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/ Fi1c. 20. by =a, cosf+a; sind;
a by= —a, sinf+-a; cosh.

then one [inds as the orientation coefficients
I'=b1b1*+bobo* = a10:*+ aza0* =1,
Py =b1b1*— bybo* = P, sin20+ P, cos26,
Py =b1bs*+bobr*= — P, sin20+ Py cos26,
Py =1(b1bs*— b3b1*) =1(a1a2*— a201*) = Ps.
Thus, for radiation (whose orthogonal state vectors

correspond to orthogonal space vectors) we have for
rotations about the axis corresponding to P;

1 0 0 0
Ma= 0 cos20 sin26 O

0 —sin260 cos20 O

0 0 0 1
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For particles, the orthogonal state vectors do not cor-
respond to the space vectors (Y1 and y» representing
spins in the =z direction are orthogonal state vectors
but the two space directions =2z are not orthogonal),
so we cannot use the same expansion of 4, and b, ; how-
ever, considering the meanings of P; and P, we see
that the transformation matrix M is suitable if 26 is
replaced by 6; that is, a 90° rotation performs the
transformations

P11=P2, le= _Pj.

For particles we are mainly interested in rotations about
the z axis, which is generally chosen as the direction of
motion. The rotation matrix for this case can be obtained
from that first given by a cyclic rotation of the rows
and columns. Thus

10 0 0

|10 1 0 0
M= 0 0 cosd sindl”

0 0 —sinf cosf

NUMBER 1 JANUARY, 1961

Approximate Methods in the Quantum Theory
of Many-Fermion Systems
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I. INTRODUCTION

HIS paper considers the Hartree-Fock approxima-
tion from two complementary points of view. In
the first, the method is a convenient first step towards
an ab initio solution of the many-particle Schrédinger
equation for a system of fermions. It can be shown that
the Hartree-Fock wave function satisfies mathematical
conditions which ensure that a large class of matrix
elements, in the perturbation solution of Schrédinger’s
equation, should vanish.!? For this reason it is a useful
zeroth-order wave function in a perturbation calcula-
tion. From this point of view, modifications to the
Hartree-Fock method which simplify the details of
calculations are desirable, if their effect on the perturba-
tion calculation can easily be evaluated.
From the second point of view, the Hartree-Fock
approximation is the last hand-hold for elementary
physical intuition before it is forced to work directly in

t L. Brillouin, Actualités sci. et ind. No. 159 (1934); R. Lefebvre,
Compt. rend. 237, 1158 (1953).

2R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

terms of the superposition of wave amplitudes that de-
pend on large numbers of independent variables. It can
be argued that any attempt to think in terms of physical
models, rather than pure mathematics, past this point
is necessarily deceptive. In the Hartree-Fock approxi-
mation (or at least in the unrestricted Hartree-Fock
approximation which is discussed in the following) there
is a one-to-one correspondence between particles and
one-particle wave functions (orbitals) which justifies the
loose physical language used in talking about ‘“an
electron in an outer shell,” for example, or “an electron
moving through a lattice.” Furthermore, in the Hartree-
Fock approximation one is free to make up wave packets
from the orbitals, and to localize them both conceptually
and mathematically, so that it is not completely falla-
cious to talk about the force between two particles when
mathematically this is described by the potential energy
integral between density distributions made from the
probability amplitudes denoted by two localized
orbitals.

A modification of the Hartree-Fock method which
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makes ab initio calculations easier might destroy the
frame of reference within which physical intuition works
most easily. Once a set of N particles is being described
in terms of N+1 orbitals, the physical picture becomes
unclear. New kinds of phenomena occur for which a
system of independent particles is not a valid model.
For this reason it is desirable to think of these phe-
nomena as collective motion or correlation effects, and
not try to include such effects in the independent par-
ticle model of the Hartree-Fock theory.

Three variants of the Hartree-Fock theory are con-
sidered. These are the unrestricted Hartree-Fock
method, the traditional Hartree-Fock method,®* and
the method of symmetry and equivalence restrictions.?
The latter two methods are identical in many cases, and
the differences due to approximations are very small
compared with approximations such as Hartree’s
method, the self-consistent field without exchange,!
which neglects all exchange integrals, or Slater’s
methods® which replace exchange integrals by an aver-
age potential.

The Hartree-Fock approximate wave function is
taken to be a single Slater determinant, a normalized
antisymmetrized product

det¢>1(1)¢2(2) o '¢N(1V))

constructed from orbitals {¢.}, i< N. The N-particle
Hamiltonian is assumed to be of the form

H(1,2,--,N)=22; K()+2:; QG j), (1

where Q(7,7) =Q(j,7), the operators are Hermitian, and
1<j<N.

A simple derivation of the integro-differential equa-
tions satisfied by the Hartree-Fock orbitals is given in
Sec. II for all three methods, together with a proof that
the method of symmetry and equivalence restrictions is
identical with the traditional method in an important
open-shell case, which includes the ground states of all
second-row atoms except Li, and the atomic configura-
tions 3d». The method of symmetry and equivalence re-
strictions is designed to allow open-shell calculations
that can always be put into the form of homogeneous
eigenvalue equations, with a common effective one-
particle Hamiltonian for all orbitals.?

Because all other variants of the Hartree-Fock
method either include constraints introduced to simplify
calculations, or deal with a trial wave function that can-
not be expressed as a single Slater determinant, the
physical model of a system of independent particles is
strictly applicable only to the unrestricted Hartree-Fock
method. The effects described in physical terms as
collective motion or particle correlation are discussed in
connection with the unrestricted Hartree-Fock method

3V. Fock, Z. Physik 61, 126 (1930); 62, 795 (1930); P. A. M.
Dxrac, Proc, Cambridge Phil. Soc. 27, 240 ( 931).

4D. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957).

5J. C. Slater, Phys Rev. 81, 385 (1951); 91, 528 (1953).

in Sec. III. These physical effects are closely related to
the resolution of degeneracies and perturbation or
variational solution of Schrédinger’s equation, when the
unrestricted Hartree-Fock wave function is taken as an
initial approximation.

The relation between various generalizations of the
Hartree-Fock method which have been proposed and
those considered here in detail is discussed in Sec. VI.

II. DERIVATION OF THE HARTREE-FOCK
EQUATIONS

Let ®¢ be a single Slater determinant with occupied
orbitals {¢:}, < N, for a system of N fermions. Other
orbitals orthogonal to the occupied orbitals which make
up with them a complete orthonormal set are denoted
by {¢a}, a>N.

In the unrestricted Hartree-Fock method® the mean
value of total energy (0| H|0) is to be made stationary
with respect to any variation of the occupied orbitals of
®, which preserves normalization. In particular, the
energy must be stationary under all variations of the
form

(2a)
(2b)

§¢1~=¢oada,
5®o=<1>¢“da,

where da is an infinitesimal constant, ¢, is any nor-
malized orbital orthogonal to all ¢;, and ®,* is the
determinant constructed from ®, by replacing ¢; by ¢a.
Since the Hamiltonian H of Eq. (1) is Hermitian, if
8(0| H|0) is to vanish for this variation it follows that

Re(;*| H|0)da*=0 forall i< N<a. 3)

The complex phase of da can be chosen so that
(;| H|0)da* is a real number, so this implies that

(:°|H|0)=0 for all i< N<a. (4)

But such a matrix element is identical with the matrix
element (a|3C|7) of an effective one-particle Hamil-
tonian?

acosK+é (GIR] ). s)

Here (7| R|j) is a linear one-particle operator defined in
terms of the two-particle operator Q of Eq. (1) by

(IR f)é:= (110l Né:i— (j]Ql ). (6)

The exchange term here results from the antisymmetry
of the many-particle wave function.

From Eq. (4), the result of the variational calculation
is

(¢a*3Cep )=0 for all i< N<a. @)

Since ¢, is arbitrary except for the condition of orthog-
onality to all of the occupied orbitals {¢.}, this implies
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that JCop; is a linear combination of the orbitals {¢.},

N

Hopsi= 2 €jibj, 1SN (8)

=1

Since any linear variation that preserves the normaliza-
tion of ®¢ can be expressed as a linear combination of the
special variations considered previously, Egs. (8) are
equivalent to the statement that (0| H|0) should be
stationary under any variation of the orbitals, subject to
normalization.

If the operators K and Q of Eq. (1) are Hermitian, the
one-particle effective Hamiltonian 3C, defined by Eq. (5)
is Hermitian. 3Co is also invariant under unitary trans-
formation of the set of orbitals occupied in the determi-
nant ®,, so a canonical form of Egs. (8) can be obtained
by diagonalizing the Hermitian matrix [e;;]. This is

Hopi=epi, 1S N. 9)

Equations (9) are the (canonical) unrestricted Hartree-
Fock equations for the occupied orbitals of ®. Since 3Co
depends on its own eigenfunctions, by Eq. (5), these
equations must be solved by an iterative process.*

In the traditional Hartree-Fock method,? as it would
be applied to a trial wave function expressed as a single
Slater determinant &, the orbitals would not be varied
completely independently of one another. Since the
principal application of the traditional method is to
spherically symmetrical systems, it is sufficient to use
the case of spherical symmetry to illustrate the general
argument.

Irreducible representations of the transformation
group in one-particle space that generates the trans-
formation group of the many-particle Hamiltonian® are
denoted by an index \. A particular row or column of a
matrix in the standard irreducible representation A is
denoted by a second index p. In the case of spherical
symmetry, these indices would be identified with the
quantum numbers /, m that specify a spherical harmonic
Yim(0,0). Under a coordinate rotation the spherical
harmonics with index / transform into one another by a
unitary transformation. The transformation matrices
form a (2/41)-dimensional irreducible representation of
the rotation group. The rows and columns of these
matrices, and the different members of the set of basis
functions Y., are labeled by the axial quantum
number m.

When spin is taken into account the spherical har-
monics must be generalized to functions x».(6,9,: - ),
which may depend on other internal variables such as
isotopic spin. These functions are to be basis functions
for irreducible representations of the combined group of
rotations together with any symmetry transformations

S H. Eyring, J. Walter, G. E. Kimball, Quantum Chemistry
(John Wiley & Sons, Inc., New York, 1944); L. D. Landau and
E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1958), Chap. XII.

of the internal variables. For example, for electrons in an
atom, in Russell-Saunders coupling, x», would be the
product of a spherical harmonic with a Pauli spinor, and
the second index u would denote the pair of quantum
numbers m;, m,. For a nuclear Hartree-Fock calculation
which neglected the Coulomb force, x». would be the
product of a j-j coupled orbital (spin coupled to the
orbital angular momentum) and an isotopic spinor, and
u would denote the pair of quantum numbers m, 7s.

For a system with spherical symmetry, the traditional
Hartree-Fock orbitals would be constrained to be of the
form

== R\ (f)XM (0,¢: U ) .

The important constraint is that R,y is taken to be the
same for a set of orbitals with different values of u, and
each orbital contains only one angular function. The
traditional Hartree-Fock procedure is to substitute
orbitals of this form into the expression for the mean
value of energy, then to integrate over the angular
variables (and the internal variables) before using the
variational calculus.* In contrast to the unrestricted
Hartree-Fock method, where the entire orbital is varied,
only the radial functions are varied, since the energy is
expressed as a functional of the radial functions. A
derivation of the traditional method is given here which
defers the angular integration until after the variational
calculation, to compare with the unrestricted method.

The radial function R, may occur several times in a
single Slater determinant, multiplied by angular func-
tions x), with different values of the second index
u(n)\). For given \ the index » which denotes an inde-
pendent radial function assumes values #< N, for
occupied orbitals, and #> N, for functions orthogonal to
occupied orbitals. Each radial function is assumed to be
normalized, and orthogonal to all other radial functions
with the same value of A.

The most general variation to be considered is such
that the energy (0|H|0) must be stationary under all
variations of the form

6¢ﬂ)\u=5Rn)\X7\n= Rtkdaxky, (10)

where da is an infinitesimal constant and Ry is any
normalized radial function orthogonal to all {R},
p< Ny The variation of the Slater determinant &, is

5‘19():2“(")‘) @,.)‘,,”‘“da. (11)

Hence if 6(0| H|0) is to vanish it follows as in Eqgs. (7)
that

Z u(nX) (R [2N *XM *;GCOR n)\XX#) =0

for all K N\ <t.

To compare with Eqgs. (8), and to derive an effective
radial operator, it is desirable to divide Eq. (12) by
d(n)), the number of values of u in the set u(#\), which
specifies the angular factors of occupied orbitals with
radial function Rna. Then Eq. (12) is equivalent to the

(12)
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radial equations
N

[GCOJnXRn)\= Z epu)‘Rp)\; 7’L<N)‘,

p=1

(13)

where

[3s T =—— Tcan f i Koo (14)

d(n)\)

The integration is over the angular variables, and in-
ternal variables. Equations (13) are the traditional
Hartree-Fock equations for the radial functions, for
occupied orbitals in the Slater determinant ;.

If for given A, the set of values of u(#)\) which specify
occupied orbitals should be the same for all #< Ny, then
the average in Eq. (14) would be independent of #, and
the operator [3Co ]\ would in fact be independent of 7.
In this special case, since the operator is Hermitian as
before, the Hermitian matrix [e,.*] can be diagonalized
by a unitary transformation of the radial functions
{Ra}, n< Ny, under which [3Co ], is invariant. This
makes possible a canonical form of the radial equations,
free of off-diagonal Lagrange multipliers,

[3CohRm=€n*Rnr, #< N (15)

The index # is dropped from [3Co ] since the operator is
independent of % in the special case under consideration.

In the general case [JCo].n is obtained from the
unrestricted Hartree-Fock operator (evaluated for
orbitals of the restricted form) by removing, through the
integration over angles and internal variables in Eq.
(14), all components of 3¢, that connect functions with
different transformation properties under group opera-
tions, i.e., with different values of A or of u. The re-
maining operator is then averaged over the set of u
values which represent occupied orbitals for each value
of n.

The method of symmetry and equivalence restric-
tions? follows an almost identical procedure. First, com-
ponents of 3¢ that would connect different values of A
or of u are dropped (this is called the symmetry re-
striction). Then, in order to secure equations of the
canonical form, an effective operator independent of #
is obtained either by choosing a particular value of x and
solving the equations

[3CohuRm= € Rar, n< Ny, (16)

where

[JCOJM: fdﬂxxu*ffcoxm (17)

or by averaging over a set of values of u which is inde-
pendent of #. This is called the equivalence restriction.

In the special case in which the traditional Hartree-
Fock equations can be expressed in the canonical form
of Eqgs. (15) for all values of A the method of symmetry
and equivalence restrictions is identical with the tradi-
tional method, if the average over values of x is taken
as in Eq. (14). The total energy in this special case is

given by the formula

O1HI0)=3 52 £ d0mLOAK ) +er). (19
This follows from the identity?

1810~} X [6IKI)+Glsld (19

The effect of applying symmetry and equivalence re-
strictions is to cause certain integrals, matrix elements
needed in a calculation of correlation effects, to be non-
zero, when these integrals would vanish in the unre-
stricted method. These matrix elements involve ex-
change integrals arising only from orbitals outside of
closed shells, and they can be expressed by very simple
formulas when the equations satisfied by the orbitals
[Egs. (16)] are taken into account.? Similar non-
vanishing matrix elements occur in the traditional
Hartree-Fock method except for closed-shell systems.

III. UNRESTRICTED HARTREE-FOCK METHOD

In the unrestricted Hartree-Fock method the mean
value of the many-particle Hamiltonian, calculated for
a single normalized Slater determinant, is made station-
ary subject to no constraint other than normalization.
In a certain sense, this particular Slater determinant is
as close an approximation as is possible to a wave func-
tion which can be thought of intuitively to describe a
collection of independent particles interacting through
a common average potential. Any improvement to the
unrestricted Hartree-Fock function must necessarily be
described in terms of the wave interference characteristic
to quantum mechanics, since the improved wave func-
tion can be represented at best by a linear combination
of Slater determinants.

In the open-shell case the unrestricted Hartree-Fock
determinant in general belongs to a degenerate set of
functions. By applying some of the results of elementary
group representation theory, this situation can be dis-
cussed in some detail.2.” The principal theoretical result
is that the orbitals of an open shell unrestricted Hartree-
Fock determinant must show some distortion from the
degree of symmetry used to describe a closed shell
function. This implies that operations in the group of
symmetry transformations under which the many-
particle Hamiltonian is invariant generate a set of de-
generate functions from any open-shell unrestricted
Hartree-Fock determinant.

Since this degeneracy cannot be resolved except by
constructing linear combinations of determinantal func-
tions, the resultant splitting of the unrestricted Hartree-
Fock energy into a set of related levels is properly a
correlation or collective phenomenon, and cannot be
described in the language of an independent particle

"R. K. Nesbet, Phys. Rev. 109, 1017 (1958).
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model. This distinction should be kept in mind in at-
tempting to develop an intuitive understanding of the
properties of many-particle systems. The traditional
Hartree-Fock approach to open-shell systems resolves
this degeneracy from the outset. Only in special cases
(when the trial function is actually a single Slater de-
terminant) is there a one-to-one correspondence between
particles and orbitals. Without this correspondence
intuitive notions of independent particles are not com-
pletely adequate to describe the many-particle wave
function.

Another property of a single Slater determinant that
is not shared by linear combinations of such functions
is that the occupied orbitals of a single determinant can
be subjected to any unitary transformation, without
altering the many-particle wave function except by a
phase constant.® This freedom of representation can be
used to minimize the purely quantum mechanical wave
interference effects remaining in the independent par-
ticle model.® For if a transformation is chosen which
localizes these orbitals as much as possible, then the
classical concept of nonpenetrating independent par-
ticles can be used insofar as it is possible to neglect wave
interference for the localized orbitals. Orbitals with
different internal quantum numbers, such as spin or
isotopic spin, can overlap freely, but there is no inter-
ference (as a wave phenomenon) and the particles are
simply superimposed.

Thus in the unrestricted Hartree-Fock approximation
one can recover, even for strongly interacting quantum
mechanical particles, as much as is possible of the intui-
tive picture of nonpenetrating interacting independent
classical particles. This has led to the successful
parametrization of energy levels in molecules in terms
primarily of geometrical concepts of paired electron
bonds and directed lone pairs,'® and appears to give a
valid intuitive description of nuclear matter in terms of
localized orbitals occupied by four particles (alpha
particles) or by two (neutron pairs)."

The usefulness of this intuitive picture depends on the
relative importance of correlation and collective motion,
not describable in the Hartree-Fock approximation. But
the unrestricted Hartree-Fock wave function, particu-
larly when expressed in terms of localized orbitals,
provides a simple basis for consideration of these effects.

This follows from the structure of Schrédinger’s equa-
tion, and from the consequences of a theorem first
stated by Brillouin,? which applies to an unrestricted
Hartree-Fock wave function. Brillouin’s theorem, Eq.
(4), states that an unrestricted Hartree-Fock determi-
nant ®, has no matrix elements over the many-particle

(1;4193)13. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1, 14

° J. E. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (London)
A202, 166 (1950). P

10 J. A. Pople, Proc. Roy. Soc. (London) A202, 323 (1950); G. G.
Hall and J. E. Lennard-Jones, zbid. A205, 357 (1951); J. E.
Lennard-Jones, J. Chem. Phys. 20, 1024 (1952).

1 R. K. Nesbet, Phys. Rev. 100, 228 (1955).

Hamiltonian with any other determinant &;* which
differs from &, by the occupied Hartree-Fock orbital ¢
being replaced by any orbital ¢, orthogonal to all
occupied Hartree-Fock orbitals. Since a Hamiltonian
made up only of one- and two-particle operators has no
matrix elements between determinants that differ by
three or more orbitals (assumed to be an orthonormal
set),”? the only matrix elements (0| H|») for a complete
set of Slater determinants {®,} which includes the
Hartree-Fock determinant &, is, except for (0| H|0), of
the form (0| H| ;;°%). Here ®;;%% is a Slater determinant
obtained from &, by replacing any two occupied orbitals
¢:and ¢; by orbitals ¢, and ¢, which are assumed to be
orthogonal to all orbitals occupied in ®,.

An exact many-particle wave function can be ex-
pressed as a linear combination of determinants from
the complete set {®,} in the form ¥=3",¢,®,. The
matrix representation of Schrédinger’s equation implies

that
{(OIHIO)——E}CO-FZ;;;(OIHIu)c,.=0, (20)

or with ¢o set equal to unity (it is assumed that ¢, does
not vanish),

E=0|H|0)+X,(0|H|v)c,. (21)
Hence by Brillouin’s theorem
E=(0|H|0)+X:; Xas(0[H[;2%cii*b.  (22)

Equation (22) is exact, with no reference to perturba-
tion theory. Hence the energy depends formally only on
the Hartree-Fock energy (0|H|0), the two-particle
matrix elements (0] H | ;;*%), and the coefficients ¢;;*? of
the corresponding Slater determinants in the true
steady-state wave function ¥. If the individual matrix
elements (0|H|;;%%) are small, and if the series con-
verges reasonably rapidly, then a fairly large relative
error in estimating the coefficients ¢;;*® can have only a
small effect on the total energy E. But the matrix
elements are given by?

(O[H| ;%)= (i7]Q|ad)— (]| Q] ba), (23)

where Q(1,2) is the two-particle operator in the many-
particle Hamiltonian, Eq. (1), and all four orbitals ¢,
®j, ba, d» are mutually orthogonal. Such integrals di-
minish rapidly with distance for localized orbitals, for
any reasonable operator Q(1,2), and are generally much
smaller than the individual integrals in (0] H|0), which
are diagonal matrix elements of the one-particle opera-
tor K, or are integrals over () with orbitals identical in
pairs.

So long as the perturbation theory gives a useful esti-
mate of the coefficients ¢;;2% [which is all that is needed
when the matrix elements (0| H|;;°%) are small], the
coefficients are approximated by ratios of these matrix

2 E. U. Condon and G. H. Shortley, The Theory of Atomic
f 7pzctra (Cambridge University Press, New York, 1951), pp. 169-



MANY-FERMION

elements to the excitation energies of the determinants
®,;;°%, For localized orbitals, these denominators are
particularly large when the numerators are largest, i.e.,
when orbitals ¢, and ¢, are localized in the same region
as ¢; and ¢;. In such a case the spatial functions in
orbitals ¢, and ¢; must have extra nodes in the region
of localization, causing a large difference in kinetic
energies to appear in the denominator of the perturba-
tion formula. If the spatial functions of ¢4, ¢» were
identical with those of ¢, ¢; then ®;;2® would be de-
generate with ®, and would be taken into account in
removing the degeneracy of the unrestricted Hartree-
Fock wave function.

Thus one can argue qualitatively from the structure
of the formulas that it should be possible to describe the
correlation energy even for strongly interacting particles
in terms of relatively small corrections to the Hartree-
Fock energy. When expressed in a basis of localized
orbitals the correlation energy would be expected to
show pronounced geometrical properties, i.e., it should
be most important for pairs of localized Hartree-Fock
orbitals which have nearly identical spatial functions
but differ in internal coordinates (spin or isotopic spin),
and should diminish very rapidly (even for the Coulomb
potential) with distance between localized orbitals.
Thus energy effects due to correlation should be ex-
pressible primarily as corrections to the parameters in
the unrestricted Hartree-Fock theory which describe the
energy of localized clusters of particles, made up of
orbitals that are spatially nearly identical but have
different spin or isotopic spin. This argument can ac-
count for the usefulness of the a-particle model in
parametrizing total nuclear energies'!'3 and of the model
of paired electron bonds in describing many properties
of molecules.

Resolution of the degeneracy in the unrestricted
Hartree-Fock approximation must lead to a set of
closely related energy levels. In recent work on collec-
tive motion in nuclei'® it has been shown that the
resolution of a degeneracy of this kind, in the case of
large distortion from a spherically symmetrical wave
function, gives the energy level spectrum characteristic
of collective rotation. The axial symmetry assumed in
this work has been shown to be consistent with the
unrestricted Hartree-Fock approximation.?

Since total energies of the ground states of light even-
even nuclei follow a pattern that allows parametrization
in terms of localized orbitals, expressed by the very
crude model of a cluster of a-particles and neutron
pairs,!! one might expect the unrestricted Hartree-Fock
functions for these nuclei to exhibit a similar geometrical
structure. If this were true, resolution of the degeneracy
in the unrestricted Hartree-Fock approximation could

18 W. Wefelmeier, Z. Physik 105, 557 (1937).

¥ L. Pauling, The Nature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, New York, 1940), 2nd ed.

18 R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70,
381 (1957); J. Yoccoz, ibid. A70, 388 (1957).
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be carried out by projecting these functions of definite
geometrical shape onto eigenfunctions of total angular
momentum. This amounts to expressing the Hartree-
Fock determinant ®, as a linear combination of func-
tions of definite angular momentum, then evaluating the
mean value of energy for each component. This pro-
cedure would lead to a set of states related to the rigid
rotator states postulated in the a-particle model.*s Since
this would be a case of small distortion from spherical
shape, rather than large distortion, as postulated in the
work of Peierls and Yoccoz,'® the appearance of the
level spacing characteristic of a rotational spectrum has
not been accounted for.

If a projection operator is used to resolve the degener-
acy of the unrestricted Hartree-Fock function ®, the
resulting energy levels are given by an expression of the
same form as Eq. (22), even though the resulting wave
functions, projections of &, are not exact eigenfunctions
of the Hamiltonian.'”"'8 Because of this, only those
matrix elements of the projection operator that connect
®, with determinants ®,;2%, in a basis of orthonormal
Slater determinants, will appear in the expressions for
energies of states projected from ®o. Léwdin!? has shown
that these matrix elements, proportional to the coeffi-
cients ¢;;*% in Eq. (22), in the case of electron spin
depend on total angular momentum S through a term
proportional to S(S+1), characteristic of rotational
spectra. This fact has been used to discuss the collective
phenomena of ferromagnetism and antiferromagnet-
ism.!® Peierls and Yoccoz'® showed that a coefficient of
the form L(L-+1) arises as the first term in matrix
elements of the orbital angular momentum projection
operator, if a small-angle expansion can be justified.

There is nothing in the Hartree-Fock theory to pre-
vent the unrestricted Hartree-Fock function from ex-
hibiting lower symmetry than that of the many-particle
Hamiltonian. In fact this must certainly occur for the
electronic wave function of two hydrogen atoms at large
internuclear distances, as has been shown in calculations
by Coulson and Fischer.?® The usual shell-model ground-
state wave function for the O' nucleus could be con-
tinuously perturbed into a tetrahedral structure by
mixing d orbitals with the occupied p orbitals, and f
orbitals with the s orbitals, since linear combinations of
these orbitals belong, respectively, to the same irre-
ducible representations of the tetrahedral group.®

An important special case arises when there are in-
ternal variables (spin or isotopic spin), which do not
appear explicitly in the Hamiltonian. In a nonrelativistic
electronic calculation, orbitals with positive and nega-
tive spin (i.e., m,==3, respectively) satisfy different

18 S. A. Moszkowski, Encyclopedia of Phys. 39, 460464 (1957);
D. M. Dennison, Phys. Rev. 96, 378 (1954); R. R. Haefner, Revs.
Modern Phys. 23, 228 (1950).

17 P.-O. Lowdin, Phys. Rev. 97, 1509 (1955).

18 R. K. Nesbet, Ann. Phys. N. Y. 3, 397 (1958).

¥ R. K. Nesbet, Ann. Phys. N. Y. 4, 87 (1958); Phys. Rev. 119,
658 (1960).

% C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).
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unrestricted Hartree-Fock equations unless all spatial
orbitals are doubly occupied.?® Since for the non-
relativistic Hamiltonian nothing can mix orbitals of
opposite spin, this simply doubles the number of inde-
pendent Hartree-Fock equations for the orbitals, when
the many-particle wave function is spatially invariant.
Several calculations of this kind have been carried out.?
As suggested by Pratt,? if the wave function is not
spatially invariant it might be convenient to retain the
symmetry and equivalence restrictions with respect to
spatial orbitals, but allow orbitals of different spin to
satisfy different equations.

An analogous situation arises in the nuclear case if the
number of protons and neutrons differ, even when the
Coulomb interaction is neglected.

IV. TRADITIONAL HARTREE-FOCK METHOD

In the closed-shell case the traditional Hartree-Fock
wave function is a single Slater determinant that is
invariant up to a phase constant under symmetry opera-
tions which preserve the many-particle Hamiltonian. In
this case there is no difference between the unrestricted
and traditional methods. The unrestricted Hartree-Fock
theory does not exclude the possibility of finding a
Slater determinant of stationary energy (of lower than
the traditional Hartree-Fock energy, in approximating
to the ground state) which is invariant except for phase
only under a proper subgroup of the transformation
group of the many-particle Hamiltonian. However, such
a function would not be considered in the traditional
method.

In the case of open shells, the unrestricted Hartree-
Fock determinant must necessarily show sufficient dis-
tortion from the full symmetry of the many-particle
Hamiltonian to satisfy the symmetry conditions in-
herent in the Hartree-Fock equations.?” This distortion
makes it impossible to classify the occupied Hartree-
Fock orbitals in terms of the full transformation group.
For example, unrestricted Hartree-Fock orbitals for an
open-shell nuclear configuration could be classified in
general only by parity and by the axial quantum number
m. In this case an unrestricted Hartree-Fock calculation
would be concerned with obtaining functions of two
variables (r,d) rather than just radial functions for the
occupied orbitals. Another great practical difficulty in
using the unrestricted Hartree-Fock method is that the
calculations required to resolve degeneracies and to ob-
tain the matrix elements of the Hamiltonian needed for
evaluating correlation effects (configuration interaction)
become very much more difficult when the orbitals do
not have simple transformation properties. For these
reasons it is desirable for practical purposes of calcula-
tion to restrict the Hartree-Fock orbitals so that they

2 J. C. Slater, Phys. Rev. 82, 538 (1951); J. A. Pople and R. K.
Nesbet, J. Chem. Phys. 22, 571 (1954) ; G. Berthier, J. chim. phys.
§1, 363 (1954); G. W. Pratt, Jr., Phys. Rev. 102, 1303 (1956).

2 R. K. Nesbet, Proc. Roy. Soc. (London) A230, 322 (1955);

G. Berthier, J. chim. phys. 52, 141 (1955); J. H. Wood and G. W.
Pratt, Jr., Phys. Rev. 107, 995 (1957).

can be classified by as large a transformation group as
possible.

These difficulties are avoided in the traditional
Hartree-Fock method by building specific transforma-
tion properties of the orbitals into the theory.* In the
case of spherical symmetry this is done by integrating
over the angular variables before carrying out a varia-
tional calculation. For open shells the trial wave func-
tion is taken to be an eigenfunction of total angular
momentum, and may be expressible only as a linear
combination of Slater determinants.

Although the orthogonality of the radial functions
(within sets of the same angular quantum numbers) is
used in obtaining the form of the energy functional, this
orthogonality must be imposed as a constraint condition
in the variational calculation. This introduces Lagrange
multipliers into the equations for the radial functions,
Egs. (13). In general the matrix of Lagrange multipliers
cannot be reduced to the simple diagonal form of the
unrestricted Hartree-Fock equations, Egs. (9), which
are Schrédinger equations with a common effective one-
particle Hamiltonian for all orbitals. The traditional
Hartree-Fock equations can have a different effective
Hamiltonian for different orbitals with the same angular
quantum numbers.

By forcing the orbitals to conform to a pattern
which simplifies subsequent calculations, the traditional
Hartree-Fock method is to some extent in conflict with
an attempt to apply physical intuition to many-particle
systems, by arguments such as those in the preceding
discussion of the unrestricted Hartree-Fock method;
however, if the distortion of orbitals which occurs in an
unrestricted calculation is small, as it appears to be in
the case of electronic wave functions,? such physical
arguments should be applicable to the traditional
Hartree-Fock wave function with only small modifi-
cations.

V. METHOD OF SYMMETRY AND
EQUIVALENCE RESTRICTIONS

The method of symmetry and equivalence restric-
tions? is a modification of the unrestricted Hartree-Fock
method which allows approximate Hartree-Fock calcula-
tions on open-shell systems in terms of homogeneous
eigenvalue equations, Egs. (16). The effective one-
particle Hamiltonian is the same for all orbitals of the
same symmetry species (e.g., for a spherically sym-
metrical system, orbitals with the same angular quantum
numbers). Because of this, the off-diagonal Lagrange
multipliers characteristic of the traditional Hartree-
Fock method are absent. The orbitals in the method of
symmetry and equivalence restrictions are automatically
orthogonal.

The practical advantage of being able to work with
homogeneous eigenvalue equations is of particular im-
portance when carrying out calculations in a matrix
representation, following the method of Roothaan.?

# C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
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This is true because relatively rapid techniques are
available for the solution of homogeneous linear eigen-
value equations, and these techniques cannot be used if
off-diagonal Lagrange multipliers occur or if the equa-
tions are not homogeneous. This has made it possible to
construct digital computer programs which carry out
approximate Hartree-Fock calculations by matrix
methods, using the method of symmetry and equiva-
lence restrictions.? These programs are applicable to
any open-shell or closed-shell system.

Various calculations on open-shell systems (atomic
and molecular electronic wave functions) have been
carried out with these programs,?® although the most
extensive of these, calculations on the transition metal
atoms by Watson,?® have not yet been published.

It has been shown in Sec. II that in many cases of
physical interest, in addition to the closed-shell case, the
method of symmetry and equivalence restrictions can be
made identical with the traditional Hartree-Fock
method. These cases include, for example, atomic con-
figurations (2p) " and (3d) ™. There are very few Hartree-
Fock calculations by the traditional method, with
numerical solution of the integro-differential equations,
for cases in which the methods are not identical.2¢ In
general, for atomic wave functions, the difference be-
tween the two methods appears to result in an error in
the total energy which is comparable to the inherent
truncation error in the traditional calculations due to
the use of numerical integration.

The method of symmetry and equivalence restrictions
is applied always to a single Slater determinant, so
degeneracies must be resolved after the Hartree-Fock
calculation (as in the unrestricted method), not before
(as in the traditional method). If degeneracies are re-
solved by the use of projection operators,'” an expression
of the same form as Eq. (21) is obtained for theenergy.
In this expression the Hartree-Fock energy is the leading
term, with corrections which for atoms are exchange
integrals over higher multipole charge distributions, i.e.,
quantities of the magnitude of term intervals within a
given electronic configuration. If these corrections are
small in comparison with the total energy, the effects of
altering the sequence of the Hartree-Fock variational
calculation and the resolution of degeneracies should be
relatively small.

In open-shell cases, the restricted Hartree-Fock equa-
tions, Egs. (16), depend on the second index p which
specifies transformation properties of the orbitals.
Choice of a particular value of u, or averaging over a set
of values of u introduces an element of choice into the

2 R. K. Nesbet, Ph.D. dissertation, University of Cambridge,
1954; Quart. Progr. Rept., Solid State and Molecular Theory
Group, MIT, October 15, 1955, pp. 4-8 (unpublished).

% R. K. Nesbet, Proc. Roy. Soc. (London) A230, 322 (1955);
A. J. Freeman, J. Chem. Phys. 28, 230 (1958); L. C. Allen, ibid.
(to be published) ; Quart. Prog. Rept., Solid State and Molecular
Theory Group, MIT, October 15, 1956, pp. 4-29 (unpublished).

2 R. E. Watson, Ph.D. dissertation, MIT, 1959; Tech. Rept.
No. 12, Solid State and Molecular Theory Group, MIT (1959)
(unpublished).

method. Unless the number of particles is very small,
most of the terms in the one-particle Hamiltonian,
either in the atomic or nuclear shell model case, arise
from closed shells, and are independent of the second
index u.2 The terms which depend on p are exchange
integrals from the unfilled shells only.

The total energy in an unrestricted Hartree-Fock
calculation is always given by the identity, Eq. (19),

O[H|0)=% 2: [G|K|3)+ (]3| 3)].

Here K is the one-particle operator that occurs in the
many-particle Hamiltonian, Eq. (1), and 3Co is the
effective one-particle Hamiltonian, Eq. (5). Since in the
open shell case matrix elements of 3o depend on the
index p, ordinarily certain two-particle exchange inte-
grals must be calculated to obtain the total energy in
the method of symmetry and equivalence restrictions.
These exchange integrals are differences in diagonal
matrix elements of 3Co for orbitals that are the same
except for the index pu.

When there is only one shell of orbitals belonging to a
particular irreducible representation A and all other
shells are closed, or when all shells of orbitals belonging
to X\ are occupied in the same way, then the total energy
is given simply by Eq. (18) if the effective operator
[3Co_au of Egs. (16) is averaged over the occupied values
of u for each A. This fact was used by Watson?$ and by
Allen? to calculate total energies in atomic open-shell
configurations. By Eq. (14) this choice of average over
p in the restricted Hartree-Fock equations leads to a
calculation equivalent to the traditional method.

VI. GENERALIZATIONS

This paper has been concerned with Hartree-Fock
variational calculations which determine a basis of
orbitals before the calculation of correlation effects in
solving the many-particle Schrédinger equation. In the
unrestricted case, this variational calculation is carried
out before the resolution of degeneracies (described
physically in terms of collective phenomena). Various
generalizations of the Hartree-Fock method have been
proposed which are distinguished by the sequence in
which these stages of calculation are carried out.

Lowdin!? has proposed that a variational calculation
to determine orbitals of unrestricted form be performed
after the resolution of degeneracies. Here the difficulty
in carrying out this resolution with unrestricted orbitals,
even with the aid of projection operators, would have to
be faced before the variational calculation, which is ex-
pressed in equations much more complicated than the
unrestricted Hartree-Fock equations. This approach has
been applied only to two-electron systems,?” for which
it is equivalent to including the first term of the
correlation energy in the variational calculation.?:28

# P.-0. Loéwdin and H. Shull, Phys. Rev. 101, 1730 (1956); H.
Shull and P.-O. Léwdin, J. Chem. Phys. 25, 1035 (1956).

28 R. K. Nesbet, Quart. Prog. Rept., Solid State and Molecular
Theory Group, MIT, July 15, 1955, p. 32 (unpublished).
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Part of the correlation energy in Eq. (22) can be in-
cluded in the total energy before the variational calcula-
tion by several methods. If expressed in terms of
localized orbitals, the correlation energy for each local-
ized pair (in the electronic case) can be included by the
method of Hurley, Lennard-Jones, and Pople.?® Actual
calculations by this method would be very difficult and
have not been carried out.

It would be possible formally to include all of the
correlation energy in the Hartree-Fock total energy by
modifying the two-particle operator so that its matrix
elements which occur in the Hartree-Fock energy
(0] H|0) would also include all of the correlation terms
of Eq. (22). The method proposed by Brueckner® would
select certain terms from the perturbation expansion of
the coefficients ¢;;% of Eq. (22) and include the corre-
sponding correlation terms in a modified two-particle
operator, by iterated Hartree-Fock calculations. De-
spite the great practical difficulty of this procedure for a
finite system, it leads to a tractable integral equation in
the case of an infinite uniform system, since the Hartree-
Fock orbitals are determined by symmetry to be plane
waves. In terms of this equation one can deal directly
with a highly singular two-particle potential (such as the
extended hard-core potential in the nuclear Hamil-
tonian), which would cause the Hartree-Fock energy for
a finite system to be infinite.

In Brueckner’s method it is difficult to evaluate the
importance of the terms neglected in the perturbation
series. Moreover, for a finite system, there are terms
involving the one-particle operator that are not taken
into account in the formalism.3 It is also difficult to
assess the approximations involved in using the modified
two-particle operator obtained in calculations on infinite
uniform nuclear matter for calculations on finite nuclei,
as has recently been proposed.®

For these reasons it would be desirable to carry out
Hartree-Fock calculations on finite nuclei with an
unmodified two-particle operator, to compare with the
Brueckner method, and to examine the convergence of
the series of correlation terms in Eq. (22). If this series
converged reasonably rapidly, such calculations might
be more reliable than the more elaborate Brueckner
calculations. Such a calculation would require that the
two-particle operator obtained from nuclear scattering
data be parametrized in terms of a functional form
which is not infinite over a finite volume, so that

#® A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc.
Roy. Soc. (London) A220, 446 (1953).

% K. A. Brueckner and W. Wada, Phys. Rev. 103, 1008 (1956);
H. A. Bethe, ibid. 103, 1353 (1956). Earlier references are given in
these two papers.

3 R. K. Nesbet, Phys. Rev. 109, 1632 (1958).

2 K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958).

integrals occurring in the Hartree-Fock energy could all
be finite. This requires a representation of the short-
range repulsion different from that given by the one-
parameter infinite hard core.

Given a Hamiltonian which leads to finite matrix
elements for a finite system, it would probably be de-
sirable in most many-particle problems to carry out
calculations by the methods discussed in the body of
this paper before attempting the considerably more
difficult methods discussed previously, which have been
proposed as generalizations. Even the unrestricted
Hartree-Fock method is unnecessarily difficult in cases
where the effects of distortion of orbitals can be treated
adequately by perturbation theory.

The simplest procedure which is generally applicable
to ab inmitio calculations is to obtain approximate
Hartree-Fock orbitals by the method of symmetry and
equivalence restrictions, resolve degeneracies by the
formal use of projection operators,'”:!8 and use perturba-
tion theory to evaluate the effects of correlation. A more
complicated procedure would be indicated if the per-
turbation theory failed to converge sufficiently rapidly.
Few ab initio calculations exist that include an adequate
treatment of correlation by methods applicable to
general systems, but the results of Boys and his col-
laborators® and other recent calculations® suggest that
the procedure recommended here may be adequate for
atomic and molecular electronic wave functions, unless
total energies must be calculated to relativistic ac-
curacy.

A modified Hartree-Fock method which has many of
the advantages of the method of symmetry and equiva-
lence restrictions has recently been proposed by
Roothaan 3’ The calculations in Roothaan’s method are
somewhat more complicated but the method is identical
with the traditional Hartree-Fock method in a larger
class of cases than is the method of symmetry and
equivalence restrictions. Preliminary calculations on the
electronic ground state of Li give an energy difference
between the two methods that is very small in compari-
son with the correlation energy, which is of course
neglected in all Hartree-Fock calculations. Details of
these calculations will be published in a separate
paper.%®
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