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I. INTRODUCTION

1. Preliminary Remarks

'HAT the polarization of a free electron should be
defined as the expectation value of the spin

operator e in the I,orentz frame in which the electron
is at rest was originally suggested by Darwin. ' This
definition was used in the Mott scattering theory' and
has been further applied and reviewed by Tolhoek and
de Groot. ' The polarization direction is treated in a way
implicitly; for a given linear combination of the two
independent electron states of a specific momentum,
the polarization direction is determined by the expan-
sion coeflicients /see Eq. (6.16)].

However, it has been realized recently that the
polarization can also be discussed very well explicitly
in terms of certain operators. These operators commute
with the Hamiltonian and so can be used to remove the
twofold degeneracy that remains after momentum and

*This research was partially done in the Ames Laboratory of
the U. S. Atomic Energy Commission.

t National Science Foundation Senior Postdoctoral Fellow
1960—61, on leave from Institute for Atomic Research and Depart-
ment of Physics, Iowa State University, Ames, Iowa.' C. G. Darwin, Proc. Roy. Soc. (London) A120, 621 (1928).' N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929).' H. A. Tolhoek and S. R. deGroot, Physica 17, 1, 17 (1951);
see also H. A. Tolhoek, Revs. Modern Phys. 28, 277 (1956).
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charge are specified. There are three possible starting
points: (1) a four-vector operator shown by Bargmann
and Wigner4 to generate the little group, a subgroup of
the group of Lorentz transformations; (2) a three-
vector operator defined by Stech' which for an electron
is o in the direction of the momentum and Pe otherwise;
(3) A scalar operator of the form ipse„n„, introduced
by Michel and Wightman. ' The relations between these
points of view have been discussed to some extent by
Bouchiat and Michel, " by Werle ' and by Good and
Rose.'

The understanding of the basic properties of these
operators seems now to be complete and therefore a
resume of their properties might be of some value. This
paper gives a consistent account of the theory of electron
polarization, showing the relations between the various
approaches, but without going into the applications.
The three-vector polarization operator is appropriate
for calculations involving plane-wave states, whereas
the four-vector polarization operator is convenient for
taking account of external electromagnetic fields. This
paper is correspondingly divided into two parts.

The theory of electron polarization effects in Mott
and Compton scattering has been reviewed by Tolhoek. '
Calculations of polarization have been made for internal
conversion electrons by Seeker and Rose, ' and for
beta-decay electrons and positrons by Jackson, Treiman,
and Wyld, "by Ebel and Feldman" and by Good and
Rose.' The problem of precession of polarization in
external electromagnetic fields has been treated in the
small-field limit by Tolhoek' and in the classical (non-
quantum) approximation by Bargmann, Michel, and
Telegdi, "starting from the classical equations of motion
in the rest frame. A treatment of the classical precession
problem from first principles is given in Secs. 16 and 1'?.

4V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
34, 211 (1948)' B. Stech, Z. Physik 144, 214 (1956).

L. Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955).
~ C. Bouchiat and L. Michel, Nuclear Phys. 5, 416 (1958).' J. Werle, Nuclear Phys. 6, 1 (1958).
R. H. Good, Jr., and M. E. Rose, Nuovo cimento 14, 872

(1959).' R. L. Becker and M. E. Rose, Nuovo cimento 13, 1182 (1959)."J.D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Phys.
Rev. 106, 517 (1957); Nuclear Phys. 4, 206 (1957)."M. E. Ebel and G. Feldinan, Nuclear Phys. 4, 213 (1957).

'3V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev.
Letters 2, 435 (1959).
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Another development of the basic theory of the
polarization operator and several applications are given
by Rose. '4 A review of polarization phenomena and
experimental techniques has been given by Page."

2. Notation

Units are used for which m=|,"=i. Latin indexes
range from 1 to 3 and Greek indexes from 1 to 4; x4= it.
The symbols A*, A~, and 2 denote the complex con-
juga, te, Hermitian conjuga, te, and transpose of any
matrix A, respectively. The symbols e a,nd s are
reserved for unit vectors.

Abstractly, the Dirac matrices are de6ned by

YuYu+ Yr Yu 24r) ~Vhere Yu Yu

Auxiliary matrices are defined by

p Y4& tv tl9'Yx Ys 'Yi Ys Yv Y4&.='~ v.~= -l (~x~)

A specific representation that is referred to is

Yt0 try ~1 0 q )0 —1~

Ee 0) LO —ip I —1 0 3

where the 2&2 e are the usual Pauli matrices

tr0 iq ~0 i q (1 —0 q

0]= 02= 03=
&I 0) (s 0 J L0 —1)

The electromagnetic field is described by

A „=(A, A e——iP), Ii „„=BA./Bcc„BA„/Be.„, —
&;=~~,-~aI'~I, &I =&~I 4.

3. Physical Interpretations

For the free particle, as an alternative to Dirac's
hole theory, one may interpret the four solutions of the
Dirac equation as actually describing electrons and
positrons (instead of electrons alone). One must then
assign the operators lHl, (H/lHl)xt, and (H/lHl)
X(xXp+-,'Ate), to be the energy, momentum, and
angular momentum, respectively. The operator lHl
is defined in momentum space by lHl = (P'+1)*, the
positive root to be taken. This point of view is carried
through consistently in what follows. When equations
apply nonuniformly to electrons and positrons, the
upper signs apply coherently for electrons and the lower
for positrons. The plane-wave solutions for the free
particle are therefore written as

4'~, i ——f~, i exp[ih '(p x—Wt)]
=iP~, ), exp[as'h-'(q x—I."t)j,

where p and 8' are the eigenvalues of the operators p
and B, and where q and E are the eigenvalues of the
momentum (H/lHl)y and the energy lHl. Here y
and 8" satisfy the equation

p' —W'= —1.

The & subscript on It denotes the sign of W, and X

characterizes the twofold polarization degeneracy. It is
clear that the operator (H/ l

H
l ) is +1 for an electron

state and —i for a positron state. Also, the energy
eigenvalues E=~P' are positive.

The wave equation for the free particle is covariant
with regard to charge conjugation. Also, one Ands that

so the operators for energy, momentum, and angular
momentum are self-charge conjugate:

The Dirac equation is written as

H+= t'A(8/Bt)q,

where the Hamiltonian is given by

[(H/I

HI�)

x 3'= (H/IHl) x,

H= n (y —eA)+P+ey.

Here, p is —~AY' and e is the actual charge, negative for
the electron. Equivalently, one may write

and similarly for the angular momentum. The theory
is therefore covariant with regard to charge conjugation
both for the wave equation and for the physical assign-

(21) ments. Since Ho= H, one sees that (—H/lHl)o is

H/l H l, so the —charge conjugate of an electron state
with momentum q is a positron state with momentum q.
Finally, it is seen that

where m'u= pu
—8A u alld pu is —zAB/8$u.

The charge conjugation matrix satisfies

C*y„*C=—y4y„y4, C '= C*=Ct.

The charge conjugates of a wave function and an
operator are

Qg CgQgC

'4 M. E. Rose, Relativistic Ltectron Theory (John Wiley 8z Sons,
New York, 1961)."L.A. . P g, R . Mod Phy . 31, 759 I,'1959).

is the equation satisfied by the plane wave amplitudes
in terms of the physical momentum q and energy K

II. THREE-VECTOR POLARIZATION OPERATOR

4. Definition

For the free particle, the three-vector polarization
operator is defined as

o=P '[(~ n)(H/IH l)x+x»&(P~&&xi)3

=~ +P-'( p)[(H/IHI)-tllx,



ELECTRON POLARIZATION OPERATORS

0'= c*0*c=0, (4.3)

so the interpretation of 0 as the polarization operator
also is covariant with respect to charge conjugation.

Thus, for electrons/positrons, the three-vector polari-
zation operator is &o in the direction of motion and Po
perpendicular to the motion. Explicitly writing out the
Hamiltonian and expanding, one may alternatively
express the defining equation as

0=&~—I&l '~sp —LI&I(I&1+1)j '(4~ 1)p. {4.2)

One finds that

On defining the projection operators I', by

&.=kL1+~(&/E) j
= (2L)—'(E+ee y+eP) (6.5}

where H, E, and p are the eigenvalues in the laboratory
system, one finds, by using Eqs. (6.3), (6.4), and (4.1),
that

H(P,It.'(s)) = eE(E,&,'(s)), (6.6)

o sV'.4'(s)) =0 ».(P~ s)0'(s) = (~.4'(s)) (6.&)

Also it is known that

o,o,=s;;+i&...o,(a/I el),
where H is the free-particle Hamiltonian,

For any unit vector s, Eq. (5.1) implies

(5.1)

S. AIgebraic Properties

If one introduces a right-handed orthogonal coor-
dinate system e; such that e; e,=6;;, e;Xe;=~;,I,e&,
then the components of 0 in this system, 0;=0 e;,
have an algebra similar to that of the Pauli matrices:

so

(»')'(~~ )=W "~~ ={2E) '(E+1),
where Eqs. (6.2) and (6.3) and the fact that

6"~ pP'=o
which is easily proved from Eq. (6.3), are used. There-
fore, the wave function given by

(0.s)'= 1, {5.2)

so 0 s has eigenvalues &1. Also, it is easily verified
that 0 is Hermitian, and that any component of 0
commutes with the (free-particle) Hamiltonian

0.(s) = I:2E/(E+ 1)3'~.It'(s)
satisfies

0.'(s)k. (s) =1,
HP, (s) = eEQ, (s),

0 sIt, (s) =p, (s).

(6.8)

(6.9)

(6.10)

(6 11)

Therefore 0 corresponds to an'integral of the motion,
and a complete set of eigenfunctions may be found
which are simultaneously eigenfunctions of the Hamil-
tonian and 0 s.

6. Eig8DfUQCtioQ8

Since 0 commutes with the Hamiltonian, a complete
set of plane-wave eigenfunctions,

+, 1(s) = It, 1(s) expl ih —'(y x eL~t) ), —

may be found such that

P&, ,1(s)= ATE(, ,),(s), 0 sI|,,), (s) = lip, ,),(s), (6.1)

(6.2)It."(s)4.'(s) =1,
W' '(s) = It"'{s)

P~ s0'(s) =0.'(s).
(6.3)

{64)

where ~ and X are independently ~1. It is clear that if
If (s) is an eigenfunction of 0 s with eigenvalue +1,
then iP( —s) is an eigenfunction with eigenvalue —1.
One may therefore replace It, ,l(s) by p, (As). A system
in an eigenstate of 0 s with eigenvalue +1 is said to
be polarized in the s direction.

One may relate the plane-wave eigenfunctions of
arbitrary momentum to eigenfunctions in the rest
system. I.et these eigenfunctions be simultaneous
eigenfunctions of the Hamiltonian and 0 s in the rest
sgsteQl~ so

The functions P, (s} actually are proportional to the
rest-system functions P,'(s) Lorentz-transformed to the
laboratory frame. The wave-function amplitudes, P in
the rest system and P in the laboratory system, are
related by

and the transformation coef6cients are

the x axis having been chosen in the q direction. In this
case the transformation matrix is found to be

A.=L2(E+1)j '(E+n,q+1).
When tllls ls applied to tile fllllctloll Qp(s)q olle can
replace gby eP and 1by eP so that

P=AP.'(s)
=L2(E+1)j '(E+~~*P+~P)lt"'(s)
=E'I 2E/(E+1) j-:~.~;(s),

and this proves the assertion. One sees that if a particle
hRS polar1zat1on 8 1n the 1Rboratory system then lt hRs
the same polarization s in the rest system. In other
words, the polarization of an electron beam is the same
no matter from which Lorentz frame the beam is viewed.
g,„The explicit plane-wave eigenfunctions satisfying
Eqs. {6.2)—(6.4), in the specific representation of Sec. 2,
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are
, cos —,'Oe— ~

++'(s) = sin —,'8e "&

0
0

+ '(s)=

e—it /I'4

7

eic/6

(6.12)

and operation with %,t(s) and 0', (s) on the left- and
right-hand sides yields the result by virtue of Eq. (6.11).

Also, any plane-wave electron or positron state is a
state completely polarized in some direction s. To show
this consider the expansion of an electron state X in
terms of 4+(es) and 4+(—es), which for convenience
are studied in the representation of Eq. (6.13). Then

—sin —He "&

, cos-,'Oe"@

where 8 and p are the polar and azimuthal angles of s.
From Eq. (6.8), the corresponding arbitrary I.orentz
frame eigenfunctions are ae' =e"( +l') sin-'Oe"@

7
feil ez i (n+P) cos & ee—s i&

2

X(p) = I:«' U--;(p)+be"U+-(p)3e'"'" """ (61g)

where a, b, rr, and P are positive real numbers and
a'+b'=1. One may write

++(p,s)=L«ss8e '*"L'+-.(p)
+sin18eliov', (p)jei(s x El)./s-

+ (p, s) = Leos-', 8el'o V;(p)
—sin-,'8e "&V (p) je'F '"+F"t"

where U~~ and t/~, are the functions

(6.13)

since this has a solution 8, p, where sins8= a, cossr8= b,
and rb=n P. Con—sequently, Eq. (6.18) reads

X(p) = e &-+~&e-,( p, s), (6.19)

and, since wave functions are defined only to within a
phase factor, the assertion is proved.

~ (E+1)x+-:&
L'+-:(p) = L2&(&+1)l 'I

px~-:
&'

(6.14)

and y+, are the familiar "spin-up, " "spin-down"
functions of nonrelativistic theory,

x+-, =
I

&0)
' ' Elj

(6.15)

8/2 = tan-,'8e'&, (6.16)

it is clear that their direction of polarization coincides
with the vector s used here.

Iv. general, if the system is in a state described by
the wave function P, (s), then the expectation value of
0 is s,

4'.t(s)O@,(s) = s. (6.17)

This may be easily proved since, from Eq. (5.1),

(0 s)O+O(O s) =2s

"W. Heitler, The Qaaltara Theory of Radjatrort (Oxford Uni-
versity Press, ¹wYork, 1954), p. 107.

"S.R. deGroot and H. A. Tolhoek, Physica 16, 461 (1950),
Eqs. (12) and (14); 17, 1 (1951),Eq. (11).

The solutions given in Heitler" are %,(p,es,Les) in the
present notation, where Heitler's E&~0 corresponds to
e= &1 here, and where Heitler's t' and J, correspond to
eh= 1 and eh= —1 here. The functions 4*of Eq. (6.13)
are a similarity transformation from those of deoroot
and Tolhoek. "They write A and 8 in place of cos-,'Oe &'&

and sin-,'He&'&, and express the functions in terms of the
physical momentum. Since they define the direction of
polarization 8, P by

7'. Foldy-Woutbuysen Representation

The three-vector polarization operator assumes an
especially simple form in the I'oldy-Kouthuysen" repre-
sentation and many of its properties become evident
in that representation. In the specific matrix repre-
sentation of Sec. 2, the free-particle Hamiltonian con-
tains even and odd operators —odd operators being
matrix operators that mix the upper and lower two-

component spaces of the wave function (e.g. , ys, n),
even operators being those which do not eBect this
mixing (e.g. , P, s). The purpose of the FW transfor-
mation is to obtain a representation in which the
Hamil. tonian is an even operator, so that electron and
positron solutions are separated into the two-com-

ponent spaces.
Any operator A in the FK representation is

A +~ eisAe s

where the desired unitary transformation is explicitly

"'=I:2I&l (I&1+1)?'PCP(l&l+»+~ pj.

On performing the indicated transformation, one

obtains
OFw p& (7.3)

~s 1,. L. Poldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

The upper/lower two-component spaces in the FW
representation are associated with the Pauli nonrela-

tivistic two-component theory of the electron/positron.
One sees, therefore, that the Pauli theory limit of the
three-vector polarization operator is &o (P=a1 for
electrons/positrons). It is also seen that the algebraic

properties of the three-vector polarization operator
follow easily from Eq. (7.3).
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8. Density Matrix

In scattering problems, where incoming and out-
going particles are treated asymptotically as free-
particle wave states, it is useful to have an expression
for the statistical density matrix" as a function of the
average polarization P of the considered ensemble of
particles.

In general, the electron/positron density matrix for
an ensemble of single-particle systems with definite

energy E and momentum q is given by

p.=Z.=', 'p"~.( )e"( ), (81)
where p+&, is the probability that the particle is in
polarization state Xs. On using Eq. (6.8), one may write

p+= l 2E/(E+ 1)jP+(Zx=', -rp+x|'+'P s)&+"(»))P+,

to describe the polarization of a plane-wave state of a
free particle. Here n„ is defined to be a four-vector with
components (s,o) in the rest system of the particle.
t-It is clear that n„mp is unity and that q„e„ is zero since

q„ is (O, i) in the rest system. jThis operator is equivalent
to 0 s as shown in the following.

The components of m„ in the laboratory system are

n=s+(E+1)—'(q s)q, e4=iq s. (9.2)

As long as e„directly multiplies a plane-wave solution
of the Dirac equation, one can replace it by n„„,defined

by
(9.3)n"=s+(IHI+1) '(p s)p,

n4, p
——ip s(H/(H().

Here y is —zAV, and these operators have the properties

which, in consequence of Eq. (6.3), is equivalent to

p =E[2(E+1)j 'P+(1+0)(Z P+'P+'(»)
Xt',"(~s))(1~0)P,. (8.2)

g„,pn„,p
——1, n, p p+ie4, pH=-O.

A direct consequence of Eq. (4.2) is that

zygo„e„.,=0 s.

(9.4)

(9.5)

In the specific representation of the Dirac matrices
given in Sec. 2, (1+/)p p+&p+'(Xs)l'+'t(Xs)(1+/) is of
the form

)X Oy po Oy
or

&0 0) Eo x)
for upper and lower signs, respectively. Here X is a
2X2 matrix and therefore may be written as

4(A++ B~ a),

One sees then that 0M w, defined for a plane-wave
state, is equivalent to 0 s when operating on the state
function.

III. FOUR-VECTOR POLARIZATION OPERATOR

10. Defj,nition

For the free particle, the four-vector polarization
operator T„ is defined to be

where A~ and B+ are still to be determined. This gives

p'=EL2(E+1)j 'P~(1+P)(A~+8~ e)(1+I')P~.
(8.3)

T=ps(iy —p)

Vsp, —
T4 ys(iy4 iH)—— — (10.1)

Q. Covariant Descriytion

Michel and Wightman introduced the operator

0M w z+5+p+p (9 1)

"See, for example, U. Fano, Revs. Modern Phys. 29, 74 (19S7).
0 B. Miihlschlege1 and H. Koppe, Z. Physik 1SD, 474 (1958).

Finally, A~ and B~ are evaluated from the relations

Tr (p~)=1, Tr (p+0+)=P, ~P~ &1,

which yield the result that A~ ———,', B~——~—:P.Con-
sequently, the plane-wave density matrix is

p, =E/4(E+1))-'P (laP)(1~P )(1~P)P
=(4E) 'LE+P+n. q+P e+ysP q

+E(P P~)+iP~ (PX q) ~(E+1)-'(P.q) (~.q)
—(E+1)-'(P q)(P~ q)7. (8.4)

The expression for the density matrix containing the
projection operators was given by Muhlschlegel and
Koppe, "the expanded form by Tolhoek and deoroot. '

=ZO'' P.

This is closely related to the operator

l
Tp BW 2eppwv"f pgvPv (10.2)

which was first discussed by Bargmann and signer. 4

In fact, as a consequence of the relation

one finds that

PpgvPv Pp 2eppvvYAPY+Pvv (10.3)

T„nw ys(2p„p„)+Ys Y„(y„p„——i). .— —(10.4)

Therefore, when applied to solutions of the Dirac
equation, the operators are equivalent.

ll. Generators of the Little Group

The components T„are the generators of the little
group; the subgroup of homogeneous I,orentz trans-
formations that leave the four-vector p„of a plane-wave
state unchanged. This was pointed out as a specializa-
tion of the general case of arbitrary spin and mass by
Bargmann and Wigner. 4
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To see this in detail, consider the infinitesimal
Lorentz transformation

where $„„=—(„„are infinitesimals. The corresponding
wave-function transformation is

@'(x')=A.@(x),

where, infinitesimally,

A = 1+-'4.v.v'

(11.2)

(11.3)

On substituting Eqs. (11.1) and (11.3) into (11.2) and
expanding +(x„—P„,x,) about @(a„)in a Taylor's series,
one obtains (to first order in infinitesimals)

+'(x) = L1+g.,(-,'y.y, —x,ci/Bx.)]+(a). (11.4)

[T;,T,] =2ie;jsSj„

LT'~Sr]-= 2s(e'j'T'+ejj-f'jP-P*),
pS;,Sj] =2ie,ji(Ss+Sjpipj, ),
p, ,T,]+=2(t„+p,p, ),
$S,,T,]+=25;;H,
P'' S ]+=2(&' (1+P') —p'P ],
LT',H]+=2(S'+S P P'),

$S;,H]+= 2 (1+p') T; 2T;p—,p;.

There is the relation

T J=J T=A(E+-', H),

between the polarization operators, the angular mo-
mentum operator

J= xX p+-,'Air,

For a plane-wave state of a free particle of specified and Dirac's operator"
four-vector p„, the wave function has the form

AE=P Lrr (xXp)+5].
+(~)=4(p.)ef"'"j". (11.5)

If only those homogeneous proper I.orentz tra, nsfor-
mations that leave p„unchanged are considered, then

so that

g„„p„=0, (».6)

On using Eqs. (10.2) and (11.6), it may easily be
verified that

'., ~.,T ~(*)= ~.,~.v,p.~(*)

Thus, for the eigenvalue P,NO, one obtains

The charge-conjugated four-vector polarization operator
is

Tc=C*T*C=T, Tec=C*T4*C=—T4.

13. Connection vrith Three-Vector Operator

The relation between the opera, tors is

T=Q+(IHl+1) '(o p)p,

Te=i(H/[Hi)0 p,
(13.1)

as is easily verified. The connection between T„and
0 is the same as the one between rc„,o and s, Eq. (9.3).
On combining Eqs. (10.1), (9.4), and (9.5), one finds
that,

+'(~) = L1+ (4P ) 'e".xb.Tx]+(*); (11 7) T„rs„„=0s. (13.2)

no sum on i. Equation (11.6) implies that only three
infinitesimal parameters are independent, which, for a
given i, may be taken as e„„»,P». Therefore, the oper-
ators Ty are the generators of the little group.

12. AIgebraic Properties

The operators T„satisfy the equations

(12.1)

Tsrcs m'P+(s) =Pa(s). (13.3)

To find the expected value of T„, one observes from
Eq. (5.1) that

LQ 0 s]+=2s

so that Eqs. (13.1) yield

Therefore the wave function 4+(s) describing a plane-
wave state polarized in the s direction is also an eigen-
state of T„e„,~,

T p+iT4H=O

tT„,H] =O.

(12.2) (13.4)

The result of taking the expected value of this last
equation is

o 4+ eijk7j ps (12.4)

In detail, one finds

The operators T; are of primary interest because Eq.
(12.2) can be used to express T4 in terms of them. Their
algebra is involved with that of the operators 5;,
defined by

(13.5)

where rs„and s are related by Eq. (9.2).
It is clear from Eqs. (6.17), (13.5), and (9.2) that
"P. A. M. Dirac, The Prenceples of Qjjarstjcrw 3Iecharsecs (Oxford

University Press, New York, 1958), 4th ed. , p. 268.
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the following interpretation of these operators can be
made: For a plane-wave state, the three-vector polari-
zation operator 0 is the laboratory-system operator
corresponding to the direction of polarization s in the
rest system of the particle; the four-vector polarization
operator is the laboratory-system operator correspond-
ing to the four-vector which is the Lorentz transform
of (s,0) from the rest system.

(T„)= +~T„+,

where + is any solution of the Dirac equation and the
integral extends over all space, are constant in time.
The (T,) are real and (T4) is pure imaginary. It is
interesting to inquire into the tensor transformation
properties of these quantities.

Let the expectation values be defined in a different
coordinate system by

(T„)'= @'iT„+'. (14.2)

It is immediately clear that for space rotations (T,) is
a vector and (T4) a scalar. Pure Lorentz transformations
can be easily discussed infinitesimally. The transfor-
mation is

x = x—v$, I =3—v. x,
4'=0+ v (tV%+x8%'/Bt ,'n%). ——(14.3)

On substituting Eq. (14.3) into Eq. (14.2), replacing
84/Bt by i7i 'HN, and—simplifying, one finds

(T,)'= (T;)+iv,(T4), (T4)'= (T4) iw;(T,—),
which are the correct rules for a Lorentz four-vector.
It is clear that the same proof applies for ofI'-diagonal
matrix elements.

For the space reQection

x= —x) f=f)

one may consider either the usual wave-function trans-
formation

or the Wigner-Landau combined inversion

In either case the result is

(T')'= (T') (T4)'= —(T4)

Finally, for the time reQection

X =X)

14. Lorentz Transformation Properties

Since r„commutes with the Hamiltonian, the expec-
tation values

15. Effect of External Fields

The four-vector polarization operator can be gener-
alized to the case of a Dirac particle in an external
electromagnetic field. The operator is then defined by

T,=y4(iy„7r~)—
=Pa.;—year;,

T4= y4 (iy4 i H+iep—)
= ZO'' 'JC )

(15.1)

where H is given by Eq. (2.1). This operator has the
properties

T„T„=3+eA,4r B, (15.2)

m T+i(H ey) T4 eA—c B —— (15.3)

[T,Hj =ieh4rXB ieky4(E+—BA/Bt), (15.4)

[T4,Hj = —dto (E+BA/Bt). (15.5)

Consequently, the Heisenberg equations of motion are
found to be

dT/dt =e(aX B y5E), —dT4/dt=ie4i E (15.6).
These equations can be accumulated into the form

d T„/dt =~ey4y4y„F„„. (15.7)

In these three special cases there are polarization
integrals of the motion:

(1) If E is zero, T4 is an integral.

(2) If E is zero and the magnetic field has a fixed
direction B/8, then T4 and T B//8 are integrals.

(3) If B is zero and the component of E in some fixed
direction e is zero, then T e is an integral.

16. Classical Equations of Motion

Equation (15.7) gives the equations of motion of
the four-vector polarization. One is often interested in
the analogous equations of motion for the expectation
value of the polarization of a particle which is localized
so that the wave function is a classical packet. In this
limit the rate of change of the polarization can be

the wave-function transformation rule is

4'(*') =v4v4C*4*(z),

and it is found that

(T')'= —(T'), (T )'= (T4)

In summary, for the general Lorentz transformation

I
~@V+V)

the expectation values transform according to the rule

(T„)'=(deta) a„„(T„).

The reflection properties of (T;) are the same as those
of angular momentum.
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expressed in terms of the external fields and the
polarization itself.

The following conditions are su%cient to make the
classical limit applicable:

(1) The wave function +(x,t) is negligible except in
a small region of space, defining the position of the
classical particle.

(2) The wave function has a rather narrow spread
in momentum and II value; therefore, it applies to a
specific charge, and one may write

rrp)I. (x,t) = (7')e(x,t),

where (~„) is the classical value, varying along the
orbit but factorable out of integrals on the wave func-
tion. The equations following are written for an electron
packet so that (H ert)) is po—sitive for an unbound
particle. For a positron packet one makes a charge
conjugation at the outset, and then the same argument
applies identically except that t,'is replaced by —e.
The requirement of a narrow spread of momentum
imposes a condition on the size of the packet. If a is a
characteristic dimension, the spread in momentum is
A/u, and this must be small compared to the average
value so that

so that b is the classical particle velocity and 7 is
positive.

In determining classical equations of motion, it is
convenient to observe that, for any Hermitian operator

J
tQ (H 'ert))%'—dx+ ~ [Q (H—ep)4]t%'dx

(LQ, H —«j+)=27(Q).

Immediate consequences are

(e)=b,

(~)=7—'

(i7 7~7,)=7 '(T,).

(16.'7)

(16.8)

(16.9)

(16.10)

The equations determining the orbit follow from the
equations of motion in the Heisenberg picture for ~
and x,

d~/dt= eE+eeX B, dx/dt= e, (16.11)

=2(H —ey) @'Q@dx,

which may be written in the form

A'/a'(()r;)(m;). (16 2) by taking expectation values

m„s„+=(eAe B—ieAe E—1)+ (16.3)

(3) The fields and potentials vary negligibly across
the packet so that only their values at the position of
the particle are pertinent.

(4) The quantities eAB and eAF. are negligible com-
pared to unity. The point is that, as long as a solution
of the Dirac equation is considered so that i AB/Bt may
be replaced by II, the equation

d (7b)/dt =eE+eb XB, d(x)/dt = b. (16.12)

On using Eq. (16.6) it is readily established that

d7/dt=b d(7b)/dt=eE b.

These are the relativistic equations of motion for a
charged particle subject to the Lorentz force. The orbit.
is independent of the polarization. In terms of the
proper time 7-, defined by

d/dr =7d/dt,
applies; thus, if eAB and eAE are negligible, the classical
result

one may write
d'h„/dr'= eF„„dh„/dr, (16.13)

(16.4)(~„)(s.„)=-1.
where x„=((x),it) is the location of the particle. By
combining Eqs. (15.7) and (16.10), one finds equations
of motion for the average polarization,

is valid. This is not a stringent requirement; at 104

gauss, eAB is 10 "and at 10 v/cm, eAE is 10 "
These conditions can be met when A is small compared

to the classical actions in the problem. To see this in
detail, one considers a packet with characteristic
dimension a of the order of A as required by conditions
(1) and (2). Equation (16.1) can be satisfied because
the commutators between the operators are propor-
tional to A. The neglect of the variation in a Geld

component Ii across the packet introduces an error of
the order of aF 'BF/Bx. This error and those arising
from the terms disregarded in condition (4) are of the
order of A divided by some classical action.

In view of Eq. (16.4), one introduces the abbrevia-
tions

d(T„)/dr =eF„„(T„). (16.14)

As written, (T„)is the expectation value of the operator
T„ in a single-particle state of existence. However,
since every term in Eq. (16.14) is proportional to (T„),
one can carry out an average incoherently over a
complete set of states and so interpret (T„) also as the
average polarization of a beam of particles.

Equations (16.13) and (16.14) give directly two
constants of the motion:

(d/dr) [(T„)(T„)j=0, (16.15)

b = i(~)/(~4),

7= —i( )=(H—ee)= (1-f')-',

(rh/dr) [(dh„/dr)(T„)5 =0 (16.16).
(16.5)

Equations (16.13) and (16.14) apply in any I.orentz
(16.6) reference frame, so it is clear that h„and (T„) are
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classical Lorentz four-vectors (a detailed proof can be
made using the method of Sec. 14). Consequently, the
conserved quantities have the same values in all
Lorentz coordinate systems. In the system moving
instantaneously with the particle, for which (~)=0, it
follows from Eqs. (15.1) that (T) is (po) and (T4) is
zero. One may therefore interpret (T„) as the compo-
nents in the laboratory system of the four-vector which
is ((Po),0) in the instantaneous rest system. The dis-
cussion leading to Eq. (6.19) applies here to the extent
that the packet is dominated by a single momentum
eigenfunction and any single particle state is an
eigenstate of Pe s for some direction s. Choose the
s a,xis in this direction so that (Pe,) is unity and the
other components are zero. It is clear then that

(T.)(&.)=1 (16.17)

when a single particle is under discussiori. For an
incompletely polarized beam, one chooses the s axis
in the direction of (Pe) in the rest system, and it is then
seen that

(T.)(T.)= (p+ p )', —-(1618)

where p+ is the probability that the particle be observed
to be polarized up/down in its rest system. To evaluate
the other integral implied by Eq. (16.16), one observes
that dx/dr and T4 are zero in the instantaneous rest
system; hence, in all systems,

that, in the extreme relativistic region, an electric field
is as effective as a magnetic field in disturbing the
polarization. If only the magnetic field need be con-
sidered, the polarization (0) precesses in the right-hand
sense about —eB with frequency ~te~B/p. If only the
electric field need be considered, the precession is about
—eEX b with frequency

~

eEXb
~
/(&+1). In the

extreme relativistic region, if E, 8, and b are all per-
pendicular and arranged so as to produce no defiection
of the particle, then according to Eq. (16.25) the
polarization is undisturbed also.

The original discussions of the precession of polariza-
tion were made by Tolhoek and deGroot, ' and by
Hargmann, Michel, and Telegdi. "

("rp7l'p+ e ektjtp rp r 'L)%= 0 (17 1)

where p, is a dimensionless number measuring the
strength of the anomalous contribution. The Hamil-
tonian is then

H=n ~+p+ep ~iehppa 8+i~iekppn E

The polarization operator may be defined by

(17.2)

1'7. Anoma1ous Magnetic Moment
Considerations

When the Pauli" anomalous moment term is included,
the wave equation is

(d~./d )P')=o. (16.19)

This means that (T4) may be eliminated from the
problem:

(T4)= ib. (T). (16.20)

Equation (16.14) then yields these equations of motion
for (T):

T=ps —yam,

It satisfies the following equations of motion:

dT/dt= ,'ge(eXB y-fE) 4iiepP—lt~, n —Bj+
——,'eppLm, e.Ej+,

(17.3)

(17.4)

(17.5)

(T)=(0)+~'(~+1) '(b (o))»
(74)=iamb (0),

(0)=(T)—v(&+1) '(b (T))b

(16.22)

(16.23)

(16.24)

The equations of motion are found, from Eqs. (16.12)
and (16.21), to be

pd(0)/dt=e(0)XLB+$'(y+1) 'EXbf. (M.25)

The vector (0) has constant length (T„)(T„)given by
Eq. (16.17) or (16.18), and its motion consists of a
precession about 8+y(y+1) 'EXb. It is interesting

yd(T)/dt= e(T)X8+e(b (T))E. (16.21)

In principle, this determines the polarization, given the
external fields and starting conditions. One solves Eqs.
(16.12) to find the orbit, evaluates the fields at the
particle to obtain E and 8 as functions of the time
alone, and then solves Eq. (16.21) for the polarization.

There is a simplification when the polarization in the
rest system is used as the dependent variable. Let (0)
denote (pe) evaluated in the particle's rest system. It
is related to (T„)by

dT4/dt=iee. E ~ietie;;q[v;, B,]+—pai,

~elie, p,f~;,E;j+Pai, (1'7.6)

where the g factor is given by

(17.7)g= 2+1,
and where the fact that V E and V 8 are zero was
used to simplify the T4 equation.

The classical limit may be found the same way as
in Sec. 16. One takes expectation values for a packet
satisfying Eqs. (16.1) and (16.2), and discards all
terms with factors of A in them. Equations (16.4) and
(16.13) for the orbit again apply here. The following
intermediate steps are used in calculating the polariza-
tion equations:

(~)=~ '(T) (17.8)

6' )=iv '(T ), (17.9)

(pe)= (T)+iy '(T4)(m), (17.10)

(pe) = ip-'(~) X (T). (17.11)
22 W. Pauli, EXandbsfch der Physik (Springer-Verlag, Berlin,

1958), Vol. V/1, p. 157,
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The equations of motion for (T„)are found to be

yd(T)/dt= -,'ge/(T) XB—i(T,)E$

&e( )L(( )XB)'(T)
+vE (T)+i((~).E)(T )j,

yd(T4)/dt=ie(T) E—-'ieger((es)XB} (T)

,'—ie—p((es)XE) ((es)X(T)}.

From Eqs. (17.4) and (17.8}, one sees that

y(T4) =i(T) (et,);

(17.12)

(17.13)

by using this result and Eq. (16.4), one may rewrite
Eq. (17.13) as

yd(T4)/dt= ,'ige(T)-E sit—icy[((et)XB) (T)

+yE (T)+i((ee).E}(T4)]. (17.15}

Equations (17.12) and (17.15) combine into the form

d(T„)/dr = tzegF„,(T„)+-,'ep &7r„)(a,)F.),(T),) (17.16)

and were erst given by Sargmann, Michel, and Telegdi"
from purely classical considerations. Equation (17.14)
reads that (T„)(z„) is zero and in consequence Eq„
(17.16) implies that (T„)(T„)is an integral of the motion.
The discussion of Sec. 16 applies equally well here so
that the size of (T„) may be identified with the net
amount of polarization in the instantaneous rest system
according to Eq. (16.18}.In Eq. (17.12), (T4) may be
eliminated and (ss) replaced by yb to obtain

~d(T)/«=lgeDT)XB+(b (T))Ej
—-,'timey'bL(bXB) (T)+E (T)

—(b E)(b (T)}j (1717)

as the equation for the time development of (T).
As before, there is a simplihcation when the polari-

zation in the rest system, defined by Eq. (16.24), is
used as the dependent variable. The equation of motion
is found to be

~d(o)/«= age(o)XLB+~b+1) 'EXbj
+-:"~'(V+1)-'(»XI (E+bXB)Xbj, (».»}

and this Inakes it geometrically clear how the polari-
zation varies in time. In the relativistic region the
second term is of order (tzf/g) compared to the erst,
so at su%.ciently high energies it becomes dominant and
the precession is about the normal to the plane of the
orbit. If E is zero and B is parallel to b, the polarization
precesses about the —eB direction with frequency
-.,'g I eI8/y. If E is zero and B is perpendicular to b, the
polarization precesses about the —eB direction with
frequency (1+-',py) I

e
I B/y. These last two results were

found by Carrassi" and by Mendlowitz and Case'4 to
have validity even before the classical average is taken.
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