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HE general theory of relativity is the result of
efforts to make gravitation a part of the rela-
tivistic physics that had in turn been necessitated by
the fact that electromagnetic waves propagate without
regard to the motion of our earth relative to the bulk of
the surrounding universe. The so-called special theory
of relativity, as is well known, led to modifications in
the Newtonian concept of space and time that rendered
instantaneous action at a distance unacceptable, not
only for electromagnetic interactions, but for any forces
whatsoever. Henceforth, a relativistic theory of gravi-
tation would have to be a relativistic field theory, that
is to say, a theory of the gravitational field. Because the
inverse-square law holds for gravitational forces just as
it does for electrostatic forces, it was a foregone con-
clusion that the gravitational field would propagate
with the speed of light also. We know that relativistic
fields do so if they obey a D’Alembert-type of equation,
with vanishing mass term. So far, there seemed to be no
need for a further modification of the space-time
concepts of Einstein’s 1905 paper on the electro-
dynamics of moving bodies.

But the gravitational forces differ from all other
forces known in one respect: The sources of the field,
that is to say the gravitational masses, equal the inertial
masses of the bodies that gravitate. This is the classical
field theorist’s way of stating the law that under the
influence of gravity all material bodies suffer the same
acceleration. That this is so has been established with a
very high degree of accuracy (at least 10~%) by several
experimenters in the 20th century, first by E6tvos,! and
most recently Dicke.? Thus, a motley collection of
bodies exhibit under gravity a behavior that is analogous
to their behavior under the influence of so-called inertial
forces, such as centrifugal, or Coriolis forces. Thus, at
least by local experiment, we are unable to separate
clearly gravitational from inertial forces. This circum-
stance, which is known as the principle of equivalence,
defeats any attempt to determine, again by local
experiment, an inertial frame of reference ; this*“ principle
of impotence” goes far beyond the restricted principle
of relativity, which postulates that we cannot determine
a frame of absolute rest. According to the principle of
equivalence, we cannot even determine a frame of
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uniform unaccelerated motion. From this principle of
impotence, Einstein moved forward to the postulate
that for the description of the laws of gravitation all
frames of reference, that is to say, all four-dimensional
space-time coordinate systems, are equivalent. In the
presence of several different force fields, which, however,
include the forces of gravity, this principle is to remain
valid. A theory of nature that satisfies this postulate,
the principle of covariance, is called a general-relativistic
theory. The general theory of relativity proper is
Einstein’s theory of the gravitational field® of 1916. In
what follows we shall deal with this theory, as the arche-
type of a general-relativistic theory.

Before launching into the subject proper, one more
remark may be made: The transition from the narrow
statement that in the presence of gravitational fields
we cannot by local experiment determine an inertial
frame of reference to the principle of covariance,
represents a logical hiatus. Einstein felt compelled to
adopt this extreme postulate after he had made a
number of attempts to get along with more conservative
approaches. Today, like any other physical theory, the
principle of covariance derives its validity from physical
reality; in this case, that it forms the foundation of the
best available theory of the gravitational field. It is
perfectly feasible that the principle will be modified by
subsequent developments. We shall return to this point
in the last section. For the present, we consider the
principle of covariance as established.

CONCEPT OF OBSERVABLES

Given the validity of the principle of covariance, the
identification of a location-plus-instant-in-time by
means of four real numbers becomes a matter of almost
unrestricted choice, one that has to be exerted not only
once in the course of the history of a physical situation
but again and again. Suppose we adopt at some particu-
lar instant in time a three-dimensional coordinate
system (curvilinear, to be sure), an instantaneous local
rate of increase for the time coordinate, and also agree
on the instantaneous rate of motion of the space
coordinates. Even after all these choices are made,
nothing in the theory tells us how to choose coordinates
some finite time later. Accordingly, in a general-
relativistic theory—and this is in sharp contrast to a
Lorentz-covariant theory—no initial data enable us to
predict the values of local field variables at some later
time, simply because the identification of the future
time and location by means of four coordinate numbers
is meaningless (Fig. 1).

" § A, Einstein, Ann. Physik 49, 769 (1916).

510



OBSERVABLES IN

¢’

%’

®

GENERAL

RELATIVITY S11

P

Fi6. 1. Two different coordinate systems drawn in alternative ways. The two points are identical
in the two sketches, but different points occupy the same position.

Inability to predict the values of locally defined field
variables is a fundamental property of general-
relativistic field theories, regardless of their detailed
aspects. Nevertheless, such a theory can be completely
causal, in a slightly modified sense. In view of the fact
that a general-relativistic quantum theory has not yet
been constructed in complete detail, we shall discuss
principally ¢-number theory. It is to be assumed that
the quantum theory will be related to nonquantum
theory pretty much as it is outside general relativity.

Causality may be redefined in general relativity as
follows: It is possible to give sufficient data at one
time—on a spacelike hypersurface within the four-
dimensional space-time manifold—to identify com-
pletely a solution of Einstein’s field equations. Given
such a set of complete initial data, all solutions of the
field equations compatible with the given data can be
transformed into each other simply by means of
appropriate coordinate transformations.*® The set of
all solutions that can be transformed into each other by
coordinate transformations is called an equivalence class
of solutions.® All members of an equivalence class are
formally different statements of the same physical
situation in space-time. Identification of an equivalence
class enables us to answer all questions that have been
properly constructed, that is to say, questions that refer
to the outcome of physical experiments rather than to
the functional dependence of field variables on an
(arbitrary) set of coordinates. As an example of a
proper question, we may consider one concerning
“coincidences”: Suppose our theory enables us to
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construct from the field variables several scalar fields;
we might then identify a “world point” (location-plus-
instant-in-time) by the values assumed by four of these
scalars and ask for the value, there and then, of a fifth
field. Such a question can, we are assured, always be
answered from a sufficient set of initial data, though
the performance of this task may call for considerable
mathematical agility.

Because the ordinary field variables taken singly
contain almost no physical reality, because they cannot
be predicted by an otherwise causal theory, we have
introduced the concept of observable, a physical quantity
that represents more nearly the stuff of which physical
reality is made.” The name is of course borrowed from
standard quantum terminology, and the expectation is
that the quantum observables in a covariant quantum
field theory will be quantities of the kind about to be
described. We shall call a quantity an observable if it
can be predicted uniquely from initial data.

This definition is complete, but not always the most
useful. A somewhat modified definition would be to
call an observable a quantity that is invariant under a
coordinate transformation that leaves the initial data
unchanged. If the initial data are given on a surface that
is a nonzero distance away from the region on which
our observable is defined, then, because of the arbitrary
choice of coordinates, the observable must be an
invariant, without further qualifications.

If we employ a Hamiltonian formalism to describe
our theory, then there is a certain set of generators that
produce infinitesimal coordinate transformations. An
observable is then a dynamical variable that has
vanishing Poisson brackets with all the generators of

7 P. Bergmann, Nuovo cimento 3, 1177 (1956).
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infinitesimal coordinate transformations. This last
definition is rather useful: The generators of infini-
tesimal coordinate transformations are known in closed
form. One can construct observables by systematic
approximation, starting from crude but very intuitive
expressions that are related to “plane waves” of the
gravitational field.

We mentioned the concept of equivalence classes of
solutions. With its help one can give the observables
yet another interpretation. Suppose we construct a
Hamiltonian formalism, with configuration-type field
variables and momentum-type field variables. Just as
in electrodynamics, some of these canonical variables are
related to each other by equalities that contain no time
derivatives of any canonical variables. Such equalities
are called comstrainis.® Initial data in a Hamiltonian
formalism must be chosen so as to be consistent with
these constraints at some initial time 4o, but thereafter
the constraints maintain themselves by virtue of the
Hamiltonian equations of motion. Now it turns out
that just these constraints are the generators of infini-
tesimal transformations.® The precise expressions are

r=— f P H B, (1)
where
Er=par (2)
and
H,=¢,3C,—+1,3Cy,
er=08,,—1H,, €°=0. 3)

The symbols 3¢, and 3¢z were introduced by Dirac and
represent constraints. Given an expression that can be
constructed from canonical field variables, its infini-
tesimal transformation law is represented by its Poisson
bracket with the generator (1). For instance, the three
spatial components of a covariant vector transform
according to the law

T16. 2. Constraint hypersurface, equivalence classes, and a
canonical mapping generated by an observable.

8 P. Bergmann, Phys. Rev. 75, 680 (1949).
97. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1081
(1951).
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6 = — (082/9x5) A ,— (£-V) A — £(dA ,/d1)
= [A S;P]' (4)

The generators (1) enable us to navigate about
within one equivalence class of solutions, that is to say,
they map any solution on another one belonging to the
same equivalence class. It follows that an observable
generates a mapping that maps all members of one
equivalence class on the members of one other equiva-
lence class.® Figure 2 shows a highly simplified sketch
of the phase space of a general-relativistic field theory.
Because of the constraints, only representative points
lying on the constraint hypersurface represent physi-
cally possible situations. But the constraint hypersur-
face is further subdivided into equivalence classes, which
in Fig. 2 appear as curves. In reality, both the original
phase space and the final equivalence classes are infinite-
dimensional domains. Because constraints commute
with observables, it is immaterial as to which of the two
mappings, one representing a coordinate transformation
and the other being generated by an observable, is
performed first. The little parallelogram now indicates
the course of the proof: Two points connected by a
coordinate transformation must be mapped by the same
observable into two points again related to each other
by a coordinate transformation. Hence our conclusion
that observables generate mappings of equivalence
classes on each other.

Observables taken as gencrators map whole equiv-
alence classes on each other. It is also clear that within
any equivalence class all observables are constant. Two
distinct equivalence classes must differ from each other
with respect to at least one observable. We shall call a
set of observables compleie if knowledge of the whole set
is sufficient to identify an equivalence class and dis-
tinguish it from all others. A complete set might be
redundant. We shall call it a minimal complete set if
knowledge of the numerical values of the whole set is
required to identify an equivalence class.

We may use a minimal complete set of observables
as a coordinate system in a new space, a space whose
points represent equivalence classes. In this space the
observables (not only those belonging to the minimal
complete set) generate mappings. Thus, if we define
commutator brackets properly, this new space may be
interpreted as a new reduced phase space,® whose
canonical transformations are generated by all the
functions we can define on its points. Observables are
simply these functions. It seems likely that an eventual
quantum theory of the gravitational field will be
approximated by the classical canonical transformation
theory of the reduced phase space.

CONSTRUCTION OF OBSERVABLES

So much for the general theory. How can we construct
observables, and how, more particularly, a complete but
minimal set of them? There have been several ap-
proaches to this problem, and we describe one that was
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initiated by Géhéniau and Debever," of Brussels, and
further . developed by Komar and Bergmann, at
Syracuse. This approach is based on the idea of
“‘coincidences” between various events, as described
previously. One first chooses four scalars characteristic
of local properties of the space-time manifold to identify
world points; then any additional fields, described in
terms of the new “intrinsic’” coordinates, are observ-
ables. For a set of intrinsic coordinates it is essential
that world points are identified completely in terms of
intrinsic geometric properties of the space-time mani-
fold. There cannot be a remaining set of transformations
compatible with the definition chosen for our intrinsic
coordinates.

There are exactly four independent scalars that can be
formed from the curvature of a four-dimensional
manifold whose metric satisfies Einstein’s field equa-
tions. One form in which they may be written is

At="Tr (gCgC),
A*="Tr (gCeC),
A3=Tr (gCgCgC),
A4=Tr (gCgCeC).

©)

These four expressions have been rendered in a com-
pressed notation, which is usually credited to Petrov.!
It involves the introduction of indices that run from
1 to 6, each representing an antisymmetric pair of
indices of the four-dimensional manifold. Thus, Weyl’s
tensor, the remainder of Riemann’s curvature tensor
after half of its components have been fixed by the field
equations, becomes a symmetric form of rank 2,
symbolized in (5) by C. The symbol g represents a
similar matrix, formed from the components of the
metric tensor, whereas e stands for Levi-Civita’s alter-
nating tensor. The four expressions A!---A4* exhaust
the scalars that can be formed from the metric tensor
at this differential level. Thus, they recommend them-
selves by their relative simplicity, though later develop-
ments may lead to a preference for other scalars. Any
set of four functions f°(A4!---A*) may now serve as
intrinsic coordinates.

The components of the metric tensor in the chosen
intrinsic coordinates are observables. Moreover, they
form a complete set, as knowledge of the metric is
obviously sufficient for determination of all properties
of our manifold. They are, however, not minimal: The
metric must satisfy the field equations, as well as the
conditions imposed on the coordinates, that they equal
the fr. If these conditions are all taken into account, it
turns out that a minimal complete set of observables
should number four pieces of numerical data at every

10 J. Géhéniau and R. Debever, Bull. classe sci. Acad. roy. Belg.
42, 114, 252, 313, 608 (1956); Helv. Phys. Acta Suppl. 4, 101
(1956).

11 A. B. Komar, Phys. Rev. 111, 1182 (1958).

12 P, Bergmann and A. Komar, Phys. Rev. Letters 4, 432 (1960).

13 A. Z. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954).
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point of a three-dimensional hypersurface. All other
observables are then determined by the field equations
and the coordinate conditions. We have not succeeded
in isolating this minimal set, and there is some reason
for believing that this is not possible in closed form.

Given some arbitrary fields, which have been turned
into observables with the help of an intrinsic coordinate
system, how do we construct proper commutator
brackets between them, so that the structure of the
reduced phase space may be made apparent? This
question is not entirely trivial, as the value of an
observable remains unchanged if we add to it an
arbitrary combination of the constraints of the formal-
ism, the expressions JC; and 3Cz, Dirac’s Hamiltonian
constraints, and the expressions (f*—«*), the coordinate
conditions. However, the naively conceived Poisson
brackets between two field variables are changed by
such an addition. The answer was worked out by
Dirac** gbout ten years ago: We must modify the
Poisson brackets in such a manner as to assure our-
selves that our canonical transformations map equiv-
alence classes intact on equivalence classes. There are
several ways in which we can visualize Dirac’s prescrip-
tion. One good way is this: As an observable must
commute with all the constraints of the theory, we add
to an arbitrarily defined field variable just that com-
bination of constraints that make the Poisson brackets
of the redefined variable with all constraints of the
theory vanish.

Whatever the visualization, in our problem Dirac’s
technique leads us to the following new commutator

brackets:
{4,B}=[4,B]+[[4,9],[B,9]], (6)
where

g= f H,(fr—)d, )

and where the square brackets denote ordinary Poisson
brackets. The performance of the calculations indicated
on the right-hand side is straightforward but rather
laborious. No completed example can be shown as yet,
though it may be only a short while away.

GENERAL COVARIANCE VS LORENTZ
COVARIANCE

The approach sketched here has been criticized!s on
the grounds that it leads to a Hamiltonian which not
only vanishes but which forms vanishing commutator
brackets with all observables. This state of affairs can
also be produced in classical mechanics when we go from
ordinary (‘“natural”) canonical variables to those
introduced by the Hamilton-Jacobi transformation.
Thus, it would seem that the technique described here
corresponds to a Hamilton-Jacobi formulation, whereas
a physically intuitive description should lead to a

# P, A. M. Dirac, Can. J. Math. 2, 129 (1950).

15 R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 118, 1100
(1960).
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nonvanishing Hamiltonian, which describes in the
accustomed manner the dynamics of the gravitational
field.

The analogy is not quite correct, insofar as the
observables obtained with the help of an intrinsic
coordinate system look like ordinary field variables
and are, as such, functions of all four intrinsic co-
ordinates. Their time derivatives can be obtained in a
particular manner: We must determine that linear
combination of the original field variable (observable)
with all the constraints whose Poisson bracket with all
constraints vanishes. The time derivatives of the
original variable is then equal to the partial derivative
of the new equal-valued function of the dynamical
variables and the coordinates with respect to «°% If 4
was the original variable, and if 4* is the new variable
that commutes with all the constraints, then we have,
as our new ‘‘dynamical” law,

A=A%=04%/0x0, A*=A. (8)

The symbol on the right-hand side denotes partial
differentiation with respect to a% to the extent that it
appears as an explicit argument of A*. Analogous
relations hold, incidentally, concerning derivatives with
respect to the spatial coordinates.

Nevertheless, there is one part of the criticisms that
deserves a more thorough exploration. It would certainly
be a great help for an intuitive grasp of Einstein’s theory
of gravitation if we could divide all the coordinate
transformations into two large classes: those that
correspond to the gauge transformations of electro-
dynamics and which have no effect on the properties of
a bounded gravitational field as viewed from afar, and
those coordinate transformations that change the frame
of reference of an outside observer. We might call the
latter Lorentz transformations. If such a separation of
the whole group of coordinate transformations were
possible, then we should be able to construct quantities,
geometric objects, which are invariant with respect to
the gauge-like transformations but which are covariants
with respect to Lorentz transformations.

Such a possibility exists if, and only if, the gauge-like
transformations form an invariant subgroup of all our
coordinate transformations. This formal requirement
is equivalent to the requirement that the Lorentz
transform of a gauge-like transformation is again a
gauge-like transformation. If the subset of gauge-like
transformations forms a group, and moreover an
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invariant subgroup of the group of all coordinate
transformations, or of all coordinate transformations
that maintain an asymptotic behavior of the fields at
spatial infinity, then there is the possibility that we can
construct quantities that are “‘gauge-invariant’ but not
Lorentz-invariant and, more particularly, not constants
of the motion. If not, such quantities assuredly do not
exist.

It is well known that the unrestricted group of
coordinate transformations possesses no invariant
subgroup. The situation is not quite as clear-cut with
respect to the restricted group of coordinate trans-
formations that maintain certain asymptotic boundary
conditions. It is to be hoped that this question can be
cleared up with not too much difficulty. Needless to say,
this question, whether we can construct general rela-
tivity in the image of a Lorentz-covariant conventional
field theory, is bound up with the question of a gauge-
invariant energy concept. At present, opinions on that
score are divided ; I believe that if the invariant gauge-
like group exists, we shall also be able to construct the
Lorentz-covariant  energy-momentum  free-vector;
otherwise I am very pessimistic.

CRITIOUE OF GENERAL COVARIANCE

In closing, we shall return once more to the question
of general covariance. It appears as if general relativity
contained within itself the seeds of its own conceptual
destruction, because we can construct “preferred”
coordinate systems. These preferred coordinate systems
are not ‘“flat,” but they are determined by the intrinsic
conditions of the physical situation. It is easy to point
out in which respects intrinsic coordinates differ from,
say, inertial coordinates. Whereas the latter can be
determined experimentally by the observation of the
trajectories of force-free bodies, intrinsic coordinates
can be determined only by much more elaborate
experiments; they depend, at least, on the inhomoge-
neities of the ambient gravitational fields, that is to say,
on derivatives two orders higher than Cartesian
coordinates. It may be that the principle of covariance
tells us no more than that in fixing an absolute frame
of reference we must go to much more elaborate
experiments than the reading of rigid scales and stable
clocks. I consider that at this time that question is open.
It is clearly one of the fundamental questions that
affects our whole understanding of the properties of
space and time.



