function inside the other potential.
One potential "sees" the eRect of the other potential
only through the wave scattered by the other potential
after it has left the interior of the other potential; in this
region the SPA uses the exact wave function.

7. Each of the methods used in Secs. III(A—D) can
be generalized to include the scattering of all partial
waves. The calculations become rather involved; e.g.,
to find the scattering amplitude for the scattering of
the erst Ã partial waves, determinants of order 2N'
must be computed. Remarks 1 through 4, generalized
in the appropriate manner, are valid even in this case.

APPENDIX A: SOME USEFUL INTEGRALS

The values for the integrals which occur in the
evaluation of f(p, q) for a square well potential derived
are derived below.

The derivation begins with the definition that
p„,t(r) and p„t(r) satisfy, respectively,

(A1)

—r2——l(1+1)+q2r2 g,„(r)=0,
dr dr

(A2)

"The momentum-space equivalent of these equations for the
case of S potentials was obtained by H. Ekstein, Phys. Rev.
88) 721 I', 1951).
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Mu»tiplicaiion of F&». (A1) on the left by 4)q, r(r),
Eq. (A2) on the left by 4„,~(r), and the subtraction of
one of the resultant expressions from the other gives

4)q, g
—r —4)„( —4'„,) —r —

4)q, g
= (q p)Q—~, )Qq «)

—r'4q, ( 4„,)—r'4,—, r 4q, &
= (q' —p')A, &4'q, «',

r 'r"' " r'

term ls given bg

4')i.~.' (Pi)

= exp(8c; R)) g(21+1)2+'ql)k)") (kp)) P((p)„q,),. .py) a.

(82)

From Eqs. {16), (22a), and (28) it follows that Eq.
(81) can be written as

ig GO

)PP ()q)) =)P)i.))„(t))) -Q(2)+1)ri)c( k)()(kp))1(
4m a'I,=o

r'4q„)(r) 4q, )(r) dr wllcrc fol ping g
(83)

I(= dy)'P)(p„„.)4))P(t))') U~(p, ') 4',"()a,' —R) . (84)
(A3)4)q, ((r) 4q, )(r)——4q, ){r)—4q, )(r)

p) r z
To complete the preliminary work, the generalizations

Application to the spherical Bessel and spherical of Eqs. (106) and (107) are written. From the form
Ncumann functions yields of Eq. (10) these are

y'ci (p, q, y) —x'cg(p, q, x)r'j) Pr)j ~ qs)ds= (A4) A"()q~) =Z Z ~i, ki'"(kp)) F~, (Lq;~,), pi)&, (86)
l=o m=—E

—y'&~(q, p, y) +*'b~(q, p, *)r' n){Pr)jg(qr)dr=
' ' ' ', (AS) )Pq-(yq) =Q Q B)„„kP&(kPq) F(, (IL,.q,), Pq)a, (86)—

g l=o m—l

where Eqs. (23) and (24), with

4)g" (r) =j ((kr), 42)'(r) =n((kr), k=P, q, r=x, y,

have all been applied in arriving at Eqs. (A4) and. (A5) .

APPENDIX 3: EXTENSION OF III (D) TO ALL
PARTIAL %'AVES

where, because the two-potential problem in general
lacks azimuthal symmetry about the direction k;
spherical harmonics rather than I.egendre polynomials
must be used in these last two equations.

In order to evaluate I~ the scattered wave
)Pq" ()a)' —R) is represented by the Fourier integral

4q-(). i' —R) = (2~) '
ding~;(v) exp(qV ).o~'), (87)

aq, (V) = «~A"(t~ —R) exp( —qV 4) (Bg)

(89)

dt~'P~(»»~ )4»i" (pi') Ui(e') exp(qy y~'),

Edges has treated the generalization to all partial
waves of the method described in Sec. III (C), for the
problem of two hard spheres when the scattered wave is
incident along the line joining the spheres, "and for the
problem of a particle bound to two or more nonover-
lapplng spherically sfIHInetrlc potcntlals of unite
radius but otherwise arbitrary radial proSe." The From Eqs. (87) and (84) it foHows that
derivation given here is the generalization to aH partial
waves of the method used in. Sec. III (D) for the problem 1~=(2~) ' kg~;(v)~~of scattering from two identical nonoverlapping spheri-
cally symmetric potentials of unite radius but otherwise
arbitrary radial profile.

The derivation begins with the use of Eq. (10) to
write Eq. (103) as

4-(ei) =4)~.~.-(ei)

+f~v ~~(e s'))'(a')H'ie' —&), (»)
where the impulse approximation (single-scattering)

30 L. Eyges, Phys. Rev. 111,683 I,'1959).

or, upon application of Bauer's formula and the
spherical harmonic addition formula,

4qri'Pg(p~q, ) x'4)p(——x) Ug(x)j ((yq))dh.

On the other hand, Eq. (86) can be used in Eq. (88),
and, after the variable is changed from t~ to t2=t. —R,



the angular integration can be performed to give

gg, ( f)'=47l' cxp( —1'p'R) g g Bp,m'
V-o ~I—i~

Evaluation Of the y integral yiel()s

Oi

Mlpp ———orb p &II (kR) &I,
' x'll Ilo(x) UI(x) jl(kx) d&,

where
(L ) ( )

so that from Eq. (27)

3fll. l"——orclkp &'&(M), (816)

Ep =k—p &I&(ky)j p (yy) y'dy (812) where cl is given by Eq. (24). Finally from Eqs. (816)
and (814) it follows that

This last expression can be evaluated by using Eqs.
(A4) and (AS) of Appendix A. If

—16m'a'z'c)
Z Z (—f)'""'&I

(21+I) I ~I«m, ,m~, mls

(v/k)"Ep- e—+0+
k y' —(k+I'o)" (813)

X J """"Yl *(LI,;)Yl "*(Lo;S)kp "'(k&)

(817)

is used in Eq. (811) and. the resulting cxpl'cssloII sub-
stituted into Eq. (87), Eq. (86) is regained. Equations
(813), (811), and (810) are now substituted into
Eq. (89), and Bauer's formula and the spherical har-
monic addition formula are used to perform the angular
integration. The resulting expression for I~ is

—16+a'i'
Z Z(21+1) l~, P& mmmm&&, ,

X & ~ "'""'Yl*(Lo,
,„)Y I", (Lo,Il) Ml p 'p. , .(814)

where

(815)

"(7/k) "il(V~)jp (V&),
ka' o o p' —(k+Io)'

Because"

'""'=0 for 1+3'+l"&even integer,

and jl(s) has the parity ( —1)', the p integrand in
this last equation can be replaced by one half the in-

tegral from —~ to ~. Again for nonoverlapping po-
tentials the R-dependent term determines the be-
havior of the y integrand for y large and complex.

Equation (81'7) is now substituted into Eq. (83),
Eqs. (82) and (85) are substituted in the resulting
exPression, snd the coeffIcients of I l,m(Lz, „)kl"'(kPI)
are equated. The result of these manipulations is

~l, ——L4~(3+1)1' o+lgI~I, oexp(fk; R,)
+4~&&+1( 1)m~ g P ( &)

I+I&J, „IVP&

X Yp,„"*(Lo,.II) kp &" (kR). (818)

The other half of the set of relations between the A~,

and the 8&, can be obtained from this result by the
substitutions A~, +-+8~, , R~~R2, R—+—R. In order
to 6nd the A ~ and the 8~, from these relations,
determinants of inhnite order would have to be calcu-
lated. If instead of using all partial waves only the
first E partial waves are used, then the A~ B~, wouM

constitute 21P unknowns with Eq. (818) and its mate
being 2~V' inhomogeneous equations among these un-

knowns; i.e., determinants of order 2'' would have to
be evaluated.

Once the A~ and the 8~, are known, the scattering
amplitude is determined: From Eqs. (85) and (86)
P (kr, Ir ') ls given by

F (kr, Ir;) =Q Q ( i) '+"Yl „—(Lo,o,).
XIXI,m exp( —ok' R )+18 , eImp( xi' R,)—I.


