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I. INTRODUCTION

N the past, theoretical approaches to strong inter-
actions have differentiated sharply between the

high- and low-energy regions. At high energies, where
the wavelength is short compared to the interaction
distance and many partial waves interact, semiclassical
methods have generally been employed—optical models
to describe total and elastic cross sections and statistical
models for inelastic processes. At low energies, where
only a few partial waves are significant, the analyticity
of the .S matrix has played a dominant role, and many
semiphenomenological dynamic calculations have been
made on this basis—with a limited but significant
success in correlating experimental facts. Some empirical
connection between the two energy regions has been
achieved through forward dispersion relations, and very
recently analyticity arguments have been applied to
give a crude description of high-energy peripheral
collisions—as described by Drell.! However, the
dynamics of high and low energies have not been
related heretofore in a direct way. This report deals
with the recent efforts of a number of Berkeley theorists
in this direction. This work is entirely post-Rochester
and still tentative ; we are anxious, however, to stimulate
discussion of some of the points encountered. The
people involved include John Charap, Steve Frautschi,
Marcel Froissart, Virendra Singh, and B. M.
Udgaonkar. We have benefited very much already
from vigorous criticism of our ideas by M. Gell-Mann
and S. Mandelstam.

Frautschi and T got started in this direction because
of frustration with attempts to use the Mandelstam
representation to make self-consistent low-energy
dynamical theories that include P resonances. In
patticular, we had found in the »r problem that,
although large low-energy .S phase shifts could be
accommodated without involving the high-energy
region, strong elastic P scattering at low energies
seemed to require conditions on inelastic cross sections
at high energies.* There is as yet no direct evidence for
a P-wave wm resonance, but Frautschi and Walecka?

* Work done under the auspices of the U. S. Atomic Energy
Commission.

1S. D. Drell, Revs. Modern Phys. 33, 458 (1961), preceding
paper.

#G. F. Chew and S. Mandelstam, Nuovo cimento (to be
published); see also G. F. Chew, Proc. Ann. Rochester Conf.
High Energy Phys. 10, 273 (1960).

3 S. Frautschi and D. Walecka, Phys. Rev. 120, 1486 (1960).

and, independently, Frazer and Fulco* confirmed the
same difficulty in the wV problem with respect to the
famous ($,3) resonance. Mandelstam had noticed the
possibility of trouble in his first paper, but had hoped
that the coupling between high and low energies would
be weak.® However, by the time of the Rochester
Conference last September, it was indicated by a
number of detailed calculations that nature is not
going to permit a realistic dynamic theory of strong
interactions which is self-consistent within the low-
energy domain.

Frautschi and I are proposing® the simplest extension
of the original Mandelstam program? that we feel can
conceivably accommodate low-energy P resonances. We
have arrived at a set of equations that may or may not
be self-consistent and complete; but quite apart from
the validity of our particular approximation, we have
been led to a way of thinking that suggests to us a
startling circumstance. If total cross sections are to
approach constants systematically at very high energies,
then in the low-energy elastic region the forces should
be strong enough to produce large S and P phase shifts,
but not sufficiently strong to make resonances or
bound states for J2>2. We are encouraged, in fact, to
propose a universal definition of strong interactions:
That they are always as strong as possible—consistent
with the requirements of unitarity and analyticity. It
has been plausible for some time that such a definition
would correctly lead to constant high-energy total cross
sections corresponding to a radius of the order of a
pion Compton wavelength. One object of this presen-
tation is to suggest that the same definition may lead
to low-energy forces of the order of magnitude observed.
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*W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960); see also
W. Frazer, Proc. Ann. Rochester Conf. High Energy Phys. 10,
282 (1960).

5S. Mandelstam, Phys. Rev. 112, 1344 (1958).

8G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960) ; Lawrence Radiation Lab. Rept. UCRL 9510 (1960).
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II. MANDELSTAM DIAGRAM AND
STRIP APPROXIMATION

It is assumed that the audience is familiar with the
Mandelstam variables and the Mandelstam represen-
tation.® Let us consider for simplicity the case of equal
masses (e.g., 7 scattering) in which the three physical
regions are as shown in Fig. 1. The three double-
spectral functions are nonzero in the shaded domains,
and it is the geometry of these regions that is central
to the approach to be described.

The basic idea behind all successful approximations
in strong-interaction theory (in which there are no
small coupling constants) is to take accurate account
of “nearby” singularities and to approximate or
neglect “faraway’’ singularities. Unitarity restricts the
strength of all singularities, so generally speaking the
inverse dependence on distance given by the Cauchy
formula for an analytic function in terms of its poles
and branch cuts makes the “nearby” singularities more
important. Now the notion of the “distance” of a real
physical point from a singularity is straightforward
for a function of a single complex variable, particularly
when all singularities lie on the real axis, but we are
dealing here with a function of two variables. As long
as the only large low-energy phase shifts are in the .S
state, it turns out that the double-spectral functions
are unimportant in comparison to the single-spectral
functions, and so the problem can be made one-
dimensional. However, in the interesting case, we must
decide what is “near” and what is “far” in the two-
dimensional Mandelstam diagram. (For substantial
parts of the following argument I am indebted to
Froissart.)

Consider the term

f ds'dt' [pse(s',0)/ (s — ) (¢ —1)]. 1)

The strength of the “source” is py, but the relevant
“distance” is the product of the two one-dimensional
displacements from ‘“‘source’” point to physical point.
Thus, the double-spectral regions of constant ‘“distance”
from a low-energy physical point are bounded by
hyperbolas running more or less parallel to the bound-
aries of the double-spectral region. The “nearest’ region
is the heavily shaded strip just inside the boundary. It
is this region that we must accurately represent in a
consistent theory of low energies. .

One should realize that it is really only to the principal
value part of formula (1) that the foregoing argument
applies. That is to say, for example, in the s physical
region the #—¢ denominator cannot vanish, but we
must interpret (s'—s)! as

P(s'—s)41md (s'—5). (2)

Thus, the imaginary part comes entirely from the
single value s'=s. At low energies, the real part of the
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amplitude is generally of the same order of magnitude
or larger than the imaginary part. However, at high
energies, there is reason to believe that the imaginary
part dominates the forward diffraction peak. Such a
dominance is suggested by all classical models and
has substantial experimental support. We believe that
it will emerge naturally from the Mandelstam approach
when the latter is thoroughly understood, but for the
moment our faith is of classical origin. On combining
formulas (2) and (1), we see that the imaginary part of
the amplitude in the s physical region, arising from
Psty 15

fﬂbdmwﬂﬁl 3)

Thus, the “distance’ from source point to physical
point is only one-dimensional, and so far as small angles
in the physical region are concerned, the “nearest” part
of the double-spectral region is the strip on which we
have already focused attention in connection with low
energies. Thus, we have been led to the conclusion:
If one can calculate the double-spectral function in a
strip adjacent to the boundary, of width Az 16m.,? (it
must be substantially wider than the gap between the
double-spectral boundary and the physical region),
then one should achieve a theory appropriate to al
energies (s) for small momentum transfers (¢). “Small”’
means

—A1<1<0. 4)
Recall that

t=——2q,2(1~—cosés) and  s=4(¢>+m.?).

For energies such that s< A4, all physical angles are
included, but at high energies, only the first diffraction
peak is covered by such a theory. However, this first
peak comprises most of the observed collisions, and so
rather few experimental phenomena are excluded. The
theory also could handle backward scattering in an
angular interval corresponding to

—Musug0, (5)
where
u=—2¢2(1-4cosb;).

Whether backward peaks systematically occur at high
energies is a most interesting question.

Some check on our conclusion that the strip regions
should be dominant is given by the very existence of the
forward-diffraction peak, which in all measured cases
has a width corresponding to A¢~10—20m,. If in
formula (3) there were important contributions from
t>>At, it would be difficult to understand why the
physical amplitude is so small for <<—At. Further
assurance is given by the circumstance that it is only
in the low-energy (resonance) region that total cross
sections ever become really large. A glance at expression
(3) shows that in the s channel this fact implies the
existence of maxima in p(s,t) for low s, while the
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corresponding argument for the / channel implies
maxima for small ¢ Again, the strip regions are
emphasized.

III. ASYMPTOTIC BEHAVIOR IN STRIP
DIRECTIONS

It is indicated experimentally and very plausible
from classical arguments that (to within logarithmic
factors) total cross sections approach constant high-
energy limits and that the widths (in ) of the corre-
sponding forward-diffraction peaks also approach
constants. Now the imaginary part of the amplitude
at =0 (in the s channel) is proportional to s times the
total cross section. Thus, we conclude from expression
(3) that?

Ps (JJ’)
lim dt'——tl——— T (6)
DR

We find it hard to believe that if the amplitude goes
linearly with s for small negative ¢, it does not also go
roughly linearly with s for small positive ¢, even beyond
the branch point at ¢{=4m.?, the physical threshold for
the ¢ channel. Mandelstam has repeatedly pointed out
to us that such a conclusion is not required if oscillations
are important in the double-spectral function, and that
in nonrelativistic scattering such oscillations necessarily
occur. There is no analog of the limit (6) in potential
scattering, however.

A linear increase in the modulus of the amplitude
for 1> 4m.,*> would have potent physical implications for
the low-energy behavior in the ¢ channel, where s is to
be interpreted as the (negative) square of momentum
transfer. It has been shown rigorously by Regge for
potential scattering that the asymptotic behavior of
the amplitude for large momentum transfer is ~s*(®,
where Reea is positive for an attractive potential
and increases with potential strength.® Regge also
showed that partial waves for /<[ Re amsx may have
bound states or resonances, while those for > [Re o Jmax
necessarily have small phase shifts. Now if one examines
the Mandelstam representation with regard to the
relative amount of scattering in states of different
angular momenta at low energy in the ¢ channel, one
finds that a natural way to achieve large and fluctuating
phase shifts for /< /max, with a smooth variation for
1> liax according to the usual range criterion, is to have
an asymptotic behavior ~s%, where [Re oJmax™ max.
Thus, we believe Regge’s criterion to be of general
validity, and we conclude that if [Re amax | is approxi-
mately one for strong interactions, as suggested pre-
viously, they should be capable of producing large S
and P phase shifts in the low-energy elastic region but
only weak scattering in states for J2> 2.

7 All statements here are uncertain with respect to logarithmic
factors. Only the powers are intended to be taken seriously.
8 T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960).
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Such an argument in the w= problem, where all three
channels refer to the same process, immediately
eliminates the so-called “S-dominant” solutions® as
being physically uninteresting and focuses attention on
solutions where P as well as S phase shifts are large at
low energies. Moreover, we expect that no resonances
occur for D or higher waves. For problems such as 7NN,
where spin is present and where the three channels do
not all correspond to the same process, the situation is
more complicated, but the same basic principles apply;
that is, the region of high-energy and low-momentum
transfer in one channel is closely related to low-energy
and high-momentum transfer in another. Unitarity puts
on the asymptotic behavior in the former an absolute
maximum, which by analytic continuation is carried
over to the latter.

The most exciting aspect of such considerations is the
prospect that coupling constants, heretofore regarded
as independent, will turn out to be determined by the
principle of “maximum strength’” for strong inter-
actions. For example, the magnitude of the pion-nucleon
constant, f2=0.08, corresponds to strong nucleon-
nucleon low-energy scattering in states of J=0 and 1
and to strong pion-nucleon scattering in states of J=1%
and . Semiphenomenological analyses already made
indicate that if f? were much smaller or much larger
than its actual value, this situation would not be
possible. The pion-pion constant A is not yet known,
and it will be an exciting race to see if theory can
predict its value before measurement is made. Whether
a prediction is possible depends on the formulation of a
reasonable program for calculating the double spectral
function in a strip of sufficient width.

IV. DYNAMICAL EQUATIONS FOR STRIPS

Cutkosky has proposed a general recipe for calcu-
lating Mandelstam’s double-spectral functions in which
one must consider all four-vertex graphs and insert at
the corners the appropriate (complete) scattering
amplitudes.’® In the = problem, the outermost-strip
contributions arise from graphs of the type shown in
Fig. 2. In one channel, only two pions occur in inter-
mediate states, but in the other an arbitrary number of
particles is allowed. Figure 2(a) controls the strip for
4m,? <t<16m.? as s approaches infinity, while Fig. 2(b)

? G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev. 119,
478 (1960).

10 R. Cutkosky, Phys. Rev. Letters 4, 624 (1960) ; J. Math. Phys.
1, 429 (1960).
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controls the strip for 4m,?<s<16m.? as ¢ approaches
infinity. Cutkosky’s formula for Figs. 2(a) and 2(b)
is identical with that given in Mandelstam’s first
paper® and involves only the absorptive parts of elastic
mr amplitudes. Thus, one can hope to calculate the
strip regions without becoming involved with the full
fury of a many-body problem.

Whether the strip bounded by 16m,? is of sufficient
width to constitute a reasonable first approximation is
another matter. Clearly, Fig. 2 corresponds to consider-
ing inelastic processes reached by the exchange of a
single pion; this phenomenon has been discussed by
Drell, who has expressed doubt that this mechanism
can account quantitatively for a majority of inelastic
processes.! However, the estimate from which this
doubt arose was based on an extension of physical cross
sections off the mass shell, an extension that is not
necessary in the Mandelstam-Cutkosky approach. To
put the situation differently, the one-pion exchange
approximation according to Mandelstam-Cutkosky is
not really the same as that surveyed by Drell. We
continue to hope, therefore, that Fig. 2 does constitute
a reasonable first approximation.

Frautschi and I have made a preliminary examination
of the iterative solution of the problem defined by
keeping only the diagrams of Fig. 2. We conclude that
the iteration should converge for the S-dominant type
of solution and probably not differ appreciably from
the result found earlier’ by a method in which the double
spectral function was treated much more crudely.
Wilson has independently arrived at exactly the same
equations and is actually attempting the numerical
iteration.! However, a straightforward iteration may
not converge for the interesting case in which the

1 K. Wilson, Harvard University Physics Department preprint,
1960 (unpublished).
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high-energy total cross section approaches a constant.
Whether the equations, without modification to
represent some effect from the neglected Cutkosky
diagrams, have any consistent solutions of the true
strong-interaction type remains to be seen. It is corre-
spondingly uncertain as to whether the == constant A
will be required to have a unique value.

V. CONCLUSION

This, then, is the situation at present. The =r, NN,
and 7N problems are being attacked at Berkeley by the
new approach. At the same time, Charap is studying
nonrelativistic potential scattering by the analogous
technique in the hope of discovering general properties
of the double spectral function (in particular, the
oscillations) that will guide us in the relativistic theory.
We are full of hope, but at the same time aware from
past experience that the strong-interaction problem has
a knack of continuously developing new twists so as to
defy systematic analysis. It will be surprising to us, in
any event, if nothing useful develops from the notion
that unitarity puts an upper limit on interaction
strengths, at low as well as at high energies, and that
nature seems to approach this limit closely.

Gell-Mann often reminds us that the analyticity
properties of S-matrix elements on which all our
thinking is based, may in fact not be correct at the high
energies to which they are now being pushed. There is
no answer to this remark except that at the moment we
see nothing to be gained by abandoning Mandelstam
and Cutkosky. If they go down, there is nothing in
sight to save us from the abyss.

Post-conference note: V. N. Gribov has presented
arguments closely related to the subject discussed here
[Proc. Ann. Rochester Conf. High Energy Phys. 10,
340 (1960)].

DISCUSSION

S. Mandelstam, University of Birmingham, Birmingham,
England: Essentially the spirit of what Dr. Chew has proposed
is the same as the spirit of what we have been doing up till now.
We generally neglect the terms in which one of these de-
nominators was large, as Dr. Fubini in particular explained,
whereas the aim now is only to neglect terms in which both of
these energy denominators is large, and in that case you would
take more into account so you expect to get more accurate
results. You also have very much more work to do. In particu-
lar, one difficulty will have to be faced, which I think probably
can be gotten over but which has not been gotten over yet.
The difficulty lies in the asymptoti¢ behavior of these spectral
functions which Dr. Chew is talking about. The point is that
he did not mention some fearful oscillations that could occur,
that do in fact occur in potential theory. This has been shown
by Regge,* who finds that the scattering amplitude behaves
like £* as momentum transfer ¢ approaches infinity. The power «
depends on the energy s and may be interpreted as the highest

» T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960),

bound state at s. It is complex above the threshold in s, thus
producing the oscillations I referred to. The oscillations lead
to cancellations in the integrals over absorptive parts, such
that @ may exceed one for positive s in certain cases, and yet
be less than one for negative s. In potential theory the region s
negative, 8., is unphysical, but in field theory there is crossing
and it is a physical region. Although Regge’s proof applies only
to potential theory, I do not see any reason why the power of a
should not also increase as s becomes positive in field theory,
thus reconciling the power e =1 which Dr. Chew has proposed
at small negative s with higher powers (and therefore higher
angular momentum bound states in the s channel) at small
positive 5. That is why I do not find the argument against
high angular momentum resonances as convincing as Dr.
Chew does, though I think we all agree that it would make
life easier.

I should like to emphasize that my comments are directed
to this one aspect only, and not to the approach in general,
which I should very much like to see carried out.



