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I. INTRODUCTION

HE word ‘““anomalous” has a special meaning in
physics. We always expect that the study of
unanticipated effects will lead to a better understanding
of the underlying principles. We should be surprised if
the anomalous thresholds were not similar.

The ordinary thresholds refer to the threshold
energies at which new physical processes become
possible: the thresholds for the production of new
particles. It is well known that ordinary thresholds are
associated with singularities in the scattering ampli-
tudes.! The anomalous thresholds are additional
singularities, which do not correspond to inelastic

thresholds. The possibility of additional singularities -

was first pointed out by Karplus, Sommerfield, and
Wichman,? and Nambu.? Anomalous thresholds are not
always present ; there are none in the dispersion relations
for pion-nucleon and nucleon-nucleon scattering. How-
ever, anomalous thresholds are a characteristic feature
of production amplitudes, in which they always are
present, and they even occur in elastic scattering when
the masses of the particles have certain ratios.

In Sec. II the scattering of unstable particles is
discussed. It is shown that anomalous thresholds arise
very naturally in this problem and can in no sense be
considered an unusual feature of the scattering matrix.
Section III is a survey of recent work on the role of
anomalous thresholds in dispersion relations. In Sec. IV
it is shown how a Bethe-Salpeter equation may be
derived from dispersion theory. This derivation shows
explicitly, in terms of older physical concepts, how
dispersion relations determine the dynamical behavior
of interacting particles.

II. UNSTABLE PARTICLES
Consider first the inelastic scattering
Kt+4p — at+n"p.

The amplitude associated with the graph in Fig. 1 is
infinite when the intermediate state has the same energy

N"P
Fic. 1. A graph which

0,7 s o leads to a pole at physical
values of the momenta.

* Supported in part by the U. S. Atomic Energy Commission.
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as the initial state, which is possible because the K+ is
unstable. The scattering amplitude, considered as a
function of the momenta of the final particles, has a
pole. This pole is a consequence of the fact that in an
experiment, the decay of the K* could take place as a
real process at a distance far upstream from the target,
depending on the precise experimental arrangement;
the intensity of = mesons, relative to the intensity of
“undecayed” K mesons, can be made arbitrarily large.
(If we average over the momentum uncertainty
provided by the localization of the particles by counters,
there is no longer a pole for physical values of the
average momenta.) If we imagine decreasing the K+
mass until it becomes kinematically stable, the energy
denominator cannot vanish when the final momenta
are real, but when some of the components of the
momenta are continued into the complex plane, the
vanishing is still possible. Chew and Low* pointed out
that these poles are a characteristic and important
feature of production amplitudes.

N P'-rp
N Fic. 2. The prototype
q+p re \?"P of anomalous threshold
ht \ graphs.

If the two 7 mesons recombine into the K+ meson,
there is a possible contribution to elastic scattering
from the diagram in Fig. 2 in which energy is conserved
in both intermediate states, so all three intermediate
particles are able to propagate as free particles. Let us
examine this possibility in the Breit frame in which the
velocity of the unstable particle is reflected back by
180° by the scattering; the momenta are as indicated
in the figure. If both intermediate states are to have
the same energy, q-p=0. The magnitudes of q and p
are related through the equation

(M+p2)t= (M 2+ @) (M2 d+p)3 1

or
\ (MOZ_M12__M22)2_4M12(M22+p2) ( )
¢°= . 2
4(M 2+p?)
Note that —4p?=¢, the conventional momentum

transfer variable. The values of ¢? obtained from Eq. (2)
are positive only if is larger than the critical value

t0=4M22"—M1_2(M02_M12_M22)27 (3)

4G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
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ANOMALOUS THRESHOLDS

which is independent of the collision energy. If the
scattering angle is sufficiently small, the process shown
in Fig. 2 can contribute to the scattering with all three
intermediate particles being on the mass shell, but if
the scattering angle is larger than the critical angle, this
is not possible. In the first case, the two intermediate
states can both persist for indefinitely long times so the
two m mesons can separate to an arbitrarily great
distance during the scattering.

The critical momentum transfer # is evidently a
“threshold” of some type, although not an ordinary
one; it is, in fact, an anomalous threshold. The nature
of the singularity at this threshold can be studied in
detail by the methods described later; it turns out to be
a logarithmic singularity. That is, the scattering
amplitude contains a term proportional to log(1—12/t).
It is also easy to show this directly by integrating over
q (for this calculation the amplitude for scattering of
M, by M’ can be considered to be constant). Since
an unstable particle can be thought of as a narrow
resonance in the scattering of other particles, we should
expect similar logarithmic singularities in any multi-
particle reaction. Whenever the initial and final states
have more than two particles, the scattering matrix
gets a contribution from diagrams such as that in Fig. 3,
which is similar to that of Fig. 2. A calculation identical
to that just sketched again shows there are logarithmic

- singularities for physical values of the energies and
momenta. It is clear, therefore, that anomalous
thresholds are just as general a feature of the scattering
matrix as are ordinary thresholds.

Karplus, Sommerfield, and Wichman pointed out that
even when we consider scattering of a particle which
is stable, but loosely bound, there is an anomalous
threshold at the point t=1#y given by Eq. (3). In this
case #p does not correspond to a real scattering angle,
but the form of the scattering cross section for real
angles might still be dominated by the existence of the
anomalous threshold.

Bohr has given a simple physical picture which helps
us understand why loosely bound particles behave
somewhat like unstable particles.5 We imagine a
deuteron, bound to a heavy nucleus, which has virtually
escaped beyond the nuclear surface (which we treat
as a plane). The situation is depicted in Fig. 4. The
deuteron’s momentum is directed along the Z axis and
has the magnitude 4kp; in other words, the wave
function is proportional to exp(—zxp). Now suppose
that the deuteron ‘“‘decays” while it is in this region.
Conservation of the z component of momentum
implies that the neutron and proton have imaginary
momenta such that k,+k.=kp, so after decay the
product of the neutron and proton densities has the
same z dependence as the initial deuteron density. Let

® Aage Bohr, preprint of “Lectures on dispersion relations,”
Theoretical Physics Institute, University of Colorado, Boulder,
Colorado, Summer, 1960; and private communication. The argu-
ment presented here is a slight modification of Bohr’s.
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Fic. 3. A graph with six
external lines, for which
there are anomalous thresh-
olds in the ‘physical
region” of the momenta.

the neutron and proton momentum along the X axis
(parallel to the nuclear surface) be = p. Conservation of
energy requires that

L@~ + (P =) )/ 2N = —B— (xp?/4N),  (4)

where B is the binding energy of the deuteron and N
is the nucleon mass. From Eq. (4) we obtain

2= — NB+%(kp—2k,)% )

This shows that if the deuteron is bound sufficiently
tightly to the nucleus so that xp?>4NB, $* may be
positive and the neutron and proton able to escape from
each other. In other words, the deuteron is unstable in
this situation.

We may also consider two nucleons in the nuclear
fringe region and invert the foregoing. If these two
nucleons scatter, they may form a deuteron as an
excited resonant state which is exactly analogous to the
resonances in ordinary scattering theory. If we have a
deuteron which is virtually present beyond the nuclear
surface, it may scatter against another nucleon in the
same region; it is clear that there are anomalous
thresholds in the scattering amplitude. This shows that
when we consider the analytic continuation of a scatter-
ing amplitude to momenta which are not real, we must,
in general, expect to find anomalous thresholds.

If we repeat the calculation leading to Eq. (5) using
the relativistic expression for the energy, we find that a
particle of mass M, can be made to be unstable against
decay into particles of mass M, and M, by increasing
its binding only when M @> M 2+ M2 In this case we
may describe the particle as “loosely bound”; when
M@<M3+M4?, we may refer to it as “tightly bound.”

N
Source —%F
Nucleus decay detector
N .
N region nucleus
b
N
N
3 T
z=0 z=L

FiG. 4. Illustration of the virtual decay of a deuteron in the
region beyond the surface (at 2=0) of a very large nucleus. The
proton and neutron could be detected in a second nucleus whose
surface was placed at z=L. The emergent protons and neutrons
could be considered to form three groups: two corresponding to
decay in the neighborhood of =0 and z=L, and the third to
decay in the intervening region. The third group is what we are
interested in; it has an intensity proportional to L exp(—2«kpL)
when L is large. The separation into these groups is, of course,
not unique.



450

loosely 2 22
bound — MovM, *My

u*nstab!e
u:’l ) v.:—l ;
! |
tightly : hyperstable /’
4

bound ———»: .
”

[] -
(SRS

I'1c. 5. Locus of the decay velocity when M is varied.

The nature of this critical value of M, becomes some-
what clearer if we look at the invariant decay velocity
which we define to be the velocity with which an
observer moving along with the decay particle 1 sees
particle 2 to be receding:

u=AMe—M>2—M2), (6)
where

A= MMM A= 2M M 2—2M M 2 —2M M 2

(in units where ¢=1). When M>M14+M,, u is real
and lies between 0 and 1. When M <M +M., u is
imaginary. An imaginary decay velocity which corre-
sponds to an exponentially decreasing wave function
does not in itself preclude instability of the particle
under all circumstances, as the example discussed
before shows. It should also be remembered that, from
a formal mathematical point of view, Lorentz trans-
formations with complex velocities are perfectly well
behaved; it is only #?=1 that is singular.

Now note that if M, decreases further, # — 7o when
Me— M24+M:2 In the nonrelativistic theory, the
wave function corresponding to #=¢e is one which
decreases infinitely rapidly so that particle 1 would see
particle 2 as constrained to remain coincident with it. In
relativity theory, the momentum is ks=Mqu(1—u2)~%
so we obtain instead ks — iM,, which gives the maxi-
mum localization of particle 2 which is possible. If
M, is decreased still further, the velocity # goes to the
negative imaginary axis along the path shown in Fig. 5
(we give M, a small positive imaginary part). As M,
decreases past the critical value, the decay velocity
traverses the physically forbidden region #>1, which
we interpret as a branch cut in the complex velocity
plane. When M@<M24M2, it is no longer possible
to consider the particle to have “decayed.” The energy
of particle 2 (as seen by 1) is Ey=M2(1—u?)~%; since the
branch point at #=1 has been encircled, E; is negative,
which corresponds to absorption rather than emission.

The behavior of the anomalous threshold f mirrors
that of the decay velocity. We have seen that when a
particle is unstable, there is an anomalous threshold
at a physically accessible momentum transfer; when it
is loosely bound, the anomalous threshold lies between
the physical region and the ordinary threshold /=4M2.
When the mass M is decreased further, the anomalous

CUTKOSKY

singularity passes around the branch point at #=4M,?
onto another sheet of the Riemann surface [see Eq. (3)]
and disappears from the usual dispersion relations.

If we suppose the mass M, to be decreased still
further (assuming M>M' until M<M,—M,, the
“decay” velocity becomes real again. Since the energy
I, is negative, this evidently corresponds to the absorp-
tion of My by M, to form the unstable particle M.
When M @< (M1—M>)? we say the particle is “hyper-
stable.” This extreme case is of interest because dis-
persion relations often take a simpler form when one
or more of the particles is hyperstable.

III. PROPERTIES OF THRESHOLDS AS DEDUCED
FROM PERTURBATION THEORY

The first extension of dispersion relation techniques
to a situation with anomalous thresholds was made by
Mandelstam.® He started with the dispersion relations
for scattering of tightly bound particles which do not
have anomalous thresholds and made an analytic
continuation in the masses, increasing them until the
anomalous threshold popped out onto the principal
sheet of the Riemann surface. It was necessary to
approximate one of the matrix elements in the expres-
sion, using perturbation theory, to get a simple ex-
pression in which the analytic continuation could be
easily studied. Mandelstam showed that in the
anomalous case, a dispersion relation very much like
the ordinary one was valid; the only difference was that
there was an extra “anomalous” contribution to the
dispersion integral.

The same technique of analytic continuation in the
masses of the particles was applied by Blankenbecler
and Nambu” to the study of the form factors of loosely
bound particles. The “size” of a loosely bound particle,
as represented by its form factor, is governed by the
exponentially damped waves associated with its virtual
decay, which, as we have already seen, are intimately
related to the anomalous thresholds. There have been
a number of other papers along similar lines®—; that
of Blankenbecler et al.,'!' in particular, has been in-
valuable in clarifying many of the mathematical
features of anomalous thresholds and their role in
dispersion relations. It is not yet known, however,
whether the approach which starts from “ordinary”
dispersion relations can be extended to the most
general case; at any event, the assumptions about
analyticity made by these authors are not yet known

6 S, Mandelstam, Phys, Rev. Letters 4, 84 (1960).

7R. Blankenbecler and Y. Nambu, Nuovo cimento (to be
published).

8 R. Oehme, Nuovo cimento 13, 778 (1959).

9 R, Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745
(1960).

10 R. Oehme, preprint, University of Chicago, Chicago, Illinois,
1960.

1R, Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman (to be published); R. Blankenbecler, Proc. Ann.
Rochester Conf. High Energy Phys. 10, 247 (1960); also private

communication.
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to be valid except in perturbation theory, so all of our
present knowledge is ultimately based on examination
of the perturbation theory expansion.

The detailed study of these particular examples has
been supplemented by the development of a general
theory of singularities, based on the analysis of analytic
properties of perturbation theory amplitudes. The
general theory deals with an amplitude corresponding
to a graph with # external lines. This amplitude is
considered as a function of the 243(n—4) (for #>4)
complex variables corresponding to the invariants
formed from the external momenta and, for some
purposes, also of the # mass variables. A general method
of classification of the singularities of the amplitude has
been described by Landau,®® Taylor,”® Bjorken,* and
others.’®17 They derived equations from which the
location of the singularities can be determined. Knowl-
edge of the precise location of the singularities given
by the LTB equations is essential in applications of
dispersion relations, but here we are concerned mainly
with some general qualitative concepts which arise
directly from this work. This point of view adopted here
is that the thresholds, both the ordinary and the
anomalous kinds, are the most important and charac-
teristic feature of quantum field theory and that the
theory should be constructed in such a way that these
thresholds are given first and equal emphasis.

First, the general theory shows that the singularities
are isolated singularities and are either simple poles or
branch points. This means that we can discuss each
singularity of the Feynman amplitude by itself without
any reference to its neighbors. It implies that for any
amplitude F, in any variable 2z, we can obtain a dis-
persion relation from Cauchy’s theorem:

1 F(z')ds
2t 32—z
R

0 * [F(2") Jods'
Ly Re o IEE

9 2—2 G

M

¢ 2mi(3—3z) ’

wheré R, is the residue of the pole at 2=z, and [F(2) J¢
is the jump across a branch cut which starts at the
branch point zg. [We have assumed that F(z) vanishes
at o in all directions.] This shows that in any con-
ceivable dispersion relation we may isolate (if we wish)
a particular contribution from each singularity and
treat it separately. We may also examine the dependence
of [F(z")Je on the other variables. The jump [F ¢ can
be thought of as the difference of two analytic functions,
so its singularities are of the same type as those of F

13 J. C. Taylor, Phys. Rev. 117, 261 (1960).

“J. D. Bjorken, preprint, Stanford University, Stanford,
California, 1959.

15 J. C. Polkinghorne and G. R. Screaton, Nuovo cimento 15,
289 (1960).

10, Tarski, J. Math. Phys. 1, 154 (1960).

" R. ¥. Cutkosky, J. Math. Phys. 1, 429 (1960).
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itself. By using Cauchy’s theorem in the other variables,
a multiple dispersion relation can be obtained in as
many variables as one wishes. Every multiple dis-
persion relation has a form similar to Eq. (7) in that
the contribution of the individual singularities can be
displayed explicitly.

The second important result is that every singularity
can be associated with a “reduced graph.” A reduced
graph is a kind of skeleton of a Feynman graph, which
is obtained by drawing explicitly only a certain number
of the lines and representing all the remaining lines and
the vertexes by points which correspond to subgraphs
of the original graph. Some examples are shown in
Fig. 6. These reduced graphs summarize the content
of the LTB equations which give the positions of the
singularities: each of the lines of the reduced graph is
to correspond to a four momentum which is on the mass
shell and these momenta are also to satisfy certain
additional geometrical conditions. None of the other
lines of the original Feynman graph, those which are
hidden in the vertexes of the reduced graph, enter into
the determination of the location of the singularity. A
general Feynman graph leads to a number of reduced
graphs and to a corresponding number of singularities;
on the other hand, a given reduced graph describes a
particular singularity of infinitely many Feynman
graphs.!8

The third consequence of the general theory is that
every discontinuity function [F ]g can be written down
immediately in terms of an integral associated with the
reduced graph!™1?;

[Flo= f TL (@R LA (Q)o(@—M)ILE).  (8)

The rules for writing down the integral (8) are very
much like the familiar Feynman rules. They are: (a)
there is an integration, fdk=f (27)~*d*k, for each
independent closed loop; (b) for each line the integrand
contains a factor 2miA(g)8(g®—M?) [this is analogous
to the Feynman propagator—A(g) depends on the spin
of the particle and is 1 if S=0, yg+M if S=1, etc.];

F16. 6. A Feynman
graph  (top) and
three reduced graphs
which correspond to
singularities of the
amplitude.

8 We are speaking here only about the ‘‘dynamical” singu-
larities. There may also be various kinds of kinematical singu-
larities, whose locations do not depend on the internal structure of
the Feynman graphs. The non-Landauian singularities mentioned
in reference 17 are of this type. Kinematical singularities appear,
in all cases, to be avoidable nuisances in the dispersion relations.

¥ R. E. Cutkosky, Phys. Rev. Letters 4, 532 (1960).
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(c) for each vertex the integrand contains the exact
transition amplitude F corresponding to the lines
leading into that vertex [as a consequence of rule (b),
this is always a physical transition amplitude since the
momenta are on the mass shell but it is usually
analytically continued to a region where the momentum
components are not real]. These rules also give the
residue R, of a pole at z=z, if we interpret the “dis-
continuity” of a pole as 27i6(z—2,)R,. It can be shown
that when the reduced graph corresponds to an ordinary
threshold, these rules contain the usual unitarity
condition on the S matrix. They may therefore be
thought of as a.generalization of unitarity although
they refer to a property which cannot be expressed in
terms of matrix algebra. It should be noted that the
amplitudes corresponding to the vertices are analytic
functions with many branches and some care must
usually be exercised in choosing the branch. Moreover,
only one root of ¢*=M? must be allowed to contribute
to the integral ; the easiest way to insure this is to use the
g themselves as integration variables.

The preceding discussion, especially Egs. (7) and (8),
shows that the most general possible dispersion relation
has the form of a nonlinear integral equation relating
various transition amplitudes. This set of integral
equations is, moreover, complete. The rules (a)-(c) are
all that is needed to generate the perturbation series
expansion to all orders, provided they are supplemented
by the locations of all the LTB singularities (including
rules for determining the branches of the analytic
functions) and a statement about the asymptotic
behavior of the amplitudes for large values of the
invariants; they may, therefore, be considered to
contain, in a certain sense, a complete specification of
the dynamical behavior of interacting particles. It is
particularly worth noting that it is possible to achieve
completeness without introducing any amplitudes
except those for particles on the mass shell, in other
words, amplitudes which are directly measurable, or
their analytic continuations. This means that even
though there are anomalous thresholds, we are able to
achieve through the dispersion relations a true S-
matrix theory of the type originally suggested by
Heisenberg. 202

In the applications of dispersion relations to practical
problems one always makes the assumption that it is
only the nearest singularities that one needs to worry
about explicitly; if everything goes well, the farther
singularities can be taken care of by one or more
phenomenological parameters. These distant singu-
larities correspond to new effects which show up
directly only at very high energies or, equivalently, at
very small distances. It is reasonable to assume (but
this has not yet been proved in the general case) that
reduced graphs which are very complicated always

20 W, Heisenberg, Z. Physik 120, 513, 673 (1943).

2t C, Moller, Kgl. Danske Videnskab. Selskab, Mat.-fys, Medd,
23, No. 1 (1945); 22, No. 9 (1946).
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correspond to distant singularities. This means that we
can start to make a phenomenological description of
experimental data by looking only at very simple
reduced graphs. The simplest graphs are those with
two vertexes connected by a single line (Fig. 1) which
lead to the Chew-Low. poles. Theoretical predictions
based on these poles are in agreement with the experi-
mental data in a number of cases. The next simplest
are those with three vertexes connected by three lines,
the original anomalous threshold graphs (Fig. 2). These
singularities dominate the elastic scattering of loosely
bound particles at small angles as we noted earlier.
The importance of these anomalous thresholds is
extremely well verified in scattering from deuterons and
other nuclei and even in atomic scattering. It has not
been customary to think of these scatterings in terms
of anomalous thresholds but it can be shown that the
well-known impulse approximation is equivalent to the
anomalous threshold contribution.?

IV. DYNAMICAL EQUATIONS

The contribution of the simplest reduced graphs can
be written down explicitly in terms of coupling con-
stants and other more simple scattering amplitudes. In
going beyond this approximation one obtains from the
dispersion relations not an answer in closed form, but
an integral equation which must first be solved. It has
been repeatedly emphasized, especially by Mandelstam
and Chew,? that from dispersion relations one does
indeed obtain solutions which describe in a unique way
(apart from a few parameters) the dynamical behavior
of interacting particles. The essential point, as they
have shown, is that the effective “potential”’ which acts
between two particles is determined by the amplitude
for the so-called ‘“crossed” reactions. This is made
particularly clear if we solve the dispersion integral
equations by the device of introducing, as an inter-
mediate step, a modified Bethe-Salpeter equation?*—%6
whose solution gives the scattering amplitude. The
method we follow is similar to that of Charap and
Fubini.?”

The modified Bethe-Salpeter equation is derived
entirely from dispersion relations. In attempting to
construct such an equation, however, we are departing
from the pure S-matrix approach in which the only
quantities introduced refer to particles which are on
the mass shell. It is not yet certain that this equation
has practical advantages. It is presented here in the

2 R. E. Cutkosky, Proc. Ann. Rochester Conf. High Energy
Phys. 10, 236 (1960).

28 S, Mandelstam, Phys. Rev. 112, 1344 (1958) ; G. F. Chew and
S. Mandelstam, 4bid. 119, 467 (1960); G. F. Chew, Lectures at
Les Houches and Edinburgh (UCRL-9289) (1960); S. Mandel-
stam, paper presented at this conference (unpublished); G. F.
Chew, Revs. Modern Phys. 33, 467 (1961), this issue.

#E, E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

2 M, Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

26 3, C. Wick, Phys. Rev. 96, 1124 (1954).

21 T Charap and S. Fubini, Nuovo cimento 14, 540 (1959).
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hope that it will help to provide a bridge between pure
dispersion theory and older methods based on Hamil-
tonians and wave functions. The form factors as
calculated by pure dispersion theory techniques show
that there is a very close relation between the anomalous
threshold contribution and the ordinary Schrédinger
wave function.”? This suggests that the modified
Bethe-Salpeter amplitude defined here will be useful in
the calculation of form factors and similar quantities.
The ordinary Bethe-Salpeter amplitude

v(1,2)=0[ Ty (¥ (2) ]|

satisfies an equation of the form
¢(1,2)=61z+SF'(1)SF’(2)fde(1,2; U,2(1,2"). (9)

The term &8, describes the incident plane wave of a
scattering state; it is absent from the bound-state
equation. The propagators Sy’ are the complete
propagation functions, not the “bare” propagators Sr.
The kernel 7 is a function of six scalar variables: the
energy and momentum transfer variables s and ¢, and
the four virtual masses. We introduce a modified
amplitude which satisfies a similar equation, but with
the free particle propagators Sy, and in which the
kernel is a function of only two variables. We assume
the particles are distinguishable so we do not need to
symmetrize the equation. We also assume that all
discrete states with the same quantum numbers can be
considered as composite particles in the sense that they
arise from a nonsingular interaction between the two
original particles.
The potential is the sum of two terms,

I(S,t,%) ZIO(S,t)"I“Ie(S,’M,),

where s is the energy variable, /= (p1—p1")%, and
u=(p1—p2’)%. On the mass shell, s+i+u=2M2+2M 2.
We represent I, and 7, in the form

® oo(s,t)dt!

e [ 2
V' —t

pe(su at’
I= f el

In other words, I, takes the form of a superposition of
Yukawa potentials corresponding to the exchange of
single quanta of mass ##; I, takes a similar form in
which the “quantum’ of mass #'* also causes the two
particles to be interchanged.

This potential is used in the integral equation

bu(t,p2%,08) =T (s,10)+ f ARI (s, ") S p(q2)

XSr(g)es(t q2,02H), (11)
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- X
F1c. 7. Graphical
representation of Eq.

(11).
which is represented graphically in Fig. 7. The solution
has the property that

¢3 (t7M127M22) = T(S)t)i (12>

where T' is the scattering amplitude. That is, the
amplitude Yy=012+Sr(1)Sr(2)¢ satisfies an equation
of the Bethe-Salpeter type and is identical to the usual
amplitude when the particles are on the mass shell.
However, this 1dent1ty does not hold for other values of
Pl and PQ

If we solve Eq. (11) by iteration, (12) takes the form

T (s,t) =1(s,8,u)+Zo2I ™ (5,8). (13)

We therefore require that when the initial and final
particles are on the mass shell, the spectral represen-
tation of I should be consistent with the equation

I, (s,0)+1,(s,u)=T(s,t) —Zo2I ™ (s,8). (14)

This gives an iterative method of constructing J. Let
t and #%; denote the position of the singularities of
T (s,t) which lie closest to each side of t=0 (they may be
either poles or branch points). We start the iteration
by requiring that the spectral representation of J,(s,u)
coincide with that of T'(s,t) for u*<u,}47,% and that the
spectral representation of I,(s,#) coincide with that of
T (s,t) for #<min(2¢;%,2u,%). When the initial and final
particles are on the mass shell, 7 (s)f) satisfies a
dispersion relation in the variable ¢ with spectral
thresholds at the points

tn,méz (M’_-WL)tl%"l"y"ld'tlé

(m even), (15)

and

Un,m*= (m—m)t4-mud, (m odd). (16)
Therefore, when we calculate p,(s,8) or p.(s,u%) at given
values of { or %, only a finite number of the iterated
terms in Eq. (14) need to be subtracted. This iterative
method of constructing 7 is reminiscent of ordinary
perturbation theory, but it is somewhat more physical
in that it corresponds to calculating I at successively
smaller and smaller distances.

It might be supposed that a subtracted represen-
tation should be used in place of Eq. (10). However, the
kernel I(s,t,#) must be sufficiently regular at {— o
and # — o so that Eq. (11) has solutions. In particular,
a function g(s) cannot be added to I without making the
equation meaningless for S states. Therefore, even if
T (s,t) has a pole at s=sq4, I(s,t,u) should not have a
pole and the pole must be compensated in Eq. (14)
by a corresponding divergence of the subtracted series.
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If we multiply both sides of Eq. (11) by s—s,, the
inhomogeneous term disappears so lim (s —sa)¢s (¢, 1%, p2%)
satisfies the homogeneous Bethe-Salpeter equation. In
other words, since it is only in the case in which the
unsubtracted dispersion relation for I can be used that
the Bethe-Salpeter equation is meaningful, it is neces-
sary for us to assume that all the poles of T'(s,#), which
we presume represent discrete states, arise through the
action of a sufficiently regular binding potential.

Let us now illustrate in somewhat more detail the
technique of calculating I(s,f,#) by examining the
contribution of the one and two meson exchange graphs
to the nuclear potential. The scattering amplitude has
a pole at {=m? and a branch cut at t=4m?, where m is
the meson’s mass (there are also exchange singularities).
It follows that I,(s,t) also has a pole at =m? so the one
meson term in the potential is just that of the ordinary
second-order perturbation theory without any radiative
corrections. The iterated one-meson potential also has a
branch point at ¢=4m?; so after we calculate the dis-
continuity of 7'(s,t), we must subtract the discontinuity
of this iterated term. If we now calculate the dis-
continuity with respect to the variable s of these
discontinuities of 7" and I®, we obtain the well-known
Mandelstam spectral functions and the corresponding
reduced graphs. We see that the effect of the iteration
is to eliminate one of the reduced graphs, the fourth-
order ladder graph. Therefore, the two meson part of 7
possesses a Mandelstam representation which differs
from that of 7" only in the removal of one term. We may
note that while the reduced graphs in which the meson
lines are not crossed contribute to either [, or I, the
crossed graphs contribute to both.

The general method we have outlined may also be
applied to scattering problems in which there are
anomalous thresholds in the { variable, as in the scatter-
ing of pions or nucleons from deuterons. In this case we
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obtain a description of multiple scattering effects in
terms of a simple equivalent potential.

It is well known that the analytic continuations of
T(s,t) give the scattering matrix also for the channels
in which ¢ or # are the energy variables. Our method of
calculating an effective potential, being based on a
dispersion relation in ¢ for fixed s, uses very directly and
explicitly the fact that the potential for the s channel is
related to the dynamical behavior of the particles which
correspond to the ¢ and # channels.

V. SUMMARY

Anomalous thresholds are a very general feature of
the scattering matrix and their principal characteristics
can be understood from simple examples which do not
require formal arguments based on analytic continuation.
The role of anomalous thresholds in S-matrix theory is
shown completely, however, only when we consider the
analytic continuations to complex momenta and
energies. The study of anomalous thresholds has led to
a clarification of the role of elementary wave mechanics
in a pure S-matrix theory. In a certain sense, the
Schrédinger equation can be considered as just a
reflection of the anomalous thresholds. This is already
quite clear from the works of Karplus, Sommerfield,
and Wichman,?2 Nambu,? Oehme®® and especially
Blankenbecler and Cook.”

On the other hand, the study of singularities in
perturbation theory amplitudes has pointed out the
existence of previously unnoticed relations between
S-matrix elements, [Eq. (8)]. These relations are
necessary to a calculation of the .S matrix from the
assumption of analyticity. The construction of the S
matrix from these rules may be expressed in terms of a
graphical calculus as suggested by Landau.!? This
graphical calculus is equivalent to the ordinary formu-
lations of field theory.

DISCUSSION

S. F. Tuan, Brown University, Providence, Rhode Island:
Would you like to make some comments about partial wave
equations when you have anomalous thresholds?

R. E. Cutkosky: I do not think there is any difficulty, as
one can calculate the partial wave amplitude with just an
integral over the usual amplitude. Of course, one has to be
very careful about the analytic continuations, etc.

S. Weinberg, University of California, Berkeley, California:
My question concerns the cut that you calculated according
to your rules—is this the discontinuity as you cross the real
axis in one variable holding the other scalars fixed and either
real or- complex, or must the other scalars be specifically real?
The reason I ask is because in some papers, like Tarski's,
there are singularities all over the place if you use just the
Landau-Bjorken rules and they are nevertheless irrelevant
physically.

R. E. Cutkosky: Well, the other variables are held fixed but
they may have arbitrary real or complex values and they
may be even thought of as being on an arbitrary sheet of the
Riemann surface that we want to consider.

S. Weinberg : I gather from your answer that in using these
rules you get a lot of singularities which are not on the physical
sheet and you then need the multiple dispersion relations to
tell which singularities are on the physical sheet; or does that
follow from your rules?

R. E. Cutkosky: No, it does not follow from the rules. You
have to get them by looking at something else; for instance,
you have to look at the Landau-Bjorken equations in more
detail, or something like that. But it is, of course, very
important and very necessary to know exactly where the
singularities are and, in particular, on which sheet they occur.
This also comes up in these discontinuities [Fle. They
themselves have singularities and you have to be careful to
pick the right branch for them.

K. Symanzik, Stanford University, Stanford, California:
One of the virtues of the ordinary Bethe-Salpeter equation is
that the solution automatically satisfies unitarity, provided
only that the kernel satisfies the standard irreducibility
conditions. Now are there analogous properties here in your
case?

R. E. Cutkosky: Yes. In fact, one can say that introducing
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the Bethe-Salpeter equation is one way of putting unitarity
into the calculation. Of course unitarity is in here in a some-
what complicated way because if you go above the threshold
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for producing mesons, etc., the potential which you get out of
this automatically becomes complex and has some of the
inelastic channels taken into account indirectly.
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URING the last two years a considerable amount

of work has been dedicated to the application of

dispersion theory to different problems of pion physics,

such as pion-pion, pion-nucleon, and nucleon-nucleon

scattering, and photopion production, and very interest-
ing results have been obtained.

Here the attempt is made to explain the basic physical
ideas which are at the origin of this development and
to discuss the main points where our theoretical
understanding of the experimental situation has
improved. Only the case of pion-nucleon scattering is
considered in detail, because the success of any attempt
of treating the other problems, such as nuclear forces
and photopion production, depends on our under-
standing of this fundamental problem.

The first successful approach to pion-nucleon scatter-
ing was the one based on the existence of a strong
resonant interaction in the J=3%, T=% state. This
approach was first based on the static model of
Chew and Low, then on the relativistic dispersion
treatment of Chew, Goldberger, Low, and Nambu
(CGLN). In this model the pion-nucleon interac-
tion is of short range, taking place essentially in
the P-wave state. Since the details of such a short-
range interaction are not known, the position of the
(33) resonance cannot be determined by the theory but
can be fitted to the experimental data.

One may ask why it is necessary to make use of
dispersion theory and not simply to try the experimental
data by means of a Breit-Wigner formula. One of the
reasons is that dispersion theory allows a clear theo-
retical comparison between the phenomenological
constants appearing in different phenomena involving
the same basic interaction. For example, it has been
possible to verify that the same renormalized coupling
constant is obtained by comparison with experimental
data on P-wave w-N scattering, S- and P-wave photo-
production, and high / nucleon-nucleon scattering.

One of the important problems treated recently is the
study of possible corrections of the resonant model and,
in particular, investigation as to whether, in addition
to the short-range interaction of the pion with the core,

there is a long-range pion-nucleon potential due to the
interaction of the incoming pion with the pions of the
nucleon cloud. This potential is the analog of the
nucleon-nucleon potential due to two-pion exchange
and has the same origin in the meson cloud effect which
is responsible for the electromagnetic structure of the
nucleon. The success of the resonant model in explaining
the main features of low-energy pion-nucleon scattering
and photoproduction might indicate that such a long-
range term is negligible. However, there are many
reasons that suggest the existence of the long-range
pion-cloud interaction.

(1) The high-energy pion-nucleon cross sections are
rather large and can be interpreted by means of an
optical model with a nucleon radius of the order of
the pion Compton wavelength. A similar radius
appears in the optical model for high-energy nucleon-
nucleon scattering and in the Hofstadter form factors
of the nucleon.

(2) The existence of the d% and f5 resonances shows
the importance of the scattering with high / at energies
of the order 600-900 Mev. This fact is difficult to
understand on the basis of a short-range pion-nucleon
interaction.

(3) Atlow energy the prediction of the CGLN theory
for waves different from the (33) resonant one are in
disagreement with experiment.

(4) The CGLN theory applied to the electro-
magnetic form factors of the nucleon gives results which
are very difficult to reconcile with the experimental
findings. Frazer and Fulco have shown that a satis-
factory explanation of the data can be obtained by
assuming the existence of a strong pion-pion interaction
in the T'=J=1 state.

Let us now discuss how one can evaluate the effect
of the pion-pion interaction on pion-nucleon scattering.
Here also the use of the dispersion method has definite
advantages because it allows one to use the parameters
which specify the strength and range of the pion-nucleon
potential in connection with other problems, such as
nucleon electromagnetic structure and nuclear forces.

Let us see what new singularities in the S



