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Whether or not the rapid variations in 2 or'3 Mev/e
are statistically significant, the question arises whether
one should expect such rapid variations. Two remarks
can be made here.

First, we find that the Z —E+ total cross section
rises as E' from threshold until it reaches a plateau
value about 15 Mev/e (lab) above threshold. (See
Figs. 4 and 5 and later discussion. ) Therefore, at 2
Mev/o above threshold, the "average amplitude"
(square root of the cross section) is already 60% of
its plateau value. Since the cusp contribution is, loosely
speaking, proportional to this amplitude, variations
within 2 or 3 Mev/e should not be unexpected.

Secondly, according to mass values current at
Rochester (1960),' one had
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of the basic ideas involved in the cusp experiment,
I will turn immediately to the experimental situation
at Berkeley. First, several preliminary remarks can be
made. From previous 10-in. hydrogen chamber experi-
ments, ' we believe that both Z——E+ and Z' —E'
production occur mainly in the T= 2 state; at least this
is the case at 1.23 Bev/c, well above threshold. This
looks promising for the possibility of seeing a cusp in
A —E production, since it is the T= 2 Z —E amplitude
that contributes to the cusp. The second remark is
that 2 —E+ production rises to its plateau value of
about 0.22 mb within about 15 Mev/c of threshold'
(as we see in Fig. 4). We might therefore expect the
rapid cusp variation of A —E cross section and angular
dependence to occur mainly within &15 Mev/c of
2—E threshold. Since the 72-in. hydrogen chamber is
about 35 Mev/c thick to the incident pion beam, we
can cover the main interesting region with a single
momentum setting of the pion beam if we put Z —E
threshold at the center of the chamber. Relative
normalization of the energy dependence then becomes
easy.

The polarization and angular distribution data that
we presented at the 1960 Rochester Conference'
suggested that in addition to significant variations in
angular dependences over intervals like 10 to 15
Mev/c, which had been expected, there is evidence for
fine structure —rapid variation over intervals of 2 or 3
Mev/e.

A variation this rapid could be just resolved with
our present momentum dispersion. We discuss the
resolution later (Fig. 3).

(mx-+mx+) —(mx~+mxo) =+0.55+0.86 Mev/c', (1)

which yields a laboratory-system threshold difference
of 1.0+0.6 Mev/c. Interference between the two
thresholds could therefore lead to fine structure.

On the basis of our first results (given at Rochester),
we decided to try to resolve the Z —E+ and Z' —E'
thresholds with present data, and to improve the
momentum resolution of the beam, for future running.

PION BEAM

A schematic representation of the beam optics is
shown in Fig. 1. (The mass spectrometer used for
separating m+ from protons is omitted from the drawing
because it is irrelevant to the ~ beam used in the cusp
experiment. )

The momentum spread of the pion beam incident
on the chamber is calculated from the geometry to be
&1.8 Mev/c (rms). Passage through the chamber
windows and the hydrogen to the center of the chamber
introduces an additional momentum spread of about*Work supported by the U. S. Atomic Energy Commission.
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Fzo. 1. Schematic of beam optics.
) 'W. H. Barkas and A. H. Rosenfeld, Proc. Ann. Rochester

Conf. High Energy Phys. 10, 878 (1960}.
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Fio. 2. (a) Stopping tritons, (b) denterons, and (c) protons. The proton range distribntioii
was used to measure the momeIItum spread of the beam.

+3 Mev/c through delta-ray production (Landau
effect).

In order to check the initial +1.8 Mev/c, we decided
to obtain a proton range curve, since the Landau eGect
is small for protons. %e obtained protons by reversing
all our magnetic fields and tuning the parallel-plate
mass spectrometer to accept protons. At this time we
discovered that the positive beam also contains deu-
terons (10% of the protons) and tritons (2% of the
protons); we could not find any He' in the beam nor
He' (both less than s% of the protons). Figure 2 shows

stopping protons, stopping deuterons, and stopping
tritons.

The proton range distribution, based on 570 stopping
protons, its a Gaussian with rrns half-width of
0.57&0.02 g/cm' of hydrogen. This is almost completely
accounted for by the proton range straggling, 0.56

g/cm'. We then hand for the unfolded beam spread
0.9+0.8 Mev/c, which is consistent with the expected
+1.8 Mev/c.

For finding the intrinsic beam spread, a triton range
curve is more sensitive than a proton range curve by a
factor of about 2.5 because of reduced straggling. Too
few stopping tritons were obtained, in our first exposure,
however, and this method has not yet been used. We
plan to use stopping tritons in the next exposure.

We next consider the Landau stragghng of pion
energy loss. The pions can produce delta rays of energies

up to 60 Mev. On the average, 1.5 delta rays of more
than 1-Mev kinetic energy are produced in passing
through 1 in. of plastic scintillator, 4 in. of stainless-steel
bubble chamber windows, and 100 cm of hydrogen.
The energy loss due to delta rays in the visible part of
the hydrogen can be eliminated by measuring the delta
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However, by comparing the (Z —E+)/(A —Es) count-
ing-rate ratio with that obtained in the 10-in. hydrogen
chamber experiment, we find that by y= —40 cm
(15 Mev/c above threshold), the Z —E+ cross section
has risen to about 0.2 mb, which is almost equal to its
plateau value of about 0.25 mb obtained at higher
momenta in previous experiments.

The Z —E+ counting rate vs position is replotted on
a semilogarithmic scale in Fig. 5. The smooth curve is a
fold of an E' rise from threshold, expected for S wave,
with the momentum resolution of Fig. 3. The smooth
curve has two essential parameters —the normalization
constant to give absolute counting rate, and the position

FIG. 3. Momentum distribution of the pion beam at the center
of the chamber, calculated from the geometry and from the
Landau straggling in the chamber windows and hydrogen.
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rays. (A 1-Mev delta ray makes four turns, independent
of the dip angle. ) We are at present (December, 1960)
installing in the 72-in. chamber a thin window on the
vacuum tank and a re-entrant thin window on the
chamber. The Landau eGect should thereby be reduced

by a factor of 3. The present beam momentum distri-
bution is shown in Fig. 3.
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PRODUCTlON OF X, K+ AND X', X0

The counting rates for A —E' production and 5 —E+
production as a function of y, the position in the
chamber, are shown in Fig. 4. The pions lose 2.3 Mev/c
in 10 cm of path. (The rapid decrease of A E' counting—
rate beyond y=+60 cm is due to the geometry. The
beam is starting to leave the side of the chamber. )
Absolute cross sections have not yet been determined.
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FIG. 4. Uncorrected production rates for A., E (higher counting
rate points on graph) and Z, E+ (smaller rates), plotted against
position y in the chamber. The center of the chamber is at y=0
and y increases in the direction of the pion beam, The arrows
indicate the Z and Z threshold positions one would have with a
monoenergetic beam having the most likely momentum of the
actual beam. Correction factors, which are not applied in this
figure, are needed for attenuation of the pion beam (a factor of
1.12 every 25 cm), and geometrical loss beyond y=+40 cm.
(The beam starts to leave the side of the chamber. )
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FIG. 5. Production rate of Z, E+ plotted against position in the
chamber. The smooth curve is a best fit of the data to an 8&
rise from threshold. The finite momentum resolution and finite
histogram intervals have been folded into the smooth curve. The
curve has two parameters, corresponding to absolute counting
rate, and to position y~ of threshold. The best 6t for y& is indicated
by the arrow.

y& in the chamber where threshold would occur for a
monoenergetic beam. A two-dimensional y' fit of the
data to the curve yields the results plotted in Fig. 5.
We see that pure S wave its very well. The (unfolded)
threshold is at ye=+20.5~3.0 cm.

The Z —E+ angular distribution for all events is
shown in Fig. 6. Within the statistics (20%%uz y proba-
bility) the distribution is isotropic, consistent with
S-wave production.

The Z' —E rise from threshold is shown in Fig. 7.
The smooth curve is again E& folded with the resolution.
The fit is not quite as good as in the Z —E+ case;
however, it is statistically reasonable. With the present
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extremely dificult if other than 5-wave amplitude were

present in Z —E near threshold.
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FIG. 6. Angular distribution for Z —E+ production.

errors we do not attribute any reality to the "bump. "
More statistics are needed to decide whether we could
be seeing a cusp behavior in Z' —E' production at
Z —E+ threshold. (Since probably both are mainly in
the T=—,' state, we expect a cusp, provided E' and E+
relative parities are even. )

The best-fit location of the (unfolded) Z' —X'
threshold is given by ye=32.0&3.7 cm, by this method.
This answer is practically unaffected if we leave out the
points at y= —50 and —60 cm. (We try leaving them
out because of the possibility that the bump is real. )

The 5"—E' angular distribution is shown in Fig. 8.
Only those events involving a visible E' decay were
used. The angular distribution appears to be spherically
symmetrical.

Thus, the energy dependence and angular distri-
butions of both Z —E+ and Z' —E' production agree
reasonably well with pure S wave. This is satisfying,
since any interpretation of the cusp results would be

25—

FIG. 8. Angular distri-
bution for Z —Z pro-
duction. 5

I I
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chamber (10 cm= 2.3 Mev/c loss) and using the
kinematic relations, one finds, for the E meson,

RESOLUTION OF X —K+ AND X' —X0
THRESHOLD 8

By fitting the counting rates to an E: threshold

energy dependence (Figs. 5 and 7), we find the
thresholds are separated by 12+5 cm in the chamber.
Ke can use a completely independent method, based
on the kinematics. At threshold the Z and E come oG

at 0 deg in the laboratory system. At energies near
threshold, the maximum angle of the K (and of the Z)
increases as the square root of the energy above
threshold; that is, the square of the maximum lab angle
increases linearly with energy above threshold. For a
given momentum, the distribution of 8' between 0 and

8,„,„'depends on the production angular distribution.
For spherical symmetry, 8, ' is proportional to 8,„'.
After converting pion energy loss to position in the

IOO
&. '= —0.66X10 '(y —y&). (2)

Yt

32 —3,7 cm
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FIG. 7. Production
rate of Z', E' plotted
against position in cham-
ber. The smooth curve is
a best 6t to an I'& thresh-
old rise (suitably folded
for resolution). The best
fit for Z' —E' threshold
is indicated by the arrow.

This relation must be satisfied for either Z' —E or
~ —E+ production. Position in the chamber is given

by y in centimeters. The center of the chamber is at
y=0. The (unknown) threshold position is y&. The
angle 8 is in radians. The minus sign occurs because y
increases in the direction of the beam (decreasing
momentum). A similar equation holds for the hyperon,
with the numerical coefficient reduced by the E-to-
hyperon mass ratio. The only adjustable parameter
is yt, .

The procedure is to choose histogram intervals in y,
find 8, ' for the measured E-production angles, and by
comparison with Eq. (2) solve for y&. The results are
combined by minimizing z'. Equation (2) cannot be
used as it stands. One must fold in the momentum
dispersion of the pion beam, and also average the
counting rate over the 6nite histogram intervals. In
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the case of the E' from Z —E' production, it is also
necessary to add the average bubble spacing to the
last-seen bubble on the incident pion. Only "measured"
angles, rather than "fitted" angles, are used, since in the
6tting procedure that we ordinarily use we assume
known masses.

The hyperon angle is less sensitive than the E angle,
and we have not yet used it in this method.

Figure 9 shows the results for Z, E+. The smooth
curve is Eq. (2) suitably folded. It is to be emphasized
that there is no freedom to slide the smooth curve
vertically, but only horizontally, to find y&. Ke find
ye=18.2+1.2 cm for Z —E+ threshold. This agrees
well with the value 20.5&3.0 cm found by the energy
dependence of the counting rate.

Figure 10 shows the results for Z', E'. Within the
errors, the data are not a bad 6t to the theoretical
curve. For y&, we find 37.2&4.0 cm. This agrees well
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FIG. 10. Kinematical determination of Z' —E' threshold, by
plotting 8, ~ of E0 against position y in the chamber. The arrow
indicates the best fit value, ye=37.2~4.0 cm.
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(mz-+ma+) —(mzo+mao) = 2.2&0.5 Mev/c'. (3)

Our preliminary result is to be compared with the
previously accepted value given in Eq. (1).

The threshold separation is comparable to the
distance for Z-—E+ production to rise to half of its
plateau value, and will therefore probably play an
important role.

CUSP EVIDENCE
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The data presented correspond to about 1200 events,
and represent about one-fourth of our present exposure.

Figure 4 gives uncorrected Z —E+ and h.—E'
counting rates vs y, the position in the chamber.

FIG. 9. Kinematical determination of Z —E+ threshold. Plot of
8 ' of E+ against position y in the chamber. The smooth curve
has a single free parameter, the threshold position y~. {Momentum
resolution has been folded. ) The arrow indicates the best-fit value,
y& = 18.2+1.2 cm.
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with the value of 32.0&3.7 cm found by the energy
dependence.

In all cases, the quoted error is obtained by varying
y& away from its best value (minimum z') until z'
increases by unity. The errors and p' depend on the
assumed measurement errors for angles, as well as
on the number of counts. We have not yet studied our
measurement errors suf5.ciently to have confidence in
the above quoted errors, nor have we yet studied the
sensitivity of the results for y& to the assumed mo-
mentum dispersion. The skewness of the Landau
dispersion (Fig. 3) and the rapidly varying counting
rate both tend to shift the apparent position of y~.
However, we expect that these sects largely cancel in
taking the difference between the two thresholds.

On combining the results of the two methods, we
obtain a threshold separation of 17.5&4.0 cm, or
4.0+0.9 Mev/c pion momentum (lab). This is equiv-
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I iG. 11, Corrected total AE0 production rate, B+F, {backwards
A's plus forwards A' s), plotted against position in chamber. The
two ZE thresholds are indicated by arrows, and the momentum
resolution is plotted in terms of distance in chamber. B and F
refer to production angles in the c.m. system. B+Fhas contri-
butions only from even powers of cosg in o.(e).
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Figures 11—15 give various combinations of BU, BD,
IiU, and FD, where Ii and 8 refer to forward and
backwards production angle 0 (c.m. ) of the A., aud U
and D refer to "up" and "down" projections of the
momentum of the A.-decay pion, with "up" in the
direction of P(1r inc) XP(A). These counting rates have
been corrected for attenuation of the pion beam in the
chamber (55-mb total cross section), and for geometry
(beam loss from the side of the chamber beyond

y =40).
Figure 11 gives 8+7, the total counting rate, i.e.,

the contribution of all the even powers of cos9 to o.(8).
Figure 12 gives 8—Ii, the contribution of all odd powers
of cos|) to o.(0). Within the errors, the data suggest that
both the even and odd powers of cos8 have structure
in the vicinity of the two thresholds. In looking at these

graphs, several things should be kept in mind besides
the rather large statistical errors. First, the skewness
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FLG. 13. Average A-decay asymmetry, aP, plotted against
position in chamber. U and D (up and down) refer to the projec-
tion of the A-decay pion's momentum on the positive nermal to
the production plane, which is given by the direction of P (~ inc)
&&P(A), The A-decay parameter is n.
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FIG. 14. Average of h.-decay asymmetry times differential cross
section, n(a (8)P (8))=n(OP) =2 (U—D), plotted against position in
chamber. Only the even powers of cost)I in no{8)P(8)/sin(8)
contribute to 2(U —D)~+2(V —D)g=2(U —D), where V and D
refer to A decay and Ii and 8 refer to A production.

of the momentum dispersion (replotted on Fig. 11 in
terms of position) tends to shift the counting-rate
changes towards higher momentum. Secondly, the
"cusp" contribution to the cross section is always zero,
exactly at a threshold, and has the four possibilities
of giving an increase or decrease on either side of
threshold. Thus one looks for changes in slope, rather
than in value, at a threshold. Within the errors there
do seem to be slope changes at both thresholds. Thirdly,
since the real Z —E production plateaus rapidly,
within momenta comparable to the threshold sepa-
rations, we expect higher than linear powers in k, the
Z —E c.m. momentum, to be important quite near the
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Fro. is. Odd part oi (average} A-decay asymmetry times
differential cross section, plotted against position. Only the odd
powers of cos8 in ao (8)P(8}/sin(8) contribute to 2(U —D)s—2(V—D)l, .



thresholds. Figure 13 gives nP= 2(U —D)/(U+D), the
decay asymmetry, vs y. There seems to be a change of
slope at Z —E+ and also at Zo —Eo threshoM.

Figure 14 shows 2(U —D), corresponding to the even
powers of cos0 in no(0)E(0). There seem to be slope
changes at both thresholds. Figure 15 shows 2(U —D)s

2(U—D)t—, corresponding to the odd powers of cos0
in na (0)E(0). There seems to be no contribution at any
momentum.
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In order to answer questions of relative parity„one
must know which powers of cos8 have a cusp, as well as
which partial waves are contained in the noncusp
amplitude.

Figure 16 shows production angular distributions
0 (0) in 20-cm intervals of y. Figure 17 shows no(0)P{0).
The smooth curves are 5- and P-wave 6ts. In the region
from y =0 to +20 cm, just above Z —E+ threshold, we
6nd a rather poor 6t to 5 and I' waves. Ke agree with
the Columbia group in seeing an excess backward
peaking of the A's in this region.

Once one starts looking for higher than 5 and I'
waves, it is useful to go over to the "method of
moments, " using Legendre polynomials, rather than to
use powers of cos0, and least squares. In the least. -
squares method (whether one uses Legendre poly-
nomials or powers of cos0), all the earlier coeflicients
change whenever one adds a new term. One looks at the

Fro. 17. Dependence of
A —Xo differential cross sec-
tion times decay asym-
metry, Ofo. (8)I'(9), upon
position in chamber. The
smooth curve is a best fit to
S and I' rvaves.
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goodness of 6t to decide when to stop adding terms. For
the least-squares method, there is no particular advan-
tage in using Legendre polynomials over powers of
costII, since this involves only a rearranging of coe%cients,
In the method of moments, because of the orthogonality
of the functions, one has the advantage that each
codFicient with its error is calculated independently,
and does not depend on how many terms are involved.
One decides what are the highest Legendre polynomials
present by seeing that after a certain number of terms,
the coef6cients stay zero "within the errors. "

The highest Leg endre polynomial present gives
directly the highest power of cost3 present. If one wants
to know the amount of some lower power of cos8, one
must combine all the Legendre terms that contain that
power.

Figure 18 shows the coeKcients A2 and A4 of E2{cos0)
and J'4(cos0) in the angular distribution. The coeKcient
Ao of Po is just the total counting rate (Fig. 11). Ao
and A2 seem to have slope changes at the thresholds.
A4 is consistent with being zero everywhere. Figure 19
shows the coefFicients Ai and A. 3 of Ei(cos0) and
P8(cos0). We see that although 23 is nearly consistent
with zero at each position, it has a negative average
value, indicating the presence of higher waves than 5
and I'. Both A ~ and A3 may have threshold anomalies.

Clearly we must wait for more statistics before we can
make very definite statements on the angular
dependence.
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MINAMr AMSrGUn V

Professor Schwartz has pointed out that even if both
the highest power of cos8 in which the cusp occurs
and the highest power of cos8 in the noncusp amplitude
were already known, we could not immediately deter-
mine the relative parity because of the ambiguity as to
the highest partial wave in the noncusp amplitude. For
instance, a cos'8 term in the noncusp A.—E cross section
can come from p; or d*,. To resolve the ambiguity one
needs dynamical information. For instance, one may
hope to resolve this ambiguity by following A.—E
production up from threshold, as Schwartz has just
suggested.

There is another possible dynamical approach. That
is to relate the A.—E production to the third resonance
in the pion-nucleon system. Figure 20' 8 shows the
experimental points for 4—E total cross section vs
momentum from the Berkeley 10-in. hydrogen chamber
associated-production experiment. The smooth curve
represents the T= 2 part of the pion-nucleon total cross
section normalized to the A —E points. We see that
the cross section follows the T= ~ resonance nicely on

P(sp)I'(mp res w) =P(ItE)P(AK res w), (4)

P(ZK)P(ZK, 5 wave) =I'(AE)I'(AK cusp w), (5)
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Legendre polynomial expansion of the A —IP cross section 0.(8),
plotted agairist position in the chamber.

the high-momentum side. On the low-momentum side,
the A —E cross section must go to zero at threshold,
897 Mev/c.

Now we consider the angular distributions. At Z —E
threshold, both the Columbia group and we And
evidence for higher waves than 5 and I' in the regular
part of the A —E cross section. The A —E relative
momentum at Z E th—reshold is about 230 Mev/c.
This could be suf6cient to admit D waves. Qn the other
hand, at much higher pion momenta —for instance at
1.23 Bev/c, with 365 Mev/c relative momentum —5 and
P waves give an adequate fit to the data. It is thus
possible that one needs less of the higher waves in
A, E when one gets above the third pion-nucleon
resonance.

The speculation then is that there could be a single
high partial wave in A.—E production that is part of the
third pion-nucleon resonance. The nonresonant part
of A, E would have to be a large fraction of the A —E
production, since the strong backwards peaking
demands both even and odd waves. But no more than
5 and I' waves might be needed for the nonresonant
part (since we believe that at momenta above the
resonance 5 and P sufEce).

If this dynamical model could be substantiated, we '

would have the following expression Lhere P stands for
parity, and res w for resonant partial wave; thus,
P(AE) is the intrinsic AEparity; .—P(res w) = (—&) ',
where 1=0, 1, -. for 5 wave, P wave, etc.j:
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P(AK res w)P(AK cusp w)
= P(highest cusp term). (6)

The right-hand side of (6) is measured in the cusp
experiment. For instance, if there is a cusp in cos8,
but in no higher term, we obtain —1. On taking the
product of Eqs. (4) and (5), setting P(n.p)= —1 by
convention, and noticing that P(AK)' and P(ZK, S-
wave) are botli equal to unity, we find

P(ZK) = —P(highest cusp)P(mP res w).

l.O

ength of
7P" chomber

Therefore, as soon as the parity of the third resonance
becomes known, independently, from pion-nucleon
scattering and polarization experiments, the cusp
experiment gives P(ZK'). Once P(AK) also is known

independently, we finally find P(AZ) from

P(AZ) = —P(AK)P(highest cusp)P(m p res w). (8)

If we consider the possibility that the E and E+
have opposite parity, then ZE should mean only 2'E'
in the foregoing.

Finally, since the two thresholds are resolvable, we
now have an opportunity to prove that P(K'K+) is

even, if it is even, by seeing a cusp in Z"—E' production
at Z —E+ threshold.
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