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1. INTRODUCTION

l lHE interaction between radia, tion and a fully
ionized gas is phenomenologica, lly described by the

coefficients of emission, absorption, and electrical con-
ductivity. The alternate use of these coefficients tends
to obscure the fact that all of them are manifestations
of the same atomic mechanisms and therefore only one
coeScient is sufficient to specify each of the others. The
mechanism pre-eminent in the radio frequency range is
free-free transitions, commonly referred to as
bremsstrahlung by physicists.

Unfortunately there is no unanimity as to what is
the correct and complete mathematical description of
this mechanism. Moreover, authors differ widely in

assessing the physical vs mathematical character of
the approximations conventionally introduced. In the
midst of such controversy it may be useful to attempt
a comprehensive review of the problems of free-free
transitions which is attracting attention of an ever
growing number of specialists in many branches of

physics, and to reduce the results to a form useful for
practical application, e.g. , in radioastronomy, micro-
wave physics, and thermofusion studies.

We begin with a description of the several classical
methods: derivation of the emission coefficient by
means of a Fourier analysis of either the dipole moment,
the velocity, the acceleration of the particle, or of the
potential acting on the particle. Ke then take up two
approximations, viz. , the straightline approximation
to the hyperbolic path of the elect. ron in the field of t,he
ion, and a frequency condition making cert;&. ii~ integr ils

~ Supported by the Office of Naval Research and the X &tional
Aeronaut:ics and Space Administration,

solvable by quadrature. If care is taken to avoid in-

consistent approximations during successive stages of
the analysis, we shall find no differences between the
several classical variants.

We then examine whether it is adequate to treat the
free-free transitions as two-body collisions and arrive
at the important result that, contrary to prevailing
opinion, the shielding of the ion's potential by free
electrons can be neglected.

Turning to the corresponding quant;um mechanical
calculations, we state the general result applying to the
high energy range as well as the rf spectrum. For the
lat. ter we give coefficients remaining correct under
conditions where classical calculations break down.

So far, we have considered a single electron of pre-
scribed velocity- The summary effect given by an
assembly of particles with a spread in velocities is
then found by integrating over the distribution func-
tion. This is carried out in detail (the quantum correc-
tions included) for a Maxwellian distribution which is,
of course, the case of greatest interest in practice.

In the concluding section we analyze the relation
between emission and absorption, assuming local
thermodynamic equilibrium (LTE) . Without this
restriction it. would be necessary to reformulate many
radiation laws, like Kirchoff's law, and to discuss t.he
general aspects of steady nonequilibrium states which
are beyond the scope of this article.

Certain other restrictions are adhered to throughout
this review. Firstly, the refractive index is always
assumed f.o be uIlity because the 1ncluslon of arbitrary
values of tile refractive index woulcl require an elabora te
discussion of the basic radiation laws. To our knowledge,
this problem. has not yet been solved jn an approxj-
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Fio. 1. Geometry of an electron-ion encounter.

mation commensurate with the level aimed at in this
paper. Laboratory physicists as well as radioastrono-
mers should not And this restriction too severe, since it
affects a rather narrow band around the plasma
frequency.

Secondly, external magnetic fields are ignored. In a
magnetic field, cyclotron radiation would be emitted
and absorbed, and, unless the magnetic field is excessive
or particle energies are relativistic, cyclotron radiation
can simply be added to free-free radiation in the same
way a spectral line is superimposed on a continuum.
Accordingly, outside the range of cyclotron resonance
our discussion is adequate.

Thirdly, the ionic potential is of the Coulomb type
with an arbitrary nuclear charge and therefore only
applies to such ions as would have hydrogen-like spectra.
Hence, this treatment is inapplicable to an astro-
physically important case of free-free radiation, namely,
the free-free transition of the negative hydrogen ion,
i.e., the transitions of a free electron in the field of a
neutral hydrogen atom. However our scheme of
approximations should hold for the free-free transitions
of, say, single-ionized helium.

Finally, the particle energies are supposed to be non-
relativistic. Under relativistic conditions the quantum
mechanical approach, also, must be drastically altered.
Relativistic effects require discussion in the context of
a few astrophysical problems (Crab Nebula, for
instance) and for certain thermofusion devices, which
are not considered here. Consequently, the term
"classical" is used as a disjunction to "quantum
mechanical. "

system r, 8. These geometrical conditions are illustrated
in Fig. 1.

This description assumes implicitly infinite mass for
the ion, so that the center of gravity coincides with the
ion's position. Numerically the assumption is of no
consequence.

The polar equation of the hyperbola is

1/r = (1—e cos 8) /(b —tan80) . (1)

The geometrical meaning of the collision parameter b

is evident from Fig. 1. The eccentricity e and the
asymptotic angle 0p are related by

6 = secOp.

From Coulomb's law

~

r
~

=Ze'/rlr2,

we End for the asymptotic angle 80 (Rutherford's
scattering formula)

tan80 ——mbvo'/Ze' = (»'—1)i.

Here, r' is the acceleration, m the mass, —e the charge
of the electron, +Ze the charge of the ion, and vo the
initial velocity, i.e., the electrons velocity at time

oo

From conservation of angular momentum, we have

d8 =vobdk/r'.

The integration of Zq. (5) is elementary and leads to
the well-known result

(b 2e tan(8/2)
62 1

&vo (e—1)+ (a+1)tan'(8/2)

~ ln , . (6)
(.—1)—:+(.+1)~ tan(8/2)

(e—1)~—(&+1)i tan(8/2)

The expression for the emission in all frequencies,
and into the solid angle 4z per encounter, is according
to Hertz's classical formula:

2/2 +oo 2/2

Q =—, (r) 'dt= [x'+g'jdt. —
3C co 3C —po

In order to obtain the frequency distribution of Q, a
Fourier analysis of the components i and j of the
acceleration is required. Their Fourier components are
defined by the relations

2. CLASSICAL EMISSION COEFFICIENT DERIVED
FROM A FOURIER ANALYSIS OF THE

ACCELERATION

a((u) =~—' i(t) cos(cot) dt,

If the energy loss due to radiation is negligible, the
electron describes a hyperbolic orbit in a reference
frame attached to the ion. Let the orbital plane be the
x-y plane of a Cartesian system or of the corresponding

' For justification see Sec. 9,

it(co) =m.-' it(t) sin((ut) dh,

where the components of the acceleration as functions
of r and 8 follow from Eq. (3):

2 (t) = —(Ze'/ntr') cos8, g (t) = —(Ze'/rptr') sin8. (10)
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By Parseval's theorem the relation between the Eq. (16), are
spectral distribution Q„and the total emission Q is

Q(t) dt =or Q„d(o.
and

vp» —cosh)
i(() =-

bp (» cosh) 1—)'

Note that the physical dimension of Q is that of an
energy, whereas Q(t) is a rate of energy (energy per
unit time interval). The quantity Q„represents a
spectrally resolved energy (energy per unit interval of
angular frequency) . Hence, Q„d(o has the same physical
dimension as Q.

Substituting the polar angle 0 for the time coordinate
in Eqs. (8) and (9), we obtain

vp', , sinh(
5(t) = ——("—1)'

bo (» cosh) —1)' (22)

Substitution of these expressions in Eqs. (8) and (9)
yields

+»—cosh(
x((o) = ——,cos[Q(» sinh( —$) ]d$ (23)

(» cosh) —1)'

@~2 2n.—8p

P(~) =
~m~pb gp

sin (pot) sin0d0,

@~2 2~—Opi ((o) = cos((ot) cos0d0,
mmvpb g,

and

(12)
P(~) =+—("—1)'

(13)
where

+ sin ht

(» cosh) —1)'
~ sin[Q(» sinh) —$) ]d$, (24)

sinhf = (»'—1)'*sin0/(1 —» cos0), (14)

and find instead of Eqs. (1) and (6) the parametric
expressions for r and 3

and

r=bp(» cosh) —1)

t =bo/vo (» sinh$ —o) /vo,

(15)

(16)

where, for sake of brevity, the time has not been
explicitly removed from the trigonometric functions.
These equations have a limited use in connection with
the straight-line approximation to be discussed in Sec. 4.

Proceeding with the general development, we intro-
duce a parametric representation of r and t which
allows us to reduce the integrals in Eqs. (12) and (13)
to Hankel functions.

We define a parameter $ by

Q =cobp/vp.

Integration by parts of Eqs. (23) and (24) leads to

PpQ +co

i(o)) =—— sinhf sin[Q(» sinh$ —$) ]d$ (26)

i((o) = —v()Q(d/dl)H, o")(«o)~ =,o,

g (o)) = —jvo(Q/«) (»' —1)iH, ()o) (iQ«) . (29)

ji( ) = —(np/ ) (
' —1)lf cos[p( sir h( —V]d(.

(27)
For details see Appendix A.

The integrals in Eqs. (26) and (27) can be expressed
in terms of Bessel functions of the third kind (Hankel
functions of imaginary argument and order):

with the following abbreviations

bp Ze'/rrtV po,
——tan0p =b/bp. (17)

Details are given in Appendix B.
On combining Eqs. (7), (11), (28), and (29), we

obtain for the spectral distribution

transform into

x=r cos8, y=r sin8

x($) =ho(cosh( «)—
(18)

y($) =bp sinh$.

The components of the acceleration, according to

Referent:es are given in alphabetical order in the Bibliography.

This representation is well-known from celestial
mechanics and has been used by Landau and Lifshitz
(1951)' in their treatment of bremsstrahlung. The
physical meaning of the quantity b p is that of a "collision
parameter" applying to a deAection by 90'.

The rectilinear coordinates

2~.2z.» da. (» I 2

n.Q.d(o =
3c3 mep2 dl

t —1
Pg, ()('&(jQ«)]o d(o. (3O)

Q2

This equation is the definitive classical description of
the radiation emitted during a single electron-ion
encounter. Before evaluating the cumulative effects of
all encounters in an assembly of ions and electrons, we
shall compare Eq. (30) with previous work and examine
the consequences of certain approximations to Eqs.
(12) and (13).

For motion of the electron in a closed orbit (ellipse
or circle), trigonometric functions take the place of
the hyperbolic functions under the integrals in Eqs.
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FIG. 2. Straight-line
approximation.

(23) and (24), and in that ca,se the integrals can be
expressed by Bessel functions of the first kind. A
generalization to nonperiodic orbits, corresponding to a,

finite range of integration in Eqs. (23) ancl (24), was
given by Oster (1960a,).

3. DIPOLE MOMENT AND EMISSION

The derivation of Eq. (30) was patterned after the
mathematical procedure of Landau and Lifshitz (1951).
Their point of departure is the same classical formula,
for the total radiation [Eq. (7) ], and their final result
does agree with Eq. (30), but; they make intermediate
use of the dipole moment

Obviously the bulk of the emission is centered on fre-
quencies near the reciprocal of the "duration of an
encounter. " The natural time interval characterizing a
single encounter is the ratio of velocity and collision
parameter, i.e.,

1/cp= b/vp. (34)

u=—tan8 = vpt/b— (35)

Equation (35) also can be recovered from Eq. (16),
since for e))1

A typical value for the rf range is a wave length of 10
cm, or cp=2 ~ 10" cps. Taking v, =2 10' cm/sec which
is about the average velocity at 100000, we find an
eccentricity of the order 10'. This argument pro-
visionally justifies the straight-line approximation in
dealing with hyperbolic orbits. In discussing the radia-
tion from an assembly of particles with a spread in
velocities, we must verify, of course, that this approxi-
mation is legitimate for all particles except a negligible
number requiring a, more complete treatment.

If the hyperbola is replaced by a straight line, it is
unnecessary to introduce the parameter $ [cf.Eqs. (15)
and (16)], and we can immediately subject Eqs. (12)
and (13) to Fourier analysis. Introducing tan8 as the
new variable, we find from Eq. (6)

(31) sinhf = —tan8, with tan8p ——b/bp =p. (36)

r(cp) = icpr(cp)—= (cpp/e) d(cp) . (32)

Landau and Lifshitz find it convenient to subject to
Fourier analysis the components of the velocity ob-
tained by differentiation of Eqs. (19) and (20) with
respect to the time, expressed in terms of the parameter
$, as in Eq. (16) .

Admittedly our derivation in Sec. 2 does not differ in
physical substance from the approach Landau and
Lifshitz have chosen. The variant here preferred facili-
tates intercomparison of various treatments employing
successive approximations whose interaction is difficult
to disentangle. Equation (30) already appears in a
footnote to Kramers' classical paper [Kramers (1923)j.

4. STRAIGHT-LINE APPROXIMATION

According to Eq. (7), the total emission is propor-
tional to the square of the acceleration, while the
acceleration itself, according to Coulomb's law, is
inversely proportional to the square of the electron-ion
distance. Consequently the high energy photons will be
emitted primarily during the very close encounters, the
rf quanta, prima, rily during distant encounters.

In the rf region to be considered in this article, the
distant encounters correspond. to hyperbolic Orbits
thol, t cli e almost stI cl,light lilies& 1.e.

&

rather than the acceleration. The Fourier components
of d and r are related to the Fourier components of
the acceleration i' and the velocity i by

r =bpp(1+u') —:. (37)

The geometrical conditions are illustrated by Fig. 2.
The Fourier components of the acceleration, Eqs.

(12) and (13), then read

+OO

i(cp) = (38)
~m80~ -~

dQ
cos(Qpu) 1+u':

Ze' + dl
g (cp) = — sin(Qpu), (39)

7f-me oh 1+u' '

Equations (38) and (39) were previously derived a,nd
numerically evaluated by Oster (1959). A more con-
venient form of Eq. (39) is found by an integration
by parts:

g(cp) =—Ze~ +co

0&
~m805

dl
cos(Qpu) 1+u': (40)

The integrals from Eqs. (38) and (40) are readily
expressed in terms of Bessel functions (cf. Appendix
C), so tha, t the total emission becomes

2x'e Ze d
v.P dcp = cp' . Hpc" (iQp)3c' mv()' d(iQp)

—PIp"'(iQc) ]'-' dip. (41)

For later use we express the radius vector r also as
function of the variable u:

e&)&, (33'l



YVe now verify directly that in. the limiting case
e»1 the general expression for the spectrum fEq. (30)j
tends to Eq. (41) . By the stl'aigllt-llile condition of
Eq. (33) the coefficient of the second Hankel function
goes to unity. Rewriting Eq. (33) in terms of collision
parameter and particle velocity, we find from Eq. (4)

The order of the Bessel function, in fact, tends to
zero, since according to Eqs. (25) and (34)

the 11ITllt u~l—&0:

Il '" (iS)e) = —(2/vari) Dn(=,'Qe) +y*J,

where Euler's constant

y*=0.577 ~ ~ y =e&*=1.78 ~ ~

The next following term in the expansion reads

—(2/n. i) (-,'-Qe) 'fin (-,'Qc) +y*—1j. (50)

From Eq. (48) follows for the derivative

(3 cc Mop 3 o- ~ 'vo 2 (43) dIIO"i/d(ills) =+2/iree (51)

while the combination

~~a O- b&p2'+Up '=Cob'Dp ~,

which leads to

28p
cosgdo= ——.

7l 6
(46)

The emission per encounter becomes

erg„d(o = (8e'/3~re') (~o'/e') d(u. (47)

The independence of the emitted radiation of the fre-
quency is often mentioned by radioastronomers. As
noted by Scheuer (1960), the derivation just given
corresponds to the Fourier analysis of an acceleration
of vanishing duration, mathematically represented by
a Delta function.

In order to establish the upper limit for ~ which
would ensure validity of Eq. (45), we investigate the
limit ~—+0 of the complete expression, Eq. (30). The
theory of Bessel functions leads to the following
expansion LAppendix Dj for the Hankel functions in

the argument of the Hankel functions, may have any
value. However, we will show in the next section that
this value is small compared with unity in the rf region.

We now see that the validity of the straight-line
approximation depends on a combination of collision
parameter and particle velocity. Either particle velocity
or collision parameter, or both, ought to be high enough
to ensure both conditions (42) and (43).

S. LOW-FREQUENCY LIMIT

Both the original literature and textbooks on radio-
astronomy, frequently use still another assumption
which we shall show to be inappropriate. If the fre-
quencies are so low that over the "time interval during
which the radiation is electively emitted" the trigono-
metric functions in Eqs. (8) and (9) are approximately
constant, the Fourier integrals can be found by quad-
rature. Hence, under the geometrical conditions
outlined in Fig. j., the sine term is zero, the cosine term
unity:

wltll l,lie next, term of tile order 0(Qt) .
Comparing Eqs. (48) and (51), we find that the

contribution from the logarithmic term can be neglected
in the limit of low frequencies, because

(~1.)-i&&in(n. ) . (52)

This expression comprises the weaker condition

0~(uvp '~0,

Eq. (43), which is automatically fulfilled whenever the
straight-line approximation hoMs.

The fact that the expression of Eq. (54) is identical
for the straight-line approximation and the present
frequency condition is the reason why Hankel functions
of order 0 turn up in either case. The second condition
for the validity of the straight-line approximation,
PEq. (42)7, is not fulfilled automatically, however:
Frequency condition and straight-line approximation
are completely independent in this respect. This can
be seen by choosing a small value for ~ and also small
values for b and eo, then, Eq. (53) can be fulfilled, while

Eq. (42) is clearly violated.
A comment may be added on the two limiting cases

of Eq. (47) as far as e is concerned, namely, the straight-
line approximation and the parabolic orbit. As shown
in Sec. 4, the former leads to the condition, Eq. (33),
which can be written as

~ = tantra=mbio'/Ze' (55)

The spectrum in the low-frequency limit becomes

SZe6
7IQ &co= , cfco.

3' C m 6 'Vp

(56)

On the other hand, very close encounters, which are
of major importance in the x-ray region, can be de-
scribed with sufhcient accuracy by a nearly parabolic

Hence, we recover the previous result, Eq. (47). The
important new information, however, is the exact form
of Eq. (52) which gives the precise condition of validity,
an alternate form of which is analogous to Eqs. (42)
and (44) and rea.ds

(53)
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orbit whose characteristics are

e = secop =1.
The resulting spectrum now reads

ol Q do& = (8e vo /37rc ) dco.

(57)

(58)

as variable, we find for the integral in Eq. (60):

b o ii&m dH . (ljl (u) o u2+Qo
LIX t&"'(u) ]' udu

,o dN N2

(63)

Eqs. (56) and (58) have been widely used and were
discussed, among others, by Smerd and Westfold
(1949).

In particular, Eq. (58) is the limiting case oo—+0 of a
formula derived by Kramers (1923). He followed the
same procedure as we did in Sec. 4, but started from a
nearly parabolic orbit instead of the straight-line
approximation. He then ended up with Hankel func-
tions of order 3 and —„which can be shown to be the
appropriate limiting case for e—+1 of the Hank el
functions of the more general type derived in Sec. 2,
Eq. (3o)

Although this result concerns primarily the x-ray
region and is of no special interest for the rf problem,
it is mentioned here because it will be used to examine
the relations between classical and quantum mechanical
calculations in Sec. 10.

6. INTEGRATION OVER THE COLLISION
PARAMETER

The calculations presented so far deal with a single
electron of prescribed initial velocity passing a given
ion at a 6xed distance, i.e., with a fixed collision
parameter. The next step in calculating the emission
coeS.cient per unit volume consists of averaging over
the collision parameters.

The number of encounters between one electron and
X; ions in the parameter range b, b+db, according to
the well-known target consideration, is

Ã gp2vrbdb. (59)

27rN, vov Q~bdb (do&) = 2z.lgtor'(2v e'/3c') o&'(Ze'/mvo') '

0

dH;i&ti&(u) '
—I:( '—)/']LH'o"'( 0 )]'

u=gne

bdbdco, (60).

where the unabridged expression for the spectrum from
Eq. (30) has been used.

We transform the integration over b into an integra-
tion over o by making use of Eq. (4):

bdb =bp

The new limits for the integration are 1 and
Choosing finally

(61)

I=—iQe (62)

Let Ã; be normalized to unit volume and ep be, as
before, the electron's initial velocity.

The emission of a single electron/sec and in the
frequency range o&, co+do& is then

& '/u'«1 (6&)

i.e., c))1.
The derivation of Eq. (66) has assumed that the

major contributions to the radiation at frequencies co

come from encounters with e))1, so that the integration
over e can be extended to the limit &=1, although
strictly the integrand has been derived under the
assumption that e))1. This procedure will be justified
from the mathematical point of view in Appendix G.

For low frequencies, we expand the Bessel functions
in Eq. (65) with the aid of Eqs. (48) and (51) and of
the formulas of Appendix D and obtain

16e' (Ze' ' 2m' p'
or (Q. )bdoo =X, , vo'~, ln, doo. (68)' 3c' &mop' yZe'co

This result is highly significant in two respects. In
the first place it means that the emission is bounded
for all nonvanishing frequencies, but diverges loga-
rithmically for ~—&0. This divergence does not result
from integration over an infinite range of collision

parameters. Secondly, even in the limit of vanishing

The bracket in Eq. (63) can be transformed into a
total differential which is readily integrated (Appendix
F) ~

b2 tOcod—uII o'" (u) —.H ot'& (u) du
0 ;g dl dl

=+(bo'/0') IiQH t&t" (iQ) (d/du)H t&"&(u) ~„,o}. (64)

Then, Eq. (60) assumes the form (for details see
Appendix F):
~ (Q~)odco =X,(4m'e'/3c') vo'(Ze'/mvo') 'i QH, oo& (iQ)

~ (d/du)H;i&t'&(u)i„ ,t&do&. (65)

The same type of integration has been effected by
Landau and Lifshitz $(1951), p. 200] in deriving ex-
pressions for the radiation from a parallel beam of
electrons.

We now turn to the comparison after integration
over the collision parameter of the two major approxi-
mations, i.e., the straight-line orbit and the low-

frequency limit, with the complete Eq. (65).
The straight-line approximation is found from Eq.

(41), making use of the formulas from Appendexes E
and F for the functions of order zero:

(Q„)od. = ItT, (4n'e'/3c') vo'(Ze' /cavo') 'iQHo" & (iQ)

~ (d/du) Hoo& (u) }„=,i&doo. (66)

An inspection of Eq. (E2) shows that Eq. (66) is
valid if the order v is small with respect to the argument:
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frequency, the emission still depends on the frequency
by way of the logarit. hm. Either point contradicts
current opinion. Lcf. Smerd and Westlold (1949),
Unsold (1955), and oster (1959).j It may be useful
to elucidate the reasons for this misunderstanding.

In Sec. 5, Eq. (47), we ha.d found that in the low-

frequency limit the spectrum for a prescribed collision
parameter, represented by c, is independent of u and is
proportional to e ' on the physical assumption that the
emission of radiation occurs during an infinitesimal time
interval. The mathematical correlate of this argument
was t cf. Eq. (53)j that Qe—&0. Starting from Eq. (47)
one has to evaluate the integral

(69)

This integral obviously diverges. The mishap suggests
checking the derivation of Eq. (69) as to a tacit viola-
tion of antecedent assumptions. Reflection will show
that the condition Qe—+0, or more precisely

(Qe) '»1n(Qe), (70)

as discussed in Sec. 5, is not valid for large values of e.
Hence the assumption of an infinitesimal time interval
for the emission of radiation is not satisfied if the
electron encounters an ion along a path with large
collision parameter.

7'. CRITIQUE OF A POTENTIAL CUTOFF

To escape the difficulty with the diverging integral
(69), it has been argued on physical grounds that the
integration over e ought to be cut off at a pnite distance
from the scattering ion. This reasoning, in itself, is
correct in the sense that the mobility of the free elec-
trons in a plasma tends to establish electrical neutrality
everywhere. The distance beyond which the ions'
potential can, on the average, be taken as shielded by
the electrons, is the Debye-distance (rather than the
mean ionic distance chosen by Smerd and Westfold).
A mathematically more sophisticated formulation
results from replacing the ions' Coulomb potential by
a "Debye-Hiickel-potential, " which is essentially
Coulombian out to the Debye-distance and falls oG
exponentially beyond this distance. This procedure was
adopted for conductivity problems in the stellar interior
by Per sico (1926), whose work elaborates earlier
computations by Eddington (1925) and the classical
paper by Debye and Hiickel (1923).

It is perhaps understandable that no effort was made
to mitigate the divergence problem encountered in the
last section, which we have now shown to be spurious.
For in related work on dc conductivities, ' the cutoff
procedure is indeed necessary in order to avoid a loga-
rithmic divergence of the conductivity coefficients. This

3cf. Cohen, Spitzer, and Routly (1950), Spitzer and Harm
(1953). Landsho6 (1949, 1951) calculated the higher-order ap-
proximations to the Chapman-Knskog method of solving Boltz-
mann's transport equation )Chapman and Cowling l1955l).

divergence occurs solely iI1 t.lie limit co=+0 and is wholly
irrelevant to the integra, tion over the collision
parameters.

The real problem can now be stated as follows: %hat
is the numerical influence on the emissivity, at a given
frequency, of the potential cutoff at, say, the Debye
length

b = (ET)'/27r*eE, '? (70)

Here, E is the Boltzmann constant, T the kinetic
temperature, and E, the number density of electrons
per unit volume.

At this point we remark on the accuracy of the
proposed treatment. Firstly, cutting off the ions'
Coulomb pot.ential at a distance given by Eq. (70) is
only qualitatively correct. Substitution of an expo-
nential decrease outside of b, instead of this step
potential, is from the physical point of view not more
accurate, although it may be expedient mathematically.

Secondly, whereas the shielding corrections of the
type of Eq. (70) express a property of an assembly of
electrons which is characterized by its mean kinetic
energy, our analysis of the individual emcoumters has
been carried out with complete generality and therefore
lends itself to a rigorous evaluations of the mean square
fluctuations of radiant energy. Introducing subse-
quently a cut-off at a net, ae distance in a sense violates
the spirit of the entire preceding analysis. To give a
self-consistent theory of the Debye shielding is beyond
the scope of this review. Fortunately, we shall find that
the shielding effects are numerically of minor
importance in the rf range. 4

The argument just completed, in fact, precludes the
direct computation of the absorption coefficient from
Lorentz's theory which takes its departure from equa-
tions representing an average particle. Since here the
concept of an average particle is introduced from the
very beginning and not merely as a second-order
approximation, the direct computation of absorption
coefficients in this manner is but a crude approximation.

Finally, the cutoG of the potential ought to be used
not only while integrating over the collision parameters,
but even in calculating the Fourier components in
Eqs. (8) and (9), in which the integration over time
should be restricted to a finite range, namely, the time
it takes a particle to cross the Debye sphere. The
need for such a correction has not received sufhcient
recognition, although the common omission of this
correction can be justified only after it has been
established that the radiation emitted at orbital points
outside of the Debye sphere is negligible. It is un-
doubtedly incorrect to omit this correction while

The exact form of Eq. (70} requires further explanation. The
customary derivation of the Debye distance b includes a de-
pendence on the nuclear charge Z of the form (1—Z)~, which
adds in the case of protons a factor 2' to the denominator. I cf.
Spitzer (1956).j The purely qualitative argument given in the
body of our review makes this numerical factor rather arbitrary.
We have therefore omitted this insignificant factor and obtain as
reward the simple form of Eq. (76).



retaining the shielding argUMC&lt in oiclei 'Lo avoid a
logarithmic divergence.

We hope that this rather lengthy discussion will serve
to clear up some of the misunderstandings besetting the
literature.

. =- (moo'/Ze') b„

and Lcf. Eq. (62)] a, parameter

.oo .oo (ICT)
*

u„=ice =i-b =i-
~p ~p 2~'eE,'

(71)

To be consistent, the velocity ep likewise ought to be
replaced by an average value. We choose

(oo )= (E 2"/m) l, (73)

putting unity for the numerical factor that distinguishes
rms, most probable, etc., velocities from each other.
This choice is no less arbitrary than the remainder of
the whole shielding argument. We obtain

u =icbm'*/2m'*eA (74)

Introducing the plasma frequency ~~,

oo„' = (4me'/m) lV.,
-

we can write instead of Eq. (74),

ZQo~ =ZM/M &. (76)

The atomistic counterpart of the plasma frequency is
the reciprocal of the time an electron takes to cross
(half) the Debye sphere. This result looks rather
strange. It is well known that no radiation of fre-
quencies smaller than co„can be transmitted through a
plasma, since for cu =~~ the refractive index goes
through zero, the plasma exhibiting for frequencies
M &~„properties which resemble closely the phe-
nomenon of total reflection in normal optics. LCf. for
details Oster (1960b).g The conventional derivation of
this plasma property does not lay cia,im to greater
accuracy than that of Eq. (76), i.e., either derivation
revolves around the concept of an average particle and
therefore retains an inherent indeterminacy by a factor
of order one.

Since we have excluded from our review (cf. Sec. 1)
refractive indices differing from unity, i.e., values of

8. SHIELDING CORRECTIONS TO THE EMISSIVITY

As stated before, the main problem to be solved in
connection with the shielding correction is the numerica
importance of the term which a,rises from the finite
upper limit b in the integration over collision pa-
rameters in Eq. (60). Associated with b is an
eccentricity

zB = ted/ooo. (80)

The 1ec1procal of ~p is the time a particle of velocity
vp takes to cross a distance bp, which, it will be recalled,
is the collision parameter corresponding to a deflection
of .

~p =~~p'/'~e'

Substituting now for vp the average velocity, in the
scheme of approximation discussed in the preceding
section, we write instead of Eq. (81), specializing for
a, nuclear charge Z=1,

~o ——(KT) l/mme'. (82)

Then, the term from which Eq. (79) must be subtracted
1S

i(~/~o) a,, '
t i(~/~o) 3(d/dl) &;a"'(&)I„=;.)., (83)

A numerical comparison will be found in Appendix H.
In the meantime we give a qualitative justification

for having neglected the shielding effects represented
by Eq. (79). At the beginning of Sec, 4 we advanced
the argument that the bulk of radiation will be centered
on frequencies near the reciprocal of the duration of an
encounter, for which it is reasonable to substitute the
time a particle takes to move through a distance equal
to the collision parameter. Typical radio frequencies
correspond to eccentricities far in excess of unity,
whereas ~p corresponds to an eccentricity e = i; accord-
ingly, ~&&6)p ln the rf range. Since the Hankel functions
decrease rapidly for increasing argument, the contri-
bution from Eq. (83) to the emission will exceed
greatly the contribution from Eq. (79) .

9. POURIER ANALYSIS OP THE ION'S POTENTIAL

Ke discuss at some length the work of Scheuer
(1960) because he ca,rried out a n.ovel computation of
the emissivity consisting of a Fourier analysis of the
potential any given electron is exposed to at a given,
6xed time. Hence the Fourier analysis is carried out
in terms of wave numbers rather than frequencies.
Scheuer's expression for the potential of an ion at
x=b, y=s=o, i.e.,

2Ze
V=Ze(b'+j ') '= K-=()b)cos((x)d(, (84)

TRls restriction Must be borne ]D. IMnd when

estim-

atingg the numerical values of the correction term

i (co/co„) H, a"'[i (co/&u„) ](d/du) II,a"&(I) I „;„,„„(79)
to be introduced into Eq. (65).

The arguments of the Hankel functions retained in
Eq. (65) can be given a simple physical meaning. For
this purpose, we rewrite 0 in terms of a& and ooo Lcf.
Eq. (25) j:

n'= 1—co '/(u'(1

we are restricted to treating cases where

f~orn =oo/oo@)) 1

(77) 7C p

tacitly assumes that the particle moves along a straight
line. Therefore his analysis corresponds precisely to the
special case discussed in Sec. 4 of this review, but this
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restriction is never mentioned by Scheuer. Accordingly,
the parameter b in Eq. (84) is the very collision
parameter. '

From Eq. (84) Scheuer evaluates the field compo-
nents and transforms the result to an arbitrary reference
frame. The crucial step of his calculation is the summa-
tion over the contributions from all the ions to the mean
square of the field components. In particular, he
assumes that the ions' positions are uncorrelated and
moreover, that the electron always is affected by every
ion irrespective of its distance. These two assumptions
amount precisely to meglectimg the shielding and auto-
matically restrict the discussion to two-body collisions.

In the abstract and in the introduction to his paper,
Scheuer claims to have legitimized the description of
free-free radiation by two-body encounters, but in fact
he has not given a comparison of a many-body analysis
with a two-body analysis, 6 as our reformulation of his
postulates should have made clear.

It is nevertheless worthwhile to review the remainder
of his computation. First, he converts the spatial
Fourier components into frequencies, arguing that the
field components with a wave number ( cause periodic
accelerations with frequency

never appeared, because implicitly it was discarded
when we postulated (with Kramers) that the energy
loss of the electron due to the emission of radiation is
negligible or, in other words,

5a)((moo'/2. (86)

M = g iQg*dv, (87)

A comprehensive quantum mechanical analysis of
free-free transitions is found in Sommerfeld's book
(1939) on atomic spectra, which summarizes Sommer-
feld's own work and that of several collaborators. A
complete reproduction of this derivation perhaps is un-
necessary as we shall find no important differences
between classical and quantum mechanical calculations
in the rf range. For this reason, we have presented the
classical approach in detail, which gives simple physical
correlates to the several mathematical approximations
found in the literature. However, it should be empha-
sized that the quantum mechanical approach is ex-
haustive in its own right and, as to the range of
applicabi1ity outside the rf range, even superior.

We epitomize Sommerfeld's treatment as follows.
The emissivities are derived from the matrix elements

Carrying out the integration over the infinite range of
collision parameters, he then finds exactly our result in
the limit of large eccentricities [Eq. (66) j.

Although Scheuer cuts off the integration over the
collision parameters at an arbitrary lower limit, say, b„
this difference between Scheuer's calculation and ours
does not affect the verdict reached before regarding
two-body collisions. The cut-off at b, was introduced
by Scheuer in order to establish an arbitrary boundary
between distant and close encounters. For collision
parameters between 0 and b, he adds contributions that
were derived under the set of approximations outlined
in our Sec. 5. By splitting the range of integration at
b„Scheuer has not enlarged the precision of his compu-
tation. The differences between his two methods of
calculation in the respective ranges of collision parame-
ters are merely of mathematical nature and without
losing physical accuracy he couM as well have used his
former method alone with a suitable lower limit due to
the straight-line approximation.

10. QUANTUM MECHANICAL TREATMENT

All the arguments and calculations reviewed so far
rely exclusively on classical radiation theory. Conse-
quently, Planck's constant 2xfi=6.67&(10 ' erg sec

' Scheuer uses a slightly different notation for the Bessel func-
tions of imaginary argument, following Heaviside and Jeffreys:
Their Eh„(s) equals Watson's 2E„(s)/7r adopted in this article.
Moreover, we have changed from Scheuer's orientation of. axes
to the one previously used.' Scheuer recognizes this deficiency only in passing, p. 238,
first paragraph. The result of Scheuer's calculation which he
believes to be an original discovery was already in 1923 obtained
by framers and is even recognizable in the work of Schott (1912).

where Pi and P~ (P, is as usual the complex conjugate)
are the wave functions of the impinging and receding
electron, computed under the assumption that the atom
is a bare nucleus, i.e., that the use of hydrogen eigen-
functions is legitimate. The classical counterpart of
this restriction is the use of Coulomb s law in Sec. 2.
In this approximation, retardation effects are neglected,
which certainly is legitimate for nonrelativistic plasmas
and the rf range. [For details, compare Heitler (1955),
Sec. 25.j

The wave functions Pi and P. are [Sommerfeld's Eqs.
VII, (2.4) —(2.6)j functions of the space coordinates
and of the electron's velocities v~ and v2, i.e., before
and after the encounter with the ion, or alternately,
functions of the corresponding wave numbers k~ and
kg, viz. ,

Hence, in general, the energy loss of the electron due
to emission of radiation is taken into account, whereas
the restriction expressed by Eq. (86) corresponds to
the classical neglect of the energy loss. In the quantum
mechanical treatment the collision parameter does not
appear explicitly. In other words, the quantum me-
chanical results cannot be compared with the classical
ones before the latter have been integrated over all
collision parameters.

The next step of Sommerfeld's procedure is the inte-
gration over the volume, as defined in Eq. (87). After
some lengthy mathematics Sommerfeld obtains an
expression [his Eqs. VII, (2.26)—(2.27) j for the matrix
elements still containing as parameters the angle of the



I UDWIG OSTER

4egeg
~ [1—exp( —2zr

I
zzz I) j—',d(o

(zzi —zzz)'

with

~ —IzFz( —zzi, —
zzz, 1; x) I' ... (89)

x

so= —4zzizzz(zzi —zz, )
—'. (90)

In Eq. (89), zFi denotes the generalized hypergeometric
functions of argument x and 2+1 parameters in the
customary notation. [As adopted by Watson (1958),
p. 100.] The parameters zzi and zzz are defined by the
relations

Zme' Ze' Zt,'
S1= ~

= ' S2=
~

zky5 z'v] 5 z'v25
(91)

Equation (89) has been widely used for the derivation
of the bremsstrahlung spectrum of x-ray tubes and,
more recently, of thermofusion devices. Greene (1959)
has investigated in detail the various approximations
to Eq. (89), in particular, the Born approximation.

It remains to be shown that in the rf region the
classical computations are a valid approximation, i.e.,
that the correspondance principle can safely be used in
most cases of interest in laboratory work and in astro-
physics. We expect this procedure to be legitimate,
because the rf spectrum is at the low-energy tail of the
total bremsstrahlung spectrum. However, at high
temperatures quantum corrections are indeed required.
It may be useful, therefore, to go into the details of
the low-energy approximations to the all-embracing
quantum mechanical formula of Eq. (89) .

The comparison between classical and quantum
mechanical calculations can be made in several ways.
Formally, of course, the classical expression must result
from the mathematical limiting process 5~0 which
implies

I~ pp
I

zzz I~ GO
I go I~ g(f (92)

We delay a discussion under what physical conditions
this mathematical limit is a valid approximation. Later
in this section we shall see that for very high partide
velocities t.he limit (92) is not approached, even in the
I.f ran0, e,

incoming and the outgoing electron waves with respect
to a certain arbitrary direction of observation.

In order to find the total emission during all en-
counters producing photons of prescribed energy, i.e.,
encounters with a constant deficit

I
ei—vz I, one has to

integrate the sum of the squares of the matrix elements
over all angles, for the outgoing electron wave as well
as for the incoming one. This step is analogous to the
integration over the collision parameters in the classical
picture. Sommerfeld's result [Eq. VII, (4.12)] is

85
zr(Q„)&des= [exp(2zr I zzz I) —1j '

4x'm'c'

kiz —kzz = (2zzz/P) 5a (95)

Elwert defines a quantity which in our notation reads

(o/(og
——1—(kz/ki) ' = 1—(zz,/zz, ) ', (96)

where the so-called quantum limit frequency co, is
given by the relation

Mg = tMO /26. (97)

'Other quantum mechanical calculations by Oppenheimer
(1929), Sugiura (1929), Gaunt (1930), and Maue (1932) are
discussed in Sommerfeld's book. Their work was complemented
by Weinstock (1942) and Kirkpatrick and Wiedmann (1945).
Astrophysical applications were erst made by Menzel and Pekeris
(1935). On this paper, for instance, Henyey ancl Keenan (1940)
based their interpretation of galactic radio radiation. A series of
papers by Ginzburg (1946-1949) and the articles by Unsold
(1946), Townes (194zt), Burkhardt, Elwert, and Unsold (1948),
Martyn (1948), Denisse (1.950), Shklovskiy, and Pikel'ner
(1950), Kulsrud (1954), and Rudkjdbing (1959), werf.'IIIainly
concerned wj th a,strophysic;al applications,

In the limit (92) the hypergeometric function can
be expanded (cf. Sommerfeld, Appendix 16D) and
expressed as an integral over a closed path in the
complex plane

,F,(l3, y;, x) cons=tf s '(1 '-a) —'(1—-Nx) —'da-

(93)

The integration is carried out by the method of steepest
descent.

At this point Sommerfeld introduces a physical
assumption, namely, that the electron moves on a
nearly parabolic orbit corresponding to a deflection
angle of 180 . With this approximation, Sommerfeld's
expansion of the hypergeometric function leads to
Hankel functions of order —', and —', (the latter for the
derivative). This is the same as Kramer's classical
result in the limit of parabolic orbits (cf. Sec. 5) .

Bethe and Heitler (1934) and Sauter (1934) made
use of the Born approximation which is particularly
relevant to the rf problem. The classical limit of the
Born approximation corresponds to the straight-line
approximation to the hyperbolic orbit. In fact Greene
(1959) finds the spectrum to be proportional to

K'p(5(u/2KT) ~ Hoz i[z(Ace/2KT) j (94)

on the Horn approximation. Recalling that for small
arguments the derivative of the Hankel function of
order zero is proportional to the reciprocal of the
argument, Eq. (94) reproduces Eq. (66). In particular,
the argument of the Hankel function in the classical
limit goes to iQ as defined in Eq. (25).

So far, we have verified that in the limit (92) we
recover the classical results. We now turn to the task
of defining under what physical conditions the limit
(92) is a legitimate approximation to Eq. (89) .

Following the discussion by Elwert (1939), (1948),
we consider the asymptotic behavior of the hypergeo-
metric function in Eq. (89). Using the well-known
relation
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Elwert then introduces his "assumption I"
M/co, ((1 (98)

which d}efines the low-frequency range discussed in
Sec. 5. Condition (101) by no means implies that 5~0.
Elwert's calculation then proceeds through some
mathematical transformations to the "Gaunt-factor"

g= (v3/v. ) I»(&/4~ )+7*+RP 4'(& In ~ ) I (102)

In Eq. (102), y* is Euler's constant from Eq. (49), P
the logarithmic derivative of the Gamma function as
defined in Appendix D. Conventionally, the Gaunt
factor g for free-free transitions is defined as the fre-
quency dependent part of the total emission. ' The
Gaunt factor in our expression for Q„, including the
integration over the collision parameters Lcf. Eq. (68) ],
may be put in evidence by writing

7r (Q )ghee =E;(16ve'/3v3c') v.oa (Ze'/mv ') 'gd~. (103)

Equations (102) and (103) contain the desired infor-
mation on quantum corrections, subject to the fre-
quency restrictions of Eqs. (99) and (100). This
completes the general quantum mechanical derivation.

We now specialize the general quantum mechanical
expression for the low-frequency range, i.e., Eq. (102)
for the classical limit ni—+~ Lsee Eq. (105) below)
and for the opposite limiting case m~—&0 where the
classical computation breaks down Lsee Eq. (108)].In
the classical limit, e& and n2 tend to infinity according
to Eq. (92) . In this case we expand the f function and
obtain PErdelyi eI al. , (1953), Vol. I, p. 15]

R.P.Q(i ) ni ~) =ln
~

nl ~. (104)

From Eq. (102) we find Ly is de6ned in Appendix
D

lim g = —(K3/v ) I in(&oy/4', ) +In
~
n,

~ }
~I~m

= (v3/v) lnL2mv03/ya&Ze']. (105)
8 In Elwert's notation, Eq. (100) reads -,-conZ/co, pI&&1.
'In the case of bound-free transitions, the Gaunt factor does

not contain all frequency dependent factors. A general "definition"
would be that the Gaunt factor comprises all terms by which the
quantum mechanical expressions differ from the classical ones.

which means that the energy loss due to the radiation
during the encounter is small compared to the total
kinetic energy. It does rot mean, of course, that 5—+0.

Elwert's "assumption II" reads

(99)

which leads to the condition'

—', (&o/(og)
~

ni
~
=(a(Ze'/mvo') ((1. (100)

Recalling the meaning of our quantity 0 used in the
classical treatment and the definition of coo from Eq.
(81), we can rewrite condition (100) as

R P Q. (i.
~

ni ~)
= —y*+g ~ ni P/m(m2+[ ni P). (107)

m=1

In t.he limit of Eq. (106), the only term to be retained
is the constant y*, and hence, the Gaunt factor is

lim =—(V3/v. ) ln(s&/4co, ) = (v3/s. ) inL2mvg/a&5]. (108)

This expression was first given by Gaunt (1930). It
shows that in this approximation the quantum e6ects
enter only by way of the argument of the logarithmic
function.

In the intermediate range

(109)

one must go back to the general formula LEq. (102)].
As Elwert (1948) has shown by a simple numerical
calculation, the classical solution remains useful for
values of

~
ni

~
as low as one. This remark completes our

discussion of quantum e6ects. In Sec, j.1, we review
some mathematical procedures which, though irrelevant
to the physical analysis, facilitate the subsequent
evaluation of the quantum corrections for the radiation
of an assembly of particles with a velocity spread.

)l. A USEFUL FORM OF QUANTUM CORRECTIONS

A certain practical interest attaches to a scheme
which substitutes for the rigorous quantum mechanical
expression LEq. (102)], one of its limiting values and
reduces the error thereby committed through the
arti6ce of applying a correction factor to the argument
of the logarithms in Eqs. (105) and (108). For this
purpose we form their difference which is

const. in', with 2 =vo5/tv'. (110)

Note that the argument A of this difference is inde-
pendent of frequency.

Next, we consider the classical angle 28, & by which
the electron is deflected as a result of the encounter
with an ion. In the limit of snsall values for the
deflection, i.e., when

we obtain from Eq. (4)

0~:t =&—Oo=Zv'/ni~vu ~ (112)

Furthermore, according to Marshak (1940), an electron

Eq. (105) combined with Eq. (103) is exactly the same
as the classical result, Eq. (68) .

On the other hand, for
~
ni

~
not exceeding unity, or

rather
(106)

which is the case for large velocities (or, in terms of
average velocities, for very high temperatures), we use
the series expansion representing the f-function
(Erdelyi et a/. , Vol. I, p. 15), and obtain the following
real part
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wave passing a circular diaphragm of radius b is
defIected by an angle 28, , with

0,„=5/rnvpb. (113)

The ratio 8,„/0, & is precisely the quantity A defined
by Eq. (110), which therefore may be interpreted as
follows: When quantum effects are dominant, i.e., in
the range defined by Eq. (106) for high electron
velocities, classical and quantum mechanical calcula-
tions yield differing deflection angles.

In this manner, Spitzer (1956) applied quantum
corrections to the dc conductivities. He proposed to
use the uncorrected classical expression up to the
average velocity (vp) corresponding to a temperature of
a few hundred thousand degrees. At higher tempera-
tures, Spitzer recommends multiplying the argument
of the logarithmic term in the average dc conductivity
by an average value of A, which wouM be the average
of our expression (110),

(A ) = (fi/yZe') (vp), (114)

but for the appearance of a certain numerical factor, on
which we shall comment in Sec. 12. This procedure
corresponds to neglecting the transition region where
the complete Eq. (107) is required, or to extending
the expansion of Eq. (106) up to

~
n~ ~-values near

unity.
A potential cutoff does not affect the scheme we

have outlined (Oster 1957). This contention is con-
6rmed by an early quantum mechanical computation
by Wentzel (1927) of the equivalent of Rutherford's
scattering formula for the potential

C = (Ze'/r) exp( —r/b ), (115)

which is essentially Coulombian out to a cut-oB
distance b (identified in his work on the shielding
effects of atomic electrons on the nucleus with roughly
Bohr's atomic radius). Wentzel's expression for the
differential cross section q(0, vp) is

g(0 vo) =LZe'/2n4vp']'(sin'(8/2)+bo/4} —' (116)

4dvepdopovN, (Q )of(vo) dvp, (120)

where (Q„)o is the appropriate expression for the single
encounter spectrum, for instance the classical ex-
pression, Eq. (65). The factor 4' on the left hand side-
results from the normalization of e„ to unit solid angle.

It is convenient to use as integration variable

over an assembly of electrons with prescribed velocity
distribution interacting with an equal number of
positive charges. The positions of these ions are
supposed to be uncorrelated (cf. Secs. 7 and 8) .

To avoid any misunderstanding, we repeat that the
microscopic mechanisms analyzed so far, in no way
predicate the velocity distribution of electrons and that
our analysis does apply to any non-equilibrium state.
In this section we prefer a Maxwellian distribution for
the sole reason that it is the one most likely to occur
under laboratory conditions as well as in many astro-
physical problems. Nevertheless it is possible to make
a rigorous prediction of the instantaneous emission
coefficient for an arbitrary velocity distribution of the
electrons, because this computation does not rely on
any assumption as to the mechanisms by which such a
non-equilibrium distribution is established or main-
tained.

Given N, electrons and N; ions per unit volume, the
number of electrons with absolute values of velocity
between vp and vp+dvp is

N f(vo) dv p
——4v N, Ln4/27rK2"]' expt (n4voo/2KT) ]

vo'dvo. (119)

T defines a "kinetic temperature" or a mean energy of
the electrons. The ions need not have either the same
velocity distribution or the same mean energy, provided
the latter does not differ too much from that of the
electrons, since we had equated the relative velocity
electron-ion with the electron velocity proper.

The rate of emission between frequency po and po+d4o

per unit volume is

with (Z= 1)
b = f'4/rnv pb„= sin 8. (117)

Whereas the integral over all scattering angles 0 in the
pure Coulomb case diverges Las does our Eq. (68) in

the limit &o~0], the integral over Eq. (116) is bounded.
As a matter of fact, for 0—&0, the cross section

tl —=4o (Ze'/n4) vo
—',

instead of vo. With the abbreviation

Mp—= (n4/2K T) L(oZe'/np]*'

we find, after a few transformations,

(121)

(122)

q(0, vp) —+sin
—4(b/2). (118)

The argument of the sine function is exactly the
limiting angle of 0,„ in Eq. (113) for b +b—

12. CLASSICAL EMISSION COEFFICIENT OF AN
ASSEMBLY OF PARTICLES WITH A VELOCITY

SPREAD

The fine, l step in evaluating the phenomenological
coefFicients required for practical purposes is to average

47rp„d4o =N,N, (16voe'/9eo) (Ze'/n4) P (rn/27rKT) '
coZ8

~ iQH, o&'& (iQ) —H;o&'& (I) ~„=;s
m o dl

~ exp (—MpQ
—') Q '~'dQdco. (123)

Equation (123) is complete except for quantum effects
which will be added later (Sec. 13).

It is assumed that all ions present have the same
charge +Ze Lcf. Eqs. (59) and (60)].If several species
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of ions are present, the integral in Eq. (123) has to be
computed for each species and a weighted mea, n is
then formed according to their relative abundances.

The integral of Eq. (123), to our knowledge, cannot
be expressed in terms of tabulated functions. However,
for most cases of practical interest, the approximate
expressions to be given presently should suKce.

First, we recall from Sec. 4 that the straight-line
approximation should hold throughout the range of
astrophysical and most laboratory applications. Never-
theless, since we are now dealing with a spread in
velocities, we must justify the use of this approximat. ion
for ul/ values of electron velocities by proving that for
the majority of electrons with a Maxwellian distribu-
tion, the straight-line approximation can safely be
used. This proof is given in Appendix I.

With the straight-line approximation and the formula
(Watson, p. 74)

Integrating the right. -hand side of Eq. (123) by parts
yields

—(9/v'Mo) [ln(s/s~) exp( —Mos) j,~ +(9/v'Mo)
CO ds 9

exp( —Mvr) —= — Ei(—Mos~), (131)
sg s m'Mo

where Ei( Mos —) is the exponential integral in the
notation of Watson and Erdelyi. The argument

—Mos*=——(m/2ET) [(yZe'/2m) w Ji((1, (132)

whenever Q«1, because, according to Eq. (121), Mos*
is proportional to the 2 power of the average of 0 with
respect to vo. The magnitude of this average has been
discussed in detail in Appendix I. Finally, we expand
the exponential integral (Erdelyi et al. , Vol. 2, p. 143)
in the range Mos*«1:

L~i ( Mos*—) =1n(yMos*) +o(Mos*), (133)
(~f/dS) Ho'i& (u) ~„;v———Hi "& (iQ)

we write for the integral in Eq. (123),

(124) and find at once the emission coefficient per unit
volume

4rrv„der =E,X,[32Z'e'/3 (27r) ' mP5 (m/ET) '

iQHoio(iQ) H io(iQ) exp[—MoQ ']Q '"dQ. (125)

Moreover we know (see Appendix I) that for all
interesting values of temperature and frequency, the
major contributions come from a range where

Q«1, (126)

so that, according to the formulas of Sec. 5 and Ap-
pendix D, the Hankel functions can be expanded. Then
the integral becomes

~ lnt (2ET/ym) &(2m/yZe'a&)

Idler

(134)

This equation was given previously by Oster (1959)
and Scheuer (1960) but neither derivation used a
correct averaging procedure. The same deficiency is
inherent in all current expressions for the dc con-
ductivities.

Comparing Eq. (134) with the spectrum coeKcient
before integrating over the electron velocities [Eq.
(68)] we find that the average emission of 1V, particles
is X, times the emission from a single particle, provided
that the average velocity—(4/v') ln(yQ/2) exp[—MOQ

—ljQ-'"dQ, (127)
(vo) = (2ET/Vm) l, (135)

provided that the range of integration is not extended
to . We therefore terminate the integration at an
upper limit which to some extent is arbitrary. We
tentatively adopt the limit

(128)

and shall verify that the integral is insensitive to the
precise location of the terminal point (Appendix J).

We introduce a new variable s=Q *
into Eq. (127)

and 6nd after some minor reductions

—9/v' in[(y/2)fl-~]exp[ —MOQ jd(Q-')

=9/v' ln (s/s~) exp (—Mos) ds. (129)

The lower limit of integration is given by the relation

(13o)

~
rii

~

=Ze'/fivp&1. (136)

Significant deviations from the classical result arise
only for

~
n& ~(&1. We now turn to the corrections to be

applied to the emission coeKcient of Eq. (137), if a
certain fraction of electrons have energies that violate
condition (136). We expect that such corrections will
be required only if the ave~age velocity defined by
Maxwell's distribution law falls into the range excluded
by Eq. (136).

is substituted for vo in the logarithmic term. The
correct expression for the dc conductivities, likewise,
should contain the argument (vo) [Eq. (135)] instead
of the currently used value (3ET/m) &.

13. QVANTUM CORRECTIONS TO THE
EMISSION COEFFICIENT

In Sec. 10 we reviewed the quantum mechanical
derivation of the emission coe%cient for a single particle
and have proved the classical. calculations correct for
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The most general expression which contains the
classical and the quantum mechanical formulas as
limiting cases and is the analog of the integral (127)
reads, according to Eq. (102),

Integrating Eq. (141) by parts, we obtain

—(6/s'Mo) ln (so/s**) exp (—Moso) + (9/ir'Mo)

6 ds
~ ln(so/s*) exp( —Moso) —, exp( —Mos)—

0 S

~ exp[—MoQ *']Q '~'dQ. (137)

g+,7t'MP sp

ds
exp( —Mos) —. (144)

The P function depends on 44i and therefore on Q. The
integral cannot be expressed by tabulated functions.
Since the numerical corrections expected at higher
temperatures are not very large, we follow with some
modifications a method adopted by Spitzer (1956) for
computation of dc conductivities.

Splitting the range of integration at 444=1/y, we
assume the classical calculations to be correct for

The fourth term in Eq. (144) can be expressed as a
difference of two exponential integrals, so that com-
bining the third and the fourth term, we obtain

+ (6/ir'Mo) 8~i( —Moso) —(9/m'Mo)

~ [Ei(—Moso) Ei (—Mos—*)] (14. 5)

The argument

Moso =444/2 K' T (rze'/5) ' (146)
no~ y (Ze'/fi) Q ~ ((os'/y'Z'e'm) =—Qo. (138)

For all values

Q&Qp (139)

Qg

In(pyQ) exp[ —MoQ
—*-]Q—'~'dQ. (140)

71' —Qp

That the second integral in Eq. (140) is meaningful,
i.e., that Qp&Q, is obvious from the definition of Qp,

Eq. (138), and the expression for Q*, Eq. (128).
Performing the same type of transformation that led

from Eq. (127) to Eq. (129), we obtain

sp

+—, ln(s/s**) exp( —Mos) ds

9 s+

+— ln(s/s*) exp (—Mos) ds, (141)
7r so

with s* defined by Eq. (130),

and

S**=a&5/2444[m/ooZe']i (142)

we take the quantum limit, i.e., Eq. (108), as the
correct value for the logarithmic term. The subdivision
of the range of integration to some extent is arbitrary.
The choice actually made avoids introducing a dis-
continuity at the point where we switch from the
classical limit [Eq. (105)] to the quantum formula
[Eq. (108)]. In fact the classical formula and the
quantum limit are equal at the very value of vp defined
by Eq. (138).

We therefore replace the integral (137) by the
expression

2m m 'l-~
ln —

~

Q *' exp[ —MoQ ']Q ' 'dQ
cd' coZe 4J

3fpsp&1. (147)

That 3fps* is small compared with unity had already
been stated in Eq. (132) .

Expanding the integral exponential function [Eq.
(133)]we obtain for Eq. (145)

—(3/4r'Mo) ln(yMoso) + (9/ir'Mo) ln(yMos*) . (148)

Reasoning as before, we set the exponential function
in Eq. (144),

exp( —Moso) =1,
and recall from Eqs. (130) and (142) that

s/s*= [(yZ'e4/bio) (2444/4o) ]"= (so/s**) '*. (150)

Hence, the first two terms in Eq. (144) cancel out. The
remaining terms, namely Eq. (148), can be written as

—(3/m'Mo) in [a'Moo (s*)'so—']=—(6/w'Mo)

~ in[(y/2) (4oS/2KT) ]. (151)

The definitive form of the emission coefficient that
corresponds to the classical Eq. (134) then reads

pro d4o = lV.S,[32Z'e'/3 (24r) m'c'] (mm/IC T) i

1 [4KnT/p f'4]idooo (152).
We have reviewed the intermediate steps in sufhcient
detail in order to gain insight into the physical corre-
lates of the mathematical approximations inherent in
our rather crude treatment. In practice the respective
ranges of validity of Eq. (134) and (152) are as follows:
Prom Eqs. (146) and (147) we infer that the quantum
formula, Eq. (152), is appropriate whenever the
temperature

is not necessarily small with respect to unity. However,
it is consistent with the scheme of approximation to
postulate that Mpsp is negligibly small with respect to
one, whenever

so
—=Qo ' = [p'Z'm@4/iof'io]'. (143) T~m/2K(yZeo/fi) o =550 000 K, Z = 1. (153)
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14. ABSORPTION COEFFICIENT AND CONDUCTIVITY

In this section we summarize the relations between
the emission coefficient and the coefficients of absorption
and conductivity. We also show how to compute the
power absorbed by the plasma from incident radio
waves and the rate of re-emission from an optically
thick layer.

The power 4+I'„dec absorbed per volume element of
the plasma from an incident Geld of specific radiation
intensity I„per cm' per steradian in an angular fre-
quency interval d~ centered on ~ is given by the
expression,

4mP„Cku =4m fk„I„Ckv. (155)

The phenomenological absorption coefficient fk has the
dimension of a reciprocal of a length. Eq. (155) does
not specify the mechanism by which the radiation field
I„ is generated or maintained, nor does it imply any
particular mechanism of absorption. No assumption is
made as to the presence of thermal equilibrium. How-
ever, the form of Eq. (155) neglects deviations of the
refractive index from unity which have been ignored
throughout this review.

The same power absorption can be defined alter-
nately through a coefficient of electrical conductivity.
Obviously, P„can be written in the form

I'„V= j„E„dV =o„E„'dV, (156)

where the integration is carried out over a certain
volume V in which the quantities determining the
electrical field E„at angular frequency co, and the
specific current j„as well as the (real part of the)
conductivity g„are constant.

Below 550000, the classical formula from Eq. (134)
ought to be used. We repeat that at 550000, where
the ranges of validity of Eqs. (134) and (152) meet,
these equations give identical results.

Comparing once more the outcome of the averaging
procedure over a Maxwellian distribution of electron
velocities with the original formula LEq. (108)j, we see
that, as in the classical case, the velocity eo has been
replaced by the average (2KT/ym)".

Finally, as in Sec. 11, we divide the arguments of the
two logarithmic functions of Eq. (134) and (152) and
Gnd

6/yZe'(2KT/ym) *'= (A ). (154)

The average velocity to be substituted in Eq. (114)
emerges from Eq. (154) in a most natural way. Since
the same scheme of approximation underlies the evalua-
tion of dc conductivities, it would be appropriate to
use Eq. (154) in this context also, rather than the
smaller value adopted by Spitzer (1956). The value of
(A ) we recommend has the advantage of complying
naturally with either of the limiting equations at the
point where their ranges of validity overlap.

The integral in Eq. (156) represents the energy
density of the incident field, customarily called u„dko.

Energy density and intensity are connected by the
relation

u.d(v = (4m/c) I. „des (157)

Incidentally, Eq. (157) shows how the refractive index
enters. The vacuum velocity of light c here stands for
the velocity at which energy moves through the volume
element. This "energy velocity" equals the phase
velocity c only if the refractive index is unity.

The absorption coefficient fk„and the conductivity
o-„, in fact, denote the same quantity in the context, or
language, of radiative transfer and electromagnetic
theory, respectively. Accordingly,

(158)

as comparison between Eqs. (155) and (157) reveals.
Before we discuss the relations between the coef-

ficients of absorption and emission, we comment on the
proposal repeatedly made to compute the absorption
coefficient or the conductivity directly from equations
such as the Boltzmann equation or the equation of
motion of an (average) electron together with
Maxwell's equations.

Clearly the derivation by way of a hydrodynamic
equation of motion is an inferior approach because
essentially it specifies the absorption coefFicient in
terms of a damping constant or collision frequency
whose numerical value must be secured by some other
procedure. For example, Smerd and Westfold (1949),
as an alternative to their previously discussed derivation
of the emission coefficient, used a collision cross section
derived originally for the dc limit. Although one obtains
in this manner the correct order of magnitude of the
absorption coefficient, the suppression of a distribution
function in the hydrodynamic equations amounts to
discarding valuable information.

Logically, the use of Boltzmann's equation or the
Fokker-Planck equation for deriving an absorption
coeflicient is equivalent to our (classical) derivation of
the emission coefficient. In practice however, no
computation on this basis has been carried out that
would be comparable to the calculations in the dc
limit, as undertaken by Spitzer and his collaborators
and by I.andshoff (cf. Sec. 7). The formal introduction
of a collision frequency with a postulated velocity de-
pendence, instead of the complete collision integral,
may be an improvement over the hydrodynamic treat-
ment of the Lorentz type, but it is still more or less
arbitrary. We therefore believe that at present it is
preferable, and more profitable, to derive the emission
coefricient directly and to deduce the absorption
coefFicient in the manner outlined below.

In strict thermodynamic equilibrium, emission and
absorption are related by Kirchhoff's law. However, in
any kind of steady state, not only in thermodynamic
equilibrium, the rates of total absorption and emission
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per unit volume must balance everywhere:

4r P'„—e„]do&=0.
0

(159)

It is only in thermodynamic equilibrium that absorption
and emission balance separately for each frequency, i.e.

Eto 'Eco K(i)B(o) (160)

The corresponding conductivities follow from Eqs.
(162) and (163) by multiplication with c/4m.

The forma, l computation of the total emission along
a given line of sight along which the dista, nce from the
observer is called s, is carried out by the following

equation;

I„= e.(s) exp[ —r (s) jds.
0

I„is the specific intensity perceived by the observer, e„
is the emission coefficient at distance s from the ob-
server, and the exponential factor expresses the attenua-
tion of the radiation on its way from the point of
emission to the observer. The quantity v„ is called the
optical distance from the observer and is defined by
the relation

8

~ (s) = z„(s')ds'.
0

(165)

Depending on the geometry, for instance if radiation is

received at a given point inside the plasma, the integral

(164) requires appropriate modification.

where 8„ is a universal function of the equilibrium
temperature. Equation (160) is Kirchhoff's law. The
explicit form of the universal temperature function 8„
is known as Planck's law, for which we may substitute
in the rf region the (classica, l) Rayleigh-Jeans approxi-
mation, i.e.,

8 ( T) d(u = (&co'/4z'c') [exp (ha&/ET) —1] 'da)

= (~'/ 4~'c-") ETdko. (161)

It will be remembered that in thermodynamic equi-
librium the same temperature T appears in Planck)s
law and in Maxwell's velocity distribution.

Substitution of Eq. (161) in Eq. (160) gives the
absorption coefficient in thermodynamic equilibrium.
For temperatures less than 550 000'K [cf. Eq. (153)],
at which the classical treatment of the emission coef-
ficient is permissible, we obtain from Eq. (134)

~„=e /8„= (sV,1V /o)') [32vr'Z'e'/3 (27r) 'm'c] (m/ET) ~

~ lnI (2ET/ym) l(2m/yZe'~) I. (162)

If quantum effects are appreciable, i.e., at temperatures
above 550 000 K, we find from Eq, (152)

K = (1V E /co') 3[m2' Ze' /3(2'ir)' 'mc]( /mET)'

.1n[4ET/y(u5]. (163)

Evaluation of the integral (164) requires knowledge
of the local coeKcients of emission a,nd absorption. The
coeKcient of absorption, in general, divers from the
one given by Eq. (162) or (163), which strictly apply
only to thermodynamic equilibrium, that is to say, to
material which is enclosed in a thermostat. Material in
thermal communication with its surroundings is ade-
quately described as being in a steady nonequilibrium
state. In the absence of a comprehensive physical
theory of nonequilibrium states, it is customary to
substitute in the integral (164) the equilibrium ex-
pressions of Eqs. (162) or (163). This procedure is
often referred to as the postulate of "local thermo-
dynamic equilibrium, " (LTE) .

However, it is well to keep in mind that at present
it is impossible to make quantitative estimates of the
deviations of steady nonequilibrium states from local
thermodynamic equilibrium, except in a few special
cases. Space does not permit us to outline all possible
factors to be considered if one wants to make an
estimate of how good a,n approximation the concept of
I TE is likely to be in a given physical situation.

These nonequilibrium considerations apart, we
believe the equilibrium expressions [Eqs. (162) and
(163)j to be superior to those previously given in the
literature.

15. SUMMARY

1. Classical and quantum mechanical. calculations
are compared, yielding the emission spectrum of free
electrons in the Coulomb field of positive ions. The
resulting classical spectrum is given by Eq. (65) in the
most general case and by Eq. (68) in a suitable approxi-
mation valid throughout the rf region. Quantum
corrections can be applied with the aid of Eqs. (102)
and (107).

2. The spectrum has been integrated over a Max-
wellian distribution of velocities. The resulting emission
coefficient per unit volume is given by Eq. (134) at
temperatures less than 550 000 K and by Eq. (152) at
temperatures exceeding 550 000'K.

3. Absorption and conductivity coefficients are like-
wise derived for a Maxwellian distribution of velocities
[Eqs. (162) and (163)].
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APPENDIX A

%hereas the term that arises from the endpoints of
integration in deriving Eq. (27) vanishes, the corre-
sponding term to be added to Eq. (26) reads

const[sinhx/(e coshx —1) icos[0(c sinhx —x)] (A1)

to be taken at the limits +~ a,nd —~. Since this is

an odd function, (A1) does not vanish identically. The



FULLY IONIZED GAS

combination of hyperbolic functions preceding thc Equation (41) is now readily obtained from Eq '. (C2)
cosine function tends to unity in the limit x—&~, so and (C6).
that we are left with

APPENDIX D
lim cos[Q(p sinhx —x)]=cos(Qe') ~, (A2)

which is indeterminate. To prove that this term can be
neglected, we verify that the integrand of Eq. (24)
vanishes at the endpoints of integration, so that the
contribution to the integral from the range beyond a
certain value can be made smaller than any prescribed
quantity. Hence, in the limit ~, the contribution tends
to zero.

APPENDIX 3
In order to reformulate Eqs. (26) and (27) in terms

of Hankel functions, we replace the trigonometric
functions by exponential functions. Obviously it makes
no difference if a cosine term is added under the
integral of Eq. (26) and i times a sine in Eq. (27):

Watson (p. 80) derives the expansion of the Hankel
functions in terms of Bessel functions of the first kind
and imaginary argument I(Qp):

Hp &i&(i Qp) = (2/zri) —ln(Qe/2) Ip(Qp)

+Z(-'Q )2™[1'(+1)]-V( +1) (»)
In writing down Eq. (D1), use has been made of Fq.
(84). I" denotes the Gamma function. The auxiliary
function P (the logarithmic derivative of the Gamma
function) is defined by the relation (Watson, p. 60);

1 1
4(m+1) =-+-+ "+——v'; 0(1)=—v* (D2)

1 2 ns

The expansion of Ip(Qp) for small arguments is given

i(p&) = (2&pQ/izr) sinh$ exp[iQ($ —e sinhf) ]d$, (81) by Watson (P 77):

and

wpQ (p2 —1)&
&t(&p) =—— exp[iQ(& —p sinh&) ]d&. (82)

Watson (1958), p. 182, defines the following integral:

Ip(Qp) =g (-'Qp) 2~[1'(m+1)] '.
17t=o

Equation (48) follows immediately.

APPENDIX E

(D3)

Zi, .(u) =-', exp(-', ~vz) exp (—iu sinhg+ vf) d$. (83)
In passing from Eq. (63) to Eq (64), .we have used

the relation

The E functions and the Hankel functions are related
by the expression (Watson, p. 78)

K„(zz) = ', zri exp (-- 22i2)rHv„&'& (iu) . (84)

(uH.H.') ' =uI H,"+[(v'/u') —1]II„'I, (E1)
with primes denoting derivatives with respect to the
argument N. H„stands for any solution of Bessel's
equation

Using Eqs. (83) and (84) we obtain the representation
given in Eqs. (28) and (29).

APPENDIX C

H„"+H.'+u[1—(v'/u') ]II„=0,

for instance, the Hankel functions H, '
&&(&u&).

Writing for the left-hand side of Eq. (E1)

(E2)

According to Watson (p. 185 and p. 78),

cos(Qpu) [du/(1+u') &]=2Kp(Qp) =zzrHp&n(iQp).

H„H,'+u(H. ') '+uH„H„" (E3)

reveals that Eq. (E1) is in fact a variant of Eq. (E2) .

APPENDIX F

Hence,

with

Furthermore

g (&p) = —(Zez/m&&p2) p&iH p&'& (zQ p),

Qp =&pl/'Up.

(C1)

(C3)

To prove Eq. (65), it has to be shown that the
upper limit of the integral in Eq. (64) gives no contri-
bution, i.e., that

lim [uH, o(u) ,H(&&)u]&0.
te~ioc&

and

K'i(Qp) =—Kp'(Qp) =+zr/2[(d/ds) Hp&'& (s) ], ;a,. (C5)

H, O~ (2/zrie)i eXp( —S).

APPENDIX 6

(F2)

This follows from the asymptotic expansion for II;0
reading for large pure imaginary values u =is (Watson,
p. 198):

Finally
Erd6lyi et &zl. [(1953),Vol. 2, pp. 87—88] give several

i(&p) = (Zez/m&&p2)&p(d/ds)Hp«&(s) ~, ,o.. (C6) expansions for the Bessel functions of the second kind
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and pure imaginary argument that are related to the
Hankel functions by Eq. (B4) . Denoting the order by

I~'.(s) =2-'("—p') ' exVI —("—p') —pl »n(p/s) 'I

M—1
~ g( —1) 2" b,„r(m+-')(s' —p') ""+O(s ~) . (G1)

The b„'s are polynomials with (1—s'/p') ' as argument

IC;„(s)~~sv exp( —~vp) g(—1) c (ns) sinL(m+1)4]
m=p

~ I'(xm+ —) (s/6)
—

& +»~3 (G4)

which applies if

s=p, m=1 —p/v=0(s-i). (G5)

Without repeating the definition of the polynomials c,
it suflices to mention that c may be represented by
zero if m is odd, by a pure number (1 if m is even.

Because the function E;„is a product of two factors,
one depending on p and the other one depending on s,
it is possible to let p tend to zero without disturbing
the dependence of E;„on s.

APPENDIX H

b-=Z( —1)"
I a. I(1—s'/p') ",

I a, I&1 (G2)
p=p

Because in the case under consideration, z=Qe, p=Q
with s))p over most of the integration interval, p can
be set zero in the combination s' —p'. This is the desired
result which corresponds to the straight-line approxi-
mation. We emphasize that the reciprocal of the sine
function entering the exponential in Eq. (G1) does not
affect this reasoning, since

pLsm(p/s) j '=s =L"—p'j'. (G3)

When s=p, i.e., for the small values of e, the order
of the Hankel functions can still be put equal to zero
while retaining a finite value for the argument. To
justify this claim, we quote another expansion (Erdelyi
et a/. , Vol. 2, p. 88):

(b) =vo/(u

We then justify the condition

0 =~Ze'/vo'm&&1, vp ))a&Ze /m

(I2)

(13)

by proving the inequality

can be expanded according to the "low-frequency limit"
in which the contribution from Eq. (83) increases
logarithmically with decreasing argument.

Next, we consider the ratio of the arguments

2x'8 Z
(a)/cop)/((u/(o, ) =, E,'*=10"1V,40 '«1. (H2)

m28p3

For E,=10" and the same value of ep as above, the
ratio is of the order 10 '.

For the same values of vo and co, the integrals (83)
and (79) amount to approximately 13 and 10 ',
respectively.

Evidently, for higher electron densities and lower
velocities the ratio of Eq. (H2) is closer to one, and
the shielding effects might become more important. On
the other hand, an increase of sr (in the example given
above, co is only about 2.5 times the plasma frequency),
will produce a smaller shielding effect, since the
Hankel functions decrease rapidly for arguments &1,
while the main contribution to the coefEcient, Eq. (83),
still decreases logarithmically.

APPENDIX I

In order to justify Eq. (125), i.e., the use of the
straight-line approximation for the hyperbolic orbit for
a/l particle velocities, we must prove that for the
majority of electrons having a Maxwellian distribution
the assumption

e =mbvo'/Ze'»1

is valid. Strictly speaking, this should be carried out
for each collision parameter separately and the result
integrated over all b values. We intend to make only a
qualitative check by substituting an average collision
parameter into Eq. (I1). Relying on the same argu-
ments that led to Eq. (34), we choose as average
collision parameter

u/u, =uZe'/mvo' =2.5)& 10'cavo '«1. (H1)

We give a few numerical examples illustrating the
statement that under most physical conditions the
shielding eGects can be neglected in the rf region, so
that the contribution from Eq. (83) greatly outweighs
the contribution from Eq. (79). We consider only the
straight-line approximation, i.e., we substitute for the
Hankel function H;g the function of order zero. Then,
for typical values in the rf region, the argument

with
Jy((J2

where

Jg= 8 ~ 0 5()%&p Jg=
0

v~=—(a&Ze'/m) &

follows from Eq. (I3), and

y,=m/2KT. —

(I4)

e I'"&'vo'dvo, (I5)

(16)

(I7)
For instance, for or=10" and up=10', a value which
corresponds to the average velocity of a Maxwellian
distribution with a temperature of about 100000 K,
co/Mp is about 2.5X10 '. Hence the Hankel functions

These integral may be expressed in terms of error
functions:

Jq ——(v*/2p) exp( —pv*') + (1/2') Erf(plv*) (I8)
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P. Kirkpatrick and L. Wiedmann, Phys. Rev. 67, 321 (1945).

H. A. Kramers, Phil. Mag. 46, 836 (1923).

R. M. Kulsrud, Astroph. J. 119,386 (1954).

L. Landau and E. Lifshitz, The Classical Theory of Fields (Addi-
son-Wesley Publishing Company, Inc. , Reading, Massachu-
setts, 1951).

or, numerically,
10—'T-&o)&&(1.

This inequality is satisfied in all applications.

R. LandshoG, Phys. Rev. 76, 904 (1949).

(I13) R. Landshoif, Phys. Rev. 82, 442 {1951}.

R. E. Marshak, Astroph. J. 92, 321 (1940).

APPENDIX J
We must verify that the value of the integral (127)

is insensitive to the precise value of the upper limit 0*
adopted in Eq. (128) . We change the limit of integration
from s* to

D. F. Martyn, Proc. Roy. Soc. (London) A193, 44 (1948).

A. W. Maue, Ann. Physik 13, 161 (1932).

D. H. Menzel and C. L. Pekeris, Monthly Notices Royal Astron.
Soc. 96, 77 (1935).

R. Oppenheimer, Z. Physik 55, 725 (1929).
s=s*—5 (J1) L. Oster, Z. Astrophys. 42, 228 {1957}.

Let 8 be restricted in such a manner that s*—6 still
satisfies the condition for the expansion of the Hankel
functions. Instead of Eq. (131),we then have

L. Oster, Z. Astrophys. 47, 169 (1959).

L. Oster, Phys. Rev. 119, 1444 (1960a) .

L. Oster, Rev. Modern Phys. 32, 141 (1960b).

(9/s-s3fp) lnL(s* —8) /sa 1—EiL—Mp(s* —6)], (J2) E. Persico, Monthly Notices Royal Astron. Soc. 86, 93 {1926}.

since the exponential function in the first term of Eq.
(131) can be put equal to one. Expanding again the Ei
function, we obtain

(9/pr'iVp) I+1nf(sn —8)/sag —lngyMp(s* —3) jI
=—(9/sr'Mp) in(yMps*) (J3)

from which 8 has vanished. This completes the proof.
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