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1. INTRODUCTION

T has now become apparent that the strength of the
“strong nuclear interactions” of the strange particles
must be considered comparable to that of the pion-
nucleon and nucleon-nucleon interactions, despite the
fact that strange-particle production occurs with rela-
tively small branching ratio even at the highest energies
studied. This conclusion is particularly evident from
the data on A-hypernuclear binding energies' and on the
low-energy reaction processes? for strange particles,
as is pointed out in Secs. IIT and V. It is also indicated
by the occurrence of resonances with substantial
half-widths in a number ,of strange-particle systems,
for example, in the K~— p system® at approx 1850 Mev,
the K—m system* at approx 875 Mev, and the 7—A
system®~7 at approx 1385 Mev. With such strong
interactions, the restrictions of the unitarity condition—
that is, of probability conservation—on the cross
sections for competing processes and on their energy
dependence are of the greatest importance, as we know
from experience in the nonrelativistic domain of low-
energy nuclear reaction phenomena. Their effect on the
energy dependence of reaction amplitudes and cross
sections is especially marked in the neighborhood of
new two-particle thresholds where, for example, they
give rise to the cusp behavior now observed? particularly
in the angular distribution of the #~4p— A4+K°
reaction at the 2+ K thresholds.
In this situation, it is particularly appropriate to
describe these reaction processes in terms of the ele-
ments of the reaction matrix K, since the scattering
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matrix constructed from them necessarily satisfies the
unitarity conditions. The theory appropriate to the
definition and application of the reaction matrix is
reviewed briefly in Sec. IT, with special reference to
coupled two-particle systems and to the occurrence of
and description of resonant states in this formalism. In
Sec. III (and Appendix A), the analysis of the low-
energy K—-proton data is reviewed in terms of this
formalism, and the “K-nucleon virtual bound state”
interpretation of the 7—A resonance is compared with
the experimental data.

Although the reaction-matrix formalism is quite
general, it has proved convenient in the dispersion-
theory treatment®' of elementary particle processes
to adopt a specific method of solution, which involves
separating the scattering matrix for a state of definite
angular momentum and parity into two factors ND™,
each with characteristic analytic properties as functions
of the barycentric energy. The function D may be
determined explicitly from N, and the singularities of
N are directly related to the dynamical mechanisms
which lead to the observed processes. The function V
either may be regarded as a function to be determined
experimentally or, more satisfactorily, it may be used
to include in the form of the scattering amplitudes those
specific features which would arise from particular
mechanisms that could influence these reaction
processes. The use of this formalism, and its relation-
ship with the reaction-matrix formalism, is discussed
briefly in Sec. IV, with special reference to the descrip-
tion of resonant states. These remarks are illustrated in
Appendix B by discussion of a simple example.

In Sec. V, the present evidence bearing on the
validity of the global symmetry hypothesis of Gell-
Mann'? and Schwinger®® is reviewed, and the interpre-
tation of the m—A resonance as an analog of the (3,3)
isobar state in the #— N system is discussed and com-
pared with the data.

II. REACTION MATRIX AND RESONANCES FOR
MULTICHANNEL SYSTEMS

We consider explicitly a system with » two-particle
channels labeled ¢=1---%, channel ¢ describing a
spinless and a spinor particle of rest masses m; and M;
respectively, with c.m. momentum .. For the total
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energy E we have, then,
E=(m2k2)HH (M2+-k2) 1

The elements of the reaction matrix K are now
defined in terms of the asymptotic form of the wave
function for an incident wave of unit amplitude in one
channel, together with standing waves in all channels.
Explicitly, with orbital angular momentum /; for
channel 7, the elements of K are defined by the form
of the wave function ¢;(? for the jth channel:

sin (k;r—3=l;) cos(kr—13iwl;)
VO ()~ b MK i (2)
1 r

where A;is a normalization coefficient given by (wp;:/k;)?
and py; is the ith diagonal element of the phase-space
density (which is diagonal in the present represen-

tation), namely,
pi=k;(M ;/wE). (3)

The wave function (2) corresponds to a configuration
in which there is an incident wave [the part of
exp(ik;-r) with orbital angular momentum /;] in
channel 7, together with a standing wave of cosine
form in all channels.”* The matrix element K;; may be
written in the form

Kij=kitiRisk;b, 4)

where the two energy-dependent factors remove the
leading term of the energy dependence of K,; in the
neighborhood of the threshold energies E; and E; for
channels 7 and j. When both channels 7 and j are open,
that is, when E> E;, E;, we have, from the hermiticity
of the Hamiltonian,

Kij=K;* ©)

If, in addition, the Hamiltonian is invariant with
respect to time reversal, the elements of the K matrix
are real, and K is a real symmetric matrix in this
region,!®

The K-matrix elements are analytic functions of the

14 More formally, the complete wave function of the system is

written
Y=¢+[P/(E—Ho)JHint¥, @)

where ¢ is an eigenfunction of the Hamiltonian H, without
interactions between channels and has here been taken to be the
projection of a plane wave, P denotes a principal value integral
at the singularity E=H,, and Hin is the interaction Hamiltonian
causing the reaction processes. It is this second term of (i) which
corresponds to the cosine wave of (2) for a two-particle channel.
The K-matrix elements are then defined, apart from normalization
factors, by the relation
Kij= (g, Ko0)= (6, Hu )

where ¢ denotes the eigenfunction of H, which corresponds to
an incident plane wave in channel 7, and ¥@ is the wave function
obtained for inhomogeneous term ¢@ in Eq. (1). For a more com-
plete reference to these formal points, we refer to the well-known
}()apser) of B. Lippmann and J. S. Schwinger, Phys. Rev. 79, 469

1950).

15 M. Gell-Mann and K. M. Watson, Ann. Rev. Nuclear Sci. 4,
219 (1954).
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total energy, with a branch cut at each threshold
energy E;, where /; is odd. The elements R;; are real
on the real axis and do not have these threshold branch
cuts. When the energy is sufficiently far below threshold
in channel 7, even the R;; generally become complex
when the dynamical singularities are reached!®: This
last point is brought out rather clearly in the dispersion
formalism discussed in Sec. IV. It is in dealing with this
region of unphysical energy values that the dispersion
formalism has great advantage over the present dis-
cussion, and there is no doubt that this formalism, or
some modification of it in the same spirit, will become
the more appropriate procedure for the discussion of the
more complicated situations which will arise in the
future.

For multiparticle channels, the defining boundary
conditions are more conveniently expressed in
momentum-space variables.' The energy E, the angular
momentum, and the parity are then no longer sufficient
to characterize the configuration completely, and further
continuous variables are necessary to characterize the
sharing of the total energy and the total angular
momentum among the particles. In this case, the label 7
becomes continuous and the reaction matrix becomes
an integral operator.

In principle, for complete theoretical expressions with
the correct analyticity properties, it is necessary to
give the K-matrix elements for all possible channels,
open or closed. In practice, however, we aim only to
obtain expressions valid over some limited energy
range; in this case, attention may be confined to the
open channels and to those channels whose thresholds
lie close to this energy range, as discussed by Dalitz
and Tuan.? In the cases discussed here, the three-
particle channels either are weak or have thresholds
outside the range of interest, and we do not have to
consider multiparticle channels explicitly. For this
reason, and because of the mathematical complexity of
situations involving multiparticle channels, we do not
go into further detail about this here.”

The formal relation of the scattering matrix T to the

16 For example, with a potential interaction in a one-channel
case, this point is reached for an energy such that y2V(r)
A~erV/ (r) — © as r — w where « denotes | £|. For the case where
the potential interaction V(#) is asymptotically proportional to
¢, this occurs for total energy E= (M2—a2/4)}+ (m*—a?/4)t.

17 The main mathematical problem lies in carrying out the
matrix inversion specified in Eq. (6) for the evaluation of the
scattering matrix from the reaction matrix. For a system with
multiparticle channels, this involves the inversion of an integral
operator, that is, the solution of an integral equation for T,

T(1—impK) =K. @)

This is the integral equation first discussed by W. Heitler [T/e
Quantum Theory of Radiation (Oxford University Press, New
York, 1944), 2nd ed., Sec. 25. See also W. Pauli, Meson Theory o
Nuclear Forces (Interscience Publishers Inc., New York, 1946)

in connection with “radiation damping,” the term used at that
time to describe the effect of the unitarity condition on scattering
and reaction amplitudes. An exactly analogous situation arises
in the dispersion-theory formalism for multiparticle reaction
channels, of course, and this has been discussed recently by R.
Blankenbecler [Phys. Rev. 122, 983 (1961)].
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reaction matrix K is given by the equation
T=K[1—impK ], (6)

where p denotes the matrix of phase-space densities.
In terms of T, the cross section for the reaction ¢ — j
in a state of total angular momentum J and definite
parity is then given by

o(i— j)=nx*/k:)- (J+3) M/ E) |G| T| ) %55 (7)
For any two-particle channel ¢, the elastic scattering

in this channel may be described by a complex phase
shift §;, such that

@| T |3)=e®: sindi/mpii, (8)
or by a complex scattering length 4 ;= a;+1b;, such that
ki cotdi=A = (a+ibi) 7, ©)

and
G| T|iy=A:/ (1—ikAy). (10)

We now distinguish channel ¢ from the other channels f
and subdivide the reaction matrix K as follows:

(Oli 8 i)
- )
Bit v

where «; denotes (i|K|i), 8: denotes the row matrix
whose elements are (i| K| f) for f#1, 8t its Hermitian
conjugate (equal to the transpose of 8, if time-reversal
invariance holds), and +v; denotes the submatrix
obtained by excluding from K the row and column
labeled 7. In other words, 3; includes the elements of K
describing transitions from ¢ to all other channels, and
v: consists of all those elements describing transitions
between the channels f. Then the following expression'®

(11)

18 Derivations of these formulas, and most of the subsequent
formulas of this section, are found in reference 2, for two-particle
channels. However, these formulas are in fact quite general and
hold valid when the channels f include any number of multi-
particle channels. They are most readily derived by first expanding
(6) as a series of powers of K, then separating out subsummations
of terms accordingly as they link ¢ with ¢, ¢ with f, f with 2, or f
with f, and finally summing up all the subseries obtained in this
way. I'or example, the result (12) may be derived very directly,
as follows:

T'=K+ (ir)KpK++ - -+ (im)"KpKpK - - - p
=K+inK (PitQi)pK++ -

+ @m)"K (Pi+Q:)pK (Pi+Qi)pK - - -pK+- -+,  (ii)

where P, is the projection operator for channel zand Q; its comple-

ment (1 —P;). To obtain the diagonal element of 7', that is,

P;TP; in this notation, the sum (ii) may be regrouped (recalhng
P2=P; and Q:2=(Q;) to give the form

Koo @)

P TP;=A+inApiA+- - -+ (@m)nApidpid -+ -pi A+ -+
=A(1—imp;A)7, (iii)
where A4 is given by
A=P{K+irKQipK+ (iw)2KQ:pKQ:pK+- - -
+ (i) KQipKQipK - - -pK 4+ -} P;
=P{K+irKQ;(1—iwQipKQ:)'QipK} P;, (iv)

which is precisely the curly bracket of expression (12). Other
examples of the use of this technique for situations of interest
here are to be found in reference 2, pp. 330-333.
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relates a,+1b; to these matrices:
aitibi= (M/E){a;+inB:(1—impsyi) p,8:1}.  (12)

In a similar way, the transition amplitude may be
expressed in the form

(@|T]f)=(A—ikids)™ (llmzlf% (13)

where the first factor results from the damping effect
of the competing channels on the incident channel, and
the second factor is the appropriate element of the
transition matrix 9; from initial state ¢ to all final
states, which includes the effects of the scattering
processes in the final states, namely,

My=Bi(1—impry:) . (14)
The imaginary part of 4, is directly related to 917, since
Ai= M/ E){artimB:(1—imprys) o (1+imvins)

X (1+imyps)7'B:t}  (15)
= (M i/ E){eitin Wi (ps+imp ryips) it}
so that we have
M; M,
bi=m—{Mip My =7— 3 | G[N:] )]s  (16)
E E 5=

Finally, an important expression for the partial cross
section for the reaction ¢ — f may now be obtained,
using (13) and (7),

i) (]+1)47r M; 1
— )= ..
7\ : ki E (1+k1b;)2+(kmaz)2

JUEATION
- [ Zona-an)

X((Mi/E)|<iImilf>l2pf Can

b;

where the last bracket may be abbreviated as {b:;/8:},
and b;=32_ s.bis. Expression (17) has a simple physical
interpretation. The first factor is the total absorption
cross section for incident particles in channel ¢, for 5,
denotes the usual absorption parameter

m=exp(—2 Im &;)= | (1+1k:ds)/ (1—ikid5) |2 (18)

The second factor then gives the fraction of the absorp-
tion transitions out of channel ¢ which lead to the final
channel f.

We now restrict the discussion to the case of coupled
K-nucleon and r-hyperon channels of definite J, parity,
and isotopic spin I. For channel i, we take the K—N
channel, so that « denotes the diagonal element of K
for the K N channel, 8 is the row matrix (8s,84) for
the transitions K+N — m+7Y, and v is the submatrix
of K referring to the #—Y channels. The scattering
length a-+ib now refers to the K— N channels. Accord-
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ing to (16), its imaginary part b is proportional to the
square of 917, the transition amplitude defined by (14)
carrying the K—N channel to the #—Y channels. Its
real part ¢ is given by

a= (My/E){a—n*(MpyyprIH)}. (19)

Unless v is particularly large, the values of ¢ and
aM y/E are rather close when the imaginary part b is
small.

In the low-energy region for the K—N system, the
simplest possible assumption for the s-wave interaction
is that (a+1b) is constant. This is generally referred to
as the “zero-range approximation” and corresponds to
the assumption of a constant K matrix and the neglect
of the variation of py with energy. This is not unreason-
able if the (KA) and (KZ) parities are odd, since the
w—Y channels are then s wave ; however, for odd (KY)
parities, the centrifugal barrier effect causes the
elements of By to have the energy dependence Byqy
(at least for sufficiently low momentum gy), where ¢y
is the c.m. momentum in the relevant #— ¥ channel,
and the elements yyy- to have the form Cyy.qyqy,
where B and C denote smoothly varying real functions
of E. In the latter case, it would be surprising if the
imaginary part of 4 did not have quite appreciable
energy dependence.

An effective range theory has been developed for
the representation of the K matrix by Ross and Shaw.!
For this purpose, the appropriate quantity to consider
is the reciprocal matrix K~ Firstly, for the case that
1;=0 for all channels, the effective range expansion
improves on the assumption of a constant K matrix by
making a linear approximation to the energy dependence
of K,

K'=Ki'+B(E—E,)=A+BE. (20)

The discussion given by Ross and Shaw makes it
apparent that the symmetric matrix R, given by

R=M/"BM (21)

where the matrix M, of reduced masses for each channel
has been introduced for dimensional reasons, may be
interpreted as an effective range matrix in exactly the
same sense as is well known for the one-channel case,
and also makes it plausible that the off-diagonal
elements of R are generally somewhat smaller than the
diagonal elements in the representation in which the
phase-space density p is diagonal. With (6), the T'
matrix is then given by

T=(A+BE—imp)™. (22)

More generally, the quantity appropriate for expansion
in powers of E is the matrix (R)K1(k?), where (k%)
denotes the diagonal matrix with elements (%;)%; thus,

K= (k)(A+BE) (k") (23)

19 M. Ross and G. Shaw, Ann. Phys. (N. Y.) 9, 391 (1960);
“Multichannel effective range theory,” Ann. Phys. (N. Y.), to
be published (1961).

R. H. DALITZ

We remark next that the discussion following Eq.
(11) of the structure of transition amplitudes {¢|7T'| j)
is equally valid if the label 7 is extended to refer to a
group of channels; in this case, the label f refers to all
the remaining channels. For the channels z, the sub-
matrix T'; of the scattering matrix 7" may be obtained
by exactly the same methods'® with the form

Ti=G(1—imp, @) (24)
where @ is the matrix analogous to (12),
(i=a¢—l—i1rﬁ¢(1—iwpﬁi)‘lpfﬂﬁ. (25)

It is of interest to note that expression (24) again has
the form (6), and that @ plays the role of an ‘“‘equivalent
reaction matrix” for the channels ¢ considered alone.
In general, this “equivalent reaction matrix” @& has
complex elements, although it remains a symmetric
matrix. Physically, this feature corresponds to the use
of a different boundary condition for the channels f
from that used for channels 7 in the definition of the
reaction matrix K, namely, that there are now only
outgoing waves in all the channels f. For energies such
that some of the channels f are open, this modification
has no particular virtue.? However, if group 7 is chosen
such that at energy E all the channels ¢ are open and
all the channels f are closed, then this modified
boundary condition is especially appropriate to the
physical situation. In each channel f, the c.m. mo-
mentum is then imaginary, with the value k;=1|k;|,
and the condition of outgoing waves becomes the
condition that the wave function falls off exponentially
with increasing distance in the closed channels f.
Further, since ip;= — p; in this energy range, the matrix
@ is real and symmetric and does have the form of a
reaction matrix for the channels 7. We refer® to @ as
the reduced reaction matrixz for channels 7. Finally, we
remark that if the channels f were isolated from the
channels ¢ (that is, the off-diagonal elements 3; of the
K matrix were replaced by zeros) and with interactions
corresponding to a reaction matrix v;, the condition
for a bound state in the system of channels f is given
by the eigenvalue equation

det(1+4mpsv:)=0. (26)

2 There are, however, many particular situations where explicit
reference to the open channels f is very complicated (for example,
if the channels f are multiparticle) and not of interest to the matter
at hand. For such cases, the use of the ‘“‘equivalent-reaction
matrix” @ would be convenient for the discussion of the energy
dependence of the cross sections relating channels 7; for example,
for the discussion of cusp behavior at thresholds for some of the
channels ¢. Such a situation arises in the discussion of cusps for
A—K production at the Z—K thresholds, where it is not of
interest to specify in detail the features of the competing v+N —
N —+m-m processes.

21 This transformation to a ‘“reduced reaction matrix”’ with the
elimination of explicit reference to the closed channels is well
known in nuclear reaction theory. For a particularly clear dis-
cussion in a standard text, we refer to R. G. Sachs, Nuclear Theory
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1953), p. 295.
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This may be seen in a number of ways; for example, in
the case that matrix 8; is taken as zero, the scattering
matrix 7T'y; reduces to

Trp=vi(l—impsy:) ™, (27)

and Eq. (26) is the condition for T, to have a pole on
the real axis below all the thresholds E; for the channels
f. Alternatively, Eq. (26) represents the condition that
it is possible, for an energy value E<Ey, to form a
linear combination y=3_; c;¢ " of the states ¢ given
by Eq. (2), such that the asymptotic form of ¢ is
exponentially damped in all channels f. We note that
Eq. (26) is also the condition for the vanishing of the
denominator of the second term of expression (25) in the
energy region E<Ey. _

In the present example of coupled K—N and 7—V
channels, this transformation to the reduced reaction
matrix is appropriate for the discussion of the 7—Y
channels below the K—N threshold E,=My+Mx.
The scattering matrix for the #— ¥ system then takes
the form

Tyy=T({1—1impyI)7, (28)

where, in terms of the matrices @, 8, and v defined
previously for the K—N and w—Y channels, the
reduced reaction matrix I' has the form

I=vy+imB" (1—impxa)pxp. (29)

The eigenphases of the scattering matrix are most
conveniently defined in terms of a modified matrix 77,
directly related to T" by the equation

T'=mp*Tp=K'(1—iK")™, (30)

where the matrix K'=mpiKp? is again a symmetric
matrix and the submatrix of K’ referring to open
channels is both real and symmetric. The eigenvalues
of T may be written in the form e®:sind,: For the
submatrix of 7" referring to the ¢ open channels, these 4
eigenphases are all real. In the present review, we
define a resonance energy E, as an energy E at which
one of these eigenphases passes through a value (n+43%)m,
for some integer 7. From the relation between K and 7T,
it then follows that, at these energies E,, the reduced
reaction matrix K  for the open channelsbecomesinfinite.
The corresponding resonant state is the eigenstate of the
scattering matrix corresponding to this particular
eigenphase.

For a multichannel system, these resonances can
arise in two distinct ways:

(a) The complete reaction matrix may have a pole
in E at the real energy value E,. This is the situation
usually discussed in nuclear reaction theory. In this
case, each of the matrices v, 8, and a in Eq. (25), for
example, have a pole at the same energy value E,.

A simple example of this situation is given at once by
the effective-range approximation of Ross and Shaw.!?
The matrix

K=(A+BE)™
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has poles only on the real axis, since (A+BE) is a
symmetric real matrix; these poles occur at energy
values for which det(4-+BE)=0, and are then common
to all elements of K. Only those energy eigenvalues
which lie within the region of validity of the effective
range expansion may be expected to represent physical
resonances.

A well-known example of such a resonance is the (3,3)
m— N resonance, for which

K=[#/(E—My)LG/4f)—r(E-Mx)]7, (1)

where f?~0.08 denotes the pion-nucleon coupling con-
stant and the effective range parameter 7 has been
determined empirically.

(b) The reduced reaction matrix Kz may have a
pole occurring in the terms which arise from the closed
channels, that is, at energies for which det(1+4p;v.)
is zero. At these energies, elements a;, 3, and v, of the
complete reaction matrix K do not become infinite.
The physical interpretation of these resonances is that
they would correspond to bound states in the closed
channels f if it were not for their coupling to the open
channels 7, as a result of which they appear as resonances
in the open channels 7. For this reason we have referred
to these resonances as virtual bound-state resonances?
The possibility of such resonant states obviously arises
only in multichannel situations. Their occurrence is
due primarily to interactions existing between the
particles in the closed channels and they are generally
located not too far below the threshold energy for a
new channel.

These possibilities can be illustrated conveniently
by reference to the coupled K—N and m—Y systems.
For E<E.=M y-+mg, the reduced reaction matrix T
of Eq. (28) becomes

I'=y—nB(1+rpxa)'pxB, (32)

where px ‘denotes the modulus of px and we have
assumed that time-reversal invariance holds in re-
placing B by 8. A resonance of the first type occurs in
this energy region if , 8, and y have a common pole on
the real axis in E. This would occur for the I=1pyr—Y
state (cf. Sec. V), if the #—Y interaction is analogous
to the m—J/V isobar interaction, as envisaged in the
global symmetry hypothesis. This situation could occur
either above or below the K—N threshold. Although
there would, in either case, be a component of the
K —N state in the resonant state, this would not be a
dominant component here. A resonance of the second
type is possible only below the K—N threshold and

22 Rescnances of this type have frequently been discussed in
particular contexts. For example, R. Karplus and L. Rodberg
[Phys. Rev. 115, 1058 (1959)] have referred to this possibility
for the I=% Z— N system in their discussion of K- deuterium
reactions. R. H. Dalitz and S. F. Tuan [reference 2 and Phys. Rev.
Letters 2, 425 (1959)] first discussed this possibility for the
K — N and 7#— Y coupled systems. A general discussion for coupled
two-particle systems has been given by L. Fonda and R. G.
Newton [Ann. Phys. (N. Y.) 10, 490 (1960)7].
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then appears as a pion-hyperon resonance. It can occur
only if a is such that (14mpxe) vanishes between the
xw—A and the K— N thresholds. This requires that  be
negative and sufficiently large. If the imaginary part of
the K— N scattering length 4 is small, this condition
is essentially equivalent to the requirement that the
real part of 4 be large and negative. In order that the
resonant phase shift pass through 90 deg rapidly
enough to give rise to a marked resonance bump in
m—Y scattering, it is necessary that the coefficient
(mBpxB) of the resonance term in (32) be sufficiently
small: This is equivalent to the requirement of a
sufficiently small value for the imaginary part of 4 at
the resonance energy.

The eigenphases of the #— Y system are most con-
veniently obtained by the diagonalization of

(33)

whose eigenvalues give the values of tand,. Near a
resonance of the second type, where the term y may be
neglected in first approximation, this diagonalization
is particularly simple. In the neighborhood of resonance,
the resonant eigenstate has the form

I=mpyToy?,

¥r={Bs"(02")}| Zm)+Ba" (")} Am)}, (34)
and the resonant phase shift is given by
tand, = [7(Bs%0s+Ba%0n)px/ (1+mpxa) JH+C.  (35)

The correction term C may be obtained near resonance
by taking the expectation value of I' in the resonant
state (34), thus

Cr=m(v2:B5%0z+ 27218284 (pzpn) ¥
+v4a8a%01)/ (B=Pp=+Ba%pa).  (36)

In this region, the nonresonant phase shift is given by

tand .= (pzpa) } (Ba’yzz+Bs*van
+284Bxvaz)/ BP0z +B%0n).  (37)

These expressions are valid only when the resonance
energy lies above the m—Z threshold. If the resonance
energy lay below this threshold, it would be necessary
to take ps=-1ipz and to include the m—Z2 channel
among the closed channels f.

If Bz and By are relatively small, and o relatively
large (and negative), the phase shift 6, passes rapidly
through 90 deg at the resonance energy defined by the
relation (14mpxa)=0. The shape of the cross section
in the resonant state then depends on the value of C,,
as is well known in the parallel case of resonances
observed in the scattering of low-energy neutrons by
nuclei. “Potential scattering” in the pion-hyperon
system, which the term C. represents, would have
quite a marked effect on the symmetry of the resonance
curve. If C, were large, the cross section would generally
fall to zero for an energy near the resonance energy
before rising to the resonance maximum. For the
observed w—A resonance, the degree of symmetry in
the resonance curve shows that there can be, at most,
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quite moderate potential scattering, indicating that
the term C, (and correspondingly the elements of v)
corresponds to quite a small phase angle. The curves
shown in Fig. 1 illustrate the effect of potential scatter-
ing on the w—A scattering for a particular situation.

At resonance, the structure of the resonant state is
given by the wave function (34), from which we
conclude the following expression for the branching
ratio Z/A for the resonant state:

(Z/)r=(Bs"/Bx")*(ps"/ps"). (38)

When the resonant state is produced, the nonresonant
m—V state orthogonal to (34) is generally produced
also. At resonance, the matrix elements for these two
contributions are approximately 90 deg out of phase
so that, provided the resonance is reasonably sharp,
there is little interference between the resonant and
nonresonant A (or 2) production, and production
through the resonant state is generally dominant. In
this case, the (Z/A) ratio observed in production
processes may be generally expected to be given by the
ratio (38), although it is quite possible for deviations
to occur in special circumstances.

III. K-NUCLEON INTERACTION AND INTERPRE-
TATION OF THE Y* RESONANCE AS A
K—N BOUND STATE

The data available on the scattering and reaction
cross sections for K~—p collisions at low energies
(lab momentum <200 Mev/c) are still rather limited.2
For the K~ mesons that come to rest in liquid hydrogen,
the branching ratios for the reactions

K~ p—Z+a+ (392)
— D040 (39Db)
— 2ta— (39¢)
— A4-7® (39d)

are known. I'rom the arguments concerning the role of
the Stark distortion of the K~— p atom in these K——p
capture processes, as discussed by Day, Snow, and
Sucher,? we assume that these ratios are characteristic
of the K— N s-wave interaction at zero energy. From
these, we obtain three parameters of interest,

o1/o0= (Z*+27—22°4+A)/32", (40)

the relative intensity of the I=1 and /=0 final pion-
hyperon states in zero-energy K——p capture,

e=(A/Z4+A)=A/(Et+Z7—2244),  (41)

the proportion of I=1 absorptions which lead to A
hyperons, and ¢, the relative phase between the =0

% Luis W. Alvarez, Lawrence Radiation Lab. Rept. UCRL-9354
(August, 1960) (unpublished).

2T, Day, G. Snow, and J. Sucher, Phys. Rev. Letters 3, 61
(1959). See also G. Snow, Proc. Ann. Rochester Conf. High-Energy
Phys. 10, 407 (1960).
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and I=1 amplitudes for the =4 reactions. As dis-
cussed in Appendix A, the parameters e and ¢, are
rather poorly determined, mainly because of the
dominance of the /=0 reaction channel over the I=1
channel.

In the (lab) momentum range 100-200 Mev/c, total
cross sections are available for K—— p elastic scattering,
for the charge-exchange reaction

K~—+p— K+, (42)
and for the absorptive reactions (39a) and (39c) leading
to charged hyperons. The total absorption cross section
is not yet available; also, separation between reactions
(39b) and (39d) is difficult and has not yet been
achieved in this energy range. For elastic scattering,
the statistics are sufficient to show that the angular
distribution is quite isotropic, except at forward angles
where the Coulomb scattering becomes important. In
the angular distribution at 175 Mev/c, the Coulomb-
nuclear interference is quite weak, showing that the
real part of the elastic scattering amplitude is rather
small at this energy. The value obtained at 175 Mev/c
is Re (f)=0.3+£0.3 f, corresponding to a weakly
constructive interference, but a more careful analysis
of the data is necessary and is at present under way.?
Within statistics, the other angular distributions are all
consistent with isotropy. Since the absorption cross
sections show the rapid decrease with increasing energy
characteristic of s-wave absorption, and since the
elastic cross section varies slowly over this energy
range, the evidence is strong that the K—— p interaction
is predominantly s wave? below 200 Mev/c.

These data on total cross sections in the region
100-200 Mev/c and on the zero-energy reactions is
just sufficient for a rough determination of the s-wave
scattering lengths A, and A4, provided that these are
assumed to have negligible energy dependence between
zero and 175 Mev/c momentum (lab). In this analysis
(discussed in Appendix A), the (K—,K°) mass difference
must be taken into account, as it has a quite strong
effect on the expressions for the reaction rates in the
low-energy region.??"28 The four sets of scattering
amplitudes (4,41) obtained are listed in Table I. It is
seen that their values are not yet accurately determined.
On the other hand, for each set, the outstanding
qualitative features are now rather definite. For
example, for the (e—) set, 4, has a large negative
real part and a small imaginary part; 4, has a large

% R. Ross and W. Humphrey, Lawrence Radiation Laboratory
(private communication).

26 At higher energies (400 Mev/c), it is known? that there is a
strong p-wave interaction, both from the nonisotropic angular
distributions (especially for elastic scattering) and from the
magnitude of the total absorptive cross section (which exceeds the
s-wave limit).

(1;"5‘5.) D. Jackson and H. W. Wyld, Phys. Rev. Letters 2, 355

2 R. H. Dalitz and S. F.

Tuan, Ann. .Phys. (N.Y.) 8, 100
(1959).
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Tasie I. K—N scattering lengths.»

Set Ao () 4, ()

(a+) 0.05:;:0.2+i(1.10f8;§ 1.45i0.2+i(0-35f8j8?

(a=) —0.7570331i(200.35)  —0.852:0.154i(0.21£0.04)

(0+)  1.2540.4-i(2.0-£0.3) 0.752:0.243(0.24-£0.05)
®-) —1.8510.15+i(1.10f8§ —0.10420.24+4(0.65:£0.15)

a Note that the sign convention is chosen such that k cotd =1/A4, so that
a positive real part for A corresponds to constructive interference with
Coulomb scattering, a negative real part to destructive interference, and
the imaginary part of A4 is necessarily positive.

imaginary part, whereas its real part is rather poorly
determined and may be either large or small.

From the discussion in Sec. II, it is apparent that
an interpretation of the Y™ resonance in terms of an
I=1K— N bound state requires that the (a—) set, the
only set for which the /=1 amplitude 4, has a large
negative real part, be the physically correct set. We note
that the (¢—) amplitude 4; gives a low rate for the
absorption process K+N — V-, which is in good
correlation with the relatively narrow width (I'/2=20
Mev) reported for the ¥* resonance.®® [We note also
that, with the (¢—) amplitudes, it is conceivable that
there might exist also an /=0 K— N bound state which
would appear as a 7=—Z7T resonance. Because of the
large value of &, this resonance would probably be
rather broad and correspondingly difficult to detect.
Although this possibility exists, there is no compelling
reason at present to expect this to be the case; ap may
well be quite small, and may correspond to a repulsive
interaction. |

Since the resonance is narrow, it is sufficient for the
determination of the parameters of this resonant state
to consider the =1 elastic scattering amplitude (8),

_ _ E e?®sind E A,

(KN|T|KN)=—-- =

My k My 1—ik4,

in the unphysical region of negative K—N kinetic
energy. In this region we have k=-ix, where
K=[2[LK(E¢—E)]%, Et=MN+mK, and ux is the K—N
reduced mass. We make a linear approximation of the
Breit-Wigner resonance form (E—E,+:T'/2)~! to the
denominator factor of (43) and are then led to conclude

that the resonance energy E, corresponds to «,
=[2ux(E;—E,)J'=|a:|™, that is,

E.=My+mg— (2uga®)™, (44)

as expected from the expression (35) for the =#—V
scattering phase and from the smallness of 4, and that
the width is given by?

T/2=bi?/ (ux|a1])=b1/(ux|a:1]?). (45)

2 A derivation of this result for a simple zero-range model of
the K — N bound state is given in reference 31. When 4, is replaced
by %(bo+b;) and |a;| by the Bohr radius B of the K~—p atom,

, (43)
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F1c. 1. Pion-hyperon scattering cross-sections calculated for the
(a—) set of K—N scattering amplitudes, with a; adjusted to
locate the resonance energy at 1382 Mev and 4;=0.20 f. The
curves shown are as follows: (a) the total 7—A elastic scattering
cross section, with #—A and 7—2 systems both s3, and with zero
potential scattering (y=0); (b) the same, with the potential
scattering chosen to give a potential scattering phase of 6= —15
deg at the resonance energy; (c) the total =—A elastic scattering
cross section with #—A and = —Z systems both p;, and with zero
potential scattering; and (d) the energy dependence of the total
m—2 elastic scattering cross section (arbitrary normalization),
with the assumptions of case (c).

In these expressions, the values of ¢; and &; which
appear should be taken at the momentum k=-ix,
corresponding to the resonance energy E,. If the energy
dependence of a; and by is neglected, the I=1(a—)
amplitude leads to the value «,=230(4=40) Mev/c.
This corresponds to a resonance energy at 82(4=30)
Mev below the K——p threshold, i.e., at mass value
M*=1350(=%30) Mev, which is not in disagreement
with the observed location of the ¥* resonance. Accord-
ing to (45), the corresponding half-width of this
resonance is I'/2=214-4 Mev. In making this estimate,
we have adjusted a1(x,) to the observed value, that is,
to the value giving the observed resonance location M*
according to Eq. (44). The narrowness of this resonance
is due partly to the smallness of b, which reflects the
slowness of the I =1 K4-N — YV--r transition rate, and
partly to the largeness of a1, as a result of the corre-
sponding diffuseness of the K— XN bound-state system.

A more adequate discussion of the resonance shape
may be based on the expression (35) for the #—V
scattering phase in the resonant state. However, the
matrix v is not known. If we first consider the approxi-
mation of taking y=0, the parameters 8z and 84 can be

the expression (45) corresponds to the well-known result for the
lifetime width of the 1s K~—p atom [see, for example, T. L. True-
man, Nuclear Phys. (to be published, 1961) and references quoted
there], apart from a factor of 2 which has its origin in the difference
in form between the K — N wavefunction [~exp(~—7/|ail)/r] for
zero-range interaction and the 1s Coulomb wave function

[~exp(—7/B)].
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related to the zero-energy data if we assume them to
have the simple energy dependence appropriate to the
angular momentum of each channel, and the expression

4 (kby)?
c(rt+A—-rtA)=—m —— (46)
qa® | 14-xa |2+ (xb)?

is then obtained for the s-wave 7—A elastic scattering
cross section, where

b="bz+br=Bs*0s+Br’pa

is to be taken as energy-dependent.

The resonance shape given by (46) is shown in Fig. 1
for several cases of interest. For s-wave =— A resonance,
the shape is somewhat asymmetric, with a long tail on
the low-energy side; the full width at half-maximum is
42 Mev, in agreement with that given by expression
(45). Although, as remarked in Sec. II, a large value for
v does appear excluded by the degree of symmetry
observed for the resonant state, a moderate value of v
would not distort the resonance curve unreasonably.
In fact, the rather symmetric resonance curve (b) of
Fig. 1 has been drawn by taking the (arbitrarily chosen)
value C/ga=—0.33 f in expression (35); it is noticed
that this assumption of a moderate finite value for v
has not appreciably affected either the half-width or
the location of the resonance. If it is supposed that the
(2,A) parity is odd, so that the corresponding =—2
system is pj, the corresponding curve for o(r+2Z—
7+2) is given by curve (d); owing to the centrifugal
barrier, this resonance curve is displaced upward in
energy a little (~7 Mev). If the 7—A resonant state
is p3 [corresponding to even (KA) parity ], the resonance
shape is rather symmetric for y=0, the lower side being
suppressed by the decrease in b, as the energy falls, but
the half-width is rather smaller (=14 Mev) as a result.
These variations illustrate the uncertainties inherent
in any attempt to predict the width of the ¥* resonance
on the basis of this model at present. Rather, a definite
measurement of the resonance half-width would be of
value for the interpretation of the detailed character
of the K—N bound state and its outgoing channels.

This interpretation of the w—A resonance naturally
requires that j=3% hold for the ¥Y* spin. The experi-
mental evidence appears consistent with this assign-
ment,*5 and the evidence on the polarization properties
of the A decay when the Y* resonance is produced in a
polarized state further suggests that the 7—A system
resulting from Y* decay is in an s; state. The latter
situation requires that the (KA) parity be odd, and
this requirement is consistent with what other indi-
cations exist concerning the (KA) parity.®%

Finally, this interpretation allows a simple explana-
tion®! of the excitation function observed® for ¥*

%M. M. Block, F. Anderson, A. Pevsner, E. M. Harth, J.
Leitner, and H. Cohn, Phys. Rev. Letters 3, 291 (1959).
31 R. H. Dalitz, Phys. Rev. Letters 6, 239 (1961).

(47)
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production in K=+ collisions. On this view, there is
quite a close analogy between the Y* production
reaction

E+N — x4+ 7% (48)
and the well-known nucleon-nucleon reaction
N+N — n+d. (49)

For the latter reaction, it is known that the pion
production is predominantly p wave for final c.m.
momentum above about 50 Mev/c, and it is now
believed that this is a direct consequence of the pseudo-
scalar nature of the pion.® Regarding the Y* as a
K — N bound state analogous to the deuteron, the pion
in reaction (44) can be emitted only from the nucleon
(the interaction K — K+ being forbidden by angular
momentum and parity conservation), and the analogy®
between these reactions leads to the expectation that
p-wave pion production should be dominant in the ¥*
production reaction also, sufficiently far above the
threshold energy.

~ The £/A ratio observed for V* decay is quite small;
in fact, there is at present almost no clear evidence for
a resonance in the Z— system at the ¥* energy and
an upper limit at approx 109, has been placed” on the
ratio (Z%~+277%)/(Ar"). In terms of the present
interpretation, it is difficult to make any prediction of
this ratio, except by an extrapolation from the Z/A
ratio in /=1 absorption at the K~— p threshold, which
depends on some additional assumptions. As discussed
in Appendix A, this threshold ratio is known rather
poorly, but it is shown that a lower limit of 0.25 can be
placed on it from the observed /2t ratio and the
(A+7°) rate at threshold. In terms of the reaction
matrix elements, this threshold ratio is given by?

(2) B (ﬁz‘)2 pst 14 (rpat (Batyast—Bstvant) /Bst)?
A/ Al

ﬁ_ P; 14 (rpxt (Bx'ysa'— Batysz?)/Br?)?
(50)

where very little is known of these elements of 7. As
remarked previously, there is no indication from the
resonance shape that these elements are at all large.
If we first neglect them, the relationship between the
Z/A ratio at threshold and at resonance may be dis-
cussed as follows:

(@) sy resonance for both w—A and w—3 channels.
Here the natural approximation is to neglect the
energy dependence of 8y and By, so that the /A ratio
falls from the threshold value only because of

3 This analogy also suggests that the state in which =4 V*
production is dominant is that in which the #— N (3,3) resonance
can be effective. Then, the =4 Y* production may occur pre-
dominantly in the /=1 K~—p channel, and mainly from the
#y incident wave. The first of these conclusions is consistent with
the observation that the (Y**/¥V*") ratio is unity for K—+p
interactions up to approx 1000 Mev/c lab momentum, and that
¥* production is strong in K30+ collisions [H. J. Martin, L. B.
Leipuner, W. Chinowsky, F. T. Shirely, and R. K. Adair, Phys.
Rev. Letters 6, 283 (1961)].
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the fall in the phase-space ratio ps/pa. Since (pz/pa) is
~0.8(pz/pa)s, it is clear that a ratio as small as that
observed can be accounted for only if the parameters
Bz and B, have quite appreciable energy dependence
over this energy range, or if the elements of v are
sufficiently large at threshold to modify this com-
parison. Neither of these possibilities gives a simple

interpretation of the data.

() py resonance for the w—2 channel. If the (KX)
parity were even, the final 7—2 system would be p;,
and the natural assumption on the energy dependence
of Bz is that of proportionality to g¢s. Since the ¥V*
energy is about 55 Mev above the w—2 threshold,
g="~120 Mev/c, and (Bs"/B:%)2~0.45. In this case it is
conceivable that a (Z/A), ratio aslow as 0.25X0.8X0.45
=0.09 is compatible with the threshold data, and this is
comparable to the upper limit quoted by Dahl et al.5
If it is supposed that the (KA) parity also is even, so
that the w—A resonant state is p; and (847/84%)?~0.66,
a somewhat less favorable ratio (Z/A),~0.14 results
from these simple assumptions on the energy depend-
ence of Bz and Ba.

At this point, we must emphasize that there is no
clear-cut experimental evidence which otherwise re-
quires that the (a—) amplitudes are the physically
correct ones. Not even the sign of the real parts of the
amplitudes is definitely established. In principle, this
last could be achieved from the observation of the
Coulomb-nuclear interference in K~—p elastic scatter-
ing at low energies. At lab momentum of 172 Mev/c,
the scattering amplitudes corresponding to the (a+)
and (a—) solutions of Table I are

f(a)==0.35-0.74i. (51)

The real parts of these scattering amplitudes arise
almost entirely from @¢; and are moderately well
determined (within about 209%,). Owing to the domi-
nance of the absorptive part of f, however, a clear-cut
decision between the two sign possibilities is difficult
and will probably not be achieved until the statistics
on K~-proton scattering are greatly improved. For
K~-nucleus scattering, the optical-model potential is
known to be attractive. This conclusion was con-
vincingly argued by Alles et al.® several years ago from
observations on the inelastic scattering of low-energy
K~ mesons by nuclei, and has also been reached in the
study of small-angle scattering of K~ mesons by
emulsion nuclei.** However, if we think in terms of
potential interactions, we must realize that the existence
of a K—N bound state means that the potential
corresponding to the /=1 (a—) amplitude must
actually be strongly attractive. In this situation there

®W. Alles, N. N. Biswas, M. Ceccarelli, and J. Crussard,
Nuovo cimento 6, 571 (1957).

# P. B. Jones, Phys. Rev. Letters 4, 35 (1960); M. Melkanoff,
D. J. Prowse, and D. H. Stork, ibid. 4, 183 (1960); R. D. Hill,
_{1 H.)Hetherington and D. G. Ravenhall, Phys. Rev. 122, 267

1961).
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is some doubt* as to whether the sign of the K—-nucleus
potential at low energies really provides any clear
indication of the sign of the real part of the K—N
scattering amplitudes.

The (b—) solution differs most markedly from the
other amplitude sets in the behavior it predicts for the
absorption cross sections. For this solution, the I=0
absorption cross section falls more rapidly with in-
creasing momentum, while the /=1 absorption cross
section falls less rapidly than for any of the other
solutions. Thus, whereas the other solutions give values
for o(A) between 7 and 9 mb, and for ¢(2°) between 12
and 14 mb, at (lab) momentum 172 Mev/c, the (b—)
solution leads to ¢(A)~16 mb and ¢(Z%) =9 mb. This
corresponds also to a much stronger energy dependence
of the A/(Z°+A) ratio for the (6—) solution than for
the others; the ratio predicted at 172 Mev/¢ (for value
0.21 at zero energy) is 0.63 for the (b—) solution,
compared with the predictions 0.37 for (a+), 0.31 for
(a—), and 040 for (b+). It is expected that data will
soon be available on this ratio in this momentum
region,2 Another experimental parameter of particular
interest is the 2—/Z* ratio, whose mean value averaged
over the (lab) momentum interval 100-200 Mev/c is
0.95-£0.3. The energy dependence of this ratio depends
on the energy dependence both of the absorption cross
sections a9 and o1 and of the phase angle ¢ between the
corresponding matrix elements Mo(Z) and M. (Z). If
the KV N parity is odd, or if the final state scattering
is weak, it is natural to assume that the energy depend-
ence of ¢ arises entirely from the initial state scatter-
ing.? With the value 2.18 for the Z=/2Z% ratio at zero
energy, the mean Z~/2* ratio predicted for the 100-200
Mev/c (lab) momentum interval is 0.83 for the (a—)
solution, 1.45 for the (b+) solution, in agreement with
the data, whereas the values predicted with the (a+)
and (b—) solutions are 2.15 and 3.24, respectively. It
must be borne in mind, however, that, especially if the
KYN parity is even, the neglect of energy dependence
for the final state scattering may be an uncertain
assumption.

There are considerable data available on K——
deuterium scattering and reactions in the low-energy
region.236 The analysis of this in terms of the K—N
interaction amplitudes is complicated, however, by the
strong initial- and final-state interactions which occur
in the initial and final three-body systems. The dis-
cussions which have been given for the capture re-
actions from rest® and for the elastic and inelastic
scattering at approx 200 Mev/¢* are not yet sufficiently
complete to give any clear-cut indications for preferring

8 R, Karplus, L. Kerth, and T. Kycia, Phys. Rev. Letters 2,
510 (1959).

36 O, Dahl, N. Horowitz, D. Miller, J. Murray and M. Watson,
Proc. Ann. Rochester Conf. High Energy Phys. 10, 415 (1960).

3 R, Karplus and L. Rodberg, Phys. Rev. 115, 1058 (1959);
T. Kotani and M. Ross, Nuovo cimento 14, 1282 (1959).

8T, Day, G. Snow, and J. Sucher, Nuovo cimento 14, 637
(1959); Phys. Rev. 119, 1100"(1960).

DALITZ

a particular set of K — N amplitudes, although there is
every reason to expect that such data will become
valuable in this respect as the experiments and the
theoretical calculations each become more refined.

There is also promise that the study of K—p
scattering and reaction processes in the low-energy
region will give some direct indications concerning the
K—~N amplitudes in the near future.*® On the one
hand, the K—NN interactions in K"—p collisions are
entirely in the I=1 state, so that the observation of
K,"—p reactions will allow a very direct determination
of the (Z/A) ratio in the =1 channel, and the measure-
ment of a total absorption cross section for the I=1
channel will help greatly in distinguishing between the
(a) and (b) sets of amplitudes. On the other hand, as
pointed out by Biswas,® the s-wave cross section for
the reaction

Ktp— Ki+p (52)
is given by the expression
o (K +p— K +p)
ai [e4i} Aq 2
= , (33)

™ + -
2(1—ikay) 2(1—tkao) 1—1ikA,

where ag and a; are the (real) scattering lengths for the
I=0and 1 K—N channels. The scattering length a; is
well known, ap is less well known but is smaller, with
the same sign, and there is some hope of discriminating
quite strongly between the (a+) and (a—) K—N
amplitudes as a result of the interference between the
real parts of the two terms of (53). Unfortunately, such
an experiment appears feasible only down to (lab)
momenta of about 300 Mev/c, a momentum region
where there is some question concerning the importance
of p-wave contributions to the expression (53).

At the present stage, any further indications of the
sign of the K— N scattering amplitudes, and whether
they are of the (a) or the (b) type, will be of the greatest
importance in establishing the relationship of the ¥*
resonance observed with the possible existence of an
I=1 K—N virtual bound state.

1IV. DISPERSION-RELATION FORMALISM AND

K—N INTERACTION

In order to go beyond a strictly phenomenological
approach and to discuss what energy dependences may
be expected for the parameters. we have introduced,
the use of the dispersion-relation formalism is the most
complete and convenient procedure for including
specific physical mechanisms, such as the exchange of
pions between the K meson and nucleon. As Bjorken
and Nauenberg! have pointed out, the method used
by Chew and Mandelstam®* for one-channel problems

®W. J. Willis, Brookhaven National Laboratory (private
communication, 1961).

© N, N. Biswas, Phys. Rev. 118, 866 (1960).
4 G, IV, Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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may readily be extended for multichannel situations.
For a state of definite angular momentum and parity,
the scattering matrix 7(E) for a system of n two-
particle channels may be written in the form

T(E)=N(E)D'(E), (54)

where the elements of the n-by-n matrix D(E) are
analytic functions of the total energy E, each in a cut E
plane where the branch cut is chosen to run from an
appropriate threshold along the positive real axis. The
elements of the #n-by-n matrix N(E) are analytic
functions, for each of which the branch cuts and singu-
larities lie to the left of the corresponding thresholds,
their location and character reflecting the nature of the
dynamical influences affecting the corresponding re-
action process. Since the elements of N(E) are real on
the branch cut of the corresponding element of D(E),
the unitarity condition

Im [T7(E)]= —mp(E) (55)
leads to the result that
Im D(E)=—np(E)N(E) (56)

along the upper side of the right-hand branch cut.
Assuming that Re D(E) approaches a constant as
E— oo, it is then convenient to normalize D(E) in
such a way that Re D(E) approaches the unit matrix
at infinity, which is possible because 7'(E) is expressed
in the form of a ratio by Eq. (54). Then, following
Bjorken and Nauenberg, D(E) may be determined,
leading to the form*

f‘” p(E)N(E) 17
e

T(E)y=N(E){1— ot . (ST

@=xw|i- [ 657
The matrix N(E) may now be regarded as a quantity
to be determined in terms of its singularities, either in a
semiphenomenological way or in terms of some dy-
namical principles. For arbitrary N(E), the expression
T(E) is not generally a symmetric matrix, as is required
by time-reversal invariance, but Bjorken and Nauen-
berg® have demonstrated that if N(E) is determined
from the condition

Im N (E)=[Im T(E)]D(E) (58)

on its dynamical singularities, then T(E) is symmetric
as long as the matrix [Im 7'(E)] on these dynamical
singularities is itself symmetric.

This formalism is very closely related to the K-
matrix formalism. In fact, the explicit relationship is
given by the equation

42 Expression (57) is not limited to the case of reactions with
two-particle channels, but may be used also for multiparticle
channels. In this case, however, the matrix inversion involved
requires the solution of a linear integral equation. This point has
been discussed recently by Blankenbecler!” in a more general
representation of the scattering matrix, not limited to a state of
definite angular momentum and parity.

43 J. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250 (1961).
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K(E)=N(E){D(E)+imp(E)N (E)}™,

where D(E) is given by the denominator of expression
(57). The elements of the denominator of (59) are real
functions of E along the real E axis, both for physical
energies and for energies below the thresholds, until E
reaches the first dynamical branch cuts appropriate to
the matrix element considered. Thus, in this region to
the right of all branch cuts, the elements of the K
matrix are real, as they should be; K(E) has the correct
symmetry when the condition specified following Eq.
(58) is satisfied. Further, as expected,** these elements
are analytic functions of E, and in particular they are
analytic functions of E along the real axis, in both
physical and unphysical regions, to the right of these
branch cuts. To the left, however, the function N(E)
generally becomes complex below the onset of the first
branch cut and the K-matrix elements become complex
in this region, as remarked in reference 2. The form
(59) has the advantage that it makes explicit the cause
and nature of this behavior.*®

In terms of the form (59), resonances of the first
type discussed in Sec. IT correspond to zeros of the
determinant of the denominator, i.e., they occur for
real energies such that

det[D(E)+imp(E)N (E)]=0. (60)

At these resonance energy values, all elements of the
complete K matrix for the # systems become infinite.

As discussed in Sec. II, the more convenient pro-
cedure is to confine explicit attention to the subset ¢
of channels which are energetically available at the
energy of interest and to make use of the “reduced K
matrix” Kg(E). This matrix Kg(E) is related to the
scattering matrix T(E) by the relation

T(E)=Kr(E){1—imp(E)0.(E)Kr(E)}™,  (61)

where 6;(E) denotes a projection operator which is
unity for the energetically available channels at energy
E, and zero otherwise. Only the submatrix Kgz(E) of
Kr(E) which refers to the open channels is of direct
physical interest, since the scattering amplitudes for the
energetically permitted reactions obviously depend on
the elements of Kgi(E) alone. On remembering the
condition (56), for which the right-hand side is simply
to be taken as zero for an energy below the appropriate
threshold, comparison of (61) with (54) leads to the
following expression for Kg(E):

Kr(E)=N(E){Re D(E)}. (62)

From its definition, and the discussion in Sec. II, it is

(59)

“ For a two-channel situation, the analytic properties of the
relativistic K matrix on both the physical and unphysical sheets
of the Riemann surface, as well as their relation witg the singulari-
ties of the scattering matrix, have recently been discussed by R.
Oehme, Nuovo cimento (to be published, 1961).

% This behavior occurs also for potential interactions, provided
that these do not fall off more rapidly than exponential functions
with increasing radial distance.
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clear that Kr(E), although continuous along the real
axis, is #ot an analytic function of E. In fact, for real E,
it has a cusplike behavior with a change of analytic
form at each threshold.

From the expression (62), the location of all reso-
nances of the system are given by the real roots of the

equation
det{Re D(E)}=0. (63)

Those roots of (63) which lie below all thresholds
represent stable bound states of the system. Those
which lie between the sth and (¢41)th thresholds
represent resonances in the set of ¢ channels; these
resonances include the “virtual bound-state” resonances
arising from interactions in the closed channels as well
as the resonances of the first type. To determine the
structure of such a resonance state, the scattering
matrix T';(E) for the open channels is then considered;
the eigenvalues of mpAT;(E)p? are the set {e®:sing,},
where the {8,} are (with s=1, 2, -+, 7) the (real)
eigenphases for the open channels. At the resonance
energy, one of these eigenphases (s=v, say) passes
through 90 deg; the eigenstate corresponding to this
eigenphase 0,,

nE)= 3 o#(E)|a,E),

a=1

(64)

then represents the resonant state, the relative intensity
of the channel « being |c,*(E)|? at energy E in this
state.

For coupled K—N, #—2, and w#—A channels, the
branch cut which lies closest to the physical region is
that arising from the exchange of two pions between K
and N. For exchange of a system of mass m, the corre-
sponding branch cut begins at energy E(m) given by

E(m)= (M y*—3m?) -+ (ma?— i)}, (65)

For the exchange of a pion pair, the cut begins only
about 30 Mev below the K— N threshold. This situation
certainly raises questions concerning the validity of
extrapolation from the threshold to the ¥* resonance
energy, as is discussed again later and in Appendix B.
If the emission of a pair of s-wave pions by the K meson
is not an especially strong coupling, it is possible
that this branch cut may not have an important effect
on the K-matrix elements in this energy region. How-
ever, more serious branch cuts may well arise from
exchange of the I=0 o particle!® (if it is strongly
coupled with K mesons) or of a resonating pion pair.
Ferrari ef al.* have taken the first step in a more

4 A, Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 (1960).

4 T, Ferrari, G. Frye, and M. Pusterla, Phys. Rev. Letters 4,
215 (1960).

4 . Ferrari, G. Frye, and M. Pusterla, “Long-range interaction
in K-nucleon and K-nucleon elastic amplitudes,” Lawrence
Radiation Lab. Rept. UCRL-9421 (October, 1960).

9 F, Ferrari, G. Frye, and M. Pusterla, “Energy dependence of
the low-energy K—-proton and K*-proton cross sections,” Lawrence
Radiation Lab. Rept. UCRL-9434. (October, 1960).
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general discussion of these K—N reaction processes
following dispersion-theory methods by including a
simple pole in the K—N diagonal element of [Im 7]
as a rough representation of the terms arising from the
exchange of a particle or resonant system (nominally
a pion-pion resonance) between K and N. This pole
has residues R, and R; for the /=0 and =1 systems,
respectively. These residues are related by Ry=R,,
or Ry=—23R;, according as the isotopic spin of the
system exchanged is ¢=0 or 1. The magnitudes of
these residues are otherwise not known, unless some
specific dynamical theory is adopted,® and are generally
to be regarded as parameters to be determined em-
pirically.® At present, it appears a very difficult
proposition to determine such further parameters from
the low-energy K~—p data, since these have proved
barely sufficient for the determination of constant
scattering amplitudes 4o and 4;. On using a rather
speculative estimate of Ry and R; (with a ratio Ro/R;
~ —3, corresponding to the exchange of a j=1, I=1
m— resonance), Ferrari e/ al®® have calculated the
energy dependence of the (¢+) amplitudes 4o and 44,
due to K~ N interactions corresponding to the exchange
of mass m=3.6m,. They have concluded that an
extremely strong energy dependence can result, even
though the range parameter of this interaction is only
(3.6m,)1~0.41f. Since their calculated scattering
lengths vary by as much as a factor of 2 between zero
and 150 Mev/¢c momentum (c.m.), it is apparent that
such a strong energy dependence would completely
invalidate any attempt to relate the ¥* resonance to the
low-energy K——p data without a rather complete
theory of the mechanisms giving rise to this energy
dependence.

A simplified treatment of the situation discussed by
Ferrari et al. is given in Appendix B. It appears that
the strong energy dependence they obtained for the
(a+) amplitudes is largely a consequence of the great
strength assumed for the interaction of the pion pair
with the K meson. In this case, there is a question
whether, for consistency, further branch-cut terms
corresponding to the exchange of two, three, and more

% Such as the vector theory of strong interactions, discussed
recently by J. J. Sakurai [Ann. Phys. (N.Y.) 11, 1 (1960)]. In
this theory the strong interactions are mediated by a number of
vector bosons related to specific conservation laws. For example,
as first proposed by C. N. Yang and R. Mills [Phys. Rev. 96, 191
(1954)7, there is an /=1 vector boson B; coupled with the total
isotopic spin operator, so that there are definite equalities connect-
ing the strength of its coupling with the pion field, with the K-
meson field, and with the nucleon, irrespective of the nature of
other strong interactions that may exist (as long as these are
compatible with I-spin conservation). As a result, if the strength
of this coupling (and the mass of the boson Bj) is determined from
the analysis of pion-nucleon phenomena (for example, from the
electromagnetic structure of the nucleons), then this theory would
require a definite strength for the coupling between K and N due
to the exchange of this boson B;.

5 It is important, however, that residues for the exchange of
the same system between K and N are directly related with these
residues, in a way depending on the system exchanged (see the
following). This provides an important consistency constraint in
their determination, which relates quite distinct physical processes.
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resonating pion pairs should not also be included at
the same time; although these more complicated
singularities are more distant from the physical energy
region, their strength may be very great, and they may
play a significant part in determining the energy
dependence of even the low-energy scattering.®
Although the dispersion-theory formalism represents a
tremendous step forward in the technique and under-
standing of strong-interaction problems, the way in
which it is used at the present preliminary stage does
often represent a new kind of perturbation approach,
involving the assumption that a strong near-by singu-
larity can be introduced to represent some particular

physical mechanism without need for the inclusion of -

any related, further distant singularities.

On the other hand, for mechanisms of moderate
strength, the dispersion method provides a convenient
method for the semiphenomenological inclusion of their
effects in the theoretical expressions to be compared
with the experimental data. Since, for the strange
particles, nothing is known concerning the strengths of
the many possible vertices that play a role even in the
simplest situations, it is clear that a phenomenological
approach of this kind places a very severe demand on
the data. At the present stage, the guidance of some
framework of dynamical principles, such as those of
global symmetry (cf. Sec. V) or of the vector theory of
strong interactions discussed by Sakurai,® would be
exceedingly advantageous.

Ferrari et al%® have also discussed the relationship
between the K—N and the K— N interactions which
arise from pion-exchange processes. In the interpretation
of the Y* resonance as a K—N bound state, these
processes appear of the greatest importance, since they
can give rise to potential interactions which have
relatively long range, and which can therefore be
expecially effective in binding the K—N system. For
this discussion, we need the relationship between the
vertices for the interactions

K — K+nm,
K — K+ur,

(66a)
(66b)

in corresponding configurations. For the derivation of
this relationship, the operation of G conjugation is
appropriate. For the pions, this operation simply
multiplies their wave function by (-—1)*; for the K
mesons, this operation changes each K meson to its
antiparticle and multiplies the matrix element by
(—1)% where ¢ is the isotopic spin transferred by the
(nwr) system. Since the (nm)— N interaction is common
to the K—N and ‘the K—N interactions, we have at
once

M(K——N)=(—1)"rM (K*+—N). (67)

%2 R. Blankenbecler, M. L. Goldberger, N. Khuri, and S.
Treiman [Ann. Phys. (N.Y.) 10, 62 (1960)] have made similar
observations in their discussion of the use of dispersion relations
for potential scattering.
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By taking relation (67) in turn for p and %, we deduce
the following relationships between the amplitudes
M; and My for definite I-spin states of the K— N and
K—N system:
M (K~N)

= (=D {Mo(K—N)+M(K—N)]/2, (68a)
and

My(K—N)
= (=)™ (K—N)—Mi(K—N)]/2. (68b)

Finally, we recall that for i=0, we have M =M, and
M1=Mo; for 121, M0=—3M1 and M0=—‘3M1. On
inserting these relations into Eqs. (68) for the case
i=0 and ¢=1 in turn, we derive the general result,
independent of the I-spin state of the interacting
particles and of the i-spin transferred between them,

Mi(K—N)=(=1)"M:(K—N). (69)

This relation® has the same form as the well-known
relation connecting the pionic contributions to the
N—N and the N— N interactions.

If we denote by (X,,X,) and (¥, ¥,) the contributions
to the /=1 K—N interaction due to the exchange of
systems with even and odd G-conjugation parity (e.g.,
for even and odd »), with total isotopic spin 7=0 and 1,
respectively, then we have for the other K—/N and
K—N states the following interactions:

Vl(K—N)=Xo+Xe+Y0+Y€7

ViR—N)= X+ X~V +7,,
and
VO(K—]V) =X0+Xe'__3Yo—_31/e,

VoB—~N)=—X¢+X +3V,—37..

The interactions V,(K—N) and V,(K—N) are known
to be strongly repulsive and strongly attractive (with
the interpretation of the ¥* resonance asan /=1 K—N
bound state), respectively, whereas Vo(K—N) is
weakly repulsive and Vo(K—N) may be repulsive, of
uncertain strength, or very strongly attractive. These
facts could be fitted qualitatively by these expressions
if the dominant contributions were from the exchange
of an 7=0 particle («°?) with odd G-conjugation parity,
and of an /=1 system with odd G. In the attempt to
understand what interactions could give rise to a bound
K—N state, it is natural, as remarked previously, to
consider first the processes of pion exchange between the
K meson and the nucleon, since, for given coupling
strength, the K— N interactions of longest range are
those which will be the most effective in binding.
However, in terms of the pion configurations at present

8 Although (67) agrees with the statements made in Sec. VI
of reference 48, this result (69) does not agree with the relation-
ship used in Sec. VI of reference 49. The result (69) does agree
with the explicit calculations of Sakurai.®

% We note that this relation is not limited to pion-exchange
processes, but holds generally in the form M;=GM;, where G
denotes the G-conjugation parity of the system exchanged.
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conjectured to be of particular importance, there does
not yet appear an obvious and simple interpretation of

the character of the observed (K—N) and K—N
potentials,55

V. GLOBAL SYMMETRY AND PION-HYPERON
RESONANCES

The charge-independent Yukawa interaction of the
pion with A and 2 hyperons may be written

igsar (ATOE — B10A) - m+-igsz. (BT XOX) =, (70)

where A, =, and = denote the isotopic-spin components
of the A, Z, and pion wave functions, and O denotes
the relevant space-spin operator. It was pointed out
independently by Gell-Mann? and by Schwinger!®
that, for

(711)

the interaction (70) can be written in a form whose
structure parallels that of the pion-nucleon interaction,
namely,

Az =gzer=§,

gnne(N1<ON) - (72)

This was achieved by replacing the A singlet and 2
triplet by two doublets, which we may denote by NV

a‘nd ‘z 3y

()-("2)

N 3 a z- ’

in terms of which the pion-hyperon interaction (70)
takes the form

g (NzT‘VOlV\r{" AT3T10N3) ‘. (74)

For this to be possible, it must be assumed that A and
2 hyperons have the same parity and that the operators
O associated with gaz. and gss. are of identical form.
If the A and = hyperons had the same mass, and (74)
represented their only strong interaction, then, regard-
less of the coupling strength g, this doublet symmetry

5 There is one notable exception to this remark. As pointed out
by Sakurai (private communication; see also reference 50), the
exchange of the ¢=1 B vector meson (identified with the r—w
resonance) and the =0 By vector meson (identified tentatively
with o) gives rise to an attractive ¥, and a repulsive Xo. If X, were
larger than ¥, (by a factor 23), the potentials given here would
all fit the data qualitatively except for V(K —N), which would
be more strongly attractive than V(K —N) and would lead to a
deeply bound state (K —N)o. It is of interest to note that such a
state (K—N)o with mass below the #—Z threshold would be
difficult to detect. It would be stable with respect to charge-
independent strong interactions, so that its dominant decay modes
would be =0+~ and A+. On the other hand, its mass is too great
for it to be formed in strange-particle reactions studied most
intensively to date, namely the K~ —p "‘at rest” reactions and the
#~—p reactions up to 1.3 Bev/c; furthermore, in sufficiently
high-energy reactions it is difficult to distinguish the production of
this state from the production of (A+#?) continuum states. At
present, the existence of such an /=0 K—N state cannot be
excluded.
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independent doublets of the same mass, which could
not be transformed one into the other by any pion
processes.

This doublet representation of the A and Z hyperons
actually corresponds to a representation of their
isotopic spin Iy as the sum of two half-integer isotopic
spins t and k, such that Iy=t+4k. The form of (74) then
corresponds to the situation where the pion field is
coupled with only one of these (say t); the N, and N;
doublets are then the +3% and —3 substates, respec-
tively, of the three-component of the other isotopic
spin k. As Pais®® has pointed out, the experimental
evidence on K-meson processes shows that the NV, and
N3 doublets are actually linked quite strongly through
the K couplings. In fact, the large A—2= mass difference
already represents a large deviation from the doublet
approximation, which has often been attributed to the
nonsymmetry of the K couplings and which must itself
lead to substantial mixing between the N, and N;
doublets. .

The “global symmetry hypothesis” of Gell-Mann
and Schwinger supposes further that the coupling
parameters gszr and gsar (as well as gzz.) are all equal
to gnwr, the space-spin operator O being assumed the
same for all of these interactions. With this hypothesis,
the IV, and NVj states behave exactly like nucleons as far
as their interactions with pions are concerned, at least
in the limit that those interactions for which the doublet
symmetry does not hold do not strongly disturb this
symmetry for the pion processes.

The global-symmetry hypothesis then leads directly
to relationships between the hyperon-nucleon and the
nucleon-nucleon potentials, at least for that part of
these potentials which arises from the exchange of
pions. If the N—N potential is written in the form

V=51Vo(ri,Lis,01,00) (1—71-72) _
+%V1 (f12,L12,ﬂ'1,0'2) (3+ T1* 7'2), (75)

where V and V1 denote the =0 and /=1 potentials,
then the hyperon-nucleon potentials may be deduced
in terms of Vo and V; on the basis of this hypothesis.
Thus, in the Z=—N configuration, the isotopic spins
are aligned to total 4, so that the N;— N configuration
which is effective is that with parallel isotopic spins,
that is with 7=1; generally, for the /=% ¥ —N states,
we have then

ViE2Z)=Vy (76)

TFor the I=% Y—N states, both Z—N and A—N
systems contribute, so that the =% interaction takes
a matrix form, as follows:

(V%(AaA) V%(A)E))
Vi@A) Vi(E2)
$(Vo4-3V4) (V3/4)(Vo— Vx)) an

o ( (B/8) (Vo= V) 1GBVot+V))
56 A, Pais, ].’hys. Rev. 110, 574 (1958).
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The Schrédinger equation for the I=%
consists of the coupled equations,

— (Quz) Vst Vs + Vaga = (E— A)s,
— 2ua) VAt Vass+ Viasga = Eia,

where E denotes the kinetic energy in the A—V system,
us, ua denote the reduced masses of the Z— N and A—N
systems, and the inclusion of the mass difference
A=M3s— M, is quite essential.

The main difficulty of principle in the use of these
relations to predict the hyperon-nucleon interactions
in terms of the global-symmetry hypothesis lies in the
fact that the Pauli exclusion principle limits the states
available for the N—N system but not for the ¥—N
system. For example, consider the Z——# 35 interaction.
Equation (76) states that this is given by the I=13S
N—N interaction, but this interaction cannot be
measured directly, since the exclusion principle forbids
the 3S state for the I=1 N—N system. The [=1
triplet N — N potential must be deduced from measure-
ments on the P, 3F, and *H states; if it is possible to
identify the angular momentum dependence of the
potential, we can then extrapolate to zero angular
momentum and deduce the form of the /=135 potential.
Such an extrapolation is possible in practice only if it is
justified to confine attention to potentials of sufficiently
simple angular momentum dependence, such as tensor
forces, spin-orbit [ (o1+a3)-Lis] forces, and perhaps
forces depending on o1-Lis0y L1z or L2 Fortunately,
the pion theory of nucleon forces gives us some reason
to believe that, outside a strongly repulsive central
region whose details are not of particular importance,
the N—N forces have a dependence on ry;, Liz, and
spin in which more complicated terms than these do
not play a major role. Further, the theory gives con-
siderable guidance concerning the spin, isotopic spin,
and radial dependence of various terms of the nuclear
potential in the outer region. On this basis it appears
reasonable to believe that, given sufficient experimental
data on the N—N system, one could make a fairly
reliable extrapolation to determine the potential
appropriate to states forbidden for the N—N system.
Such an extrapolation procedure would appear particu-
larly plausible for the /=1 singlet and the 7=0 triplet
potentials, where the potential is obtained empirically
in the S, D, and G states and interpolation is required
to the P and F states lying between them, since the S
scattering explores the inner regions of the potential
while the higher partial waves are particularly sensitive
to the outer regions and to the angular-momentum-
dependent parts on the interaction. The extrapolation
to the .S interaction for the I=1 triplet or the I=0
singlet potentials is much less certain, for the experi-
mental data then refer only to the P, F, and H states.
The inner region of the central potential, which is
particularly important for the .S scattering, cannot
really be so well established from the study of the higher

system then

(78a)
(78b)
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partial waves, and this may be a source of appreciable
uncertainty in the applications now to be discussed.

De Swart and Dullemond®” have recently carried out
detailed calculations on the S-wave hyperon-nucleon
interactions, based on an N— N potential which gives
a good fit to the data available at present. This potential
consisted of the I=1 potential deduced by Bryan®®
from the p—p data and the I=0 n—p potential of
Gartenhaus.®

The S-wave amplitudes for the A— /N system at low
energies have been calculated by using Egs. (78),
including the coupling to the (energetically unavailable)
Z—N channel. For the 1S state, the zero-energy
scattering length obtained was —2.1 f, with an effective
range of 2.24 f. The Yukawa potential corresponding
to these parameters has a range parameter of 0.78 f,
close to (2m.)™, as expected. This equivalent central -
potential has volume integral 370 Mev {3, in good
agreement with the 1.5 A— V potential strength deduced
by Dalitz and Downs® from the data on light A hyper-
nuclei. For the 35 state, the scattering length obtained
was 0.12 f (with effective range 85 f, which corresponds
to a range parameter of approx 0.65 f), corresponding
to a weakly repulsive equivalent potential of volume
integral approx —55 Mev f3. The latter is compatible
with the data on hypernuclei if a three-body A—N—N
potential® is included which is attractive and of reason-
able strength.®

Calculations have also been made by de Swart and
Dullemond on the rates for the competing reactions

Z4p—oZ24n (79a)
and

— A+n, (79b)

57 7. de Swart, Enrico Fermi Institute for Nuclear Studies,
University of Chicago, and C. Dullemond, University of
Rochester, Rochester, New York (private communication, 1960).
Calculations along these lines were first made by D. B. Lichtenberg
and M. R. Ross [Phys. Rev. 107, 1714 (1957)] using N — N poten-
tials of meson-theoretic origin, but neglecting the important
tensor-force terms. For the singlet state, their calculations gave
results quite similar to those described here.

% R. A. Bryan, Nuovo cimento 16, 895 (1960).

® S, Gartenhaus, Phys. Rev. 100, 900 (1956).

% B. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).

6 The existence of a three-body A—N—N potential is a
necessary consequence of the form of the potential (77), since the
operation of Vs between the A hyperon and one nucleon followed
by the operation of Vzs between the resulting = hyperon and the
other nucleon automatically generates such an interaction. In a
more complete treatment of the structure of A-hypernuclei,
potentials of the form (77) would be used, with a hypernuclear
wave function extended to include a component describing
explicitly the = configuration; this procedure would automatically
ir}fclude most (although not all) of these three-body potential
effects.

2 The binding-energy difference between sHe? and 4Li7 allows a
rough estimate of the difference between singlet and triplet A— N
potential strengths largely independent of the details of the three-
body potential. The most naive interpretation [R. H. Dalitz,
‘“‘Hyperon-nucleon interactions,” presented to the 1959 Annual
International Conference on High Energy Physics at Kiev
(unpublished)] of this comparison corresponds to the existence of
an attractive three-body potential together with a weak 35
potential, which is certainly not in disagreement with the results
%bovle). See also A. R. Bodmer and S. Sampanthar, to be published

1961).
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for Z—-proton collisions at very low energies. For 2~
hyperons which came to rest in liquid hydrogen, these
reactions have been studied by Ross,® who found the

ratio

(Z+p — A+n)/(Z+p — Z+n)=2.0+£0.5.  (80)

If these reactions are assumed to occur through the
S-wave Z—N interaction, as would follow from the
discussion by Day, Sucher, and Snow*! of mesic absorp-
tion from high-lying levels of hydrogenlike mesic
atoms in consequence of the Stark-mixing mechanism,
then these calculations can be compared with Ross’
data. The amplitudes for Z——p elastic scattering and
for the 2° reaction (79a) are given by

M(E_‘{’P—‘)E*"["?)=%[[L3(2,E)+201(E,2)], (81&)
M(E—_*_P - EO_I_n) = (\/2_/3)[‘13(292) —a1 (2;2)]) (Slb)

where a3(2,Z) and a:(Z,Z) denote the zero-energy
elastic-scattering amplitudes for the Z—/ system in
the =% and =1 states, respectively. At zero energy,
the amplitude a3(Z,Z) is real, but @:(2,2) is complex
because of the absorption due to the competing re-
action (79), confined to the I=3% channel. The amplitude
for the A reaction (79b) is given by

M(Z—"i’P - A+77'>= (@/3)[01 (21A)]7

where the amplitudes ¢1(2,Z) and @1(Z,A) are calculated
together from the I=% equations, (78). For the 1S
state, the /=% interaction is almost resonant at zero
energy, since it is equal to the 1§ N—N interaction,
and the amplitude @3(2,2) is very large, whereas
a1(Z,2) and a1(Z,A) have only moderate values. As a
result, the 2° reaction is strongly dominant in the 1§
state, the calculated A/Z0 ratio® being =1/50. For
the 3S state this near-resonant situation does not hold,
and the A/Z° ratio obtained is closer to the phase-space
ratio of 4.6,% although somewhat smaller than this for
the reasons discussed previously®; the calculated
A/Z0 ratio for the 3S state is 3.6(=4=0.4), where the error
given reflects the present uncertainty in the (Z—,29)
mass difference. On assuming that the processes of
atomic capture and Stark mixing discussed by Day
et al.? do not depend on the relative spin orientation of
>~ and proton, the A/2° ratio predicted for 2~ capture
in hydrogen is predicted to be

(81c)

8 R. R. Ross, Bull. Am. Phys. Soc. 3, 335 (1958).

6 Tt is of interest to note that, if the mass difference could be
neglected in the calculation of these matrix elements (81), global
symmetry would imply the equality of (81b) and (81c). Then,
since the phase space ratio (A—N)/(Z—N) is approx 4.0, a ratio
A/Z° of approx 4.6 would be expected for both 1S and 35 states.
The strong effect of A on the relation between these matrix
elements is particularly marked in the 1§ state here, because there
is a near-resonant interaction which is thrown far off resonance
in the 7=% channel (but not in the /=4 channel) by the effect
of A.

6 R, H. Dalitz, in 1958 Annual International Conference on
High Energy Physics at CERN (CERN, Geneva, 1958), p. 187.

DALITZ

20 s-wave capture

(/20 50t 3(A/2 M) 5
(ZY/Z4A) 52013 (Z°/Z04-A) g1
=1.55(=0.1),

which is in essential agreement with the observed
ratio (80).%5

These two comparisons with the experimental data
really provide quite different tests of global symmetry.
For the A— N potential, the dominant terms arise from
two-pion exchange and are proportional to gsa.?; from
the LS comparison here, we conclude that the values of
geaq? and gyw.? must be very comparable. However, the
longest-range potentials which give rise to the Z—+p
reactions (79a) and (79b) are those arising from
exchange of one pion, and are therefore proportional to
gzzr and gean, respectively. The ratio of the (2°4-#) and
(A+mn) transition rates therefore provides a rough
measure of the ratio (gsz«/gsar)% The two comparisons
discussed above therefore indicate,®® at least quali-
tatively, gear?= ges.’=gnn+S, In accord with the global
symmetry hypothesis.

The main argument against global symmetry was
that given by Salam,%” concerning the nature of the
final-state interactions in the K—+p — 7+Z reactions
in the low-energy region. The early data indicated that
the phase difference ¢; between the /=0 and I=1
matrix elements at zero energy was large, ¢,~60 deg.
Since the w—2 scattering states involved are s; or
3, according as the (KZ) parity is odd or even, it was
difficult to understand in terms of global symmetry how
these could be so large, even when the kinematic
effects of the (A,Z) mass difference were included. More
recent data® have shown that, although the phase
difference [¢:| could be as large as 60 deg, uncertainties
in the data are such that they are also compatible
with any angle ¢; down to ¢,~0 deg, and this argument
against global symmetry loses much of its force, at
least until a more certain determination of ¢, is achieved.

For pion-hyperon scattering, as pointed out by
Gell-Mann,? global symmetry requires =4 resonances
in the 7—N, and 7— N3 systems, which correspond
exactly to the 7—N (3,3) resonance. After the T—A
mass difference A is taken into account, these resonances
are expected to appear as separated I=1 and [=2
resonant states in the pion-hyperon scattering. Their

88 Nole added in proof. I am informed Ly Dr. de Swart that
more refined calculations which include the effect of the (£-,2°)
mass difference correct this ratio to the value 1.8.

% It is not clear at present how sensitive these comparisons are
to the relative signs of these coupling constants. The global-
symmetry hypothesis requires that gsa, and gss, have the same
sign, but leaves open the question of their sign relative to gyws.

67 Abdus Salam, ‘“‘Strange-particle interactions,” presented at
the 1959 Annual International Conference on High Energy
Physics at Kiev (unpublished).
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final location has been estimated by Amati ef al.%® in
terms of a static model of the pion-hyperon interaction.
They have also considered the effect of a disturbance
of gsar and gss. from the global symmetry value gywy-
by nonsymmetric forces, measured by the parameters

0= (gsas®— gezr?)/ (goangoze?), 83)
gy2 = % (gEAr2+g2)21r2>- )

For small values of §, Amati ef al. find that the resonance
energies are given by

ErleA_}"Q”%A—%Aa; (843')
E2=M+Q+3A4340, (84b)
where Q is given by
P e do'¢?u (")
Q= g y 2— (85)

127T Mgy w’2(w'——w) ’

and depends on gy® and the cutoff energy. As expected,
the location of the resonance is rather sensitive to the
value of gy?. The I'=2 resonance is predicted to lie
higher than the I=1 resonance, which is reasonable,
since, to a first approximation, the resonance location
is expected to correspond to a definite momentum
for the incident system, which must be entirely 7—2
for the =2 case.

Amati et al. have suggested recently that the ob-
served w—A resonance may represent this /=1, j=%
resonance. They calculate the half-width of this
resonance as

I'/2=(4/9)gr* (204 +¢5"), (86)

with a correction factor of (140.668) for gsar#gsss.
Taking the same value of gy? as for the (3,3) resonance,
6=0, and the value ¢-xy=230 Mev/c, the (3,3) reso-
nance half-width!® I'; /2= 50 Mev leads to a half-width
I'y/2=28 Mev for the m— A resonance, quite compatible
with the present experimental evidence. The branching
ratio at resonance is given by

Em/Am)1=75(gs/qa)*(14-8)72, (87)

which takes the value 0.11 for §=0. This prediction is
also compatible with the data.

These predictions are in remarkable agreement with
the data on the Y* resonance. The conclusion that the
hyperon-nucleon interactions are in good general
agreement with the global symmetry hypothesis gives
further weight to the identification of the ¥* resonance
with this j=% resonance. Obviously, a clear-cut spin
determination would distinguish most clearly between
this possibility and the “K—N bound-state’” interpre-
tation discussed in the earlier sections. At present,
although the Adair analyses which have been made
are all consistent with isotropic decay of the ¥* and

% D. Amati, A. Stanghellini, and B. Vitale, Nuovo cimento 13,
1143 (1959); Phys. Rev. Letters 5, 524 (1960).
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a j=% spin assignment,® these are still somewhat
unsatisfactory in that these Adair plots show consider-
able backward-forward asymmetry,” a feature which
could not be present if the ¥* decayed in isolation, as
the use of the Adair analysis assumes.

With this identification of the ¥* resonance, the
prediction of an /=2 7w—ZX resonance becomes rather
specific. The /=2 resonance is expected to occur at a
mass value close to 1545 Mev and to have a half-width
of about 50(288/230)*~100 Mev. It is of obvious
importance to investigate whether this resonant state
is produced in reactions such as

K~+p— @ Fat)+a (88a)

and

wHHp— (Sttat)+ K0

at higher energies than have been investigated to date.

In conclusion, it must be emphasized that the calcu-
lations by Amati et al. ignore the effect of the coupling
between the pion-hyperon system and the j=% K—N
channel. Since the KYN coupling is strong, it is quite
possible that, even with global symmetry, these
interactions could modify appreciably the location of
these resonances, quite beyond their influence on the
effective values of gsar and gss.. It may well be that the
agreement between the observed V* resonance and this
predicted j=$ resonance is fortuitous, and that an
analog of the (3,3) resonance may lie in some higher
energy region. (Although our intuitive expectation,
based on lowest-order perturbation theory, would be
that this additional coupling to a higher energy con-
figuration would depress, rather than raise, the reso-
nance energy.) In this event, it could appear as an
I=1 K—N resonance, but its influence on the K—N
channel need be marked only if the matrix elements
coupling the resonant state with the K— NV system were
sufficiently large. As we have seen above in the dis-
cussion of the K — N system, the coupling between open
channels for strongly interacting systems need not
always be large. Since such a pion-hyperon resonance
would influence strongly the phase of the =1 reaction

(88b)

® Martin M. Block [Duke University (private communication,
1961)] et al. have given an independent argument supporting this
conclusion, based on the study of angular correlations in ¥*
decay following the K~+-He!— He34-V*~ reaction. However,
since the ¥* travels a mean distance of only =1.2 f before decay,
there is a possibility that the A—He? and =—He? final-state
interactions may complicate the interpretation of these data. For
a unique prediction of the angular correlation for a given ¥* spin,
the K~—Het* capture must also be assumed to occur through an
s-orbital interaction, an assumption which is by no means certain
[T. Day, Nuovo cimento 18, 381 (1960) 7.

" It seems probable that most of this asymmetry arises from
interference between the primary pion and the decay pion as a
result of Bose statistics, rather than from a dynamical interference
between them (such as might arise from a pion-pion force or from
simultaneous interaction of the two pions with the A hyperon).
It should be remembered that the primary pion travels a distance
of approx 4.5 f in one mean Y* lifetime. The Bose-statistics
interference is expected to diminish with increasing production
energy, so that clearer results may he obtained in experiments now
planned for higher production energies.
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amplitude M (K+N — n+32), the (Zt477)/(E+7")
ratio, which depends sensitively on the relative phases
of the =0 and /=1 reaction amplitudes, may provide
a sensitive indicator for such a pion-hyperon resonance.
It is quite probable that further surprises are in store
for us concerning resonances in these strange-particle
systems.

APPENDIX -A. ZERO-ENERGY K—N
SCATTERING LENGTHS

A brief discussion is given here of the derivation of
the scattering lengths 4, and A4; given in Table I and
of the uncertainties in this derivation. The data used
were those summarized in the Kiev Conference report
of Alvarez.?

First consider the in-flight data. All evidence con-
cerning the data in the (lab) momentum range 100-200
Mev/c is consistent with the assumption that the
interaction is effective dominantly in the s wave.?
Instead of attempting an elaborate least-squares fitting
to the data In various momentum ranges, we concen-
trated the available data at a mean energy of 172
Mev/c in the following way. Since the elastic scattering
cross section is slowly varying, a weighted average of
the available cross sections was used, giving ge1= 7910
mb. The charge-exchange cross section was taken as
154 mb. A value for o,,s(Z*) was obtained by taking a
weighted average of kzXous(2F) over this momentum
range; from this mean value, the estimate oubs(2%)
=457 mb was obtained for k=172 Mev/c. At this
energy, mA2=98.5 mb, and this partial absorption cross
section is therefore to be considered rather large; in
fact, its upper limit comes relatively close to the geo-
metrical limit allowed by the other cross sections, taken
together with the zero-energy parameters. For this
reason it was decided to make some rough allowance for
the amount of p-wave absorption included in this cross
section, as follows. At 400 Mev/c, the angular distri-
butions show clear evidence of strong p-wave inter-
actions and the total absorption cross section for all
hyperon production is observed to be 33.5 mb, to be
compared with an s-wave geometrical limit of #A*=20
mb at this energy. Rather arbitrarily, it was assumed
that about half of the absorption cross section at 400
Mev/c was from the p wave, and that the p-wave
cross section for =+ production at this energy was about
9 mb. This estimate was scaled in proportion to the
momentum to give a corresponding estimate for 172
Mev/c, which was then subtracted from the preceding
figure for ou,s(Z*) at this momentum. This procedure
led to the estimate of 40.5==7 mb adopted for s (Z%).

As Kruse and Nauenberg have discussed,” the
knowledge of the s-wave cross sections for all hyperon-
production reactions at a given energy FE, together with
the elastic and charge-exchange cross sections, would
allow a determination of the scattering amplitudes

71 . Kruse and M. Nauenberg, Lawrence Radiation Lab. Rept.
UCRI-8888 (September, 1959) (unpublished).
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Ao(E) and A(E) appropriate to that energy. However,
such complete data are not yet available, and, in order
to obtain an estimate of the scattering amplitudes, it
is necessary to make use of the ‘“‘at rest” data and to
make some specific assumption concerning the energy
dependence of Ay and A;. For example, one could
assume the energy dependence of effective range theory,
Ar(1+3RrA[k?)™, with some physically appropriate
choice for the effective ranges Ry and R;. For simplicity,
we have made the choice of zero effective range, that is,
of energy-independent values for 4o and 4.

At c.m. momentum £k, it is convenient to write the
expressions for elastic and charge-exchange cross
sections as

Gel‘i‘dce:’n'{ (doz‘f‘boz)/ZDo-i- (012+512)/2D1}
= (r/k){1— (14-2kbo)/ 2D,
— (14+2kb1)/2D1}, (A1)

gee=1{ (@0 a1)*+ (bo—1)?}/ (Do), (A2)

where D denotes {(1+4kd)*+ (ka)?}. In these expres-
sions, the modifications due to the (K—K% mass
difference and to the K——p Coulomb interaction have
been neglected as they do not represent major correc-
tions at 172 Mev/c and can be allowed for subsequently.
For the absorption cross section, we have

oubs () = (2m/k){2b0/3Do+ (1= €) (b1/ D)},  (A3)

where € denotes the fraction of /=1 absorption which
leads to A hyperons. The value of ¢ was also assumed
energy independent and was taken from the zero energy
data (see the following). Equations (Al) and (A3)
could then be solved algebraically for Dy and D; in
terms of &y and b;, and therefore for ao and ¢;. By a
systematic procedure of trial and error, for assigned
values of &, all values of ; (together with the corre-
sponding values of @ and a;) which satisfy Eq. (A3)
were then determined by an electronic computer.

At zero energy, the quantities determined directly
from the ‘“‘at rest” events are

R=("+3)/(Z"+A)=1.79+0.18,
S=A/(Z04A)=0.214-£0.04,
T=3/3+=2.18-0.06.

These numbers allow an estimate to be obtained for e,
or for (Z/A)4,

@/A)1= (e =1)=[R-2(1=-5)]/S. (A4)

The value obtained, ¢=0.5(—0.15, 40.35), is rather
poorly determined at present. In terms of M, and M,
the zero-energy amplitudes for absorption leading to
(r+2) states with /=0 and 1, the expression for T is

T= (M02+%M12+'\/6M0M1 COS¢ t)/

(M ¢-+§M—/6M oMy cosy),  (AS)

where ¢, is the relative phase between M, and M.



STRONG INTERACTIONS OF THE STRANGE PARTICLES

Comparison of this expression with the observed value
for T allows a lower limit of 0.025 to be placed on the
ratio M2/M; combining this with the value of
N2/ M2=0.091 [where N, denotes the /=1 amplitude
leading to the (r+A) channel] obtained from S leads
to the lower limit of 0.284-0.05 for the ratio (Z/A):.
This corresponds to an upper limit of about 0.8 for e.
The ratio ¢o/o1 of the I=0 and I=1 zero energy
absorption rates [given by Mg/ (M 2+ N%)] may be
determined from

oo/o1=e(32/A)= [ 3(1—-S)/S].

Since the second factor is relatively well determined
(11.04£3), uncertainties in oo/o; and e are quite strongly
correlated. The relationship between o¢o/o; and the
amplitudes 4o, 41 is given by?

(A6)

(A7)

b1

where « denotes (2uxA)? and A is here the (K—,,K°,)
mass difference. Since the solutions obtained have the
feature that either aq or @, is large, this second factor
has a considerable effect on the determination of 4,
and A;; in particular, the magnitude of this factor
depends quite strongly on the absolute sign chosen for
the pair (ao,a1).

The procedure for determining 4, and 4 from these
data was then as follows. For specified values of e,
oabs(ZE), 0ee, and ¢, the parameters ao, a1, and b; were
determined as function of &,. Generally, two solutions
were obtained in each of which the relative sign of o
and a; was definite but the absolute sign of (a¢,a:) was
not determined. For all four solutions [i.e., with both
choices for the absolute sign of (@o,a1) for both cases],
the right-hand side of (A7) was calculated as a function
of by, and the value of b, (and with it, the values of ao, a1,
and b;) was then determined by comparison of o¢/o;
with the physical value determined from (A6).

The mean values given in Table I for the (a==) and
(b—) amplitudes were obtained in this way from the
best values for the input data. The uncertainties to be
associated with these amplitudes were then estimated
by considering the sum

ao

4 —
X2: Z (Xi(ao,bu,dl,bl)"‘X{)Z/OH?, (AS)

=1

where X, X, X3, and X, denote the expressions (A1),
(A2), (A3), and (A7), respectively, and oy, o9, o3, and
o4 denote the standard deviations associated with the
experimentally observed values X, X,, X5, and X,. The
relative probability for a given set (@o,bo,a1,0:1) on the
basis of this data is then proportional to exp(—x2/2).
For a mean value set, x2=0; the surface x?=1 in the
(@0,b0,a1,b1) space then defines the uncertainty on these
parameter values to the confidence level of one standard
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deviation. The error quoted for each parameter in
Table I was obtained from the intersections of this
surface with the corresponding coordinate axis when
the other three parameters were held at their mean
values. This procedure ignores the possibility of large
off-diagonal elements in the error matrix and may
underestimate the uncertainty of the parameter in
cerlain cases.

For the (a+) set, the amplitudes appear to be
relatively well determined. For the (a—) set, ao is quite
poorly determined in comparison with ;. This in-
sensitivity of the data to the value of @ is due to the
large value of by, for the contribution from b, generally
dominates the contribution from a, in the foregoing
expressions; the value of b, itself is also no more ac-
curately determined. It is of interest to note that the
2~/2% ratio in the region 100-200 Mev/c, which has
not been used in the preceding analysis, is also in-
sensitive to the value of ao. As a¢ varies from —1.15 to
—0.35, the value calculated for the average Z—/Z+ ratio
over this interval varies from 0.87 to 0.80, the experi-

"mental value being 0.9540.3. For the (b—) set, the

amplitudes are quite well determined except for by, for
which any value between 0.8 and 1.8 is acceptable;
the probability curve for by is very asymmetric and
falls very gradually on the.upper side of the best value
for bo.

No solution of the (b+) type exists for the best
values of the input data. However, a solution of this
type existed if oaps, € or A were reduced by one standard
deviation. These solutions were used as starting values
in a systematic search for the set (ao,bo,a1,01) giving the
least value of x2 This set of (b4) amplitudes is given
in Table I and corresponds to x2=0.12, which is a
quite acceptable value. This minimum is quite well-
defined and gives a satisfactory (b4-) set of scattering
amplitudes.

In concluding this Appendix, we wish to express our
appreciation for the assistance of Mr. J. Dick, Applied
Mathematics Division, Argonne National Laboratory,
and of Mr. J. Schwartz, Physics Department, Lawrence
Radiation Laboratory, with the programming of the
computer calculations which were necessary here.

APPENDIX B. SIMPLE DISPERSION-THEORETIC
DISCUSSION OF PION-EXCHANGE

IN K—N PROCESSES

In order to illustrate some of the points made in Sec.
IV, we consider here, following Ferrari et al. % a
simplified nonrelativistic treatment of the effect of
the exchange of a vector boson B between K mesons and
nucleon on the energy dependence of the scattering
amplitudes. The diagram of interest is shown in Fig. 2.
Its amplitude is given by

F= fx fnQ(k+k")/[— (k—F)2+mz"],

where Q=7y-7x/4 or 1, according as the boson B has

(B1)



F16. 2. Graph showing sche-
matically the exchange of
vector boson B between K and

B nucleon, as considered in the
model calculation of Appendix

I=1 or I=0, and fx and fy denote the coupling
strength of B with the K meson and nucleon, respec-
tively. This boson may represent a pair of J=1—, =1
resonating pions, or perhaps the I=0 «" particle, or
some other resonant j=1—, I=0 pion configuration,
In the nonrelativistic limit, (B1) reduces to

Fnr: foNﬂme/[’mBZ—l— (k—k/)2]

Averaging over angles to obtain the s-wave amplitude
leads to a logarithmic branch cut in Fp°(k?) as a
function of #2, running from k2= —mpz?/4 to the left.
Following Ferrari et al., we replace this branch cut by a
simple pole at the point k2= —mz?/2. For the scattering
matrix 7', this corresponds to the assumption that on the
left-hand cut, the imaginaty part of T' on the upper
side of the cut may be approximated by

Im Tgr=mR(B+kp), (B3)
k—1iko
1—iCka—iCRDkk(0)
D= Bko?

—imwpyp?

We now have two equations of consistency for the
determination of Dxx(0) and Dgy(0). Thus, for
k=-iky in (B6), we have

Dix(0)=1+Chkoa— (CR/2k0)Dxx(0),  (B7)
from which we obtain
Dix(0)= (14+Cko)/ (1+CR/2k0). (B8)
Similarly,
Diy(0)=CkoB/ (1+CR/2k0), (B9)

so that the matrices IV and D, modified for the effect of
exchange of the boson B, are now obtained.

As pointed out by Bjorken and Nauenberg,® it is
not immediately apparent that the scattering matrix T
thus obtained is symmetric, but this may be verified

quite readily by direct calculation of
D(r-T)D=DN-ND, (B10)

by showing that the right-hand side vanishes identically.
It is now of interest to calculate the K matrix, by means

(B2)
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where ko?= —mz?/2 and R=mxQfx /2, recalling the
relationship T'=F/2r for the T matrix as defined in the
text.

Consider first the two-channel case. The analytic
function NV(E) which satisfies the conditions (58) and
(B3) on the left-hand cut, and which is finite at infinity,
may be written

R
at Dgx(0) B+—
=" Rtk Bk

B 4

The elements «, 8, and v are constants which represent
the contributions to NV from more distant singularities.
When R=0, the matrix N must reduce to the K matrix
used in the text and must then be symmetric. The
factors Dgx(0) and Dgy(0) denote the values of the
corresponding elements of D at the point k2= — kg2

The elements of the denominator matrix D are
analytic functions in the %? plane, whose imaginary
parts along the right-hand cuts are given by

Im D= —mpN.

D KY
(0) (B4)

(BS)

Approximating the K—N phase-space density by
mpx=Ck, and the 7— Y phase-space density by corre-
sponding expressions, we may write down by inspection
the analytic functions which satisfy Eq. (B5) and which
agree with the normalization condition that Re D — 1
at infinity. The result is

k—1ko
—1CkB—iCRDky(0)
B4k (B6)
1—impyy
of the relation (59). This leads to the result
at+¢(14+Ckoa) B
K=7 ( ) , 11)
Bt Y27 +¢(Cho)*B18
where

Z=[1—¢Cko(14+Ckoa) I
and

¢=[R/(1+CR/2k0) |/ (k*+ k).

The result (B11) has been written in such a form that
it is valid at once for the three-channel case also, when 3
is replaced by a 1-by-2 matrix. The K—N scattering
amplitude may now be obtained from (B11), with the
result

M
A =ZE(a+¢(1+Ckga)+i7rﬁ{1—¢>Ck0(1+Ckna)
—impy[vZ7+ (Cko)*¢B181} o ¥BY).

In the unphysical region for the K— N channel, the

(B12)
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reduced K matrix may be obtained by using expression
(62),

KR(E)=’Y“5J'BC(K"

ChR 1
14+CR/2ko K+ko)
CR(1+Che) 1
14+CR/2ky k+ko

)WI. (B13)

The location of a K—N bound state is then to be.
determined from Eq. (63), which, as can be seen from
(B13), reduces here to the simple equation

X (1+Cf<a—

CR(1+Che) 1
1-+CR/2ky k+ko

0, (B14)

14+Cra—

where the replacement 2=-ix has been made in this
region. It is of interest to note that, despite the oc-
currence of a pole in T' at the point k2= —x?=—Fk¢?,
condition (B14) for a bound state shows no singular
behavior even at the point k= k. This is in accord with
expectation, as discussed in Sec. IV. Equation (B14) is
identical with the equation (14+CkKxx)=0.

The energy dependence of (B11) and (B12) arises
from the energy dependence of the term ¢. If the
coupling parameters fx and fy are small, so that R is
also small, this energy dependence is generally quite
weak.

The case of most interest is that in which the coupling
parameters fx and fy are large and most of the real
part of the large scattering amplitude [a; for the (a=)
solutions, @, for the (b2) solutions] can be attributed
to the attractive potential generated by the exchange of
the boson B between K meson and nucleon. For this
case the parameter R is large and positive and the
coefficient R/(1+CR/2ko) which appears in ¢ is not
strongly sensitive to its precise value. We illustrate the
situation for the (a==) solutions by choosing %, to
correspond to the mass 305 Mev (roughly the «® mass),
the lowest mass which may be relevant, since this may
be expected to lead to a correspondingly large effective
range and to the strongest energy dependence for 4.

First we consider the (¢—) situation. Here the
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potential term is sufficiently strong for binding, so a
coupling strength fxfy/4r=1.4 was chosen (sufficient
to give about the observed K— N binding for the static
potential). Since the value of b; is small relative to a,
we neglect the small contributions from the last term
of (B12), neglecting also the element + for the reasons
discussed in Sec. ITI, and determine the value of o from
the observed value a¢=-—0.85 f, with the result
a=—1.06 . To illustrate the energy dependence of
A=a+1ib, we then calculate these parameters
at lab momentum 175 Mev/c, with the result 4,
= (—0.934-0.157) {. The energy dependence found for
this case is relatively slight. Finally, we substitute in
Eq. (B14) to determine the location of the K— N bound
state for this model. The value obtained for « is 1.27 {7,
to be compared with the value ¥=1.18 f~! computed
from the zero-range approximation. This corrected
value of « would place the K — N bound-state resonance
at about 97 Mev below the K— N threshold, compared
with the estimate of —80=4-30 Mev, with the zero-range
assumption. When we recall that, in this case, the
location of this K— NV bound state almost coincides with
the location of the pole inserted into NV (E) to represent
the exchange of this boson, it is quite remarkable that
this extrapolation into the unphysical region deviates
so little from the extrapolation carried out with the
zero-range approximation.

To illustrate the (e+) situation, we have chosen
(rather arbitrarily) a weaker coupling fxfn/4r=0.7
to correspond to the absence of a bound state. The
value of « corresponding to a;=41.45 f is then found to
be —0.27 f. In this case the energy dependence of a
and b is found to be much stronger; at 175 Mev/c, the
value A4;=(0.454-0.15¢) f results, a very substantial
fall from the zero-energy value assumed. With such a
rapid variation of the parameters, it would be quite
essential to modify the procedure of the analysis given
in Appendix A, to relate the “at-rest” data and the
175-Mev/c data correctly. It is not easy to understand
physically why the effective range for this turns out to
be so large, and a more detailed study of the effect of
“long-range pion exchange”’ on the K— N interaction
certainly appears desirable at this stage.

DISCUSSION

G. F. Chew, University of California, Berkeley, California:
Did I understand you to say that the exchange of either the
I-spin 1 state or the I-spin 0 state could give rise to attraction
so that if the Abashian-Booth-Crowe particle does exist, it
probably would have an important effect?

R. H. Dalitz: Yes, that is very much to the point. Because
of its low mass, the forces it would give rise to would be of
long range and particularly effective in the binding of the
K-nucleon system. However, you would need both I=0 and
I=1 exchange, because, if the former were dominant, this
would mean strong attraction also for the other K-nucleon
isotopic spin state, which does not appear to be the case.

S. Fubini, University of Padua, Padova, Italy, and CERN,
Geneva, Switzerland: Concerning the exchange of the 2=«

resonance between the K and the nucleon: I do not think it
requires so many new parameters, just one more. Most of the
parameters are given by different experiments, such as pion-
nucleon scattering and electromagnetic structure, so the only
new parameter is the coupling between the K and the 2r
resonance.

I would like to make a second comment about the faith that
one can have in the use of sophisticated perturbation theory
in strong coupling. I would like to make a comparison. Take
a Wigner-Weisskopf formula. The Wigner-Weisskopf formula
came first from weak coupling theory. So it did not apply
immediately in nuclear physics and one really needed a dis-
persion theory of nuclear reactions to give a justification for
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using it in the heavy nucleus. I feel that the same situation is
happening now in high energy physics.

R. H. Dalitz: Yes. The point I would like to make here is
that if one has such a very strong term lying fairly close to the
physical region, the exchange of say two resonating pairs does
not lie so very much further away, and also must be exceed-
ingly strong. And it seems unfair to me to take one term and
not the further term. They are obviously related.

A. Pais, Institute for Advanced Study, Princeton, New Jersey:
Professor Dalitz has raised the question of how one can find
dynamical guiding principles to evaluate various strange
particle reactions over large regimes of energy, and in this
connection I would like to make a few comments.

In the first place, yesterday we heard discussions about the
cusp, and in those discussions two things became clear. First,
there is a remarkable shape analogy between the AK cross-
section behavior as a function of energy as compared to the
T =% m—P cross-section behavior at the 900-Mev resonance.
Second, at the same energy there is concensus at least between
the Columbia group and the Berkeley group that higher
angular momenta than the P waves come in, although further
details are by no means clear. But it may be hoped that this
is again a reflection of higher angular momenta in the 7'=3}
pion-nucleon system. So perhaps here we have a hope that
part of the hyperon-K interactions ride, as it were, on the
pion-nucleon system at corresponding energies.

In the second place, regardless of the detailed validity of
global symmetry, if the w-hyperon forces are strong, you
could then ask the question whether some K-nucleon inter-
actions could possibly in the same way ride on pion-hyperon
interactions. In this connection we heard something interesting
from Dr. Kerth, namely, that K—-P bump which occurs at,
I think, 1.1 Bev/c. And it may be a second numerological
coincidence that this one lies at a position corresponding to
what you might call a third resonance in the =- ¥ system, which
in turn corresponds to the position of the third resonance in
the pion-nucleon system.

In the third place I would like to make the following remark.
I have just been talking about what you might call the third
resonance in the -¥ system ; the question is then if something
interesting would happen at the first resonance in the #-V
system. Now this resonance would occur in K—-P scattering
at about 400 Mev/c. Now in the slides which were shown by
Ferro-Luzzi a couple of days ago, the following features could
have been seen (I happen to know them a little because I have
looked at them longer), namely, there are indications which
are by no means certain that the K-nucleon exchange scat-
tering at that energy also has'a bump. Also it has been known'
for some time that the K—-P electric scattering cross section
has about the following behavior: at say about 300 Mev/c,
there is still an angular distribution which is nearly pure Py
(the spin of the Y*isequal to }; that is the way the data look) ;
whereas moreover at 500 Mev/c where you are beyond this
region, this marked assymetry, while it is not absolutely gone,
has certainly vanished quite sizeably. The implications of a
P-wave K~-P riding on the 7-V system are quite important.

In this connection I would like to make a remark about the
question of the Adair analysis of the Y*. I think that the ques-
tion at the moment is not only what are the data which have
been gathered, but the question is also, what is the meaning
of an Adair analysis if you have numerous particles and a very
short lifetime. If you consider this three-body reaction as the
sum of two two-body reactions in sequel, it is not completely
clear what the Adair analysis tells us, especially if there would
be pion-pion forces, and I do not say resonances. I do believe
we can say with certainty the following: if we deal with a
pure J =14 state, then I think that it is very clear that the ¥*
is an Sy state. I am not convinced that the situation,however,
is as simple as dealing with a pure state.

R. H. DALITZ

And I would like in addition to ask a question. The question
concerns the K-nucleon diagram with two pion exchange,
which you have drawn on the blackboard. There is a remark-
able behavior of the K-nucleon scattering, and I am now talk-
ing about K% scattering, namely, that the K+ proton-elastic
scattering, up to 800 Mev /¢, is flat, quite flat, as a function of
angle, and quite flat as a function of energy. On the other
hand, the K* exchange scattering has, first, the well-known
behavior that it is quite small at low energies. Second, at 350/¢
there is already a lot of P wave in it. Whereas at 640/c there
is definitely at lot of D wave. What [ would like to ask is if a
picture of this kind could at the same time explain the con-
stancy and flatness of the K-nucleon elastic scattering and
the properties of the K-exchange scattering.

R. H. Dalitz: Well, I cannot comment on many of these
points, because I cannot remember most of them.

On the question about =Y resonances at higher energies
and their influence on K-nucleon scattering, I certainly agree
with you entirely. I had not seen the angular distribution of
K~ proton scattering above 400 Mev; I did not realize how
it behaved. But it also seems to me that the rapid change in
charge exchange cross section in that region is probably also
related to the same phenomenon, and it would be a very
plausible possibility to consider that as arising from some 7 — ¥’
resonance.

On the other question about the energy variation of the
charge exchange cross section, I will just have to say that I
have no idea. I am not suggesting that all the K-nucleon
scattering is due to the exchange of two pions. I merely wanted
to point out this qualitative relationship between the K+t
nucleon and the K~ nucleon scattering at low energies, which
certainly seems very suggestive. But it is certainly only part
of the story.

S. F. Tuan, Brown University, Providence, Rhode Island:
If you give up taking the Frazer-Fulco position for the two-
pion resonance, and take the recent determination by the
Cern group, the Bowcock, Lurie, and Cottingham group, which
is at 4.7 mx for the pion-pion resonance, then I think you will
find that the pole term would move very much further away
from the K—-P threshold. In fact, I think it may even go below
the 7A threshold; therefore it is no longer so near the K—-P
threshold as to be a great influence.

G. Frye, Universily of Washington, Seattle, Washington: We
have put in the new Cern parameters for the position of the
resonance and the effect is more or less unchanged. We have
been analyzing the K*-nucleon scattering to investigate this
flatness in both energy and angle. We found that a repulsive
long range part in the K-nucleon interaction is needed. This
is opposite to what we had predicted from the 27 exchange
based on the charge structure analysis and our K—-P
analysis.

J. J. Sakurai, University of Chicago, Chicago, Illinois: How
do you define these residue terms for these 2K, 2=, and other
vertexes? Lee says he has a value which is half your value for
the other vertexes.

G. Frye: These are order of magnitude calculations. In
comparing our calculations for the K~ and K, with exchange
of a 27 resonance, we get contradictory signs. We are now
thinking that maybe the dominant effect is a 3= or W?° ex-
change, which has a different effect on the K*and K~ nucleon
scattering.

J. J. Sakurai: I think these signs work out like this. A «°
particle would have T'=0, J =1 and behave like an isoscalar
photon. The «° exchange contribution would be isospin
independent but change sign as you go from K to K. And
then if you have an exchange of say the Frazer-Fulco type
resonance, you get 7;-7» which is 1 or —3, depending on
whether you are in the I =1 state or I =0 state.



