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I. INTRODUCTION

A FUNDAMENTAL property of all charged par-
ticles is that electromagnetic energy is radiated

whenever they are accelerated. Abundant experimental
*This work was supported by the Ofhce of Naval Research.

verification has been provided from many diferent
branches of physics. When quantum phenomena are un-
important and the classical theory is valid, it might seem
that the exact equations of motion for a radiating
charged particle should be understood at the present
stage in the development of physics. Yet the view has
often been expressed that the customary equations
which represent this phenomenon provide only an
approximate classical description.

The previous objections to the theory of radiative
reaction are discussed here and are shown to be largely
invalid. When this evidence is considered together with
the new solutions which are presented here, there no
longer appears to be any reason for not accepting these
equations as providing an exact classical description of
a radiating body.

Lorentz' chose a small charged sphere as a model for
the electron. He calculated the force of radiative re-
action by considering the retarded action of one part of
the particle on another. The result can be expressed in
a power series expansion in which the radius of the
electron is the parameter. The first term in the series is
independent of the radius and thus represents the force
of radiative reaction for a point particle.

Certain diKculties occur when the Lorentz model is
used for a particle of finite size. The higher terms in the
series expansion depend on arbitrary assumptions
about the shape and charge distribution of the particle.
These higher-order terms become more and more
important as the time required for a spatial oscillation
of the charged particle becomes small compared to the
time taken by a light signal to travel a distance equal to
the particle radius. Furthermore, the proposed model is
not stable and would require nonelectric forces to hold it
together. Rohrlich' has recently shown that it is possible
to formulate a consistent relativistically invariant
theory for a particle of finite size if the energy and
momentum of the field are correctly defined. He also
shows that all divergences for a point particle may be
eliminated in a unique manner by a renormalization
procedure based on the relativistic invariance of the
theory.

Dirac' has given a well-defined and relativistically
invariant prescription for the calculation of the force of
radiative reaction. He assumes that Maxwell's equations

'H. A. Lorentz (1892), republished in his Collected Papers,
Vol. II, pp. 281, 343; The Theory of Electrons (Leipzig, 1909),
pp. 49, 253.

2 F. Rohrlich, Am. J. Phys. 28, 639 (1960).
~ P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).
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are valid right up to the point singularity. Then he shows
that there is only one Lorentz invariant procedure by
which the in6nities at the position of the particle may
be subtracted out. The force in question is found to be
proportional to the diGerence between the retarded and
advanced fields of the particle. When this quantity is
evaluated in terms of the velocity of the particle and its
derivatives, an expression is obtained for the force of
radiative reaction. In the nonrelativistic approximation
this result agrees with the leading term in the Lorentz
expression. A derivation of the relativistic force of
radiative reaction which does not use tensor notation
was given by Schott. 4

Wheeler and Feynman' have given a physical inter-
pretation of the mathematical results of Dirac. The
retarded minus the advanced 6eld at the position of the
particle appears in Dirac's derivation. Wheeler and
Feynman show that this combination of 6elds arises
from the interaction of the charged particle in question
with all of the other charged particles in the universe.
If it is assumed that our universe is completely absorb-
ing, then Wheeler and Feynman show that the forces
which occur in the equation of motion of a charged
particle are the sum of the force from the usual retarded
electric and magnetic fields and of the force of radiative
reaction. The latter force agrees exactly with the expres-
sion obtained by Dirac.

The derivation and interpretation of the force of
radiative reaction for a point particle which have been
given by Dirac' and by Wheeler and Feynman' are
based only on assumptions of great generality. Thus it
would seem that their expression for this force should be
adopted as an exact mathematical representation for the
force of radiative reaction within the framework of
classical theory; however, this conclusion does not seem
to have gained general acceptance. Most textbooks'
have stressed that this expression for the force has only
a limited range of applicability. In particular, it is often
stated that this expression cannot be used over arbi-
trarily large time intervals nor when the radiative
reaction forces are large compared to the other forces
which act upon the particle.

The belief in the limited applicability of this expres-
sion has probably arisen through a combination of two
factors. First, the solution of the equations of motion
with radiative reaction for a particular force always
contains terms which require that the acceleration of
the particle must eventually increase exponentially with
time. These solutions have been called "self-acceler-
ated, " "run-away, " and "nonphysical. " The particle
does not obtain its added energy from any physical
force which acts upon it. Clearly, these are absurd
solutions when applied to our real physical world.

4 G. A. Schott, Phil. Mag. 29, 49 (1915).
~ J.A. Wheeler and R. P. Feynman, Revs. Modern Phys. 17, 157

(1945).
6 E.g., L. Landau and E. Lifshitz, The Classical Theory of Fields

(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1951),p. 221.

Dirac'considered the simplest possible case: the motion
of a free particle. He pointed out that the physical
solution with the acceleration equal to zero could be
obtained by choosing the particular value zero for one of
the integration constants. Although a satisfactory
physical solution for this particular example is obtained
by this procedure, no method was suggested for the
determination of this integration constant for other
force fields.

Second, Eliezer wrote an extensive series of papers,
most of which are referred to in his review article, ' in
which he claimed to have shown that no physical solu-
tions exist for three particular force fields: (1) the field
of a thin infinite charged plate; (2) an attractive
Coulomb field; (3) a repulsive Coulomb field. Since it
appeared that no exact physical solution could be
obtained for these force fields, there was no reason to
obtain a general, physically acceptable solution for the
equations of motion.

Unfortunately Eliezer overlooked the physical solu-
tion among the in6nite number of nonphysical solutions
in most of the cases which he considered. It is shown in
the following sections that there are physical solutions
for the motion in the field of a thin infinite charged
plate, for three-dimensional motion in both attractive
and repulsive Coulomb 6elds, and for one-dimensional
motion in a repulsive Coulomb field. When the motion
is constrained to one dimension along a line which
contains the source of an attractive Coulomb potential,
a physical solution in terms of ordinary functions cannot
be obtained; however, a satisfactory solution can be
given in terms of the generalized functions known as
distributions.

This article considers the problem of determining the
motion of a charged body when the concepts of classical
physics are valid. EGects due to quantum mechanics or
to the possible finite sizes of fundamental particles are
not considered. A classical charged body has nothing to
do with a quantum particle from the real physical world;
nevertheless, it may be a useful model which within
certain limits describes the trajectory and radiation loss
of a quantum particle.

In Sec. II, the general physical solution for the motion
of a classical charged body is given when the force is an
explicit function of time. For one-dimensional motion
the general physical solution can be obtained for the
relativistic equations of motion; however, for three-
dimensional motion the exact physical solution can be
given only in the nonrelativistic limit. For three-
dimensional relativistic motion an integral equation is
derived. A proof is given that a nondivergent solution of
this equation exists over a range of initial volocities for
any force which is bounded.

Since a higher derivative is introduced into the equa-
tions of motion by the force of radiative reaction, extra
constants appear in the solution. As in all physical

7 C. J. Eliezer, Revs. Modern Phys. 19, 147 (1947).
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problems, these constants are evaluated by the appli-
cation of appropriate boundary conditions. When the
requirement is formulated that the body must not
acquire more energy over long time intervals than it
obtains from the physical forces which act upon it, it
is found that the exponentially divergent terms can
easily be eliminated from the general solution. The
resulting nondivergent physical solution always exists
when the force along the trajectory is finite. Further-
more, a physically acceptable solution also exists for
certain singular forces.

The exact physically acceptable solutions of the
equations of motion are given in Sec. III for many
diGerent force fields. A number of examples are given
where exact analytic solutions can be obtained for
forces which are explicit functions of either time or
position. Some approximate solutions are given for
cases where exact analytic solutions cannot be obtained.
Finally, some numerical solutions are given for the
important case of a Coulomb force and the results are
interpreted.

where Ii;~ is the electromagnetic field tensor,

0
—H,

II„
—E

—a
H
0

—E

E,
E
E
0.

b is the reciprocal of the time that it takes a light signal
to travel a distance equal to two-thirds of the classical
electron radius,

1/b = 23 (e'/mc'), (3)

m is the rest mass of the particle with charge e, c is the
velocity of light, and K and H are the retarded electric
and magnetic fields.

The following notation is used in this article: the four-
velocity, denoted by u;, is the derivative of position
with respect to proper time v,

II. GENERAL SOLUTIONS OF THE CLASSICAL
EQUATIONS OF MOTION WITH

RADIATIVE REACTION

1. Equations of Motion

The classical equations of motion of a charged particle
including radiative reaction as derived by Dirac' and by
Wheeler and Feynman' are

e 1) 1
B,= P;pu + (6,—~;Bus-

mc bi c' )

relation

dr/dt= [1—(e'/c')]&= [1+(u'/c')] —
&

where u' and e' represent the sum of the squares of the
three spatial components of the corresponding velocities.
The coordinates are chosen so that x'= x&

——x; x'= x2 ——y;
x'=x3 ——s; x'= —x4 ——ct. Thus

u'= ui ——v,[1—(s'/c')] —&=o.[1+(u'/c')]&,

u'= —u4= c[1—(s/c')] &= c[1+(u'/c')]&

The following useful relations are needed later:

u'ug = —c

uVi; =0,
Q,%'= —u,4'.

In relativistic equations dots over letters always indicate
derivatives with respect to proper time; in nonrela-
tivistic equations they represent derivatives with re-
spect to ordinary time. The summation convention is
used for any repeated index. In this notation all
quantities have the same dimensions as their non-
relativistic counterparts, i.e., u; and r have the dimen-
sions of velocity and time, respectively. The fourth
component of Eq. (1) is not an independent equation
as it can be derived from the first three components
and Eq. (8).

When s/c((1, the nonrelativistic equations of motion
as obtained from Eqs. (1) and (2) are

1dvdv e e—=—I+—vXH+
dt m mc b dt2

(9)

2. Exact Solution for One-Dimensional Motion
without Radiative Reaction

The last term is the familiar nonrelativistic expression
for the force of radiative reaction divided by the mass
of the particle.

Equations (1) and (9) are the exact equations of
motion of a radiating charged point particle within the
framework of classical physics. These equations can be
derived from very general and basic assumptions'~ and
thus must be accepted as providing a complete de-
scription of the phenomenon within their range of
validity. The remainder of this article is devoted to the
physical solutions of these equations, both for general
and particular force fields.

u;=dx;/dr, (4) (a) 1Vonrelativistic Equation

and the velocity denoted by v; is the derivative of posi-
tion with respect to time,

v, =dx;/dt. (5)

Proper time and ordinary time t are connected by the

First, consider the nonrelativistic equation of motion
when the force of radiative reaction is neglected, the
particle is constrained to move in one dimension, and
the force f(t) is an explicit function of time and is
independent of the particle velocity. Then Eq. (9)
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reduces to Newton's familiar equation of motion

ma(t) =f(t), (10)

acted upon by a force f(t) independent of the particle
velocity is found from Eq. (9) to be

t

z=x,+v, t+rn —' I (t t') f—(t')dt'
0

(12)

Whenever the force acting on the particle is given as an

explicit function of time, the complete solution for the
motion of the particle can be obtained from these
equations. The solution is written in this form so that it
can be compared later with the solution for the equa-
tions of motion including radiative reaction.

(b) Relativistic Equation

The relativistic equation of motion which corresponds
to Eq. (10) can be obtained from Eq. (1) and is found

to be
ntu = L1+ (u'/c') $&f(r). (13)

The square-root factor represents the variation of mass
with velocity.

Introduce a new variable m defined by the equation

u=c sinh(w(r)/c]. (14)

When this is substituted into Eq. (13), it is found that

rnid) =f(r) (15)

Thus, for a given force, m satis6es an equation of the
same form as the nonrelativistic velocity v. An exact
solution for the relativistic velocity of the particle is
obtained if one takes a solution for the corresponding
nonrelativistic equation of motion, substitutes r for t,
uses Eq. (14), and appropriately adjusts the initial
conditions. From Eqs. (11) and (14) it is found that

(Noi
tt=c sinh sinh '~ —~+(tnc) ' f(r')dr' . (16)

I c& 0

The acceleration and the position of the particle as a
function of proper time are obtained by the appropriate
differentiation or integration of this result.

3. Exact Solutions for One-Dimensional Motion
with Radiative Reaction

(a) Eonrelativistic Equation

The equation of motion of a charged body which is
moving slowly compared to the velocity of light, which
is constrained to move in one dimension, and which is

where a is the acceleration of the particle.
If the position and velocity of the particle are xo

and vo at t=0, then the solution of this well-known

equation may be written in the form

t

v= vo+nt —') j(t')dt'
0

and

nta rnb—'a= f(t).

The general solution of this equation is

t'b q
a(t)=e" a(0) —

~

—
~

~~ e "'f(t')dt' .
)~,

nta(0) =
b~ e "'f(t') dt'. - (19)

The initial value of the acceleration when radiative
reaction is not taken into account is directly propor-
tional to the initial force, so that ma(0)= f(0). When
radiative reaction is included in the equations of motion,
the initial acceleration is given by Eq. (19); however,
for any physically realizable force the difference in the
two values is very small, since the time constant in the
exponential is so small (b '=6.27X10 24 sec). Thus, in
most cases the initial value of the acceleration is deter-
mined by the force in a time interval of the order of a
few times b '. Longer time intervals can be of im-
portance only when the force varies extremely rapidly
with time or actually has a singularity. However, there
is an important difference in the interpretation of these
two results. When radiative reaction is taken into

In general, for an arbitrary initial acceleration, the
particle acceleration eventually increases as e~'. This is
an entirely unacceptable physical solution. These "run-
away" solutions have been discussed extensively in the
literature. "

The second derivative of the position of a body occurs
in Newton's equation of motion. In order to obtain a
particular solution of this equation, it is necessary to
specify the initial position and velocity of the particle.
The equation of motion with the force of radiative
reaction, Eq. (17), contains a third derivative of the
position of the body. Thus an additional adjustable
constant, the initial value of the acceleration, occurs in
the mathematical solution of this equation. In physical
problems the value of such constants is always deter-
mined from appropriate initial conditions. In this par-
ticular problem, the initial value of the acceleration is
determined from the following physical boundary con-
dition: as the time approaches infinity, the acceleration
cannot increase idefinitely unless a corresponding
physical force exists which supplies the particle with the
required energy.

From this boundary condition it follows that the
square bracket in Eq. (18) must approach zero as the
time approaches in6nity. Otherwise the acceleration of
the body would eventually increase at least as rapidly
as e~' which would result in a nonphysical solution. Thus
it is found that the value of the initial acceleration which
satisfies this boundary condition is
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account, the initial acceleration is determined not only

by the force at the initial time, but also by the force
which is encountered by the particle at each future
instant of time multiplied by e ".The unusual feature
of this solution is that the present motion of the
particle is determined by the forces which act upon it
over a short time interval in the future. This phenome-
non of preacceleration is discussed further following
Eq. (21).

The exact solution of the one-dimensional equation
of motion as obtained from Eqs. (18) and (19) is

ma(t) = b e P&' "f(t')dt' (20)

01

ma(t) =b I e b"f(t+-t')dt'
0

(21)

It follows from Eq. (21) that there is a physical non-
divergent solution of the equations of motion whenever
the Laplace transform of the force, f(t+t'), exists. Thus,
from the theory of Laplace transforms it follows that a
physical solution exists when (1) f(t+t') is continuous
or piecewise continuous;(2)

~

t' tp~ f—(tp+t )is bounded
near a singularity at t'=t0 for some number n, where
rs& 1; (3)

~
f(t+t')

~

&Ae&' for large values of t', where
A is a constant and y &b.

In particular, if the force which acts on the particle is
everywhere finite, then a physical nondivergent solution
always exists. This result has been proved when the
force is an explicit function of time. The corresponding
general solution cannot be given when the force is an
explicit function of position; however, it seems reason-
able to assume that a solution also exists whenever a
force which is a function of position is everywhere
finite. Moreover, it can be shown that a physically
reasonable answer can be obtained when the non-
singular force always acts in the same direction. For ex-
ample, let us assume that the force always acts in the di-
rection of increasing x, so that fLx(t)j)0.Then it follows
from Eq. (20) that a(t)) 0for all t Thus, theacc.eleration
of the particle is always in the direction of increasing x.
The particle never turns around or executes some un-
reasonable maneuver.

When radiative reaction is not considered, the accera-
tion at a particular time is proportional to the force
which acts on the particle at that time. When radiative
reaction is included in the equations of motion, it is seen
from Eq. (21) that the acceleration at the time t is
determined by the force which acts on the particle at
all future times multiplied by e b'. Unless the force
varies appreciably in a time interval of the order of
b
—', the acceleration calculated from the equations of

motion with and without radiative reaction is very
nearly the same; however, the motion of the particle is
influenced by the forces which act on it over a time

interval of the order b ' which extends into the future.
For example, if a force is suddenly applied at a certain
time, the particle begins accelerating over a time
interval of the order b ' before the force is applied. This
phenomenon of preacceleration is clearly illustrated in
some of the examples which are given in Sec. III and
always occurs when radiative reaction is considered.

The subject of preacceleration has been discussed in
detail by Wheeler and Feynman. ' They find that it is
not possible to separate the advanced and retarded
interactions between particles in the universe over time
intervals of the order of b ', however, over longer time
intervals the usual relations of physics are valid which
contain only retarded interactions. Moreover, they
show that it is not possible to use the phenomenon of
preacceleration to propagate a disturbance at a speed
greater than the velocity of light over a distance which
is large compared to the classical electron radius. Their
conclusion is that the phenomenon of preacceleration
does not violate any of the fundamental physical con-
cepts nor is it contradicted by any available experi-
mental evidence.

The position and velocity of the particle can be
determined from the integration of Eqs. (20) and (21).
The results may be written in many alternate ways.
Perhaps the following form is the most instructive, since
the equations can be compared directly with Eqs. (11)
and (12) for the velocity and position without radiative
reaction:

mv(t) =mvp+ f(t')dt'
J0

+ e "'Pf(t+t') —-f(t')]dt' (22)
0

and
t

mx(t) =xp+vpt+ I (t—t') f(t')dt'+b '
i

f(t')dt'
0 0

+b '
I '&'—"f—(t') d—t'e

—b '(1+bt) t e "f(t')dt'. (23)
p

The exact solution to the equation of motion of a
charged particle in one dimension is given by Eqs.
(20)—(23). The exponential divergence of the form ep'

does not occur in these equations. The position, velocity,
and acceleration of the body are always finite unless the
force is suKciently strong so that one or more of these
quantities would also become infinite when radiative
reaction is neglected.

(b) Relativistic Equatiom

The relativistic equation of motion of a charged
particle which is moving in one dimension and is acted
upon by a force f(r) independent of the particle
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velocity is found from Eqs. (1)-(8) to be

1 1 uu' 1 ( u')&
u —-u+ — =—

i
1+—

) f( ).
b b c2+u2 m g c2)

(24)

Taylor series expansion at the present time, the
acceleration of the particle can be expressed in terms of
the force and its derivatives evaluated at the presegt
time only. Thus, from Eq. (21) and the Taylor series
expansion of f(t), it is found that

This nonlinear differential equation can be solved by
the introduction of a new dependent variable defined

by the equation

u(r) = c sinh[ur(r)/c]. (25)

When this is substituted into Eq. (24), it is found that

mul mb —'i'o= f(r) (26)

+(mc)-' e '"ff(r+r') f(r') jdr'— (27)

The acceleration of the particle at the proper time 7-

as obtained by differentiation of Eq. (27) is

mu(r) =b~I e ~~" '~f(r')dr' coshT(r), (28)
r

where T(r) is the argument of the hyperbolic sine in

Eq. (27). Whenever T((1, then coshT=1 and the
solution given by Eq. (28) is formally the same as the
nonrelativistic solution, Eq. (20), Similarly, whenever
sinhT in Eq. (27) can be replaced by T, the solution for
the velocity is the same as the nonrelativistic solution,
Eq. (22).

The exact relativistic nondivergent solution for the
velocity and acceleration of a radiating charged body
which is constrained to move in one dimension is given
by Kqs. (27) and (28). It is interesting to compare these
equations with the similar results when radiative re-
action is neglected, Eq. (16) together with its derivative.

4. Perturbation Solution for One-Dimensional
Motion

(a) ¹nretativistic Equal'oN

The acceleration of a radiating charged particle at a
given time depends on the forces which act on it at
future times, as is shown by Eq. (21). When the force
which acts on the particle can be represented by a

The form of the diGerential equation for m is the same
as that for the nonrelativistic velocity v as given by
Kq. (17). Thus, an exact solution for the relativistic
equation of motion can be obtained from the expression
for the nonrelativistic velocity, Eq. (22). In this ex-

pression replace t by r, substitute the result into Eq.
(25), and introduce the proper velocity Nv at the proper
time v =0.The following result is obtained for the exact
solution to the relativistic equation of motion:

/Cog
u=csinh sinh ') —~+(mc) ' ~' f(r')dr'

Ec& ~0

(29)

where f&"&(t) is the eth derivative of f with respect to t
After evaluation of this integral, the acceleration may

be written as
1

ma(t) = Q —f&"&(t).
n=o b+

(30)

mv(t) =mvv+ iI f(t')dt'
0

Solutions for the equations of motion are sometimes
found for a mathematically interesting but physically
unrealizable force which always increases with time. If
the time variation of the force is not too rapid, a
sufficiently accurate solution may be obtained by re-
taining only terms through b ' in Eq. (31). Now, since
f&'~(t))0 for all t, it follows that a(t)&a~(t) and
v(t)&v~(t), where aN and vN are the solutions of the
Newtonian equation without radiative reaction. Thus,
if the force always increases with time from t= 0, in this
approximation the particle always gains energy from
the radiation field. On the other hand, if the force
decreases with time from t= 0, in this approximation the
particle always loses energy to the radiation field. A
physically realizable force must become zero after a
sufEciently long time interval has passed. In this case

This equation is equivalent to Eq. (21) and may be
derived from it by expansion of the diGerential operator.
The acceleration for a particular force Geld can some-
times be obtained more readily from one or the
other of these expressions. For example, if all of the
derivatives of the force are known and can be expressed
in a reasonably simple form, it is usually more con-
venient to obtain the solution from Eq. (30). Further-
more, since b ' is an extremely small number, a su%-
ciently accurate solution for most problems can be
obtained from the first two terms in the summation
alone. The first term is the Newtonian solution while
the second term approximately represents the eBects of
radiative reaction. Thus, a perturbation solution for the
acceleration has been obtained as a power series in b '.
It is instructive to substitute Eq. (30) into Eq. (17) and
thus to verify directly that it is a solution of the latter
equation.

The velocity of the particle as obtained from the
integration of Eq. (30) is
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the particle always loses energy by radiation as is shown from the proper time 0 to 7., it is found that

in Sec. II.5.

(b) Relativistic Equation

A similar power series solution can be given for the
relativistic equation of motion. If the Taylor series

expansion for the force is substituted into Eq. (27), it is

found that

(Qo)
u=c sinh sinh '~ —~+(mc) ' f(r')dr'

&c)

+(mc) ' 2 b "[f'"' r) —f'"'(o)) (32)
n=O

The solution for the relativistic velocity which is

correct through terms of the order b ' may be written

u=c sinhS(r)+ (bm) '[f(r) —f (0)]coshS(r), (33)

where

(uog
S(r) =sinh '~ —~+(mc) '

~ f(r')dr' (34).
Ec& 0

The first term of Eq. (33) is identical with Eq. (16).

5. Energy Equations for One-Dimensional
Motion

(a) Time Rate of Change of the Energy

The time rate of change of the energy can readily be
obtained from the relativistic equation of motion. If
Eq. (24) is multiplied by u[1+(u/c)'] &, it may be
rewritten in the form

'd t' u') & 2e' t' u'l
m"] 1+—

I +V(x) — »~ 1+—
I

dr 4 c') 3c' ( c')

2e u
'i 1+—

) . (35)
3c' & c')

The first term in the brackets on the left-hand side of
the equation is the relativistic energy of the particle,
while the second term is the potential energy. The third
term was called the acceleration energy by Schott. 4 It
represents a reversible loss or gain of energy by radiation
during the acceleration of the particle. If either the
velocity or acceleration is zero at both the beginning and
end of the time interval under consideration, then this
term is identically zero. The term on the right-hand side
of the equation represents an irreversible loss of energy
by radiation. This term is always negative.

This equation can be written in a more convenient
form for some purposes by the introduction of the new
variable w(r) defined by Eq. (25). After integration

2e2 w(r)
8—80= V[x(0)]—V[x(r)]+—w(r) sinh

3g C

w(0) 1 t" w—w(0) sinh ——
~~

to' cosh dr—, (36)
C C ~f) C

where 8 and 8o are the relativistic kinetic energy of the
particle at the proper times r and 0, respectively.

The corresponding nonrelativistic expression for the
change in the kinetic energy T is

T To V—[x(0——)]—V[x(t)]
28

+ v(t)v(t) —v(0)v(0) — v'dt . (37)
3c 0

The irreversible loss of energy by radiation is repre-
sented by the last term in Eqs. (36) and (37). The two
terms before the last in these equations represent a
reversible gain or loss of energy by the charged particle.
These terms are zero if the velocity or acceleration is
zero at the ends of the interval.

y= [1+(u/c)']'. (3g)

Thus y is the relativistic energy of the particle in units
of mc'. After the independent variable in Eq. (24) is
changed from t to x and the new variable y is introduced,
after some algebra it is found that

mc'(dy/dx) = f(x) ', e'(y' 1)&—(d-'y /d—x), u(0&

mc'(dy/dx) =f(x)+ ', e'(y' 1)~( dy /-dx)& —u)0. (39)

The sign of the last term, which represents the eBect
of the radiative reaction, depends on whether the
velocity of the particle is positive or negative.

6. Three-Dimensional Equations of Motion

(a) 7qonrelativistic Equation

The three-dimensional motion of a charged body
whose velocity is small compared to the velocity of light
and which is acted upon by a force f(t) independent of
the particle velocity is described by the differential
equation

ma —(m/b) (da/dr) = f (t). (40)

The solution of this equation can be obtained by the
same procedure which was used in Sec. II.3(a). The

(b) Differential Equation for the Energy

When the force is given as a function of position, it is
useful to have available a differential equation with the
position as the independent variable. Let
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exact physical solution of this equation is

ma(t) =b~l e "'f-(t+t')dt'. (41)

A physical nondivergent solution of this equation
exists whenever the three components of f(t) satisfy the
conditions given in Sec. II.3(a). In particular, a physical
solution of Eq. (40) always exists for any force which is
everywhere finite and continuous.

(b) Relativistic Eqlation

The most general form of the equation of motion with
radiative reaction is given by Eq. (1). The general
solution of the equations of motion has been given in
the preceding sections for nonrelativistic motion and
even for the case of relativistic motion in one dimension.
It is not possible to give a general solution for relativistic
motion in three dimensions since the last term on the
right-hand side of Eq. (1) is nonlinear; nevertheless, the
existence of nondivergent physical solutions can be
proved for motion in any bounded electromagnetic field
which is a function of the proper time and which acts
over a finite time interval.

In order to prove the existence and uniqueness of
these physical solutions, the equations of motion are
written in intrinsic form. An equivalent set of integral
equations is derived. From these it is shown that unique
physical solutions exist for any bounded field which
acts over a finite time interval. Finally the usual four-
vector notation is used to derive a useful integral
equation which has only bounded solutions when the
fields are bounded.

l. Eqgations of motion in intrinsic form. In this
section the equations of motion are obtained in terms of
the intrinsic coordinates. The use of these coordinates
usually simplifies any problem where the trajectory is a
skew curve in three dimensions. For this reason alone it
is interesting to put the equations in this form. Moreover,
it turns out that the existence and uniqueness of
physical solutions for a broad class of fields can be
demonstrated directly from these equations.

Let t, n, and b be the unit vectors in the direction of
the tangent, principal normal, and binormal, respec-
tively. Let u be the three-dimensional vector represent-
ing the proper velocity and U be its magnitude. Thus

have been used; k~ is the curvature, k2 is the torsion, and
s is the arc length along the trajectory.

First, let us derive the intrinsic equations when
radiative reaction is neglected. Take the components
of Eq. (1) in the direction of t, n, and b and use Eqs. (2)
and (42) to obtain

U= (e/mc) (c'+ U') &E„

kqU'= (e/mc) I (c'+ U') tE„UH—t ),
(c'+ U') lEg+ UH„=O,

(44)

(45)

(46)

where the subscripts on the fields denote their com-
ponents in the, directions of the intrinsic coordinates.

If E and 8 are given as functions of r together with
an initial value for u, a unique trajectory for the
particle can be obtained in the following manner. The
initial direction of the tangent vector is known. The
plane perpendicular to this vector contains b and n.
Their initial direction can be determined from Eq. (46)
which ahvays has a solution. From Eq. (44) the varia-
tion of U with proper time can be computed, while Eq.
(45) gives the value of k&. These equations can be
integrated step by step to obtain a unique trajectory
provided only that E and 8 are bounded. It is instruc-
tive to obtain the trajectories for a few simple electro-
magnetic fields from the preceding equations.

Next, consider the intrinsic equations with radiative
reaction when the electric and magnetic fields are zero.
It is evident from Eq. (1) that the solution N, =O
satisfies the equations of motion. In order to prove that
this is the only nondivergent physical solution, write the
equations in intrinsic form. From Eqs. (1), (8), and (42)
it follows that

1-
Up c'U'

U= — U—kPU' ——
i

-+kPU4 i, (47)
c' (c'+U'

i dki
k&U'= —3kgUU+ —U',

b ds

kgk2U' =0. (49)

From Eq. (49) it follows that either k, =0 or k& ——0 or
both. If k&=0, the trajectory is a straight line and
Eq. (47) reduces to

bU= U—UU'(c'+ U') —'.
u= Ut,

du/dr = Ut+k, U'n,

h/dr'= (U—kPU')t+L3k~UU+(dk&/ds)U')n
—kIk2U'b)

where the Frenet formulas,

dt/ds= kin,

db/ds= k,n,

dn/ds = —k,t—k,b)

(42)

(43)

The solution of this equation is

U= c sinh(D+Ee~~) (51)

where D and E are constants. The constant E must be
chosen as zero in order to have a nondivergent solution.
The resulting solution represents a straight line trajec-
tory with the particle moving at constant velocity.

Now, let us assume that k2 ——0, but that k& may be
different from zero. The motion takes place in a plane
from the definition of the binormal. Equation (48) may



MOTION KITH RAD I ATI VE REACTION 45

be integrated to give

kg=QU 'e" (52)

where Q is a constant. This may be verified by substitu-
tion into the original differential equation.

If this value of k& is substituted in Eq. (49), the terms
may be rearranged to give

(d/dr)(c'U'e '~'/(c'+U'))=2Q'(U/U'). (53)

This equation may then be integrated with the result
that

(54)U'= (1+c 'U')(M' —Q'U ')e"'

where M is a constant. The velocity can be obtained
from a second integration as

L1V'exp(2b 'c 'Me")+Q'M ' c')'+4c'—Q'M '
U2-

4iV' exp(2b
—'c 'Me")

(55)
where E is a constant.

Let us consider the behavior of this solution for large
values of r when M is positive, negative, and zero.
When M)0, then for large values of r

nondivergent for large values of the proper time. If the
fields are zero after r = r p, it is shown next that a unique
trajectory can be obtained by integrating backwards in
proper time from this point. The particle which follows
this trajectory has some particular velocity at r=0.
This may be taken as the initial velocity for a particle
which starts at r=0 and follows this physically ac-
ceptable trajectory forward in time. This same pro-
cedure may be repeated for a continuous range of
velocities at r=rp. The initial velocities at r=0 from
these trajectories also cover a continuous range of
values. In this manner it is established that a physically
acceptable solution exists for a continuous range of
initial velocities at r=0. It is in this sense that a proof
is given of the existence of a solution. In particular it
should be noted that it is not shown that a solution
exists for any initial value of the velocity at r=0, but
only for some continuous range of initial values; how-
ever, there seems to be no reason to doubt that a
physical solution also exists for all initial values of the
velocity.

The curvature of the trajectory can be obtained by
formally integrating Eq. (59) with the result that

U -', X exp(b 'c 'Me'). (56)

This always represents a divergent solution.
When M&0, it is found that for large values of r

U~ —+ 1(c2+Q2M 2) exp( b
—Ic—1Mebr) (57)

ebs

k =—Q-
U'3

eb
e '"UP(c'+U')&E —UHs)dr'

mc ~p

(61)

Again this always results in a divergent solution.
Finally if M=O, it follows from Eq. (54) that Q=O

and U=O. Furthermore, k&=0 from Eq. (52). Thus,
when there are no forces acting on the particle indefi-
nitely far into the future, the only nondivergent solution
is a straight line trajectory with constant velocity.

When electric and magnetic fields act upon the
particle, the intrinsic equations of motion as obtained
from Eqs. (1), (2), (8), and (42) are

U= (e/mc)(c'+U')&Eg+b '(U k'U'—
—c 'U

f c'U'(c'+ U')-'+k&'U']), (58)

kgU'= (e/mc) $(c'+ U') &E —UH$)
+b 't 3kgUU+ (dkg/ds) U~), (59)

(e/mc) P(c'+ U') lEg+ UH„] b 'k, k, U'= 0 —(6—0).
Some exact solutions of these equations for motion on a
skew curve at constant speed are given in Sec. 1113(d).

The remainder of this section is devoted to a proof of
the uniqueness and existence of a physical solution for
any bounded electromagnetic field which acts over a
finite time interval. The reader is cautioned that
thorough study is required to understand the many
details in this proof. Because of its length only the
major points can be given here, but the proof is believed
to be complete.

The first step in the proof is the derivation of integral
expressions for U, k~, and k„LEqs. (64—67)), which are

where Q is a constant which can be expressed in terms
of the initial values of the velocity and curvature,
Q= kg(0) U'(0).

Similarly the torsion is obtained from Eq. (60) by
replacing k, by its value as given by Eq. (61) with the
result that

eb
k2 ———

mc

[(c'+U')&Et,+UH ]e "
)ebq

Q—
~

—
~

I e "'UP(c'+U')&E„UHp)dr'—
& mc)

(62)

U2 (1+c—2 U2) —I

=e'" M'+. I 2UU '( Q
( (eb)

0 E nzc&

2

XJ Ue ~r
t (c'+U')&E„—UHq]dr"

0

em 'cb(c'+U') &—U'E~e '~" ~dr', (63)

If the terms in Eq. (58) which involve derivatives are
written in the form of the left-hand side of Eq. (53) snd
k& is replaced by its value from Eq. (61), the resulting
equation can be integrated to obtain
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If six initial conditions are given and if E and H are
bounded, Eqs. (61)—(63) can always be integrated step
by step to obtain a trajectory. In general this is a
divergent solution. The six initial conditions may be
taken as the initial values of u, U, kI, and n. From these
the values of the constants Q and M can be determined.

Let us assume that E and 8 are given as functions of
T and are bounded. An actual physical force cannot act
for an infinite time and therefore let us assume that the
fields are zero after some proper time rp. A physical
solution to the problem is obtained when the trajectory
is a straight line and the particle has constant velocity
for all proper times greater than Tp.

There may be a step discontinuity in the fields at
rp. From Eq. (58) it follows that a step discontinuity
in U generates a Dirac delta function in U and the
square of a Dirac delta function in U'. The coefficient of
these terms must vanish since the order of infinity of the
Dirac delta function and of its square are different and
are diGerent from ordinary functions. Thus U and U
are continuous. In the same manner it follows from
Eq. (59) that k& is continuous since a discontinuity in

kq would generate only a Dirac discontinuity in dk&/ds.

Thus U, U, and k~ must be continuous and k2 and
dk&/ds may have a step discontinuity at rp.

Thus k~ ——0 at r = r p which determines the value of the
constant Q. It follows that

(eb y
kiUP=

I
I nsc]

gTO

X ~ e '"UP(c'+U')~E UHp]dr', (64)—

When T&Tp and k~= 0 When r) Tp.

The torsion is now given by the expression

f(c'+ U') &Ep+ UH„]e-'
(65)

'"U(( '+U')~E. U-H ]d '—
when r &Tp. In order for the torsion to be Gnite at T= Tp,

the condition

((c'+U') &Ep+ UH„]r = rp ——0 (66)

must be satisfied.
Further U=O at 7=rp since U is continuous. This

where M' is a constant which can be evaluated in terms
of the initial velocity and acceleration,

blP=cPUP(O)/I cP+U'(O)]

determines the value of the constant M so that

TO

U2(1+.c—2U2) —1 —
2J Ue 2b(-T' r)—

(ecb~
X

( ~
(cP+UP) &E)—k)U dr'. (67)

&m)

Equations (64)—(67) form a complete set of integral
equations describing the physical motion of a charged
particle acted upon by bounded electromagnetic fields
which are zero after the proper time rp. All solutions of
these equations are nondivergent and appropriately
join with the solution for zero field when r) Tp. For a
given set of initial conditions the solutions are unique
since there is only one nondivergent solution in the field
free region for each value of u at Tp. All of the available
constants in our equation have been determined in
joining the two solutions properly at rp. The only
remaining parameters are the three components of the
velocity at r=0.

A group of physical solutions which cover a continuous
range of initial values of the vector velocity at r=0 can
be generated by the following procedure. Start at r= r p

with an initial vector velocity and integrate backwards
in proper time until r=0 is reached. The directions of
the principal normal and binormal at T=Tp are deter-
mined in terms of the given 6elds by Eq. (66). The
values of k~, k2, and U are determined from the remain-
ing equations which can be integrated step by step until
the value 7 =0 is reached. The result of the calculation
is a set of values for u, U, k~, and n at T=O. If this path
is now described in reverse so that the proper time
increases along the trajectory, then this is the actual
trajectory for a charged particle which starts at T=0
with these initial conditions. Since the solution joins up
correctly with the nondivergent solution in the field-
free region when r& rp, it follows that this is a non-
divergent physical solution for the motion.

If the initial conditions at r=Tp are varied over a
continuous range and the corresponding trajectories are
computed back to r=O, then a continuous range of
values is obtained for u, U, k~, and n at r=0. All of these
values can be used as the initial values for the physical
trajectory of an actual charged particle. Thus it has been
shown that nondivergent solutions exist over a con-
tinuous range of initial velocities which a particle may
have at T=0. It has further been shown that the solution
is unique since there is one and only one solution for
T g Tp which is physically acceptable and can be
properly joined up with a given trajectory when there
is no field.

Z. Integral eqlation. In four-dimensional notation it
is possible to obtain an integral equation which is
equivalent to the original diBerential equation. More-
over, the limits of the integral can be chosen so that only
physical solutions result. If Eq. (1) is multiplied by u',
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it is found that

(d/dr) (u u') —2bu u' = —(2eb/mc)F;quipu'. (68)

This equation may be formally integrated to obtain

Take the vector product of this equation with r to obtain

d2r 1 d3r
Xr=- X~

dT b dT

2eb
F;7g~~sg ~ )dT .

mc J, (69)
1 (dr q (d'ry ' (d't y

'
+—

I

—Xr I I I

—"I I (73)
bc3 &dr ) t.dr') l dr'J

The limits on the integral have been chosen to obtain a
bounded solution when F;~ is bounded. This fact is
proven after Eq. (71).

Next substitute Eq. (69) into Eq. (1) and solve the
resulting equation for u; to obtain

dr d'r dr d3r
brX—X =&X—X

dT dT dT dT
(74)

If the vector product of this equation with r is taken and
the order of the terms is rearranged, the result is
obtained that

eb p" 2N;
6,= I Fsqg~—

mc ~,

~no

F,gg'u'e —"&"'—"&dT" The physical nondivergent solution of this equation is

rXdr/dr Xdmr/dr'=0, (75)

Xe "" 'dr' (70.)

This equation is entirely equivalent to the original
differential equation. In order to prove that Eq. (70) is
bounded, substitute uku" from Eq. (69) for the integral
over dr" in Eq. (70) so that

eb p" ( mu,
u;= Jl I

F,gu" ugu~ —Ie " 'dr' (71).
mc ~, 0 ecb

It has already been shown that the only bounded
solution when F;~——0 is u;=0. When a force acts on a
particle, let us assume that all of the components of
F;~ are bounded, but that at least one of the u; is not
bounded and then show that there is no solution of
Eq. (71) with this property. From our assumption it
follows that

I F,ku'
I «(m/ecb) I

u ugu'I

for a sufficiently large value of T. For larger values of T

the solution is then asymptotic with the case when
F;&——0. The only solution then is u;=0 which violates
the original assumption. Thus u; is always bounded
when it satisfies Eq. (70) provided that Fo, is bounded.
These integral equations are necessarily compatible
with those in intrinsic form.

Thus it has been shown that a unique solution always
exists for the general relativistic equations of motion
provided that the fields are bounded and act only over
some finite time interval. Solutions are known to exist
for some fields which exhibit singularities, but we have
not attempted to make the existence proof more
general.

(c) Integral for Central Fields

When a central force acts on a charged body moving
at relativistic velocities, the motion takes place in a
plane even when radiative reaction is taken into con-
sideration. From Eq. (1) it follows that for central forces

d'r f(r) 1 d'r 1 dr (d'r~ ' (d't p
'

+- +—
I

d'r mr b dT bc dr(dr ) l.dT ')

as may be verified by substitution. The general solution
of Eq. (74) has Ce' replacing zero in the preceding
equation. The physical solution is obtained w'hen the
constant C is chosen equal to zero.

Since Eq. (75) is valid for all values of the time, it
follows that the motion always takes place in a plane
defined by the initial values of r and its derivative. The
initial acceleration always lies in this same plane. This
conclusion may also be verified for the nonrelativistic
case from Eq. (41) when the requirement of a central
force is imposed.

(d) Energy Equation

The time rate of change of the energy can be obtained
by the same method as was used in Sec. II.S(a). When
the forces are velocity independent, the spatial com-
ponents of Eq. (1) may be written in the form

1 u,u' u;(uiui+u~um+u3ua)'
'lls —lLs+

b bc' bc'(c'+u')

1 ( u'y&
=—

I
1+—

I f (76)c'J
Q2 —+12+N22+ N32

Now if Eq. (76) is multiplied by u'Li+ (u/c)'j & and
the index i is summed over the three spatial coordinates
only, the resulting equation may be written in the form

d ( u') & 2e' du; ( u')-&I—m.2I 1+—
I +V(z„z„z,)—

dr ( c'i 3c' dr E c') I

2e'( u') & du;du' 1 ( du) '
= ——

I
1+—

I +—
I uX—I, (77)

3c' 0 c') dr dr c' ( dr)

where, in this equation only, all summations are over
the three spatial components only. The potential energy
t/' is derived from the external forces which act upon the
particle. This equation could also be derived from the
fourth component of Eq. (1).
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The first and second terms in Eq. (77) are the rela-
tivistic kinetic energy and the potential energy. The
third term is the acceleration energy and represents a
reversible exchange of energy with the radiation 6eld.
The term on the right-hand side of Eq. (77) is always
negative and represents the irreversible loss of energy
by an accelerated charged body.

III. SOLUTIONS FOR PARTICULAR PROBLEMS

The solutions of the equations of motion for a
radiating charged body acted upon by various par-
ticular force 6elds are presented in this section. Most
of the solutions which are given here are exact and all
are nondivergent physical solutions. These examples
further illustrate the general results which are given in
Sec. II. The phenomenon of preacceleration can be
clearly seen in many of the examples. The energy loss
by radiation is calculated for some of these examples.
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I. One-Dimensional Motion for
Time-Dependent Forces

(a) Pulse of Radiation

The motion of a charged particle which is disturbed
by a momentary pulse of radiation has been considered
by Dirac. ' Let the force which acts on the particle be
represented by a delta function, so that

where k is a constant and the pulse of radiation arrives
at the time tp From Eq.. (21), it is found that

FIG. 1. Acceleration of a radiating charged body which is acted
upon by a sharp pulse of radiation. The pulse acts at the time
to=0. It is assumed that bk/m = 1, where k is the force constant and
m is the mass of the particle. The acceleration when radiative
reaction is included in the equations of motion is shown by the
solid curve. The dashed curve indicates that the acceleration is
diferent from zero only at t =0 when radiative reaction is omitted
from the equations of motion.

velocity and acceleration can be found from Eqs. (27)
and (28). The acceleration in this case is

mu(r)

0, t) tp,

bke ~(' ') t(tp,
ma(t) = (79)

bke "'p '& cosh{sinh '(u/c)+(k/mc)e &'p '}
r(rp, (82)

when the velocity of the particle is small compared to
the velocity of light. The particle velocity is obtained by
direct integration as

mvp+ke —'('0—'& t (tp,
me(t) =

mvp+k, t&tp,

where vp is the initial velocity of the particle at some
time much earlier than tp.

The loss of energy by radiation is found from Eq. (37)
to be

T—T,= —k'/2m. (81)

The time variation of the acceleration for the par-
ticular case when bk/m=1 is shown in Fig. 1. The pulse
acts on the charged particle at tp ——0 in this example. The
acceleration of the electron starts to increase before the
pulse actually arrives at the position of the charged
particle. This preacceleration has an appreciable value
only over a time interval of the order of several times
b
—1

When the particle has relativistic velocities and the
force is given by Eq. (78) with t replaced by r, the

0, T)7 po

(b) Constant Force
A constant force which acts upon the charged

particle may be written in the form

f(t) =mk.

When k is positive, the force tends to increase the value
of the coordinate x. From Eq. (21), it is found that the
nonrelativistic solution is

a(t)= k,

p(t) =pp+kt,

where vp is the initial velocity at t=0.
In this particular case, the motion is the same

whether or not radiative reaction is included. This is
because the time derivative of the acceleration is
always zero and therefore the force of radiative reaction
is zero; however, there is an irreversible loss of energy
from the particle, as follows from the fact that the right-
hand side of Eq. (35) is different from zero. The source
of this radiated energy is the acceleration energy.
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Because of the phenomenon of preacceleration, the
particle knows that the acceleration remains constant
for an indefinite time into the future. When this occurs,
the acceleration energy can decrease without limit so

that the kinetic energy of the particle is the same as if
radiative reaction were omitted from the equations of
motion. This rather strange behavior occurs only be-
cause the force acts forever. If the force is cut off after
a certain elapsed time (as must happen with any
physical force), the kinetic energy of the particle is

reduced by an amount just equal to the radiated energy.
The solution for this case is given in the next section.
The problem of the radiation from a uniformly acceler-
ated particle has been discussed further by Fulton and
Rohrlich '

The solution for relativistic velocities as obtained
from Eqs. (27) and (28) is

1.2,
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REACTION
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u(r) = k coshLsinh '(ttp/c)+ (kr/c)7,

tt(r) = c sinhfsinh '(Np/c)+ (kr/c)].
(85)

0, 0(t«„
f(t)=» mk, tp&t&t&,

0, t) t1.
(86)

From Eq. (20) it is found that the nonrelativistic
solution is

and

k(e p" ep")ep' 0—& t & tp,

a(t)= kL1— e

0,
(87)

op+ (k/b) (e ptp e p~, ) (eo— 1) —0&t &tp
op+k(t —tp) —(k/b)e p"(e" 1)—

e(t)=» + (k/b) (1 e "o) —t, &—t &t„(88)
op+ k(t&—t,)—(k/b)(e '" e"') —t) t,

where ep is the initial velocity at t=0.
If k) 0, so that the force always tends to increase the

coordinate x, then a(t) &0 for any value of tp, t&, and k.
Thus, the particle is always accelerated in the direction
of the force and executes a physically acceptable motion.
The final velocity is finite and is ahvays less than the
corresponding velocity when radiative reaction is
omitted from the equations of motion; however, it
should be noted that the work done by the external
force is not the same in these two cases. This is because
the particle has a diferent velocity at each instant of
time when radiative reaction is included. Thus diGerent
amounts of work are done by the external force over
the fixed time interval. Similar considerations hold when
k (0. In this case the final velocity may be greater when

T. Fulton and F. Rohrlich, Ann. Phys. 9, 499 (1960).

(c) Constant Force Which Acts for a Speciftc Time

Let a constant force act on the charged particle during
the time interval from tp to t1 so that radiative reaction is included than when it is not because

the external force does a diferent amount of work in
the two cases.

The acceleration for a particular choice of values of
t p and tI is shown in Fig. 2. Because of the phenomenon
of preacceleration, the particle begins to move before
the force acts on it. The acceleration also begins to
decrease before the force is turned o6; however, these
eGects are noticeable only over a time interval of a few
times b '. The solution of this same problem for a
particle which is moving at relativistic velocities can
easily be obtained from the above solution by the
methods described in Sec. II.3(b). It is not given here
because of its length.

(d) Force Proportional to t"

Let us consider the motion under the inhuence of a
force which varies as an integral power of time, so that

f(t) = rnkt", t&0. (89)

In this case, the solution of the equations of motion can
be obtained immediately from Eq. (30) as

1 d't"
a(t) =k Q—

p bl dtl

k ~ 1 d't"+'
w(t) =op+

n+1 l=p b' dt'

(90)

where np is the initial velocity at the time t=0. The
results given in Sec. III.1(b) are a special case of the
foregoing with n=0.

When k) 0, the acceleration and velocity are always

bf

FIG. 2. Acceleration a of a radiating charged body when a con-
stant force acts for a fixed time interval. The following values have
been chosen for the parameters: bt0 =5; btl = 10.The force constant
is k. The acceleration is shov n when the force of radiative reaction
is and is not included in the equations of motion.
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greater than when radiative reaction is omitted from the
equations of motion. This occurs because the force is
assumed to increase indefinitely far into the future. The
situation is quite diGerent if the force approaches zero
after a certain time. In an actual physical problem, the
force could act on the particle only over some finite
time interval. When this is the case, the particle always
has a net loss of energy by radiation.

The relativistic solution for the force given by
Eq. (89) with l replaced by r is

1 d'r" (uo)
u(r) =k P — cosh sinh 'l —l+g(r)

&=o b' dr' &cJ

k ( a))
u(r) = sinl (or+tan '—

l coshg(r),
L1+(co/b)']& ( bj

u(r) =c sinhg(r),

(95)

where

independent of the frequency of the applied force until
co is of the order of b.

For a particle which moves with a relativistic velocity
and is subjected to the force given by Eq. (92) with t

replaced by r, the acceleration and velocity as obtained
from Eqs. (27) and (28) are

(uo l
u(r)=c smh smh 'l —l+g(r)Ec)

(91) g(r) = sinh —'(uo/c) —(k/ceo) $1+ ((a/b) '7-&

X (cosL~r+ tan-'(~/b)] —L1+(~/b)']-1}.

where
k ~ 1 d'r"+'

g(r) =
c(n+1) L ob' =dr'

(f) Force ProPortional to exP( l')—
Next, let us consider the motion of a charged particle

which is acted upon by the force

(e) Periodic Force

Let the charged particle be subjected to a periodic
force so that

f(t) = exp
(2oro') l

(l—lo)'

20
(96)

f(I)=mk since. (92)

The acceleration and velocity of the particle can be
obtained from Eq. (21) and are found to be

a(/) = kf1+ (&o /b)'7 & sinLcut+tan '(co/b)],

&(t) = oo (k/~) I:1+—(~/b)'7 '
X( o.L +t -'( /b)7 —

l +( /b)']-1}, (93)

where v0 is the initial velocity at t=0.
If au/b«1, the solution is very nearly the same

whether or not radiative reaction is considered. The
amplitude of the oscillation and the phase are changed
only slightly when the radiative reaction is included. On
the other hand, when co/b&)1, the magnitude of the
acceleration decreases inversely as co and the phase shift
approaches 90'. The solution is illustrated in Fig. 3 for
the particular case when or=b.

The energy radiated per unit time, 8', can be cal-
culated from Eq (37). It i.s found that

W= —(mk'/4orbgl+ (co/b)'7}. (94)

Thus, the energy radiated per unit time is nearly

y(x) =2or & exp( —y')dy.

When x is negative, the value of the integral is to be
taken as negative.

The acceleration is shown in Fig. 4 for the particular
case when o-b= 1 and to ——0. The pulse of radiation acts

0.5

0.4-
FORCE PROPORTIONAL TO EXP(-t J

WITH FORCE OF
RADIATIVE REACTION

WITHOUT RADIATIVE
REACTION

This represents a pulse of radiation which acts on the
particle at the time t0 and has a duration of the order of
0.. In the limit as a —+0, this force becomes the delta
function which is considered in Sec. III.1(a).

The exact nonrelativistic physical solution is found
from Eq. (21) to be

a(l) = ,'bk e pxL-,
' cb'+-b(t —to)7

X(1—y(2-'l b.+ -'(t —lo)]}), (97)
where

1.0
I ~i I PERIODIC FORCE I I i ri I I I I0.8—

0 0.2

0.1

ab=1
= 0

00
-0.2

.0.8—
0 I I I ! X 8 I I I I I + Lt I

Fj:G. 3. Acceleration a of a radiating charged body when a
sinusoidal force is applied for the particular case when co =b.

0.0 I.5 .4 3 -2 -1 0 1 2 3 4 5
bt-

Fro. 4. Acceleration a of a radiating charged body when the
applied force is proportional to exp( —t~) for the particular case
when 0-b= j. and $0=0. These quantities are dered by Eq. (96).
The acceleration is no longer symmetrical about the maximum
when radiative reaction is included because of the phenomenon of
preacceleration.
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over a time interval of the order of several times b '.
Because of preacceleration, the curve for the accelera-
tion of the particle is shifted ahead in time compared to
the force. The maximum acceleration occurs approxi-
mately at the time, bt= —0.75 before the maximum
force is applied. The curve for the acceleration is
asymmetrical about its maximum value.

It is instructive to consider the expression for the
acceleration in the limit as 0- —+0. As this limit is
approached, it is found that the leading term in the
expression for the acceleration increases exponentially
with time until t= tp. On the other hand, when t& tp, the
acceleration decreases very rapidly with a term pro-
portional to the force itself. In the limit, the acceleration
is zero when t& tp and only the exponential term due to
the pre-acceleration exists when t&tp.

f(t) =kme" (98)

When c)0, the force increases exponentially inde6nitely
far into the future and thus is physically unrealizable.
The acceleration and velocity of a nonrelativistic
charged particle which is acted upon by this force as
obtained from Eqs. (21) and (22) is

a (t) = [1—(c/b) j 'ke"—
v (t) =vo+ (k/c) [1—(c/b) j—'(e"—1),

(99)

where ep is the velocity at the time t =0.
The energy loss from radiation, 8', from the time

t=0 to the time t, is found from Eq. (37) to be

ask k(e"—1)'
vo(e"—1)+ ~ . (100)

b[1—(c/b) j 2c[1—(c/b) j I

8' is chosen to be positive when there is a radiation loss.
In order to understand the physical meaning of these

equations, assume that k is positive. Thus the force acts
in the direction in which the particle coordinate in-
creases. The same type of analysis can be given when k
is negative. Consider the following four cases:

(1) c&0. In this case, the force decreases exponen-
tially with time. The acceleration and velocity at a given
time as calculated from Eq. (99) are less than the corre-
sponding values when radiation is neglected. There is
always a radiation loss; 8" is positive whenever c is
negative, as is shown by Eq. (100).

(2) c=0. In this case, the force is constant and the
results reduce to those given in Sec. III.1(b).

(3) 0 &c&b. In this case, the force increases exponen-
tially inde6nitely far into the future. An acceptable
solution to the equations of motion still exists in this
case. The third condition for the existence of a solution
as given after Eq. (21) is that

~
f(t+t')

~
&Ae&" for

(g) Force Proportional to e+"

An instructive example is obtained when it is assumed
that the force varies exponentially with time, so that

kn e",
(t) =

0,
(101)

then it is found from Eq. (21) that the acceleration is

k[1 (c/b) j lecko[e —c((p t) —
e o(tp t)j—— —

a(t) = ~

0,

t & to, (102)

t) tp.

In this case, the solution is physically acceptable for
any value of c. If we assume that k)0, then the
acceleration is always positive, even when c)b. If the
limit is taken of Eq. (102) as c approaches b, the
particular solution is obtained with c=b.

The relativistic equations comparable to Eqs. (99)
and (102) can readily be obtained from Eqs. (27) and
(28). Since they are somewhat lengthy and add nothing
new to the discussion already given, they are not
presented here.

(k) Force Proportional to
~
t to~—

In Sec. III.1(g) a force is considered which has the
strongest allowable singularity as the time approaches
infinity. In this section the force is considered which
has the strongest allowable singularity at a 6nite time
tp. Let

km/(t, —t)",

—[km/(t —t,)"j,
(103)

large values of t, where y& b. This condition is satis6ed
for the present case; however, this is the most rapid
increase in the force at large values of the time which
can occur and still have a physical solution to the
equations of motion. The acceleration and velocity at
a given time are always larger in this case than those
calculated without radiative reaction. The radiation loss
W is negative so that the particle gains energy from its
surroundings. This occurs only because the force
increases over an in6nite time interval into the future.

(4) c&b. In this case, a physically acceptable solution
should not be expected, since the time rate of variation
of the force is too large. Direct substitution of Eq. (99)
into the equation of motion shows that this expression
is still a formal solution when c&b; however, the
acceleration of the particle is in the opposite direction
from the force. This solution is physically unacceptable.

Cases (3) and (4) represent physically unrealizable
forces which increase continually for an inde6nite time
into the future. Thus, it is not surprising that the
particle gains energy from the radiation 6eld or has the
acceleration in the opposite direction from the force
for certain positive values of c. If the force is zero after
some time tp, as it must be for all actual forces, then
there is always a physically acceptable solution for any
value of c. For example, if
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I
b(t0—t)

a(t)=kb"e I" '~ 2 ~" x "sinhxdx
D

—rL1 —n, b(t, —l)j, t&l„
(104)

where 0&n&1. This force represents the attraction of
a charged body by a point divergent source which is

located at the position of the body at f= fp.

For nonrelativistic velocities it is found from Eq. (20)
that
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FIG. 5. Motion of a radiating harmonic oscillator when the force
constant cE as defined by Eq. (105) is equal to b. The motion is
damped and the period is increased when radiative reaction is
included in the equations of motion.

found by the substitution of Eq. (107) into Eq. (106).
Thus,

2. One-Dimensional Motion for
Space-Dependent Forces

When the force is an explicit function of time, a
general physical solution has been given for the equa-
tions of motion. The problem of finding a solution is
more dificult when the force is an explicit function of
position. Even when the force of radiative reaction is
omitted from the equations of motion, an exact expres-
sion for the position of the particle can be obtained for
only a small number of space-dependent forces. Thus,
for space-dependent forces an exact solution to the
equations of motion including radiative reaction can be
expected in only a few cases.

(a) Harmonic Oscillator

An exact solution can be obtained for the problem of
the radiating harmonic oscillator in the nonrelativistic
limit. When the force is given by the expression

j(x)= —nmx,

an exact solution of the equation of motion,

d'x/dt' (1/b)d'x/dt'= —nx, —

exists in the form
x=A sinPbte '".

(105)

(106)

(107)

There is no loss in generality in assuming that the
particle is at the origin of coordinates at the time t=0.
The relations between the parameters n, p, and y are

As t —& ~, the limiting value of the acceleration is
—k(l —fo) ". There is no term in this solution which

diverges exponentially. Thus, this result represents a
physically acceptable solution for the acceleration for
any n such that 0&n & 1. When n= 1, the Cauchy
principal value should be used for the divergent
integrals. The strongest allowable infinity for an attrac-
tive force which can occur at a finite time and still have
a physically acceptable nondivergent solution of the
equations of motion occurs when 0= 1 in Eq. (103).

'+~'+a~ —-'o.b '=0
p'= v (2+3')

The exact solution of this equation is

1 1 27 n (27n)' f 27n'1& 1

~=—+- 1+——+i ii 1+
3 6 2 b I. b') ( 4b'3

(108)

1 27 n t27n)&tr 27n)& 1

+-1+——
I I I

1+
I

. (109)
E y& E b4j2

A study of this expression shows that y is real and
positive for any positive value of n. Thus, the motion
of the oscillator is always damped by the radiation of
energy. Once p has been calculated for a particular case,
then the corresponding value of p is found from
Eq. (108).

It is interesting to obtain the limiting solutions for
small and large values of the force constant. If n((b', it
is found from either Eq. (108) or (109) that

x=A sinu'*I expL ——,'ub 't]. (110)

This expression agrees with the usual result for the
radiation from an harmonic oscillator. ' The frequency is
not changed in first approximation and the motion is
slowly damped compared to the frequency of the
oscillation.

On the other hand, when a)&b', it is found that

x=A sint 2'&3(ub) &tj expL ——,
' (ub) 1tj. (111)

In the limit of an exceptionally strong restoring force,
not only is the frequency altered appreciably, but the
particle radiates all except a minute fraction of its
energy in a single oscillation.

The motion of a radiating harmonic oscillator for the
intermediate case when n= b' is shown in Fig. 5. In this
particular case the values of the constants are P=0.793
and y= 0.233. The rapid damping of the motion and the
decrease in the frequency when radiative reaction is
included in the equations of motion is shown in Fig. 5.

' E.g. , W. Heitler, The Quantum Theory of Radiation (Clarendon
Press, Oxford, England, 1936).
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(b) Linear Potential Wall

An interesting problem which can be solved exactly
is the reflection of a charged particle by a constant
repulsive force which acts only when the coordinate x
is greater than a certain value. In particular, let us
assume that

x&0,0
f(x) =

—mk, x&0,
(112)

aI= —k(1—e 3'o)eoo t&0
ap= —kL1 —e 3&op '&7 0&t&t&& (114)
a3=0, t& tp.

In order to show that a physical solution always
exists, it is necessary to solve for the position as a func-
tion of time. The result of the integration of Eq. (114)
is that

XI—V&&t kb
—

(1 e—o o) (e I )~ «0,
xo vpt kb 't ——,'kt—'+kb '—e -'"(e" 1), 0&t&—tp, (115)
xp ——

(v&&
—ktp) (t—tp), t) tp.

Before the particle reaches the potential wall, it
travels with a constant velocity, vp, until this is modified
by the effects of preacceleration. This occurs over a time
interval of the order of several times b ' before the
particle reaches the origin. After crossing the origin, the
particle slows down under the action of the potentia)
wall, turns around, and reaches the origin again at the
time tp. The value of tp is determined from the solution
of the transcendental equation

(1—bk 'vp)bt&&+-'b'tp' ——1—e '" (116)

Whenever vp&0, the initially free particle can reach
the origin and there always exists a positive value of t p

which satisfies Eq. (116).This follows from the fact that
the right-hand side of Eq. (116)considered as a function
of t p decreases in value monotonically from 1 to 0 as tp

increases from the value 0, while the left-hand side

where k&0. Thus, there is no force which acts on the
particle when it is to the left of the origin, while a
linearly increasing potential acts to the right of the
origin. Let the velocity of the particle be vp as x —+ —oo,
so that the particle is initially moving in the direction
of increasing x. Choose the origin of time so that t=0
when x=0. The particle is then reflected by the linear
potential wall and returns to the origin at some time
t= tp.

The nonrelativistic equations of motion are

a,—6-'6, =0, «0,
a2 —b 'a2 ———k, 0(t(tp, (113)

a3—b
—

%3——0, t& tp,

where a~, a2, and a3 are the accelerations of the particle
for the three time intervals indicated. The exact
physical solution of these equations is
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FM. 6. Velocity of a radiating charged body which is reflected
from a linear potential wall with the force given by Eq. (112) for
the particular case when bt0=10 and bv0/k =5.9. The final velocity
is —0.695e0, where v0 is the initial velocity.

increases monotonically from 0 to values greater than 1
as tp covers the same range of values. Thus a solution
of this equation always exists for any positive values of
k and vp. Similarly it can be shown that the velocity and
acceleration of the particle always have the correct sign,
so that the preceding equations always represent a
satisfactory physical solution for the motion.

The kinetic energy lost by the particle can be cal-
culated from Eq. (37) and is found to be

T Tp —mktp(v—p
——,'k——tp).

The dimensionless parameter which determines the
strength of the interaction is bv, /k. It is instructive to
study the energy loss as this parameter increases from
a very small to a very large value. This corresponds to
gradually reducing the strength of the repulsive force.
When bvp/k&&1, it is found from Eqs. (116) and (117)
that almost all of the kinetic energy is radiated away.
This corresponds to an exceedingly strong repulsive
force. On the other hand, when bvp/k))1, it is found
from the same equations that

(T Tp)/Tp= (4k/bvp)

In this limit the fractional energy loss decreases as the
strength of the repulsive force k decreases and as the
initial velocity vp increases.

The velocity of a radiating charged particle acted
upon by the force given in Eq. (112) is shown in Fig. 6
for the particular case when bvp/k=5. 9 or btp 10. ——
The phenomenon of preacceleration is again clearly
evident in this solution. The inal velocity in this
particular case is equal to —0.695vp, where vp is the in-
itial velocity. This value checks with the energy lost by
radiation as calculated from Eq. (117).

An exact relativistic solution can also be given for the
force given by Eq. (112). For example, the velocity is
given by

uI ——c sinh(sinh '(up/c)
—(k/b)(1 —e ")eo') r&0,

u3 ——c sinh fsinh —'(up/c) (119)
kr (k/b)L1 —e 3&"—'&7)—, 0&r&rp,

u3 c sinh(sinh '(up/c) —krp), r) rp.
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The proper time To at which the particle returns to
the origin is the solution of the equation

4p

I (No)
sinh ' sinh '

I

—
I

—kr
Le&

k——L1—e
—'t'~'t j I dr =0. (120)

b

Since N2&0 at r =0, the integrand is positive at 7 =0.
On the other hand, as r —+ ~0 the integrand becomes
negative provided that r is suKciently large. Thus, it is
always possible to find a value of 7-0 so that the integral
has the required value of zero.

(c) Potential Well

Another problem which can be solved exactly is when
the force is constant inside a given spatial region and
zero elsewhere. Let

0, x&0,
f(x)= tnk, 0&x&xo,

0, x&xp.
(121)

As the initial condition, let the velocity of the particle
be vo for large negative values of the position. The
particle initially moves in the direction of increasing x
and the origin of time is chosen so that t= 0 when x=0.
Let to be the time when the particle reaches the point
xo. The solution of the nonrelativistic equations of
motion is

and

at ——k(1—e '")e",
ao ——kL1 —e P(

a3=0,

t&0,

0&t&to,

t&to

(122)

/'kg
xz —pot+

I I (1 e
—pto) (ep' 1)

Lbo)
t&0,

xo= pot+
I It+—kto —

I Ie p" (ep' 1), —
Lb/ 2 Lb'j

(123)

xo =xo+ (op+ kto) (t—to),

0&t&tp,

t& to.

The solution of the transcendental equation

prkb'too+ (k+bvp)bto —b'xp —k(1—e '")=0 (124)

determines the time to. For an attractive force in the well
(k)0), a solution for tp from Eq. (124) always exists
such that to&0. Similarly, the velocity and acceleration
of the particle always have the correct sign for a sensible
physical solution of the problem.

For a repulsive force in the well (k &0), a solution of
Eq. (124) always exists such that tp) 0 when the particle
initially has sufBcient energy to reach the other side of
the barrier at xo. The energy loss by radiation must be
included in this calculation. When bto&(1, the particle
can reach xp when 4IkIxp/pp &1. When btp))1 the
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FIG. 7.Velocity of a radiating charged body which passes through
either an attractive or a repulsive potential well. The force is
defined by Eq. (121). The following particular values of the
constants were chosen: attractive potential well, bt0= 9.43,
k/epb =0.2, b'xp/k = 100; repulsive potential well, btp =6.17,
k/epb = —0.1 b xp/k = —37.5.

(d) Field of a Thin Injinite Charged Plate

From the examples already considered it seems
reasonable to conclude that a physical solution can be
found for any space-dependent force which has a
different constant value in each of some finite number
of regions of space. One more example of such a force
must be discussed in detail since Eliezer' has claimed

particle can reach xo when

(2 I
k

I xp/op ) & 1—(2 I
k

I /bop)+

A nonradiating particle has just sufhcient energy to
reach xp when 2

I
k

I
xppp ' ——1. The higher-order terms on

the right-hand side of the preceding inequality represent
the effect of radiation. When this inequality is not
satisfied, the particle turns around before it reaches xo
and moves in the direction of negative x. This case has
aires, dy been treated in detail in Sec. III.2(b).

Particular solutions for attractive and repulsive
potential wells are illustrated in Fig. 7. For the attrac-
tive potential well the following values of the parameters
were chosen: btp ——9.43, k/sob=0. 2, b xp/k= 100; for the
repulsive potential weII: btp 6.17, k/v——pb= —0.1, b'xp/k
= —37.5. For the attractive well, the velocity at a given
time is greater during most of the interval when the
particle is in the well when radiative reaction is included
in the calculation than when it is not. This occurs
because of the phenomenon of preacceleration; however,
the final velocity is less with radiative reaction than
without since the particle must lose energy by radiation.
For the repulsive well, the velocity at a given time is
always less with radiative reaction than without it.
Thus, the final velocity is also less and the particle loses
energy by radiation.

The solution for relativistic velocities is the same as
given by Eq. (119) if the sign of k is changed. There are
no new features of the problem which are introduced in
this solution.
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that only nonphysical solutions exist for this problem.
The force due to an infinite, thin charged plate located
in the ys plane and at the origin of the x coordinate is

1.2

1.0

0.8
1) 06

0.4

I I I I I I I

t
km, x(0,

(x) =
I
—km, x)0,

(125)
o 02

0

-0.2

a„b'a —=(—1)"k (126)

where the sign of the right-hand term depends on the
time interval.

The physical nondivergent solution of Eq. (126) is

where k is a constant.
A particle in this force field oscillates with steadily

decreasing amplitude until all of its energy has been lost
by radiation. Let the particle start at the origin at the
time tp with a positive velocity. Let the acceleration be
ai in the time interval tp&t&ti, where ti is the time at
which the particle returns to the origin for the first time.
Similarly a„ is the acceleration in the time interval
t„ i&II&t„, where t„ is the time at which the particle
returns to the origin for the nth time. The differential
equation describing the nonrelativistic motion of the
particle is

-0.4

-0.6

-1.2 I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20 22

bt

Fxo. 8. Velocity of a radiating charged body as a function of
time in the field of a thin infinite charged plate for the particular
case when e0b/k =4.8.

example the rapid damping of the motion due to radia-
tion is clearly evident. There is no evidence of instability
or of nonphysical behavior when the solution is com-
puted numerically.

The solution of the same problem at relativistic
velocities is so similar that the details need not be given.
For example, the velocity is

un(r) =c sinh(sinh ')c 'un(rn ))7+(—1)"k(r—rn ))

a„(t)=(—1)"k+2k P (-1)'+'e """ (127) +2kb—) p ( 1 )i+1/ b(ni n—) —e b(ni nn 1)7) —(130)
i—n

+2kb —( P (—1)i+)t e—b(i'—i) —e
—b(i' —in-1)7 (128)

+2kb —& Q ( ])(+)fe—b(ia —i) —e
—b(4—in —&)7

—2kb '(t —t ) Q(—1)'+'e '(" '" ') (129)-.
'i= n

Since in every time interval the inequality f&f„holds,
it follows that the exponents of all of the exponential
terms in the preceding equations are negative. Thus
there are no exponentially increasing or divergent
motions. The particle loses energy as it oscillates.

The numerical values for the times at which the
particle returns to the origin are obtained by setting the
the right-hand side of Eq. (129) equal to zero. In any
practical problem, bki))1, in which case the value of
the last two terms in Eq. (129) is very small compared to
the first two terms. In this case the method of successive
approximations provides a sequence of values which
converges rapidly to the correct value for t„. On the
other hand, when bti((1, it can be shown that the equa-
tions always have a physical solution by expanding the
exponentials in a power series.

The velocity of a particle as a function of time which
is acted upon by the force given in Eq. (125) is shown in
Fig. 8 for the particular case when vbb/k=4. 8. In this

3. Three-Dimensional Motion

(a) 1Vonretativistic Equation of Motion

When the force is an explicit function of the time,
the general solution for the acceleration of a particle
which is moving at nonrelativistic velocities in three
dimensions is given by Eq. (41). This equation has the
same form as Eq. (21) for one-dimensional motion,
except for the introduction of vector quantities. If the
three components of the force have the same form as
those in any of the examples given in Sec. III.1, then the
complete three-dimensional solution can be written
down at once. For example, for a constant force,

(131)

where it is a constant vector, the solution to Eq. (41) is

a=k,
v= vp+k$. (132)

These equations have the same form as the one-
dimensional solution given by Eq. (84). Similarly, any
of the examples in Sec. III.1 may be generalized to the
case of three-dimensional motion by making the con-
stant k a vector quantity.

The position can be written only as the integral of this
expression. As a consequence of this, the equations
which determine r„can be expressed only in integral
form; however, since the integrand changes sign in the
interval, a solution for r always exists as was discussed
in Sec. III.2(b).
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where

(d0 /dh) b'(d—'0 /dt') = cue

(deu/dh) b—'(d' 0/dh') = —~0

(de, /dt) —b-'(d'0 /dh2) =0

co= eH/mc

(133)

The exact nondivergent solution of these equations
can be written in the form

v =v,pe 'coat,
v„= —v pe

' sinPf,

v=vp
(134)

where the phase factor is chosen so that 0,(h=0) =0,0

and 0„(t=0)=0 The va. lue of the constants n and p as
determined by substitution in the original differential
equation is

(b) Uniform Magnetic Field

The motion of a radiating particle in a uniform
magnetic held involves a velocity dependent force and
thus is essentially different from the previous examples.
An exact, physical solution can be obtained when the
velocities are nonrelativistic. If we assume that the
magnetic field 8 is in the s direction, then the equations
of motion are

the square of the Larmor frequency co. The frequency
of the circular motion of the particle is determined by Ith.

It is equal to the Larmor frequency until that frequency
is equal to a significant fraction of the constant b. Then
the actual frequency of the circular motion begins to
decrease.

For a complete understanding of the problem it is also
of interest to consider the limiting value when b 'co))i.
In this limit

~=P= (lb~)' (137)

0= L1—exp( —4vrnP ')7 sin'|h, (138)

where tsI is the angle between the direction of the
magnetic field and the velocity vector.

The limiting values for the fractional energy loss are

The decay constant and the actual frequency of the
motion are equal. The particle radiates most of its
energy in a single revolution.

The motion for the particular case when cob=0.968 is
shown in Fig. 9. For this intermediate value of cob the
particle already loses a major fraction of its energy in a
single revolution.

The fraction of the original energy lost in one revolu-
tion, E, can readily be calculated from the foregoing
results. It is found that

~=2 (I:2+2( + b '~')'7' —),
P=-,'bI ——,'+-', (1+16b 'co') l7h

(135)
&=4mb 'o) sin'g (u«b

0= (1—e 4 ) sin'hh, co))b
(139)

In most practical problems b 'or«1, in which case

o=b '~'(1-3b '~'+ )
P= co(1—2b '(u'+ ).

(136)
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Thus the coeKcient e, which determines the exponential
decay of the motion, increases in first approximation as

Thus, when b '~&&1, the fractional energy loss is
essentially determined by the product of the Larmor
frequency and the time it takes a light signal to cross the
classical electron radius. On the other hand, when
b 'co))i, it is seen that all but an insignificant fraction
of the energy is radiated in one revolution. This com-
pletes the exact solution of the problem for nonrela-
tivistic energies.

It is not possible to solve the relativistic equations of
motion exactly since they involve cross products be-
tween the different velocity components. Although
most of this article is concerned with the exact solutions
of the equations of motion, this particular problem is of
sufficient interest to warrant further consideration here.
The relativistic equations for motion in the xy plane
with a magnetic field in the s direction are found from
Eqs. (1) and (2) to be

. -0.4

u =coQ„+b ~N —b ic 2Q,u;lL',

u„=—arm +b 'I„—b 'c 'I u4' (140)

-0.6--

L -0.8--

-I.O

FIG. 9. Motion of a radiating charged body in a uniform magnetic
Geld for the particular case when bee=0.968.

where, as in all relativistic equations in this article, dots
indicate derivatives with respect to proper time and a
repeated index is summed over all four components. A
solution to these equations can be obtained by taking
one derivative of the fu.st equation in Eq. (140) and
substituting for u„ from the second equation. The result
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can be written as

d uz
+GO u~

dr'

1ldu, d'u„1 (du, idu'du,
+op

l
+oou&

bl drz drz cz L dr ) dr dr

it is found that

AE 2zco u' ( u') &—l1+—
l

mc' b c' ~ c'&

Szrez u' ( uz) &

l
1+—

l

3mc' Rc' & c' ~
(146)

us d (du dui )
c' dr &dr dr)

In terms of the relativistic energy E of the particle,
the energy loss per revolution is

1 ( du, d'u, d'u, du„d'u„d'u„)—=—
gl u.. . , , u„, , l. (141)

E. dv dr d'7. d7. d7. d73 &

4zrez E (Eyz
~E=——

3 Rmc' Emczp
(147)

An approximate solution of this equation can be
obtained by Picard's method, when the right-hand side
of the equation is small compared to the individual
terms on the left-hand side. The zero-order solution Q, p

is obtained for the equation when the left-hand side is
equated to zero. The same procedure is used for the
corresponding equation in uu. Thus it is found that

Q~p= c4p cosMT)

uup= —c4 p sin~r.
(142)

There is no loss of generality in setting the phase factor
equal to zero.

In the next approximation

where

u,z= LAp+b 'Az(r)] sinozr, (143)

dAz 1 t' ' ( du, o d'u, o d'u, o

gl
dr 2zr ~

o ( dr drz dro

dQup d Qup d Qup )
u„p. . . l

dr (144)

and g is the right-hand side of Eq. (141) with the zero-
order solution substituted for the components of the
velocity and their derivatives. Thus it is found that

u, z=AoI 1 oo b '(1+c—A p )r] sinoor,

u&z= —A pL1 oo b '(1+c A—
p )r] cosoor.

This solution is valid as long as the second term is small
compared to the first. It is an example of a series so-
lution in powers of b '.

This result can be used to compute the energy loss per
revolution, AE, as long as the particle does not lose a
major fraction of its energy in one revolution. The
proper time required for one revolution is 2zr/oo and the
radius of curvature R is equal to u/oo, where u is the
total proper velocity of the particle. Thus, when co«b,

From the derivation, it follows that this result is valid
at any particle energy provided that op= eH/mc«b.

At relativistic energies, Eq. (147) reduces to

4zr e"- ( E p
'

3 R Emczl
(148)

which agrees with the result previously obtained by
Schwinger. "

The limiting expression for the energy loss at non-
relativistic energies as obtained from Eq. (147) agrees
with Eq. (139) when oo«b.

E,=Ep sincot,

Itu= Ep singlet.
(149)

It is assumed that the amplitude of the oscillation of the
particie is sma)l compared to the wavelength of the
radiation so that the spatial variation of the electro-
magnetic wave need not be considered. This is equiva-
lent to requiring that the magnitude of the field Ep be
small compared to the electric field of a point electron
at a distance equal to the classical electron radius.

The equations of motion of the charged particle at
nonrelativistic velocities are

(dv, /dt) b'(d'v /dt') =—8 sinoot —(v, h/c) sincot,

(dv„/dt) b'(d'v /dtz) =—0
(dv, /dt) —b '(d'v /dtz) = (v 8/c) sinoot,

(150)

where 8= eEp/m. The y component of the velocity can
be obtained immediately as

(151)
"J.Schwinger, Phys. Rev. 75, 1912 (1949).

(c) Oscillatirzg Etectromagrzetic Field

In this section another example is considered where
only approximate solutions to the equations of motion
can be obtained. The problem is the scattering of an
electromagnetic wave by a charged particle. Let the
electric field be in the x direction and the magnetic field
be in the y direction so that
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(dv p/dt) b'(—d'v p/dt') =h sin&et. (152)

The physically acceptable solution of this equation is

where v„o is the initial component of the velocity in that
direction.

Since it is assumed that v «c and v,«c, the equations
may be solved by first obtaining a zero-order solution
v,o for the x component of the velocity from the
equation

(d) Motion along a Skew Cnrve witk Constant Speed

An exact solution for the relativistic motion along a
skew curve can be obtained for certain particular
oscillating electric and magnetic fields when the speed
of the particle is constant. This provides an interesting
application of the intrinsic equations of motion dis-
cussed in Sec. II.6(b).

If the speed of the particle, U', is assumed to be
constant, it is found from Eqs. (58)—(60) that

vgp =
i

smppt —cosppt
b(1+b Pa&P) i,

(153) 2ekP U' ) U'
~

b

l1+—I,
3c' E c' J

(158)

This solution is then substituted into the right-hand
side of the last of Eqs. (150).The zero-order approxima-
tion for the s component of the velocity v, o is then ob-
tained. It is found that

e U ( U'yb—Hb —
I

1+—( ~. ,
mU' c E. c') (159)

(1—2b pp') 8'(cos2ppt —1)
v~0= +

2bc(1+b 'cp') 4cpp (1+b 'pp)(1+4b 'pp')

362 sin2ut
(154)

4bcpp(1+b '~')(1+4b '
)pp

a.= 87rmEp '(v, p)

From Eq. (154), it is found that

(155)

~so av
[2bc(1+b 'co')]

Thus, the scattering cross section is

8pr p
e'

y
' 1

3 Ense'i 1+b—'(o'

(156)

(157)

The last term represents the radiative correction to the
usual classical expression for the scattering cross section.

A large number of approximate solutions for the
motion of a radiating charged particle have been given
in the literature for a variety of di6erent forces. A
representative sample of such problems together with
their approximate solutions has been given by Landau
and Lifshitz '

This iteration procedure may be repeated any number
of.times. The next step would be to substitute this value
of v, o back into the differential equation for v, in order
to obtain the next approximation for v„however, the
approximate solution just given is all that is needed in
order to determine the leading term in the expression for
the scattering cross section of electromagnetic radiation
by a charged particle. The cross section is equal to the
average energy loss of the charged particle per unit time
divided by the incident electromagnetic energy per unit
area and time. In the preceding approximation only
v, o has a term whose average over a complete cycle is
different from zero. Thus, in the present notation,

b UH +c[1+(U/c)'j&Eb
k2=—

U UHb cf1+(—U/c)']lE„
(160)

4. Singular Forces

(a) Genera/ Discbtssion

It would seem reasonable that the actual physical
force on a particle in our universe must always remain
finite and cannot assume an infinite value. According to

where the subscripts (, e, and b refer to the components
of the electric and magnetic fields along the tangent,
normal, and binormal, respectively. The required
electric and magnetic fields can be obtained from these
equations in order that the particle may move at a con-
stant speed along a skew curve which has a constant
curvature and torsion (k& and k&, respectively).

For example, if all the components of the electric and
magnetic fields are zero except Eg and Hb, the particle
moves in a circular path at constant speed. The energy
which the particle loses by radiation is exactly com-
pensated by the energy gained from the tangential
electric field. A constant tangential field could be
supplied by a rotating electric field which has a fre-
quency equal to the Larmor frequency of the particle in
the magnetic field IIb.

%henever either H„or Eb is different from zero, the
particle follows a skew curve with a constant speed since
the torsion k2 is then different from zero. For any
desired values of U, k~, and k2, possible values for the
components of the electric and magnetic fields can be
found from Eqs. (158)—(160). These components must
remain constant at the position of the particle. This can
be accomplished if the fields oscillate with the Larmor
frequency.

This is probably one of the few cases where an exact
relativistic solution to the equations of motion can be
obtained for a skew trajectory. Thus, at least in this one
case, there are exact nondivergent solutions for a
particle moving at relativistic velocities along a
skew curve.
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this viewpoint, singular forces arise only from mathe-
matical abstractions which do not take into account all
of the relevant physical factors. Nevertheless, singular
forces, e.g. , the Coulomb force, often provide an ac-
curate representation of various types of physical inter-
actions over a wide range of the appropriate physical
parameters. Therefore the solutions of the equations of
motion for a radiating charged particle acted upon by a
singular force should be studied; however, we need not
be surprised if there is no physical solution to the
problem in certain particular cases.

As has been shown in the preceding sections, a
physical solution to the equations of motion always
exists when the force considered as a function of time is
bounded. In classical mechanics a particle is acted upon
only by the force along the actual trajectory of the
particle. Thus, even with a singular force, if the particle
does not pass through the spatial point which contains
the singularity, the force along the trajectory is every-
where finite. In this case a physical solution of the
equations of motion may be presumed to exist. This
presumption is verified in the following sections by
actual calculation of the trajectories for the cases of
three-dimensional attractive and repulsive Coulomb
fields. Thus it is reasonable to assume that a physically
acceptable solution always exists for a repulsive singular
force, since a particle moving along the classical
trajectory can never reach the singularity.

Some examples have already been given of cases
where the particle passes directly through a singularity
in the force field. In Sec. III.1(h) a force proportional
to

~
iv —t

~

" was considered. It was found that a
physically acceptable solution could be found as long
as n&1. At a time to, the strongest allowable singularity
for an attractive force for which there is still a physically
acceptable solution to the equations of motion occurs
when n= 1 in this example. This force can be expressed
as a function of position by solving the equations in the
neighborhood of the singularity for the position of the
particle. In this way it is found that a physical solution
exists when an attractive force varies as strongly as x '
near the singularity.

Another type of singular force discussed in Sec.
III.1(g) is proportional to e+". An acceptable solution
exists when c(b. This represents the strongest allowable
infinity as the time itself approaches infinity. In the
limit as the time approaches infinity it is found that
the force is proportional to +x.

(b) Attractive Coulomb Force

The scattering of nuclear particles under many con-
ditions can approximately be represented by the
trajectory of a body which is acted upon by a Coulomb
force; however, this force cannot be used down to
arbitrarily small distances, since it is certain that
specific nuclear forces come into play and the phe-
nomena can no longer be described by a classical theory.

Furthermore, no force center can be regarded as exactly
fixed in space with respect to a Galilean frame of
reference, since this would require a particle with an
infinite mass.

The three-dimensional electric field associated with
an attractive Coulomb force is

E= —er 'r. (161)

Now it has been shown in Sec. II.6(c) that the motion is
confined to the plane defined by: (1) the initial position
vector r from the center of force to the particle; (2) the
initial velocity vector.

The relativistic equations of motion obtained from
Eqs. (1), (2), and (161) are

d7

e' x;u' 1
t u,~'u, ,q

+-( u;
mc r' b 0 c'

(162)

For simplicity assume that the motion takes place in the
xy plane. The nonrelativistic equations of motion are
then

d2$ 1 d3x

d]' b dts

e x

m (x'+y') l

(163)
d2y 1 day e2y

dt' b dt' m(x'+y') ~

It is not possible to obtain analytic solutions of these
equations. The existence of physical solutions for the
attractive Coulomb force can be demonstrated only by
numerical techniques and by inference from Sec. II.6 (b).
There it is shown that a nondivergent solution exists
when the force is bounded, is zero after some given time,
and is given as an explicit function of time.

Numerical solutions were obtained for three diGerent
sets of initial conditions with the aid of an IBM 650
digital computer. First an accurate solution was ob-
tained for a case where the initial energy was non-
relativistic. Because of the nature of the equations, it
was necessary to integrate backward in time. When this
was done, there were no instabilities whatsoever in the
solutions. The initial value of the energy was deter-
mined at a point far from the scattering center.

In order to be certain that the relativistic Eq. (162)
did not introduce any divergences, the calculations were
repeated for the relativistic case, but with a coarser
integration interval. No diGerence in the behavior of the
solution was observed.

One of these solutions is shown in Fig. 10 where the
initial energy (kinetic plus potential energy) was
0.010228mc' and the final energy was 0.009316mc'.
When distance is measured in units of two-thirds of the
classics, l electron radius (equal to cb '), the particle
comes within 33 units of the force center; it radiates
8.9%%uo of its energy. The other cases are so similar that
they are not given here.
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I'IG. 10. Motion of a radiating charged particle which is acted
upon by an attractive Coulomb force with its center located at the
origin of the coordinates.

From these examples it is reasonable to assume that
a physical solution exists for any two-dimensional
motion under the influence of an attractive Coulomb
force. The force is finite everywhere along the trajectory
of the particle and therefore physical solutions to the
equations of motion exist according to the discussion
in Sec. II.

On the other hand, Eliezer" has given a mathematical
proof that no physical solution exists for the one-
dimensional problem where the particle moves directly
toward the center of force. He assumes that the solution
can be expressed by ordinary functions. The difhculty
in this case occurs because the singularity in the force
lies along the trajectory of the particle and this singu-
larity is too strong to satisfy the criteria discussed in
Sec. II for the existence of a physical solution. This is an
artificial problem in the sense that: (1) a particle could
not be projected exactly toward the center of the
Coulomb force; (2) the Coulomb force does not extend
down to arbitrarily small distances. Furthermore, it
should be noted that there is always a physical solution
to the equations of motion if the Coulomb force is cut
oG at some distance, no matter how small.

The solution to the mathematical problem of the one-
dimensional motion under the influence of an attractive
Coulomb force has recently been obtained by Clavier. "
He has obtained a satisfactory solution in terms of the
generalized functions known as distributions. " If the
solutions are restricted to ordinary functions, there are
none which actually reach the origin; however, many

"C.J. Eliezer, Proc. Cambridge Phil. Soc. 39, 173 (1943)."P.A. Clavier (private communication, to be published).
'3 L. Schwartz, Theoric des Di strzbutions (Hermann, Paris, 1950).

p p ~
—(cot/) 8

p=s cos4,

kq= p
' sing=5 ' tang,

(164)

where p is the radius vector, p is the constant angle
between the radius vector and the tangent to the
trajectory, 0 is the polar angle, s is the arc length along
the trajectory measured backwards from zero at the
origin, and k~ is the curvature.

diGerential equations may be solved satisfactorily only
when distributions are included among the admissible
solutions. When this is done for the one-dimensional
Coulomb problem, a satisfactory solution is obtained in
which the particle reaches the origin. The velocity
continually increases as the particle approaches the
origin, but has a finite value at the origin. The dis-
continuity in the velocity at the origin arises from the
strong infinity of the Coulomb force.

There has been some confusion in the literature in
regard to the number of diGerent cases for which
Eliezer has provided a mathematical proof that only
run-away solutions exist. A study of his papers shows
that the only case where he has shown that physical1y
acceptable solutions do not exist (when the solutions are
restricted to ordinary functions) is for one-dimensional
motion in an attractive Coulomb potential. In all other
cases (three-dimensional motion in an at tractive
Coulomb potential and one- and three-dimensional
motion in a repulsive Coulomb potential) he has
merely shown that divergent solutions exist. These
run-away solutions exist for every potential. In addition
a physically acceptable nondivergent solution exists in
each of these cases as is demonstrated by the numerical
calculations reported in this and the following section
and the general proof given in Sec. II.6(b).

An important physical problem is the motion of a
charged particle in a nearly circular orbit about an
at tractive Coulomb potential which slowly spirals
toward the center as it loses energy by radiation. It is
not possible to follow the motion until the particle
reaches the center by numerical integration since this
would involve following an infinite number of revolu-
tions; however, from the general proof of the existence
of relativistic solutions of the equations of motion it
follows that a physical solution can be obtained down to
any arbitrarily small distance from the center, since the
force which acts on the particle is always bounded in
this case. In our actual universe the Coulomb force no
longer describes the forces which act upon a particle
when the distance becomes smaller than some amount
of the order of the classical electron radius.

A particular solution can be given for the mathe-
matical problem of spiral motion under the influence of
an attractive Coulomb force. Clavier" has shown that
a logarithmic spiral satisfies the diGerential equations
at very small distances from the origin. The equation of
a logarithmic spiral is
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while
4 cos&p =3 (1—cos2$),

(U,/c') =-', (sin@) '.

(165)

(166)

It is found" by substitution that the intrinsic
equations of motion tEqs. (58)—(60)] are satisaed in
the limit as p approaches zero by a constant speed
V=UO. The angle which the spiral makes with the
radius vector p is found to satisfy the equation
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Numerically, P= 29' 37' and Uo= 1.448c.
A calculation of higher-order terms in the expansion

of the solution shows that there are no free constants
in the expansion. Thus, this is a particular solution
where the particle starts at a given distance from the
origin with a particular velocity. In the limit of small
values of p, the particle has a limiting constant velocity
and has a trajectory which is a logarithmic spiral. Thus
one physically satisfactory trajectory has been obtained
for this problem. The general solution which has not
been found as yet either may involve other functions
or it may be expressible only in terms of distributions
as in the case of one-dimensional motion.

(c) Repulsive Coulomb Force

The case of a repulsive Coulomb force field acting
upon a charged particle is considered next. As the
particle moves along its classical trajectory it can never
actually reach the point at which the force center is
located. Thus, the force which acts upon the particle
is always finite. For this reason, it is presumed that a
physical solution always exists for this force field. This
has indeed been found to be the case for every numerical
example which has been investigated. It should be
noted that Eliezer" has merely demonstrated that
divergent solutions exist near the force center in this
case. Since there are always an infinite number of
divergent solutions for the equations of motion with
radiative reaction, this fact alone does not disprove the
existence of an appropriate physical solution in each
case. Indeed one nondivergent physical solution does
exist for each set of initial conditions.

The equations of motion for a repulsive Coulomb
force are given by Eqs. (161)—(163) if the sign of the
force is changed. In order to demonstrate the existence
of physical solutions to this equation, the trajectories
for three diferent sets of initial conditions were cal-
culated on the IBM 650 digital computer. The same
procedure was used that is described in the previous
section.

One of these trajectories is shown in Fig. 11.
The initial energy (kinetic plus potential energy) is
0.060850mc' and the final energy is 0.060613mc'. The
particle loses 0.39% of its energy by radiation. When
distance is measured in units of two-thirds of the
classical electron radius (equal to cb '), the particle
comes within 52 units of the force center. The orbit of
the radiating charged particle is very nearly the same
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FIG. 11. Motion of a radiating charged particle which is acted
upon by a repulsive Coulomb force with its center located at the
origin of the coordinates.

as the hyperbolic orbit which is obtained when radiation
is neglected.

A physical solution for a repulsive Coulomb potential
exists even when the motion is confined to one dimen-
sion. In this case the particle has its velocity vector
pointed directly at the center of the force field. Since
the particle must turn around before it reaches the
origin, the force which acts on the particle is always
finite. In order to check this conclusion, the trajectory
was obtained by numerical integration for the case when
the initial value of u/c is 0.10521 at a distance of 100
units from the force center (with distance measured in
units of two-thirds of the classical electron radius). At
the same distance from the origin the value of u/c is
0.10500 after the particle has been scattered. The
variation of the velocity with distance is shown in Fig.
12. The difference in the velocities when the particle is
moving in each direction cannot be shown on the scale
of this figure. For this reason, the velocities from 80 to
90 units from the origin are shown on an enlarged scale
on the right-hand side of the figure. The particle has a
smaller velocity when it is moving away from the origin
than when it is moving toward it.

There was no evidence of divergent or unstable
solutions obtained during the numerical integration of
any of these examples. Furthermore, the force is always
finite along the classical trajectory. The general proof of
the existence of a physical solution given in Sec. II.6(b)
should be valid, since the force may be regarded formally
as an explicit function of time. Thus, a physical solution
exists for all types of motion under the action of both
attractive and repulsive Coulomb forces. For one-
dimensional motion with an attractive Coulomb force
the solution can be expressed only in terms of distribu-
tions rather than ordinary functions.

IV. CONCLUSION

The general physical solution for the equations of
motion including radiative reaction has been found
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of these equations exists over a range of initial velocities.
This solution is nondivergent when the force is a
bounded, explicit function of time which is zero after a
certain time interval has elapsed.

The extra constants of integration in the equations
of motion which include the radiative reaction term are
determined from a condition that the particle cannot
increase its energy over a long period of time by more
than the work which is done upon it by the external
forces. These constants can always be determined so
that a physical solution exists when the force is 6nite at
all points along the particle trajectory. An acceptable
solution can also be found for certain classes of forces
which are not bounded. An acceptable physical solution
has been found for all types of forces which have been
investigated and which satisfy the three conditions given
after Kq. (21).

Thus, there no longer appears to be any reason for
not accepting the equation of motion including the
force of radiative reaction, Eq. (1), as an exact equation
for a charged point particle within the framework of
classical theory.
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FIG. 12. Motion of a radiating charged particle constrained to
move in one dimension and acted upon by a repulsive Coulomb
force. The distance from the force center is measured in units of
two-thirds of the classical electron radius (jtc 'x). The left-hand
portion of the graph shows the magnitude of the velocity from the
point where the particle turns around out to 90 units of distance.
On this scale the difference in the velocities when the particle is
moving in each direction cannot be shown. The right-hand portion
of the graph shows the velocity from 70 to 90 units of distance
when the particle is moving toward the origin (upper curve) and
away from the origin (lower curve).

when the force is an explicit function of time. The exact
solution has been given for the relativistic case and the
nonrelativistic limit when the motion is con6ned to one
dimension and for the nonrelativistic limit when the
particle is free to move in three dimensions. For the
general case of relativistic motion in three dimensions,
a set of integral equations has been obtained in both a
four-dimensional coordinate system and in intrinsic
coordinates. It has been shown that a unique solution
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