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I. INTRODUCTORY CONSIDERATIONS
A. General Comments, Scope, and Organization
1. Introduction

HIS paper reviews and analyzes the current
research in the quantum theory of transport
phenomena. Transport processes occur in many areas
in physics; included are such different phenomena as
electrical conduction, thermal diffusion, paramagnetic
relaxation, absorption of sound waves, and many
others. In a qualitative way one could say that in
transport phenomena one deals with systems which are
not in a strict thermodynamic equilibrium state. One
could distinguish, in a rough manner, two types of
transport phenomena; those where the application of
outside constraints (such as temperature gradients,
alternating fields) prevents the establishment of a strict
equilibrium state, others where the initial given state
is not an equilibrium state and the system, left to
itself, would proceed towards its equilibrium state. The
latter would be exemplified by a relaxation process; it
should be stressed that under the influence of outside
constraints a sfeady state (in this paper distinguished
from an equilibrium state; see Sec. C)' is generally
established. The discussion and description of this
state is one of the main concerns in transport theory.
Transport theory, properly speaking, is a special part
of nonequilibrium statistical mechanics; one where the
deviations from the equilibrium state are usually small.

! Sections and formulas referred to without a part number are
those of Part I.
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The most fundamental (but also the most difficult) way
to approach transport theory would be to obtain it as
a special case of the general formalism of nonequi-
librium statistical mechanics. Although in principle
correct, difficulties of setting up and w#ilizing such a
general formalism have severely limited the applica-
bility of this method. (In addition, one attempts to
solve a hard problem before an easier one has been
solved; this generally is bad tactics.) There also exist
many phenomenological descriptions of transport
processes. It is of importance to remark that the em-
pirical laws describing these processes always contain
empirical constants, such as the electrical conductivity,
the thermal conductivity, viscosity coefficients and
relaxation times. Within the framework of the phe-
nomenological description, these empirical parameters
can be obtained only from experiment. One would hope
that a more complete discussion would provide the
general form of the empirical laws and relate the experi-
mental parameters in these laws to the atomistic
properties of the system. In most theoretical discus-
sions, one adopts neither the completely fundamental
nor the completely phenomenological viewpoint. Rather
one adds reasonable physical assumptions and experi-
mental information to the basic statistical description.
What is reasonable depends strongly on the system and
the process under consideration. Since the character-
istics of systems and processes vary widely, it is not
surprising that the additional assumptions introduced
are of a bewildering variety (especially since they often
are not explicitly stated). On using this additional
information, one can calculate some of the transport
properties. In this way expressions are obtained for the
empirical parameters in terms of more basic (but
generally not yet atomistic) entities. For example, in a
purely phenomenological description, thermal and elec-
trical conductivity are empirical parameters. Within
the framework of the ordinary kinetic theory of an
electron gas, both electrical and thermal conductivity
may be computed in terms of an assumed time r, the
mean time between collisions. This is a typical instance
of the use of a statistical procedure, where, because of
the special character of the system (a dilute gas), one
can make further simplifying assumptions (the existence
of a relaxation time) which, strictly speaking, should
be proven for the system at hand. Another powerful
technique used in the description of transport processes
is the application of thermodynamics (either the rever-
sible or irreversible version of thermodynamics) to the
process. This does not generally allow the calculation of
transport coefficients as such, but it does provide an
interrelation between different transport coefficients.
This procedure again is an interpolation between the
purely phenomenological and the completely funda-
mental approach.

There is a large variety of different assumptions ex-
plicit or implicit in the discussions of transport processes.
These various assumptions as they pertain to different
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systems are discussed in detail. Perhaps the most
common assumption used in transport theory is that
of the existence of a transport equation or rate equation.
(Sometimes called a gain-loss equation; the Boltzmann
equation in kinetic theory is of this general type.) The
physical content of such equations always appears self-
evident: It states that the time rate of change of the
number of particles in a certain state equals the number
of particles entering that state minus the number
leaving that state. If #;({) stands for the number of
particles in state 4, and if A,; is the probability for a
transition per unit time, from 7 to 7, the equation reads

dn;/dt=3" j(n;A ji—niA;). 1)

The mechanics of the process is contained in the coef-
ficients 4. In fact, in many circumstances one can
compute the coefficients A from the dynamical laws
which govern the behavior of the system (from the
Schrodinger equation, for example). Since an equation
of type (1) (often also called a master equation) is so
frequently used in the analysis of transport problems,
it is important to know its status within physics as well
as its domain of validity. This too is discussed in the
sequel. But it is well to point out already that in spite
of its intuitive appearance, (1) is far from obvious.
Certain probability assumptions have made in (1); that
a transition probability per unit time A4;; exists is by
no means self-evident. The states 7 are presumably
eigenstates of some unperturbed Hamiltonian so that
the transitions themselves are caused by a perturbation
which, however, mixes the eigenstates of that unper-
turned Hamiltonian (with certain coefficients and
phases). That the resulting evolution in time can be
expressed by (1) should surely depend on the kind of
perturbation causing the transitions. These brief
remarks may indicate that there are subtle but im-
portant difficulties connected with the derivation of (1).
Finally, if it turns out that (1) has a limited validity
only, it would be of great interest if one could point to
actual physical situations where refined versions of the
master equation (1) would be needed. These points are
discussed at great length, but their great importance
would appear to justify their inclusion in this intro-
duction.

2. Purposes of Transport Studies

The basic purposes of transport studies vary greatly.
This gives the field a rather heterogeneous appearance.
For this reason, it is of value to list the various moti-
vations for these investigations. Such a list is for
systematic purposes only; very few studies have just a
single purpose, so generally a given study would con-
tribute information to several classes.

(a) Investigation of transport parameters. In this class
belong all studies designed to obtain the numerical
values of transport coefficients. Of special interest is
information regarding the variation of these coefficients
with changing physical parameters. Examples would be
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the pressure dependence of viscosity, the magnetic field
dependence of conductivity, and the temperature de-
pendence of relaxation times. In some of these situ-
ations, knowledge of the actual empirical laws is far
from complete. Such information is a prerequisite for
further progress.

(b) Correlation of transport parameters and microscopic
entities. The important role played by transport theory
derives in part from the circumstance that by using
that theory one may relate the experimentally observed
transport coefficients to parameters describing the
microscopic character of the system. Thus, by studying
transport properties one can obtain information about
the basic interactions within the system. How easy it
is to obtain such information depends on the complexity
of the system; in addition, the limitations and assump-
tions inherent in the statistical treatment must be
explicitly recognized. The simplest system traditionally
considered is a dilute gas; there the elementary statis-
tical treatment allows one to calculate various entities,
such as thermal conductivity and viscosity, in terms of
a mean free path A or, equivalently, an average time
between collisions 7=\/7 (7 is some average thermal
velocity). (7 is frequently called a relaxation time.) For
example, one finds for the viscosity coefficient u

w=ntkT, (2a)
where £ is the Boltzmann constant, 7 the relaxation
time, and # the number of molecules per unit volume.
A more complete mathematical analysis, utilizing the
Boltzmann transport equation for this process, allows
one to refine the expression for the viscosity to

“ 4T\ ]
n=%<wmkr>%[ [ dgg7exp<—g2)@<g>(—n;)] . (2b)

Here m is the mass and

Q(g)=27rf df(sinf)*I (g,0).

0

(20)

Q is the transport cross section, and 7(g,0) is the differ-
ential cross section for binary (molecule-molecule)
collisions. 7 is completely known once the intermolecular
potential is known. The difference between (2a) and
(2b) illustrates the difference alluded to before: in the
elementary discussion 7 is an undetermined parameter;
measurements of u as a function of 7" determine 7 as a
function of 7. However, (2b) allows one to compule u
from a knowledge of the intermolecular potential. The
basic assumption made in the derivation of (2b) is that
-only two-body collisions need to be considered. Equa-
tions (2a) and (2b) represent different levels of statis-
tical treatment. In (2b) one has a direct relation between
a transport quantity and the intermolecular potential.
In (2a) the theory leaves 7 undetermined; it can be
obtained from experiment. Other entities such as the
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thermal conductivity may be expressed in terms of the
same 7. This 7 can be obtained from viscosity measure-
ments by using (2a). Thus, by using this value of  and
the computed expression for the thermal conductivity,
consistency of the elementary transport treatment may
be checked.

A similar but much more involved situation occurs
in the study of transport phenomena in solids. The
elementary kinetic approach applied to an electron gas
yields for the conductivity ¢ the well-known relation

o=ner/m, 3)

where 7 is the number of (free) electrons per unit
volume, m the mass, 7 the already mentioned relaxation
time, and e the electronic charge. To compare (3) with
experiment with a real solid, one needs to take into
account the interaction of the electrons with the
periodic lattice. This in some approximate sense can
be done by replacing m by m*, the effective mass.
Hence from a measurement of ¢ in (3) one can determine
a combination of »* and 7. Actually, #, the number of
free electrons, is not given by the theory either: it has
to be obtained from experiment as well, so that a
relation such as (3) serves to obtain relations between
parameters describing a solid, rather than as a check
on a particular development in the theory. Several
types of experiments need to be performed for a given
material to determine the various parameters needed
for the description of the solid. If the statistical dis-
cussion is refined, further details of the structure of the
solid, such as the nature of the Fermi surface and the
band structure, enter into the expressions for the
transport coefficients. To analyze experiments involv-
ing, say, the conductivity tensor, one needs information
about the Fermi surface; this in turn must be obtained
from other experimental information, such as the de
Haas-van Alphen effect. Thus, the interpretation of
transport experiments in solids is rarely straightforward ;
it demands the combination of a variety of experimental
results together with transport theory and solid-state
theory. Even then the results are rarely as immediate
as (2a). For instance, a typical result of a conductivity
calculation relates the conductivity o to the effective
mass m*, the Debye temperature ©, and a number C
which can be explicitly written in terms of the (not
very well known) wave function of an electron in the
particular solid. Therefore, because of the many uncer-
tainties in the calculations, solid-state transport studies
are generally not suited for the investigation of the
validity of the transport equation. On the other hand,
the use of transport theory does provide a method to
obtain significant solid state parameters.

In special circumstances one can obtain more definite
results. The case of the relaxation of nuclear spins in a
metal is again a nonequilibrium situation. On assuming
a special form of the coupling between the nuclear spins
and the conduction electrons (the hyperfine coupling),
one may deduce in perturbation theory the transition
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probability per unit time [the 4’s in Eq. (1)]. Appli-
cation of elementary kinetic theory [just Eq. (1)]
provides a relation between the observed relaxation
time and the hyperfine coupling which is responsible for
the relaxation. This is a direct and simple example of
the correlation between a transport and an atomistic
quantity.

(¢) Connections with irreversible thermodynamics. The
discussion in Sec. (b) shows that it is desirable to
perform and analyze a variety of transport-type experi-
ments using the same substance. An obvious way to
make such a study would be to obtain a single sample
(preferably a single crystal) and subject it to a variety
of experimental conditions by introducing electric or
magnetic fields or thermal gradients. In the interpre-
tation of these experiments, the characteristics of the
material (the solid) would be common to the various
experiments. However, when one deals with transport
processes in which several irreversible processes may
occur simultaneously, new effects occur which in turn
require new empirical parameters for their description.
For instance, in a pure diffusion process the basic law
(Fick’s law) states

jnz -DVM, (4&)

where j, is the particle current density ; V# the gradient
of the particle density, and D the empirical constant,
the diffusivity. Similarly, for thermal conduction
(Fourier’s law),

Jo=—«vT, (4b)
where j, is the thermal current density, V7' the tem-
perature gradient, and « the thermal conductivity. Now
there are circumstances where a temperature gradient
causes both a particle and a thermal current. This would
be a combination of diffusion and thermal conduction.
The simplest phenomenological extension of (4a) and

(4b) is
(5a)

(5b)

Equations (5) contain two new constants which should
be determined from experiment. A similar situation
pertains when both electrical and thermal conduction
processes can occur. The appropriate phenomenological
relations are

Jo=—DVn+FvT,
1= —kVT+F,vn.

Jo=LuE+L,VT,
Jo=La E4LnVT,

(6a)
(6b)

where je is the electric current density and E the
applied electric field; the L’s are again empirical
parameters. (Clearly Lj;=o=the conductivity.) Basic
in the interpretation of experiments of this type are the
symmetry relations first obtained by Onsager. Applied
to this case they state that there exists a relation
between L;» and Ly, so that the combined effects
require only one additional independent parameter. In
general, there are a number of such relations between
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the transport coefficients characterizing different trans-
port processes. This circumstance enables one in prin-
ciple to obtain from experiments done on a transport
process of one type, results for other types. Other
symmetry relations are of importance in connection
with anisotropic crystals. The conductivity tensor o;
of a crystal is defined by

3
jg'izz aijEj ’i=1,2, 3 (7)
7=1

If the crystal is placed in a magnetic field H, the o.;
becomes a function of H [the same would apply to L;;
in (6)7]. The Onsager relations would state in this case
that

aii(H)=0;:(—H). ®)

This result is independent of the crystal structure.
Anisotropic materials give rise to a variety of new
effects. For instance, a thermal gradient in one direction
may produce a thermal current in another. The sym-
metry relations are essential in interpreting these ex-
periments. The use of transport studies in connection
with these relations lies in part in the experimental
check they provide for relations such as (8), and more
significantly in the interrelations they yield between the
different processes.

If one actually calculates transport coefficients, the
symmetry relations are of no special use. The computed
results must agree with the general symmetry principles.
The derivation of the Onsager relations is based on an
extension of equilibrium thermodynamics to include
small deviations from equilibrium. It indeed appears
that for many transport processes this description in
terms of irreversible thermodynamics is sufficiently
general. In these instances one does not need to use the
formalism of nonequilibrium theory; the description of
these processes in terms of irreversible thermodynamics
has the same validity that the description of equi-
librium thermodynamics has for equilibrium situations.
The question of the validity of these symmetry relations
(and therefore of the empirical correlations based on
them) can be discussed only if one is able to obtain the
laws of irreversible thermodynamics as a result of more
general, more @ priori considerations.

(@) Fundamental theoretical interests. The fundamental
problem of statistical mechanics is to describe the
macroscopic behavior of a many particle system in
terms of the given mechanical properties (the given
interactions) of the constituents of the system. A
complete description includes equilibrium as well as
transport processes and, in addition, still more general
nonequilibrium situations. Consequently, any attempt
based on first principles to obtain a complete description
of a many-body system must, at least in principle,
contain results which are relevant for transport theory.
The indirect way in which most basic theories are
connected with observable transport quantities makes
a direct test of the theory with experiment difficult.
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Sometimes, however, a theory predicts general sym-
metries or particular interrelations between observable
quantities. Relations of this type may be checked ad-
vantageously through transport-type experiments. It is
generally correct that the comparison of transport
properties with experiment gives a more sensitive and
detailed check of a theory than does a similar compari-
son of equilibrium properties. (This applies only if the
transport coefficients can be obtained from the theory
without too many additional assumptions. Unfor-
tunately, this is not often the case.)

Although there are many experimental and theo-
retical studies concerned with transport processes-
which do not fit within the division (a)-(d) just given,
this division is a fairly natural one. It might be of some
help in classifying and organizing the large amount of
published material in this field. It is used for this
purpose in this paper.

3. Characteristics of the Current Developments

Transport studies of the type outlined in Secs. A.1
and A.2 have been carried out for many years. In the
last few years a number of separate developments have
taken place which have caused profound changes in the
approach to these problems. The basic program of this
paper is to summarize and analyze these recent
advances. Although many factors have contributed to
this development, it is possible to single out a few
features which appear characteristic of the newer
methods.

(a) The tremendous improvement in experimental
techniques allows measurement of many finer details
of the transport phenomena. This in turn requires a
more careful investigation of the validity of the theo-
retical treatment used to describe these processes. Of
particular importance in this connection are experi-
ments measuring the variation of resistance in high
magnetic fields. It is shown later that under these
conditions (the high magnetic fields) quantum effects
become particularly important, which is a significant
new feature.

(b) It was pointed out in Sec. A.2(b) that a knowledge
of transport coefficients in solids usually yields a com-
bination of parameters such as effective mass and
number of free electrons. Recently, several new methods
have been employed which either yield new relations
between these parameters or which in some circum-
stances yield these parameters directly. One may, for
example, use cyclotron resonance experiments to deter-
mine effective masses directly. (Cyclotron resonance is
a typical steady-state process proceeding under the
influence of an impressed field.) A knowledge of the
effective masses is needed for the interpretation of
magnetoresistance experiments. Knowledge of the
Fermi surface (also required for the interpretation of
these experiments) can in principle be obtained from
the de Haas-van Alphen effect. The combined use of a
variety of these methods enables a much more detailed
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analysis of transport processes to be made than was
possible heretofore.

(c) One of the striking new features noticeable in
recent work is a more critical atitude towards the basic
transport equation. This attitude manifested itself in
a number of studies devoted to the rigorous derivation
of the transport equation. In addition, there are inves-
tigations which attempt to circumscribe more precisely
under just what conditions a transport equation may
be used.

(d) Since serious doubts exist about the universal
applicability of the transport equation, it is necessary
to start (in certain circumstances in any case) from
more basic notions of statistical mechanics. In situ-
ations demanding a ‘quantum description, the appro-
priate method is provided by the density matrix method.
This indeed is the procedure used in most of the current
discussions of transport theory. It is one of the major
technical changes in the subject; one of the important
contributing factors in its changing character.

(e) The use of density matrix techniques, as applied
to transport phenomena, gives rise to formal manipu-
lations which are similar to those used in field theory.
This is one of the reasons that field theoretic methods
are finding more use in solid-state and transport con-
siderations. Other allied techniques, such as a diagram-
matic analysis of successive approximation schemes and
utilization of the formalism of second quantization, are
also finding extensive application in equilibrium and
nonequilibrium statistical mechanics. These procedures
have the great advantage of formal simplicity, and allow
compact expressions for the various transport coeffi-
cients. Their use so far has been restricted to the
calculation of formal results. It would, however, be
unwise to underestimate the potential significance of
these methods for transport theory. Field theoretic
procedures provide by far the most direct way of
obtaining formal expressions for the transport coef-
ficients, and it may well be that starting from these
expressions one can devise approximation procedures
which will cast these formal expressions into useable
forms. In addition, the general interrelations between
the various coefficients and processes become most
transparent within the context of the field theoretic
formalism.

This paper is devoted to the elaboration and dis-
cussion of these newer aspects of transport theory.

4. Orgamzation and Outline

The paper is divided into seven parts designated by
Roman numerals; each part is divided into a number of
sections, denoted by capital letters; finally, each section
is divided into subsections. The subsections are num-
bered consecutively throughout the paper; this section
is I.LA.4. Formulas are indicated by numbers such as
(1.5) ; within a given part the formulas are numbered
consecutively and the number I is omitted.
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The remainder of Part I contains two further sections,
B and C, which describe the conceptual framework of
the solid-state and statistical-mechanical considerations
needed for the subsequent discussion. Special results
and techniques are discussed there for reference pur-
poses.

Part IT is devoted to a general discussion of the.

relations between observed transport coefficients and
parameters in transport theory. In fact, Part II contains
a quantitative treatment of the material mentioned
previously in a general fashion in Sec. A.2. The method
of treatment is based on the transport equations. Much
of this material exists in book or review form. It seemed,
however, worthwhile to review these recent studies in a
systematic fashion, for it is against the background of
these recent but traditional treatments that one must
view the value of the newer ones. To clarify and analyze
this relationship it appeared essential to outline the
assumptions, successes, and failures of the earlier
methods, even though this meant repetition of certain
reasonably well-known results. In addition, investiga-
tions based on the older transport methods are still
current and they are perfectly valid in certain situ-
ations. Hence, it is perhaps useful for reference and
comparison to have a review of the salient ideas of the
Boltzmann-type transport theory.

Part IT is divided in two sections, Section A sum-
marizes the assumptions of a conductivity calculation
and gives the outline of a typical conductivity calcula-
tion with outside fields present. The structure of con-
ductivity theory and an analysis of the assumptions
involved are contained in Sec. B. It is hoped that Parts
I and II are sufficiently detailed so that the newer de-
velopments can be appreciated after a study of these
parts.

Part III is concerned with a basic and profound
question: the precise status of the transport equation
in nonequilibrium statistical mechanics. This general
problem has been discussed in a variety of ways. Part
III summarizes and reviews some of the different
treatments. Sections A-G describe the various methods
used to study this question. One of the reasons for the
variety of approaches originates from the fact that
different authors employ quite different mathematical
techniques. In addition, different physical assumptions
are used, the equivalence of which is not always trans-
parent; in fact, it is not always true. These features
make a unified treatment difficult, but perhaps the
methods reviewed will give a representative picture of
this active and interesting field. Part III is the most
abstract portion of the paper. (A person who is inter-
ested in results exclusively could skip it.)

In Part IV the methods outlined in Part III are
applied to a derivation of the formal expression for the
conductivity tensor. The development for the transport
properties is carried to a point comparable to the formal
expressions for thermodynamic quantities in equi-
librium statistical mechanics. In equilibrium theory all
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quantities may be obtained {rom the partition function
which can be expressed in terms of known charac-
teristics of the system, such as energy levels and wave
functions. A similar result is obtained here for the
conductivity tensor. The explicit evaluation, however,
is even more difficult here than in the equilibrium
situation (see Part V). Several such formal results are
presented in Part IV, together with a discussion of the
relation of these results, to previously obtained ex-
pressions.

In Part 'V the general formal results are applied to
specific systems. Of particular concern are the appli-
cations to galvanomagnetic effects. Thus, the general
results of Part IV are to be specialized to a solid in an
outside magnetic field. Unfortunately, it is rarely pos-
sible to specialize the general formalism to a particular
system in such a way as to obtain tractable results.
Instead, one must make additional ‘“opportunistic”
assumptions suggested by the special character of the
system or invoke empirical results so as to utilize the
results of the formal theory. This severely limits the
use of the general theory. In fact, different authors
derive results of importance for the interpretation of
experiments starting from quite different levels of
sophistication in the general development. It is not at
all uncommon that such different treatments differ not
only in mathematical details, but also in the specific
experimental results they predict. Consequently, a
careful investigation of the mathematical approxima-
tions combined with the physical assumptions is of
great importance. For this reason the “opportunistic”
assumptions, as they occur in the various studies, have
been analyzed in detail in Part V. The validity of a
specific assumption depends very strongly on the
purpose of the investigation. It is possible for an as-
sumption to be incorrect in general, but valid for a
particular situation. Examples of this occur in the
various sections of Part V.

In Part VI, applications of the general scheme to
other problems are given. Among these are a derivation
of the susceptibility tensor (Sec. B). Although thermal
transport properties do not fit in too natural a fashion
in the general formal scheme outlined in Parts IV and
V, it is possible to relate thermal transport coefficients
to time correlations functions (Sec. C). This again is a
typical expression of a transport quantity in micro-
scopic terms. In addition, these considerations are
closely connected with, and provide examples of, the
general discussion of Part III. A number of studies
have stressed the close analogy existing between the
transport situation (a system in an outside field) and
the general theory of the linear response of systems
subject to external forces. By exploiting this similarity,
one can obtain new formal relations between transport
coefficients as well as a different view of transport
processes. These formal relations, which have the
general character of dispersion relations, yield sym-
metry properties which are intimately connected with



TRANSPORT

AND GALVANOMAGNETIC PHENOMENA

271

TasLE 1. Subdivisions of statistical mechanics.

1. Equilibrium classical statistical mechanics

2. Nonequilibrium classical statistical mechanics

Basic tools:

Distribution function, Maxwell distribution
Partition function

Canonical, grand ensembles

A pplications:

Classical theory of specific heats, equation of state, virial development, molecular

distribution functions, scattering of light by liquids
Phase transitions

Basic tools:

Boltzmann transport equation
Master equation

Liouville equation

Hierarchy of distribution functions
Applications:

Calculation of thermal conductivity
Electrical conductivity

Viscosity

Equations of hydrodynamics
Diffusion coefficients

3. Equilibrium quantum statistical mechanics

Basic tools:

Fermi-Dirac
Einstein-Bose
Quantum-mechanical partition function
Canonical, grand ensemble

Density matrix

A pplications:

Quantum theory of specific heats of solids
Specific heat of an electron gas
Magnetic properties of an electron gas
Hard-sphere Bose gas (liquid He)
Phase transitions

Distribution functions {

Basic tools:

Quantum forms of a transport equation
Liouville equation for the density matrix
Wigner phase-space functions

A pplications:

Quantum theory of electrical conductivity
Nuclear spin relaxation

Thermal conductivity of solids
Magnetoresistance

Oscillatory Hall effect

Line broadening in solids

the Onsager relations. The general theory of the linear
response provides a connection between transport
phenomena and irreversible thermodynamics. These
questions are studied in Part IV, Secs. A and D. It is
seen there, too, that although different in detail, these
considerations are similar to the other treatments
previously discussed. They help to elucidate the status
of formal transport theory within statistical mechanics.

Part VII contains a summary of the main results. It
is hoped that this summary is presented in such a way
that after reading Parts I and II one could look up
specific results in VII without having to wade through
all the details discussed in the other parts. In addition,
Part VII contains a discussion of some questions and
problems which are as yet unsettled or only partially
settled. There is a large variety of such problems. Some
are concerned with basic theoretical questions; others
are computational in character; still others refer to
incomplete agreement (or disagreement) with experi-
ment. This part too should be understandable after
reading Parts I and II.

Even though it is hoped that the discussion is
reasonably complete in certain areas, it is clear that
other significant areas within transport theory are
simply omitted. Nothing is said about the anomalous
skin effect; practically nothing about thermoelectric
power. There is no compelling reason for the choice of
subject discussed. It was clear from the start that not
all subjects could be included. It is believed, however,
that the material discussed here has indeed been in the
center of interest of transport studies. This perhaps is
as good a justification as any.

In references to the literature, a few comments about
the paper quoted are usually included. To know where
this work fits in the -general scheme, whether it is
superseded (or contradicted) by later work, is probably
helpful as an orientation for the reader who is interested
in obtaining a view of this sprawling, fascinating field.
Finally, it is hoped that the excessive length of this
paper is balanced in part by the ease with which it can
be read. This paper contains only Parts I and II. The
remainder will appear in a later issue.

B. Framework of Statistical Mechanics

In this section, various formulas of statistical me-
chanics as they pertain to the present discussion are
collected. Since most of this material is well known, it
may suffice to make a few remarks in conjunction with
Table I which contains the various subdivisions of
statistical mechanics (equilibrium, nonequilibrium,
classical, quantum). Some of the techniques used in
these areas and some representative phenomena whose
description belongs in these areas are collected as well.
The following remarks are meant as an amplification
of the table. They are labeled in accordance with the
labeling of the subdivisions in the table.

1. Classical Equilibrium Statistical Mechanism

The subject of equilibrium classical statistical is so
well known that it would appear sufficient to set the
notation and refer to the literature. The Boltzmann dis-
tribution function is indicated by f(x,v), f(p), or just
f; f(x,v,f)d*xd% is the (probable) number of particles
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in the positional range @®x and the velocity range d®;
v is the velocity vector, p the momentum vector, and
x the position vector. The canonical partition function
is written as Z (or Zg to distinguish it from Zg, the
quantum-mechanical partition function). The absolute
temperature is written as 7T, and % is the Boltzmann
constant; B=1/kT is often used. The Helmholtz free
energy is F. In this notation the basic connection
between the partition function and the free energy is
given by

=—kT logZ. (9a)

The partition function for a system of N particles,
described by a Hamiltonian H (which is a function of
N coordinate and momentum vectors X * *Xn, P1* * - Pn)
is

1
ZNZ-————- f‘ . -fdsxl- . 'dstd3P1' . dap]v
N1(h)*¥

XeBH(--xy)  (9D)
where % is the Planck constant; its presence in a classical
expression stems from the fact that the quantum-
mechanical partition function as usually defined is in a
limiting sense connected with (9b) [see [4], p. 8272

Extensive discussions of this subject can be found in
many of the standard works on statistical mechanics,
such as Tolman [17, de Boer [27], Fowler [3], Hill [4],
and ter Haar [5].

2. Nonequilibrium Classical Statistical Mechanics

(a) The Bolizmann and the master equation. Class-
ical nonequilibrium statistical mechanics is discussed
much less frequently than equilibrium statistical me-
chanics. (In the treatises of Tolman [1]and Fowler [ 3],
the topic is hardly mentioned.) Even so, there are many
places in the standard literature where the subject
is treated in detail, so that for the present purposes
it should be sufficient to note some basic equations
and give appropriate references to the literature. Just
the logical interrelations between various approaches
are described in some detail. The fundamental Boltz-
mann transport equation for the distribution function

f(x,v,t) is

(9/00)+va(8/0%a)+ X a(8f/0va)=C(f)
= (af/at) colls

X is the outside force per unit mass, v,(9//dx.) could
be written as v-V/f; as written in (10), one sums over
o from 1 to 3. The terms on the left-hand side of (10)
are often called streaming terms. C(f)=(3f/d8)cn
describes the change (per unit time) in the distribution
function due to collisions. These collisions can be
between the constituents of the systems (as in the case
of gas molecules), or C(f) could describe the effect of

(10)

2 Bracketed numbers refer to references listed in the Literature
Survey at the end of Part I.
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collisions of the constituents on one system with those
of another system (as in the case of electrons inter-
acting with ions). In the former case, the collision term
contains products of f’s—the Boltzmann equation is
nonlinear; in the latter, both systems would be de-
scribed by a Boltzmann equation, the collision term in
each one would depend on products of thé respective
distribution functions. It is not at all uncommon to use
a discrete notation for f, f@®xd®*v=1n,; one thinks of the
positional and velocity ranges as defining a finite cell;
n; gives the number of particles in that cell. For a
spatially homogeneous system (no x dependence) and
no outside forces (X=0), one may write (10) in this

notation
dni/di=C (n;), (11)

which describes just the effect of collisions. The form
of the collision term depends on the interaction. One
usually assumes that there exists a mechanism which
yields a (transition) probability per second for a particle
to go from cell 7 to 7.3 If one assumes the existence of
such a probability for just a single particle, (11)
assumes the form

d%,’/dl=2j(ﬂjAﬁ—n¢A¢j). (11&)

[One recognizes (11a) as identical with (1).] Equation
(11a) would be appropriate if an outside agency caused
the redistribution of the particles over the cells. If,
however, collisions befween particles are the only possible
mechanism of changes over the cells, one would need
the existence of 4.k, the probability of a collision
between the particles per unit time, where 7 and j are
the states before collision, £ and / those after collision.
Equation (11) then would read

d’ﬂi
= Z (%knlAkl-)ij_ni%inj_,kl).
dt ki

(11b)

The nonlinear character referred to previously is indeed
obvious in (11b). Finally, if one describes a mixture of
two types of particles indicated by #; and m.,, and if
again the collisions between them are the exclusive
mechanism of change, one needs the existence of 4 ;43
(defined as the probability per second of an ia— j8
collision).
Equation (11) then becomes

dﬂi
"(;: Zﬁ(njmaA jam i NiMaA jassi),
MR
; (11¢)
Mea
dt = ~Z.ﬂCni'WLﬁA» iB->ja nmmaA i(x—»jﬂ)-
7

In actual applications all three situations (sometimes

3In a quantum-mechanical situation one would have a transi-
tion from stafe i to state j with this interpretation. The discrete
notation can be taken over directly to the quantum-mechanical
situation.
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combined) occur. Even though the collision term is
sometimes written slightly differently, often using a
continuous notation, its basic structure as given by
(11a)-(11c) is always clearly recognizable [6, 7]. It is
worthwhile to stress again that the 4’s are determined
by the dynamics, so that they specifically do not depend
on the numbers #;. As an example of an equation of
type (11a), one may give the Boltzmann equation for
electrons in a solid if the electrons scatter from fixed
ions. (This is basically the Lorentz model.) In that case,
there exists a quantity I (v,v’), the probability per second
that in a collision an electron changes its velocity
(vector) from v to v’. The full Boltzmann equation
is then

d 9 9
_J_f_*_.ua_f_{_Xa_l: fd%’[f(X,V')I(V'»V)
at axa ava

—fGxWI(vy)] (11d)
An example of a nonlinear Boltzmann equation is the
Boltzmann equation used in kinetic theory of gases. If
one calls g=v—v;, if one describes a collision as
v, vi— Vv, v/, and if I(g) is the differential cross
section for such a collision, the equation reads

0 Ie) I}
I A [#o [aogoss 7=
at 00Xy 0o (110)
[

The forms (11d) and (11e) are the ones most often used
in applications. Once the transport equation (11) is
obtained, it is a fairly straightforward matter to show
that the system described by the transport equation
exhibits an irreversible behavior; it approaches an
equilibrium state. Actually, the explanation of the
irreversible behavior of a mechanical system on the
basis of reversible mechanics demands the use of prob-
ability notions. In a crude way these probability ideas
are contained in the existence of the probabilities 4 in
Egs. (11). The traditional treatment of transport
equations, describing the dynamics through the 4’s in a
probabilistic fashion but treating the variables #; as
well-defined (nonprobabilistic) variables, leads to the
well-known paradoxes of statistical mechanics [8].
Uhlenbeck [9] first pointed out that the proper way to
describe the physical significance of the transport equa-
tion is to retain the interpretation of the A’s as prob-
abilities, but introduce instead of the variables #;(¢) a
probability function P(#nq::-n; ---, §) which gives
the probability that at time ¢ there are n, particles
in cell 4, =1---N,, (N, is the number of the cells). The
n’s therefore become ndependent variables rather than
dependent ones as in (11). If one considers a situation
where collision between particles cause the changes in
the physical situation as in (11b) so that there exists
an A4;j-x1, the equation describing the change of P with
time would be
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aP(nl. oMyt .)
ot
=3 2 [(”k+1)(ﬂz+1)Akl-»ij
ikl

XP(- 1 omtle e omg—1eomj—1--+)
—nininjaklP(' .‘.nk. K TRRRY /SOy FT )] (12)
One deduces that

d
— e Py mge e, 1) =0,

a

(13)

and the function P may be normalized to unity.

Equation (12) is called the “master equation.” Uhlen-
beck [97] first introduced it in connection with problems
in cosmic-ray showers. In (12) one has a completely
probabilistic problem: the propagation of the prob-
ability function P in time is determined by the funda-
mental (given) transition probability 4. One may still -
introduce the average number of particles

ﬁi(t)=Z‘"Z"'Z’%i])(nl'"”i"'lf)- (14)

The summations in (12)-(14) are all subject to the
auxiliary condition
Zi n;=N

which expresses the conservation of the number of
particles. The average number 7;(f) depends on time
through the dependence of the master function on time.
From (14) and (12) one may straightforwardly compute
dni;/dt. If one assumes the usual symmetries of the
A’s (quj_;kl=Akl_,ij, Aij—»kl=Ajz'—>kl)y one obtains

dii;

= 3 Apsij((mn)—(nmnj),
dl ikl

{nmjy=y.-- Z Y umiP(ny- - onge- -, t). (16a)

(15)

(16)

If only (nm;) were equal to 7.7; Eq. (16) would be
identical with the traditional Boltzmann equation (11b).
However, generally (n;n;) is not equal to 7;@; This is
due to the correlations between the occupation numbers
n; and the fact that 3_; n;=N. It is just the neglect of
the correlations in (11b) which leads to the paradoxial
results. The #; occurring in the Boltzmann equation
(11) are, in fact, an average 7i;, defined precisely only
by (14). In spite of the approximate character of
equations such as (11), they still form the starting point
for all applications. Apart from some fundamental con-
siderations [107, there appear to be no computational
applications of the master equation formalism. As long
as (ninj)=nm; (which is the case if the numbers #;
are large), one would expect physically that the use of
(11) is not likely to lead to serious difficulties. Mathe-
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matically, one changes from a linear system to a non-
linear one. This is a nontrivial change. It is well to stress
that so far a master equation approach has been formu-
lated only for spatially homogeneous systems not under
the influence of outside forces. One sees that (16) is
similar in structure to (11) but not to (10). Inasmuch
as in applications, say in conductivity theory, the in-
fluence of outside fields is essential, it follows that to
have the analog of a master equation approach one
must start with an appropriate generalization of (12).
No such generalization appears to exist at present [117].
It is of interest to keep the approximate status of (11),
(8), and (10) within the master equation formalism in
mind. The master equation approach appears to provide
a framework within which one can sensibly discuss
transport problems as well as the problems connected
with the approach to equilibrium of physical systems.
The relation of the master equation to the underlying
mechanics describing the system is a completely
separate and important question.

(b) The Liouville equation. A different development—
more directly connected with ensemble theory—starts
from the Liouville equation for the phase-space density
function; Wx(x1-- Xy, p1- - "Dw, £). For a system de-
scribed by a Hamiltonian

=y 5 2 S )V (xaeox), (1)

a=l i=1 2m =l
the Liouville equation assumes the form
MWy

Az—{WN)H}
ot

oWy oH
) a®
6xi,a api,a

api,a axi,a

or, written explicitly,

GWN N 3 Pi'“ 6WN GWN
—t X — +3 X
ot i=l a=1 M O%ia0 ©« 0P
oV Wy
- ——=0. (18a)
e axi,a api,a
In (18),

X, o= —3Vo/0x: .= the outside force;

V (x1- - -xn) represents the interaction potential between
the particles. Through the V the dynamics of the
system is explicitly contained in (18). From Wx one
may construct a hierarchy of functions f, defined by
integrating Wy:

fs(pl' . 'ps; Xl' . 'Xsy l)

:st. . .fd3ps+1. . .dgde3x8+l. . 'deN

XWy(ps---xn, ). (19)
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The integrals over the space coordinates are over a
volume ©. One can obtain equations for these contracted
functions by integrating (17). One obtains, for example,
for f1(p,x,) if one assumes an additive potential

/ Z'i.j ! (X,; Xj):
6 ?a a 3
j_l_[___ _If_!_x fl

. m xa “apa
N AV (x—x1) 3 f2(xpx1pit)
=~~fd3p1fd3x1 D OLbexRd)
Q C 0% 0pa

[One has also assumed in the derivation of (20) that one
takes the limit N — o, @ — o, but n=N/Q fixed. ]

The equation for f which is analogous to (20) would
involve f; and so on. This system of equation is a
hierarchy of coupled equations. Even though the struc-
ture of (20) is strikingly similar to that of (10), it is not
legitimate to just identify the function f; occurring in
(20) with the function f occurring in (10). The quantity
f, the Boltzmann distribution function which occurs in
(10), is, roughly speaking, the average number of
particles in a cell in the x-v space (the u space). f refers
to a single system. A more precise definition of f can be
obtained through the use of the master function P
[cf. (14)]. W, however, refers to the number density
of ensemble systems in phase space. As is well known,
one postulates a connection between the macroscopically
observable behavior of a single system and the average
behavior of the representative ensemble [12, 137]. For
equilibrium situations the observed values of physical
quantities are identified with the ensemble averages
of these quantities:

Qobs= f . 'fdgxl' e dBaydpre - PpnQWa (21)

For nonequilibrium situations, however, this is not a
feasible procedure. A striking illustration of this failure
is afforded by the attempts made to define the analog
of a Boltzmann H function, which itself is directly
related to the entropy. Recall

H=ffd3xd3vflogf.

Actually, Gibbs defined a quantity suggested by (22),

(22)

Heivps= f : 'fdsxl' - dipy Wy logW . (23)

There is, however, no possibility of identifying or
relating Haipbs to the macroscopic entropy, for one
proves directly from (23) and (18) that Hagibbs is con-
stant in time, whereas the macroscopic entropy always
increases in a nonequilibrium situation. Another illus-
tration, demonstrating that in the Liouville equation
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no statistical assumptions are contained, is the fact
that if one solves the Liouville equation with the initial
condition

N
Wy(xy: - pn,0)=]T 6(xi—x.)8(p:—ps),

i=1

the solution Wy (x1- - - pw, {) remains a § function along
the trajectory of a single system. Physically this is
quite obvious; if all ensemble systems start out in the
same phase, each one evolves in time in the identical
fashion; ensemble members do not influence one
another. (The one trajectory contains all the dynamical
information.) This behavior is to be contrasted with
that of the master equation; if one gives

Pny- -1y -+ -0)=TT: 61— n.0)

as an initial condition for Eq. (12), one finds for any
time {540 a nonsingular probability P; the evolution in
time proceeds in the typical fashion of a probability
process.

Thus, if it is desirable to relate a function f; [defined
by (19) and (20)] to a Boltzmann function f, or, more
generally, if one wants to establish a relationship be-
tween the Liouville equation for Wy and the master
equation for P, one needs to adjoin probability or
statistical notions to the Liouville equation. Several
such procedures have been suggested, mainly in con-
nection with the appropriate definition of an H function.
One can invoke a “coarse grained” probability distribu-
tion in phase space [14, 15]. It is also possible to use
an additional time smoothing as suggested by Kirkwood

[16] and Hill [17]. The general problem, namely, the
precise conditions under which one can derive a master
equation from a Liouville equation, has been the subject
of many studies [18-207. It would appear that at the
present time the interrelation is at least partially under-
stood for the special case of not too dense, spatially
homogeneous gases. One interesting and perhaps un-
expected feature is the occurrence and existence of
characteristic times and appropriate time scales. (These
provide natural times over which to perform averages.)
These studies are at present the most basic ones for
nonequilibrium statistical mechanics. The significance
of these developments for transport theory depends
on the following facts:

(a) In transport theory one always works with the
Boltzmann equation with outside forces—its status is
only partially elucidated by these discussions. For in-
stance, no such equation has been obtained within the
framework of the master equation, although one has
reproduced the Boltzmann equation, using the Liouville
hierarchy, by additional time smoothing (for dilute
gases only).

(b) The introduction of outside influences (magnetic
fields, high-frequency sound, microwaves) may very
well alter the basic time scales (new characteristic times
would be introduced) and, as such, change the relation-
ship between the master and the Liouville functions. (It
is unreasonable to expect that the relation between
these functions would be independent of the nature of
the system.) Consequently, in certain transport phe-
nomena one has in principle a possibility to confront

TasLE II. Relations between probability functions.

Linear Liouville equation for Wy

Linear master equation for P

(Contains dynamics through Hamil- -

(Contains specific probability assump-

tonian equations) Brout® tions; dynamics is contained in the
! Greend transition probability
using: !
Liouville hierarchy for the contracted (a) time scales

functions f,
!

A truncation procedure relates f» to f1
and fior fsto fito fo

Relation obtained® using:

(a) time smoothing
(b) binary collisions

(c) near equilibrium  (d) time scale

Bogoliubov procedure,? use:

(a) time scales

(b) fs(++-8)=fs(: -+, f1) independent
of the initial state

(c) correlations vanish outside some
action volume

(d) low-density expansion

\\ (Superposition approximation)

(b) finite interaction radius
(c) dilute system

(d) asymptotic time limit

(e) infinite system

(f) Stoszahl Ansatz

Coupled transport equations for
7 (8), (nin;), etc.

Product conditions (n:n;)=27;7;

Boltzmann equation without streaming

Validity studied for equilibrium (209, terms
error in 4th virial coefficient,® also near

equilibrium situationsf not valid for ? .~

the relaxation of a chain of oscillators ,/

The ‘“‘useful” Boltzmann equation with
outside forces and streaming terms

{

The linearized Boltzmann equation used
in solid state theory

l

Computation of transport quantities

a See references 16 and 20.
b See references 23 and 24.

¢ See reference 18.
d See reference 19.

e See reference 21.
f See reference 22.
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these general considerations with experiment. Con-
versely, there is also the possiblity that there are
physical situations in which the variety of assumptions
needed to obtain a “useful” Boltzmann equation are
not satisfied, so that one would need to use a description
at a different levél. The status of the Boltzmann equa-
tion, as well as the logical interrelations of the various
approaches, is summarized in Table II. Most of the
results collected in the table have been described
already; arrows indicate proven (or partially proven)
realtionships, the salient assumptions within these
proofs have been listed near the arrows. (This kind of
scheme was first used by Uhlenbeck [97].) Table II
also refers to the derivation of the Boltzmann equation
from the Liouville hierarchy using the ideas of Bogo-
liubov [23]. This procedure, especially as used by
Uhblenbeck [247], provides an organized procedure to
study the Liouville hierarchy. The new physical idea
in this approach is that one argues that for times large
compared to the duration of a collision, the Liouville
functions f; depend on the time only through f; irre-
spective of the initial situation:

Js(puer- - pyan, )= fo(prr- + - potis, [1(prs, D).

It should be stressed that this property is not
proved; rather, one seeks solutions of the hierarchy
possessing it. If coupled with an expansion in inverse
densities (as in the Mayer-Ursell development), one
may indeed reproduce the Boltzmann equation. In
Table II reference is also made to the linearized Boltz-
mann equation. This equation is obtained from (10)
and (11b) by considering small deviations from the
equilibrium distributions:

J= [0+, (24)

where f© is the equilibrium distribution; one neglects
all powers of f® higher than the first. This linearized
equation for f® is the one used most frequently in the
computation of transport coefficients. The various pro-
cedures (Brout and Green, Kirkwood, and Bogoliubov)
which attempt to relate the basic dynamics to the
general transport theory are all in some sense arbitrary.
They are certainly nof mathematical consequences of,
say, the Liouville equation. Rather, certain additional
assumptions which are plausible on physical grounds
(at least for certain classes of physical systems) have
been used as well. So far, all that has been demonstrated
is that these methods do reproduce results already
known (the Boltzmann equation for dilute gases).* The
real test of these procedures (and also a possible choice
between them) will be provided by the extension of
these ideas to new physical situations, where one has
no previous knowledge. Unfortunately, as Table II
shows, the relation between computed transport en-

4 All the methods used employ a variety of limiting procedures.
Tt is hard to assess the precise mathematical validity of these
limiting processes. For a review of these points, as well as a
general summary, see Grad [25].
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tities (which are also the experimentally observed
quantities) and the basic assumptions and procedures
is quite indirect. It appears (at the present time) that
certain transport phenomena in solids, where quantum
effects also play a role, might provide tests for the
validity of these different procedures. This circumstance
makes these abstract considerations on the foundations
of statistical mechanics particularly pertinent for the
discussion of transport phenomena in solids (and con-
versely). Even though the discussion so far presented
is classical, it is seen later that many of the problems,
such as the relation between the master and Liouville
equations, are basically the same in the quantum-
mechanical discussion.

3. Equilibrium Quantum Statistical Mechamnics.
The Density Matrix Technique.

The formalism of quantum equilibrium statistical
mechanics is the one which is most often used in
applications. It is discussed at length in many of the
works already quoted. In this section a few remarks
especially pertaining to currently popular techniques
are made.

The transcription from the Maxwell-Boltzmann dis-
tribution function to the quantum-mechanical Fermi-
Dirac (or Einstein-Bose) distribution is well known
[26, 277. These distribution functions are also denoted
by f. In a quantum-mechanical situation, one cannot,
strictly speaking, define f(x,p,f) and f(x,v,?); the un-
certainty principle precludes the possibility of even
making a precise probability statement about positions
and momenta simultaneously. Stated differently, if one
insists that the wave function of a particle vanishes
outside some finite region (the particle is localized),
there is a finite probability that the momentum has an
arbitrarily high value, so that one cannot require that
the momentum values of the particle are contained
within a finite range as well. This makes it impossible
to define cells in the u space; in addition, one cannot
(rigorously) define phase-space density functions. One
usually considers situations in which f= f(p) alone. In
applications one often uses the energy e as an inde-
pendent variable rather than the momentum p. This
clearly demands a knowledge of the dispersion law
e=¢(p).

The ensemble description, which is a powerful tool in
classical statistical mechanics, can be transcribed to
quantum theory as well [28-30]. It appears worth-
while to describe some of these methods, since the
techniques developed there are the main ones used here.
(See especially Parts III-VI, the discussion of the
general transport theory.)

Consider an ensemble of system all described by the
identical Hamiltonian operator H.5 Let a denote a

5 Both the Hamiltonian and the Boltzmann [ function are
denoted by H. This should (hopefully) not lead to any confusion.
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system in the ensemble; N, is the number of ensemble
systems.

Let ¥=(¢,t) be a normalized time-dependent wave
function of ensemble system a. ¢ stands for all position
variables x- - -xn. Call E, the energy eigenstates of H,
and #,(¢) the eigenfunctions so that®

Hy=— (h/7) (3¢=/ 1)
Hu,=Eu,.

(25a)
(25b)

Finally let ¢.(q) be an arbitrary complete ortho-
normal set; ¥*(¢,) may be developed in such a set,

Y (g) =2 an*() enlg)- (20)

One knows that |a,*(¢)[? is the probability to find
ensemble member « in state » at time ¢ The equations
of motion of the coefficients ¢ are well known from

(25a) and (26):

da,~
ih d =2 (n|H|m)an*=2 Hnnan®, (26a)
f m m

H,n=n|H|m)= qu @ H o (26b)

One defines the matrix elements of the density matrix
pmn telative to the base ¢,(g) as

1
Pmn= """ Z an®(an®)*. (27)
N, «

Clearly, p depends on the fime as well as on the char-
acter of the ensemble. I'rom the assumed normalization
of the wave functions ¥, one proves immediately that

1 1
Troe=3_ pun=—2_ 2 |a,*|?=— 3 1=1. (27a)
n 17\73 a n Z\TG a

Further, pnn=(1/N,)->a|a.%|? is the probability to
find an ensemble member at time / in state »; thus the
diagonal elements of p have a direct physical inter-
pretation.

From (27) and (26) one shows that

ih(dpmn/dt) =[H, plnn,  ithp=[H, p].

One is working throughout in the Schrodinger picture.
In (28), as in the sequel, [4,B]=(AB—BA) the com-
mutator; matrix indices are usually suppressed; (28)
is the analog of the Liouville equation (18). In the
classical situation, macroscopically observable entities
were identified with ensemble averages; in quantum
mechanics, when dealing with a single system, experi-
mental results are related to the expectation value of an
operator. The expectation value of an operator Q for
ensemble member « is

(28)

8 It is the Planck constant divide by 2x. None of the fundamental
constants are put equal to unity in this paper.

277

()= f Y (g, Ov(a,0)dg. (20)

The basic postulate of quantum statistical mechanics
is that the macroscopic observable value of Q is the
ensemble average of (Q=(¢));

1
Qans= Q)= v 24Q=(®)). (30)

(Ensemble averages are denoted by double angular
brackets, quantum-mechanical averages by single
angular brackets.) If one were to maintain the precise
analogy with the classical postulates, one should actually
perform a time average over (Q%(f)) before performing
the ensemble average. For equilibrium or near-equilib-
rium situations one may use (30), but is well to keep
this limitation in mind.” It is now easy to understand
the importance of the density matrix p,,, for statistical
problems. The significant observable entity is Qobs,
which by straightforward substitution of (26) in (29)
and (30) becomes, using (27),

Qobs = Z anan =Tr (pQ>

Omn={(m|Q]n). 629)

Since traces occur very frequently in the discussion, one
should note these important properties:

Tr(AB)=Tr(BA4). (32a)

This follows immediately from the definition. If one
now calls BA=C so that A=B"IC (if B! exists), then
(32a) becomes

Tr(B'CB)="TrC. (32b)
From (32a) follows
Tr(ABC)=Tr(BCA)=Tr(CAB),  (32¢)

the cyclic property. From (31) it follows that observed
values can be written as a trace in terms of the density
matrix. Even though the density matrix was defined
relative to a set of functions {¢}, any other choice of
such a set, say ¢’, would lead to the same observable
results. This follows: if ¢’= B¢ is another orthonormal
set (the matrix B is unitary), the density matrix in
this new representation becomes by the usual trans-
formation p'=B"'pB, and the matrix ( becomes
Q'=B~'QB. Therefore, Tr(p'Q")=Tr(B'pQB), and this
by (32b) reduces to Tr(pQ). Hence, one can give the
density matrix in terms of any orthogonal set.

This freedom of choice of the set of basic functions
for a density matrix calculation is a very useful tech-
nical trick.

The density matrix appears in the literature in a

7 As already pointed out in the discussion of the classical situ-
ation, coarse graining or time averaging is necessary only in non-
equilibrium situations.
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variety of forms all intimately related to (27). One often
introduces a density operator pop (usually written as p).
The simplest way to define p,, from (27) is to define the
action of p,, on the members of the set { ¢}, namely,

(33)

Since the pm, are known, (33) indeed defines the
effect of the density operator on any member of the
set ¢. Inasmuch as any function can be expanded in
terms of the set ¢, the action of p on any function is
defined by (33). An important, somewhat singular
special case arises when one picks the set ¢.(gq) as
eigenfunctions of the position operator ¢. In that case
one has for the set ¢, ¢, (q)=08(¢—¢’). One then finds
from (26) that a,*(¢) =¢2(¢’,t). Therefore, (27) becomes

Popﬂ"n(‘]) =Zm Pmn‘Pm(q).

1
p(qq" )=(q"|p| q’>=5\7— 2 0" HT* (34)

Quite often (34) is also called the density matrix; it is
actually the density matrix in the “‘g representation.”
Use of (26), (27), and (33) gives alternate forms for (34):

p(q " D=2 oa(q)pumen*(q")
=3 ea*(q"poven(q)=("|plq). (34a)

From (34a) it follows that p,., can be expressed in
terms of p(¢,¢”",0):

Prm= f f dg'dg” ¢.*(¢)e(q',q"" 1) em(q"), (34b)

which in turn may be used to transcribe any observable
quantity Qops in terms of p(¢’,¢”,¢). One only needs to
substitute (34b) and the expression for Q... into (31) to
obtain (via closure) the explicit relation

Qobs = Z anan
n,m

= [ [aio " 0% e @menty. 39)

(The sum over % gives the operator Q in the ¢ represen-
tation.) From (34) it is clear that p(¢,¢"’,f) as an en-
semble average is indeed independent of the choice of
the set ¢. This can be verified by direct calculation on
using (34a), for example. In (34), as in (27), the sum
over a is over the ensemble members, so that a runs
from 1 to N,. One sometimes finds the density matrix
in the x representation written as a sum, not over the
ensemble members, but over the stafes over the members
of the ensemble. If, say, ensemble member « is in state 7,
there may be other ensemble members in this same state.
Suppose in all there are N; such ensemble members.
Each one of these contributes the same term in the sum
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over a in (34). Hence (34) may be rewritten as

N;
plg ") =T A A"
T =TT (340)

p;=N;j/N,=the probability to pick an ensemble
member in state 7. The states ¢9(¢,#) are, in general,
time-dependent states; they are not eigenfunctions of
H. Equation (34c) is often used instead of (34); it is im-
portant to keep the difference in the nature of the sum
index in mind. (For a careful discussion of this and
related questions, see [4], Chap. IV.) One recognizes
that p(g,q,t) is the ensemble average of the probability
density |¢(q,9)[2. Consequently, p(g,g,t) is the prob-
ability that a system (represented by the ensemble)
at time ¢ has its constituent particles at positions
X;- X (=¢q). As such, p(g,g,t) is the counterpart of the
classical configuration probability given by the expres-
sion S dpWw(p,q,t). The classical operation of integra-
tion over N momenta is replaced by taking the diagonal
elements of the density matrix. The expression for
Qobs can be cast in still other forms. To obtain a simple
one, define in analogy with (34a) a matrix element of
the operator pQ in the ¢ representation by

<qu I pQ [ q') =2 m Om® (‘Z”)Poonp em(q’). (36)

One can now expand the function popQopem(g) in the
set ¢; on using (33), one obtains

{q"1e0ld)= 2 ) en*(q")Qnmprnnen (). (36a)
From (36a) one sees by inspection that
dg(q|pQlg)= 3 Qumpmn=CQons.  (36b)

The ensemble average appears again as an integration
over the diagonal elements of the density matrix (this
time in the ¢ representation). The appropriate ensemble
which represents a particular system is (as in classical
statistical mechanics) postulated. In equilibrium one
knows that the density matrix and H commute [see
(28)8; hence, p can depend only on the integrals of the
motion. For an isothermal system one assumes the
canonical ensemble

p=e¢TH8 when B=1/kT. @37

F is not an operator, it is to be identified with the
Helmholtz free energy. (See [31] for an extensive dis-
cussion of the choice of the appropriate ensemble.)

From the normalization condition, one has
e =7="Tr(e?H). (38)

This is the starting point for practically all applications.

8 [1, throughout, denotes the Hamiltonian operator.
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From a knowledge of the partition function Z, the free
energy F follows #rivially, as do all other thermodynamic
entities. The calculation of Z for general systems is a
formidable problem. Much of statistical mechanics is
devoted to devising special techniques for handling
the expression (38). A few results, needed later, are
noted here. If one uses the functions ¢ to compute the
trace in (38), one has

Z=Tr(e"1)= (o] 1 0.)
=%, f o * (@ pu(g). (39)

If, however, one picks the set of eigenfunctions of H,
%y, (39) simplifies to

Z=Zn<”n[e_ﬁHi%n>=Zn e BEn (39a)

[from (25b)], a very important relation. One can now
use the general formulas given previously to obtain for
this special case explicit expressions for the density
matrix in the various representations. For instance,
straightforward application of (37) in (34a) gives

p(g"d")=(q"|nl¢")
=273 on* (¢ e PH 0, (q").

If one specializes to the set #,, and considers diagonal
elements only, one obtains the configuration probability?

(40)

p(0,0)=Z71 2 | tm(q) |2 PEm, (40a)
Use of (33), on the other hand, yields
o=z [t @eene). (1)

For the special choice of eigenfunctions #,, the density
matrix is diagonal,

pun=2Z "¢ BEnG,,.. (41b)

Even though the manner in which the density matrix
has been defined here is a fairly standard one, one oc-
casionally sees other definitions. Consider, for example,
a function Z(¢’,¢"",8) defined by™

Z(q',q" B)=2n 0¥ (¢")ePH 0, (q') (42)

[its similarity to (40) is obvious]. Sometimes Z(¢’,q",8)
is called the density matrix [33, 34 ] and has the follow-
ing important properties:
0Z(q',q",8)/98=—H(¢")Z(¢',¢" B) (43a)
Z(q',4"0)=2n n*(q") eu(q")=0(¢g'—q"). (43b)
Equation (43a) is the Bloch equation. Its similarity to
9 Although the diagonal matrix elements p(g,q) are the most
important ones, the off-diagonal ones p(g’,¢”’), using the set {u},
do not vanish as might be inferred from de Boer [32].

10 The partition function is denoted by Z or Z(B). Z(¢',q",8)
written explicitly denotes the function defined by (42).
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the Schrodinger equation is evident; this is the basic
reason why formal procedures useful in quantum
mechanics may be transcribed to statistical mechanics.
The closure relation (43b) serves as an initial condition
for the Bloch equation. From (42) and (39), one sees
that

f d4Z(0,0,8)=Z(8). (430)

Thus a knowledge of the Bloch function Z(¢’,q"”,8) leads
directly to the partition function. This is a very powerful
method. It finds especially significant applications for
systems of electrons in external magnetic fields. The
difficulty of obtaining exact expressions for Z has
stimulated the search for approximate methods. Many
such methods exist, most of which are based on a
perturbation-type development: One assumes that

H=Hy+eH,, (44)

where ¢ is assumed to be small. In order to exploit this
fact, one attempts to obtain a development of the free
energy I as

F=FO4 FOL 2RO L ..., (45)

H° presumably is simple so that F©® may be obtained;
the other terms in (45) are corrections to the free energy.
The purpose of the development is to obtain F®,
F® in terms of known entities. In this connection, the
eigenvalues of Ho, E,® and the eigenfunctions #,®
are considered known. As an example of a useful expan-
sion and as an illustration of the techniques needed
later, one such method is described [35]2 It is clear
from (45) that Z can be expanded in powers of e. Hence,
to obtain F®), etc., one must expand Tr(e~##) in powers
of e as well. It is convenient for this purpose to introduce
R(B)=¢"#2 12 One wants a series expansion for TrR(8).
The first step invariably consists of writing an integral
equation for R(B):

8
R(B) = e~#Ho— ebHo f INHL(NSHR(N),  (46)
0

where Hi(A) is defined by

Hi(\)=¢ | g Ho, (46a)

In (46) one has achieved a separation of R(3) into an
unperturbed part (¢=##°) and a part proportional to e.
The proof of relations such as (46) always proceeds by
guessing® a function g(\) of the operators, differen-
tiating it with respect to A, and integrating back. For

11t may well be that the following description is too detailed;
since, however, this kind of method is used so frequently, it was
felt worthwhile to include ore perhaps overly detailed treatment.
This degree of detail is not repeated in later evaluations, but the
reader is referred to the present discussion for similar calculations.

12 In some studies R() is again called density operator; in this
paper only p defined by (37) is so designated; p=R/Z.

'3 One could also say : attempt to find an operator g(\) such that
R(\)=eMoyg()). Clearly g(0)=1; differentiation of this relation
leads to (47a); then one proceeds as in the text.
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example, defining g(A):

g\) =eMOR(N) = gMHog ™M, 47
Clearly g(0)=1. Now, differentiate g,
dg/dN= —eH1(\)eM'R(\); (47a)

integrate (47a) over \ from 0 to 8:
B
gB)—1=—c¢ f ANH (N)eMOR(N).  (47h)
0

If one now substitutes (47) back for g(8) and operates
from the left with ¢=##o, one obtains (46). By iterating
(46) one obtains an expansion of R(8) in terms of e:

B
R(B) = ¢—BHo— ee“ﬁHOf dNH | (\)
0

8 A
+e26"’m“f d)\H1()\)f dMH (W) A+ (48)
0 0

[The fact that integral equations of the type (46) can
be iterated so simply is the main reason for their
popularity. ] One needs TrR(8). Instead of taking the
trace of (48) directly, it is simpler to note the following
identity':

] 9
— Tr(e#H)=— Tr(e FHoteHD)= — 3 Tr(eFHH,), (49)
de

de

which is trivial only if one forgets that the two parts of
H, namely, H, and eH4, do not commute. For the proof,
the trace property is essential [ (49) is incorrect if one
omits the traces] To show (49), note

—_ 1)nﬂn
- rI r(e __Hn
(- 1)"5” oH
= Z — (____Hn—l

n! Je
oH oH
+H__,_H'n-——2+ PR IIW—I’—*
de. Je

In general, H and dH/de do not commute, but one may
use the cyclic property of the trace (32c) to write this
expression as

S(—=1)8"/n!In Tr(H*'H,)=—8 Tr(e ¥ H,),

proving (49). If (49) is integrated over e between 0
and ¢, noting that (e7#¥) o= (¢7#H#"), one obtains

Tr(eF#)=Tr(e #H0)—p Trf e BHEHDH dy,  (50)
0

14 1n [35] there is a misprint in the identity corresponding to
(49) ; there is also a mistake in sign in the expression corresponding
to (46).
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which is an expression for the trace but not yet a
development in e However, if one now uses for
e~FUIHHD ip (50) the expansion in g as given by (48),
one can perform all the » integrals. [ The dependence on
¢ of (48) is only through powers, neither Hy, H,, nor
H,(\) depend on e.] Thus, one obtains

Tr(e PH)="Tr(eFHo)—Be Tr(e FHM )

Jl_ﬂ-.--- Tr(e 5H°)f d\H, ()\I)III

—-B— Tr(e ﬂ”O)f d)\f d\

XH\NH N)H -+ (51)

It is now straightforward to obtain the corrections to
the free energy ; (45) combined with (38) yields

exp(—-ﬁF) = eXp(—-ﬁF(O)){l_BGF(l)
+(/D[BFED2—28F D]+ - )

One can now compare successive powers of € in (51)
and (41a) to obtain

FO =Tr(e BHoH ) /Tr (e~

F<2>=%{6(F<”)2—[Tr( f B dxﬂ”ofll(x)Hi) /

Tr(e‘f’”“)] } (52b)

(51a)

AHo) (52a)

Thus, one has a completely definite expression for the
free energy as a power series in e. To be useful, one must
still be able to analyze the expressions (52). If the un-
perturbed partition function is known, say Zo, one sees
that

1 1
PO = — Tr(eBHo,) =— (1,0 Hye=550| 1,9)
70 ZO n

1 (33)
PO~ 3| 1) exp(=BE).
lo ™

One notices that one has picked eigenfunctions of HY,
namely #,’, for the trace calculation, so that

exp(—BHo) |u") = exp(—BE.) [1.°).

Equation (53) is an explicit expression for the first-
order free energy correction. The trace term of (52b)
is evaluated similarly :

B
Tl'f d)\e""‘”OHl (A)Hl
0

=;<n

B
f ANH (N HyePHo
i

n> (54)
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The explicit evaluation of a term such as (54) always
makes use of the known action of operators on state
vectors |7),!5 namely,

exp(—BHo) |n)=exp(—BE.") |n) (55a)
Hy|n)=2n|m)m|Hy|n).  (55b)

On using these expressions, and the expression (46a) for
H;(\), one obtains for the integrand in (54)

Hy(\) H -850 | )
=2 [/ )" | Hy|m)(m| Hy|n)
’ X exp (= NI+ NE ' —BE,0).

The A\ integration is now trivial; in addition, (n|m’)
=8, by orthogonality, so one finally obtains

B
Tr f NP () Hy= (0| Hy | m)om | Ha | )
0 n,m

Xexp(—BL.) —exp(—BF.")/(E.'— Ex’). (56)
This therefore gives again an explicit expression for
F®, Tt is important to observe that if E,'=E,?, the
terms still remain finite because of the Boltzmann fac-
tors; in fact, the sum may be written as

Z|<n|Hxl71)\26+n£<an1IM>(MIH11n>

xexp(_BEmO "exp(—BEno)/(Eno—Emo)- (563')
[At low temperatures (8— o) the first term is the
dominant one.] Many other methods are used in the
evaluation of the partition function and the density
matrix, but the example given contains the basic
techniques. The procedure outlined works equally well
in a second quantized theory. Indeed, in the derivation
one made use only of general properties of operators in
quantum mechanics, and these are the same in first
and second quantized versions of the theory. Finally, it
is much easier to write a development such as (45) than
to assess its validity. In actual situations, the decisions
as to what can be included in H, and how fast the series
converges (if it does so at all) remain difficult questions,
which can be discussed only for each system individually.

4. Nonequilibrium Quantum Statistical Mechanics

The physical basis of the bulk of the work in the
quantum theory of transport properties was (until
the last few years) provided by an appropriate quantum
adaptation of the classical Boltzmann equation (11d)
or (11e). The specific modifications introduced by
Uhlenbeck and Uehling [36] were, first: to replace
the classical collision cross section by its quantum-
mechanical counterpart—this is already suggested by
the notation in (11e); second, to incorporate the effect

15 Figenstates of H, are from now on denoted by |#).
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of Bose-Einstein or Fermi-Dirac statistics explicitly in
the collision term C(n;) of (11). Whereas the classical
collision term originates from the assumption that the
number of collisions from 7j — kI per second is given
by nn;Aijsn [see (11b)], in the quantum-mechanical
situation one assumes instead that this number is
given by

nmj(l—-nk) (1'—711)14“_,“

(7

for Fermi statistics. With this assumption the collision
term becomes, in the notations of (11e) (for a gas),

c(f)= f oy f 4 (g0 (1= ) (1= 1)
— A= Aa-)1

Actually, one may in some sense prove that the ex-
pression for the number of collisions for a Fermi system
is given by (57). This is done by making a time-
dependent perturbation calculation and performing an
average over all initial phase. {In a typical time-
dependent perturbation approach, one develops the
wave function ¥(g,0)=2 @.(H)#.(g) and computes
(approximately) the coefficients a,. One gives the initial
situation, hence one gives the coefficients ¢,(0), but
only up to a phase; these are the phases one needs to
average over in order to obtain (57) [37].} Apart from
these modifications, quantum transport theory is very
similar to the classical theory described in Sec. B.2.
Actually, it is often easier to calculate the transition
probabilities in the quantum theory than in the
classical one. Many problems separate naturally into
two parts; a quantum-mechanical one, in which for the
process at hand one must obtain the transition prob-
abilities, and a statistical one, in which one studies an
assumed Boltzmann-type equation for the process which
contains the computed transition probabilities. This
procedure is standard in many fields, notably, the con-
ductivity theory of metals. In the classical theory the
precise status of the Boltzmann equation, within the
framework of classical mechanics, demanded careful
study (its derivation from the master equation, the
relation to the Liouville hierarchy, the introduction of
probability notions). The derivation of the quantum-
mechanical rate equations from the basic ideas of
quantum theory requires similar detailed investigations.
These are just the investigations of special current
interest. Several of these studies are analyzed in Part
II1. One of the basic new notions of quantum-statistical
mechanics, the density matrix, was already discussed
[see (27)]. The further formal development is very
similar to the classical one. This basic formal similarity
between the quantum and classical situations can be
summarized best by a comparison as given in Table III.
A glance at this table shows that the parallelism between
the quantum and classical situations is very close indeed,
so a detailed discussion can be omitted. It is clear, for
example, that from the density matrix in the «x repre-
sentation (34), one can construct reduced density

(58)
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TasLe ITI. Comparison between classical and quantum situations.

Classical nonequilibrium statistical mechanics

Quantum nonequilibrium statistical mechanics

Phase space density : Wy (p,x,t)

Liouville equation:

OWn/-H{Wy,Hy=0 (18
Observed averages:
Qan= [ [dpdrQp) Wy (21)

Additional time smoothing:

W= (l/r)fr Wa(x, p, t4s)ds

éobs=‘f f dpdxW i (Q)

Reduced distribution functions:

Ja(pre - pay 1o o 1)
=f--'fWN(Pr"XN)d;ba+x-~-de

Liouville hierarchy: (19)

Master function: P(ny- - %, * + +8)
Master equation: (12)

Boltzmann equation: (11d) or (11e)

Density matrix p(¢’,q”,t) or [pnn(t)]:

ihdp/dt+[p,H]=0 (28)
Observed quantities:
Qobs="Tr (0Q) €2))

Additional time smoothing:

ﬁ'bm: (I/T)ﬁTpnm(t‘}‘s)dS

Qs =T (50)
Reduced density matrices:

FICCRRRE M )

=f"'fP(~’“l"'x=’ Kap1® T,

Xy v oxgy wgprecan)@xspr c duy

(59)
Master function for probabilities
Master equation

Uhlenbeck-Uhling equation

Wigner function We(x,p,t):

Wa, 5 pradWe
o T2 . T W e=0 (66)

Observed quantities:
Qobs=fj.d/)de(/Jax)WQ(P’x;t) (64)

Additional time smoothing:

Wao=(1/7) [ Waolp, x, t+5)ds

Qoe= [ [2pd2Q (0, 2)W o (pyx.0)
Reduced distribution functions:
FaQ(pre s poy w1 %y £)

=f-~'fd1>a+1~ )

Master equation

matrices defined by

p(xl. . 'X3, xl’. . .xs,)

B O P

Xp(X1e* Xoy Xop1v - Xnv, X'+ X, Xeg1e o Xn). (59)

The diagonal elements of these reduced density matrices
p(x1- - -, x- - -x,) are, apart from a possible normaliza-
tion, the counterpart of the classical configurational
probabilities S+ - - S’ @py- - - &P fs (- - - xe, p1- - P5). By
successive integrations of the quantum Liouville equa-
tion (28), one obtains a hierarchy of equations for the
reduced density matrices (59), which are similar in
structure to the classical hierarchy [38]. Even though
the similarity between the classical and quantum ap-
proaches is striking, it is possible to make the corre-
spondence yet closer, so that even the quantum trace
calculations may be replaced by an integration over
the phase space. It was already pointed out that no
quantum-mechanical phase-space distribution function
can exist. Wigner [397], however, has constructed a
function which can be used to compute correct averages,
although the function itself cannot be interpreted as a
probability function. (It can assume negative values.)
In the present notation the Wigner function (written
as W to distinguish it from the classical phase-space
density) is defined by

1 3N
W@<x,p,t>=(—£) Jareemmpte—y, w20, (@)

T

where % stands for NV position vectors X; - - - Xy ; similarly,
p stands for p; - - - py. The term (py) in the exponential is

N
2 PeYs;

=1

the integration is over 3N variables d®;- - -dByy. p is
the density matrix in the ¢ representation, as given
by (34):

1
p(x—y, x+y, t)=3v~ Lel—yly ety (61)

It is clear that W g, the Wigner function, is known when
p i1s known, and conversely. Thus, the use of the Wigner
function is a matter of convenience rather than prin-
ciple. Its main utility stems from these properties:

[Watwpirip=ptwi. (62)
This follows by integration of (60); integration of W
over the momenta yields the configurational probability.

Integration of (60) over the coordinates x leads directly
to the result

f W, pyf)dx=p(p,p,). 63)
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Here p(p,p,t) is defined as the diagonal element of the
density matrix

1
P(p/1p3t) = E Z ‘l’a(P/J)Dl’*(P”’l)j*: (633')

and the y2(p,f) are the momentum space wave func-
tions of the ensemble members (Fourier transforms of
the configuration space wave functions). Hence p(p,p,!)
is the momentum space probability density function.
Since the integral over x gives the momentum prob-
ability function and the integral over p yields the con-
figurational probability, Wq has at least some of the
properties of a classical distribution function. In fact,
if one has any classical quantity Q(p,x), its quantum-
mechanical ensemble average (called Qqns before) can
be computed by

Quta= f f dxdpQ(p,2)Wo(p,%). (64)

For a proof, see Irving and Zwanzig [407]. It follows
on the basis of this result that one may develop quantum
statistical mechanics in exact correspondence to classical
statistical mechanics—one just needs to replace the
classical Wy by the quantum mechanical Wq. Once
this is done, further operator or trace calculations are
not necessary. The equation W satisfies can be ob-
tained from (60). This can be done most simply by
observing that dp/d¢ can be calculated immediately
from (61), since the dy*/dt is given by the Schrodinger
equation

(9/900(q",g" H)= (i/W[H(¢")p—H(q)p].  (65)

H(¢') means that the Hamiltonian operator must be
written in terms of ¢’. Equation (65) combined with
(60) yields the equation for the Wigner function
WQ(x:P:l) as

oW

0t a=li=l m 0%,

3 N Pz‘,a OWQ

+QWo=0. (66)

Q may be written in many forms; for a Hamiltonian
containing a potential energy V, one could write

1: 1 3N
QWo(x,N)=—(—") f f dydp’e@im =)’
a\7wh

X[Wa(x, p—p")—=Walx, p+2) .

From this point, one can imitate the classical develop-
ment. One can again introduce a hierarchy of functions
and obtain the equations they satisfy. Procedures such
as time smoothing can now be applied to W, as indi-
cated in Table IIL. It is perhaps well to stress again
that the use of the Wigner function is only a formal
device; no new physics is introduced by its use. Also,
the transport equations of actual use are always equa-
tions on the “Boltzmann level” belonging to the general

(66a)
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class of master equations. The basic question, the rela-
tion between the master equation, describing a sto-
chastic process, and the mechanical Schrédinger equa-
tion is in no way elucidated by the Wigner function
formalism. It is, however, sometimes easier to in-
corporate physical ideas within this formalism. If, for
example, one attempts to go over from the Liouville-
type description to the master equation-type descrip-
tion by a time-smoothing operation, this can be done
most conveniently within the Wigner function for-
malism. One would first define

f. . -fd3P2. . 'daxNWQ(pl' . .pN, X1+ Xy, t)
= fi¢(pxt).  (67)

This is the first function of the quantum-mechanical
Liouville hierarchy ; it is #ot to be identified, however,
with the function in the Uhlenbeck-Uehling equation.
Rather one defines a time-smoothed Wigner function

. 1 pr
Wo=- f Walp, %, t-+5)ds, (68)
T 0 .

and the function in the transport equation “the physical
distribution function” is obtained by a contraction of W ;

J?m(;”xxl,t)"f' : ~fd3pz- cdxyWo.  (68a)

Kirkwood and Ross [417] have shown that the function
f1g, for the case of a dilute gas, satisfies the Uhlenbeck-
Uehling equation. For this proof the time averaging
defined by (68) was essential; this in turn can be
discussed most conveniently by using the Wigner func-
tion formalism. However, as in the classical case, the
real physical problem consists of deriving the Boltzmann
equation on the basis of a dynamical description. Great
progress has been made during the last few years. Since
this is the subject matter of Part III, a discussion of a
summarizing table similar to Table II is postponed. It
is hoped that, with the background provided so far,
one should be able to follow the arguments presented
in Part IIT in detail. A similar summary concerning
solid-state matters is given in Sec. B to provide the
background for Parts II and IV.

C. Framework of Solid-State Theory

In this section the main ideas of solid-state theory,
as they pertain to transport theory, are briefly sum-
marized. Thus the discussion here parallels the one
given in Sec. B for statistical mechanics. The combina-
tion of the ideas of statistical mechanics and solid-state
theory which occurs in transport problems is discussed
in Part II. Many books and survey articles cover this
general material. These should be consulted for more
detailed descriptions. The purpose of the present ex-
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TasrLe IV. Assumptions 'in‘solid-st.ate theqry¢ General Hamiltonian, nuclei, and electrons in interaction; neglect of spin and
magnetic interactions; adiabatic approximation; separation philosophy; Taylor development.

Electronic problems

Lattice problems

Interactions

(a) Many-electron problem in a periodic
force field

(b) “Equivalent” one-electron problem
in a periodic field. Band structure.
Effective mass notion

(c) One-electron treatment with an
assumed dispersion law e=e¢ (k)

(d) Introduction of external magnetic and

(a) Harmonic approximation

(b) Theories attempting to calculate
N (w)dw; frequency distribution (or
the level density)

(c) Importance of anharmonic terms:
thermal expansion

(d) Equilibrium between phonons.

(a) Character of the electron-ion inter-
actions

(b) Various assumptions about the be-
havior of ions (rigid, deformed)

(c) Calculation of (self-consistent)
screened interaction potentials and
frequencies

(d) Perturbation treatment

electric fields

(e) Alternate (and better) formulation:
Collective description of the many-
electron problem

Umklapp processes

(e) Conductivity calculations (electrical
and thermal)

position is to exhibit the relationships between the
assumptions of the theory and the quantities computed
by the theory. In addition, the presentation here might
in some sense interpolate between the current literature
and the existing textbooks. Finally, one might observe
that in the interpretation of transport experiments, the
transport theory and the solid-state theory are inex-
tricably mixed up. Thus one needs a thorough under-
standing of the solid-state effects before anything can
be deduced about the validity or lack of validity of the
transport theory. The logical interrelations of those
parts of solid-state physics most relevant for transport
theory are shown in Table IV. The remainder of this
section consists of a number of somewhat disconnected
comments in connection with this table.

1. Systematization of the Assumptions of
Solid-State Theory

The most fundamental way in which one could de-
scribe a solid is in terms of the nuclei and electrons of
which it consists. If one denotes the positions of the
electrons by r;(3=1---N) and those of the nuclei by
R.(@a=1---N'), the nonrelativistic Hamiltonian is
given by

W N h N
H= —_— qu_“"’" Z Aa+ Vee+ VN8+VNN' (69)
2m i=1 2M o=t

Here m is the electron mass; M the mass of a nucleus;
A; and A, the Laplacian operators with respect to the
electronic and nuclear positions. The interaction
energies between electrons V.., as well as those between
nuclei Vyn, and those between electrons and nuclei
could depend on the positions as well as the spins and
momenta of the particles involved. In most (but not
all) applications, the dependence of these interaction
energies on spins and momenta is neglected, so that the
various V’s represent essentially electrostatic
interactions.
The Hamiltonian is written as

#? 72
H==% —Ai=-—3 Aut} ¥ o(n—r,)
2M « 47

i 2m

+Z V(r-RIH T URRy), (70

V=LV, (70a)

Even in this form the problem of determining the
eigenstates and eigenvalues of H is both too hard and
too general. This Hamiltonian describes any nonrela-
tivistic system of interacting particles, not just a solid.
Thus, additional information has to be added to the
Hamiltonian (70) before detailed results can be ex-
pected. By writing (70) in terms of the nuclear and
electronic coordinates, one has lost whatever physical
information one had about the atomic structure of the
atoms which make up the solid. If, for example, one
wants to study the properties of solid Na, it is reasona-
ble that one should utilize the known properties of the
Na wave functions and atoms. In the description as
given by (70) one would make use only of the fact that
a Na atom has 11 electrons and the nuclear charge
(occurring in U and V) is 11. Use of a formulation such
as (70) requires one to solve both the atomic structure
problem and the solid-state problem. It would be de-
sirable to introduce existing knowledge about atoms
into the formalism. Two other qualitative ideas which
allow the construction of a usable theory are the small
mass ratio of electrons and nuclei, and the fact that one
must associate a well-defined periodic structure (as
revealed, for example, in x-ray studies) with a solid.
The combination of these qualitative ideas with the
Hamiltonian (70) leads to a more usable formalism.

(@) Mass ratio. The Schrédinger wave function
W(ry---ry,Ri---Ryvt) in (70a) is abbreviated as
¥ (r,R,t). The procedure customarily followed to obtain
solutions is to introduce an auxiliary function y¥.(7,R)
which satisfies

h2
—— 2 At} 2 o(ri— 1)+ V(ri—Ra) (9 (r,R)

2m i

= en(RW¥n(r,R).  (71)
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This is the Schrédinger problem for the electrons of the
solid for fixed nuclear positions. The wave function ¢,
and the energy e, depend parametrically on the nuclear
configuration. On having found such eigenfunctions
¥ (r,R) and eigenvalues e,(R), one attempts to con-
struct eigenfunctions of (70) by writing

¥ (r,R)=¢(R)u(r,R). (72)

Changes in the nuclear configuration affect the elec-
tronic wave function only insofar as these changes alter
the coordinates R. This so-called adiabatic approxima-
tion is used in practically all applications [42,43]. It is
possible to formulate the basis of the adiabatic approxi-
mation somewhat more precisely. Since the approxima-
tion is so commonly made, it is important to outline
how this can be done. Define, as in (71), auxiliary elec-
tronic wave functions ¥, (r,R). Assume that for given R
these functions form an orthogonal set. A solution of
(70a), HY = — (h/i) (0¥ /dt), can be constructed as

V(r,R)=2m em(RYm(r,R), (73)

which, in constrast to (72), is exact. The equation which
om(R,1) satisfies can be obtained straightforwardly by
substituting (73) into (70), using (71). One obtains

h don h?
—— =3 Aavu(R1)+3 2. U(Ra—Rp) ¢
a a,f

i 9l
Fen(R) o+ n Annr on (Ry1)
: +Z"'(V0t'<pn')'Bnn', (74)
with 2
A.nn’z — fdrlﬁn*(r,R) Za Aa‘l/n' (7’R>, (75&)
M

72
B, ——— f i 20 % (r,R) u Ve (nR).  (75b)
o

V. is the gradient operator with respect to R.. Equation
(73), as well as (74), is still exact. {It is amusing that
equations such as (75) were first obtained by Pauli
[447.} A look at (71) and (74) shows that the electronic
problem described by ¢, and the lattice problem de-
scribed by ¢, are coupled through the 4 and B terms.
The justification of the adiabatic approximation consists
precisely in showing that the contributions to matrix
elements and energies due to these terms are small. To
demonstrate this, one has to make use of the properties
of Y., and these properties depend on the character of
V in (71). If one assumes that V is periodic, the solu-
tions ¢, (r,R) must have a form demanded by Bloch’s
theorem. So a reasonable form of ¥, (7,R) would be'® [45]

Yu(r,R)=un(R—r)et*, (76)

where % is periodic with the periodicity of the lattice.
On substituting (76) into (75a) and using the fact that

16 For this estimate one is using one-electron Bloch wave
functions.
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an operator such as A, may be rewritten as A; [since u
depends on (R,—7;) only ], one obtains for 4., an ex-
pression of the type

h?
N% f un*(r—R)(——%Ai)un(r—R)dr. (76a)

Equation (76a) represents a small quantity; it is m/M
times the electronic kinetic energy. Equation (76a) is
also independent of R, for the main contribution to the
integral (irrespective of the location of R) comes from
7 values near the nucleus, and this is independent of the
position of the nucleus. One may similarly show that
the off-diagonal elements of 4 are very small.

Making specific assumptions about ¢ allows an esti-
mate of the expressions involving 4 and B. For a further
discussion of the adiabatic approximation see Ziman
[46] and Haug [47]. (For a slightly different but
equivalent formulation see the note in connection with
Haug’s paper.) If one assumes the validity of this ap-
proximation, one can see that it is sensible to study the
electronic problem and the lattice problem separately.
The coupling between the two may be treated as a per-
turbation characterized by 4 and B in (75). Thus the
unperturbed state is actually of the form assumed
before in (72); in addition, ¢ satisfies (74) without the
A and B terms. The procedure is therefore a systematic
perturbation development in terms of 4 and B. As such,
it is the logical extension of the intuitive assumption
(72). Tt is still well to recall that the electronic problem
and the lattice problem, in addition to the coupling
through the A and B terms, are also coupled through
the occurrence of €,(R) in (71) and (74). It is also wise
to remark that the solution of the electronic problem
and the determination of €,(R) is far from a trivial task,
but still easier than the solution of the combined
nuclear-electronic problem. It would be correct to say
that the adiabatic approximation is a semiquantitative
expression of the small value of the mass ratio of elec-
trons and nuclei. Even so, the approximation is not
always valid; as already mentioned, the 4 and B terms
depend on ¥,. It is of some interest to develop quali-
tative criteria for the validity of the adiabatic approxi-
mation. Physically, one wants to say that the kinetic
energy of the nuclei is much smaller than the separation
Ae between the electronic levels for a given nuclear con-
figuration. For in that case the motion of the nuclel
cannot materially affect the electronic level structure,
so that the electronic wave function changes adia-
batically [i.e., according to (72)7] with the nuclear co-
ordinates. If / is a measure of the location of a nucleus
(over a distance ! the nuclear wave function is pretty
constant), one has from the uncertainty relation
Ap-l~n; if vy is an average nuclear velocity,

Moy =hoy/l.

Thus the condition for the validity of the approximation
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is [43]
fn/I<< Ae. (77)
Another way to arrive at the same estimate is this:
An electron in the adiabatic description must make
many revolutions around a nucleus during the time that
a nucleus travels a distance of order /. If a nucleus
travels that distance, the nuclear wave function is badly
distorted. Consequently, to be able to talk about an
electronic wave function ¢,.(7,R) at a configuration R
demands that the distance traveled by the nucleus
during the time of a revolution of an electron be much
less than /. If the electronic energy level separation is
of order Ae, the frequency of the radiation emitted is
~A¢/%, and the time associated with a classical revo-
lution is of order #/Ae. Thus, the condition just men-
tioned reads (%/Ae)vy<<l. This is (77) again. One can
therefore check whether or not (77) holds. The validity,
as one might anticipate, depends on the details of the
electronic spectrum. If there are many electronic levels
very narrowly spaced, (77) probably does not hold,
whereas for a widely separated energy spectrum it does
hold. Use of (77) requires again knowledge of the energy
spectrum of e(R). In point of fact, (77) is numerically
satisfied for solids composed of chemically saturated
units such as a solid inert gas or an ionic lattice. It is
usually satisfied for the K electrons. In metals, (77) is
never true for all electrons. However, one may verify
that the electrons belonging to closed atomic shells in
a metal usually satisfy (77). One may therefore describe
ions, consisting of a nucleus and a closed shell of elec-
trons, as a well defined unit: the electrons in the ion
move adiabatically with the nucleus. The remaining
valence electrons must be separately described. Since
basically the distinction between the validity or lack of
validity of the adiabatic approximation is a quantitative
one, it is generally not possible to decide a priori
whether the adiabatic approximation is valid for all
electrons in an (atomic) closed shell. Stated differently,
the distinction between core electrons and valency
electrons (defined as electrons for which the adiabatic
approximation holds or does not hold) becomes am-
biguous. It is this circumstance which causes the
“number of free electrons” participating, say, in a con-
duction process to be an adjustable parameter rather
than a theoretically given quantity. The number N
occurring in (69) is the total number of electrons,
certainly not an adjustable constant. By virtue of the
adiabatic approximation, one does not need to describe
all N of them; most electrons can be combined with
the nuclei to ions. But the precise number is a quantita-
tive matter dependent on the details of the interaction.
Even though, with the introduction of ions in the
description of the solid, one has utilized information
about the atomic structure of the constituents of the
solid, this is not an unmixed blessing. When these ions
interact and move, one has to be concerned about the
nature of their interactions with electrons and their
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deformation. This kind of problem does not occur when
one considers only bare nuclei and electrons. But then
one cannot use the available information about their
atomic structure.

(0) Taylor expansion. The fact that the ions or
nuclei (these terms are now used interchangeably) do
not move large distances from their equilibrium posi-
tions allows a far reaching simplification of the solid-
state framework.!” Define the displacements y,:

Ye=Ra—R,0. (78)

The y’s are assumed to be small compared to the
distance ¢ between neighbors. Here R, are lattice sites,
geometrical locations which express the periodic struc-
ture of the solid [48, 497]. A common way to characterize
the symmetry character of the crystal is by the three
basic lattice vectors «i, %2, %3 (also called primative
translations of the lattice). Any lattice point can be
reached from any other by a translation vector of the
form nyi+nevetnges, with ny ne ns integers. The
equation

(mi*- ':J')= dij 'L;]= 1,2,3 (79)

defines the reciprocal lattice system =;* [497]. The as-
sumption that |y.|<Ka suggests that it is sensible to
make a Taylor series development of the potentials V
and U (also €) as they occur in (71) and (74). For
instance,

> V(r—R)=X[V(ri—R.) |
— Ve ViV (t—RO)---]. (80)

Similar expansions can be made for U. It is well known
that the expansions of U up to quadratic terms in the
displacements as applied to (74) (without 4 and B)
yield the Schrédinger equation of the lattice vibrations.
It is still of interest to observe that the use of the Taylor
expansion (80) in (71) decouples the electrons and the
lattice even further. If one uses only the first term of
(80), then (71) describes a system of electrons in a
periodic field Vese(r;))=>"o V (r;—R.0). [The periodicity
follows by noting that

Vet (tit2)=>o V(t;—RO+7)
=28 V(ti=R")=Ves(r:) ;

for if R, runs through all lattice sites in the sum, so
does R’—=.] The equation becomes

(2%

72
[‘“*“ 2 A2 v(ri—r) 42 Veff(ri)]
2m i i i

X (r,R%) =€, (R)¥.(r,RY),

where both ¢ and e have been developed in a Taylor

(81)

17 This fact was also used in the adiabatic approximation. When
one solves the electronic problem for a given nuclear configuration,
one definitely has a ‘“‘reasonable” nuclear configuration in mind;
i.e., one near the equilibrium sites of the ions. Otherwise a function
such as €,(R) has no smooth dependence on R at all.
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series. Since the R,® are not dynamical variables, (81)
describes the behavior of an electron gas in a fixed
periodic field uncoupled from the lattice. It is the start-
ing point for all considerations involving band structure.

It is possible to make the indicated Taylor develop-
ment of the potentials directly in the initial Hamil-
tonian, (70), which gives formally very similar results.
The resulting Hamiltonian splits up into three terms,
which may be written as

H= H01+Hlatt+Hint, (82)

N 2
Ha=—3 —A:+3 2 v(ri—1))
i=12m
+Z V(ri—Ry), (82a)

2
Hiw=—2, —Aat+3 2 U(Rus")
@ 2M «,B

+i X YasYasaUesen’, (82b)

a,f,ss’

Hintz"——lz ya,SVi,a,so—I"% Z ya,sya,s’Via,sa'(O)-
(82¢)

Here s denotes a Cartesian component of a vector; s
runs from 1 to 3. Ry is defined by R,s=R,—Rg, simi-
larly for y.s. A superscript in a quantity, such as
Uag,ss” indicates that the quantity is to be evaluated
at y,5=0:

U

UaB,ss’(o) = (m“_) 5 (83&)
aRaﬁ.saRaﬁ,s' llaﬂ=0
((’)V(r,—- Ra) )
Viad={—— )
s Ya=0

2 Jp—
Vz' a,ss’0= (a V(rz Ra)) .
ari,sari,s’ Ya=0

Quantities such as U,g,;:° depend only on the lattice
sites; on the other hand, V;,,* does depend on r,, the
position vector of the ith electron. Equation (82)
appears to separate the general problem in a natural
fashion into an electronic, a lattice, and an interaction
problem. Indeed, this development is often used for
such purposes; one observes that the electronic part of
the Hamiltonian (82a) is identical with (81) obtained
by using the adiabatic hypothesis and the Taylor ex-
pansion. The basic idea in the separation philosophy is
the possibility of treating He and Hi. as independent
of one another. One may then refine the description by
consideration of the effect of the interaction Hiu. In
fact, (82c) is the usual perturbation term from which
one computes electron-lattice interactions. Even though
this is similar to the separation achieved through the
use of the adiabatic hypotheses, it is well to note that in
H .44 one describes the lattice oscillations of nuclei, in-
cluding only the repulsive forces (as given by U)

(83b)
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between the ions. In order to have a physically sensible
situation, one should think of a compensating term in
H\au, 50 as to describe a set of positive ions immersed
in a uniform sea of negative charge. Similarly, one
should think of He as having a compensating positive
uniform charge density which maintains the electrical
neutrality of the system. But now it is clear that the
vibrational frequency spectrum, using forces between
ions only [as given by (82b)] in a uniform negative
charge, may show very little resemblance to the actual
vibrational frequency spectrum of a lattice of ions (as
experimentally obtained from the lattice specific heat of
a metal). For in the latter case the electron distribution
is profoundly influenced by the lattice oscillations and in
turn affects (through the lattice electron interaction)
the vibrational spectrum. The electrons generally follow
the lattice vibrations; they tend to screen the lattice
electron interactions. In a sense it is therefore a little
misleading to refer to (82) as accomplishing a separation
of the interactions in a solid. To be sure, (82b) describes
lattice oscillations of frequencies @ (in a uniform elec-
trostatic background); the frequencies depend on U
only, as one can see from (82b). However (as already
mentioned), the actual lattice oscillations, as observed,
are not those of a lattice immersed in a static charge
distribution, but rather those of a lattice surrounded by
a moving electron distribution. Its eigenfrequencies
are related to the purely ionic oscillation frequencies £
by expressions depending on the electron-phonon
matrix elements [507.

The calculations attempting to obtain these relations
always are of a self-consistent type. It is also possible
to develop such calculations directly from the original
Hamiltonian (70). Let ¥(r,R) as before be a wave
function satisfying (70a). One observes that

p()=3" f f dRudr ¥ (o Ro) [%(ri—r)  (84)

=1

is the electron density at r. (One integrates over all
electronic and nuclear coordinates.) It is clear that p
depends on the exact wave function ¥. Define next

V(RQ)=N”1fV(r— Ro)p(v)d?r. (84a)

This is the average interaction energy of an ion at
R. with the average charge distribution p(r). Rewrite
H as

ﬁz
H=——3% Ait3 2 v(ti—r,)
2m i
. 7*
+Z [V(ri—R)-V(R)]-—X A,
T, 2M ]

+2 NV(Ra)+ZB U(R.—Rg). (85)
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[H as written is a curious Hamiltonian, the term ¥V
depends through (84) and (84a) on one of its eigen-
states; this corresponds to the self-consistent feature in
the calculations.] One can now expand U, V, V,ina
Taylor series around the equilibrium position R.’. The
further Taylor development yields much the same
results as before; one, however, does not need to intro-
duce the compensating charges. One can again discuss
the electronic and lattice problems separately. Treat-
ment of p as a time-independent charge density again
means that one does not obtain the lattice vibrations of
physical interest, just those of an ionic lattice immersed
in a static charge. It is possible, however, through a
series of canonical transformations to obtain the re-
lations between © and w [51]. These somewhat general
observations had as their purpose to stress once again
how indirect- are the comparisons between experiment
and fundamental theory. As an example [52], an ex-
perimental check of the relation obtained between w
and Q involves the following points:

(a) A relation between elastic constants (which are
measured) and the actual lattice frequencies w.

(b) A sum rule relating the @ frequencies to a plasma
frequency (exact relation) which is known.

(¢) An approximate calculation of the phonon-elec-
tron matrix element which occurs in the derived relation
(using a Wigner-Seitz calculation in the process).

Tt takes a combination of these three pieces of informa-
tion to verify the relation in question to about 10%,.

Actually, in the applications of the theory to experi-
mental situations, one uses equations which are simpli-
fied much beyond the stage of those given by (82).
The next section discusses some of these further
simplifications.

2. Further Simplifications. One-Electron Picture

(a) Remarks about the one-electron picture. In spite of
the approximations made in obtaining the Hamiltonian
(82) for electrons in a perfect crystal, it is still impossible
to obtain solutions of this Schrédinger problem. More
serious is the circumstance that it does not even provide
a physical framework in terms of which one can describe
the results of experiments. Indeed, practically all the
new concepts which have been introduced in physics
through solid-state theory, such as energy bands,
effective mass, and Brillouin zones, have been obtained
via the one-electron description of solids. In this de-
scription one attempts to represent all the various
forces acting on a single electron by a single static field
acting independently on each electron. This one field
incorporates both the interactions between electrons
and those between ions. The one-electron Schrodinger
equation [a further simplification of (82a)] becomes,
therefore,

[— @2/ 2m)A+V (k1) s (k,r) = Es (k)¥s(k,r).  (80)
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With the successive simplifications in the equations or
Hamiltonians, the significance of the potentials in these
equations becomes gradually more obscure. Whereas
in the original Hamiltonian the significance of an elec-
trostatic potential between electrons and nuclei is un-
ambiguous and the potential itself is known, this is not
the case for the potential V(k,r) which is neither known
nor unambiguous. More precisely, one assumes the
existence of such an average potential acting on each
electron. From the fact that the interaction potential
Vesr in (81) has the periodicity of the lattice, one infers
that Vg has this same periodicity. It is reasonable that
if an average static Vs exists at all, it should have the
periodicity of the lattice. Most of the well-established
portions of solid-state theory, the existence of energy
bands, Brillouin zones, and many of the approximation
procedures (weak and tight binding), are based directly
on a study of equations of the general type (86)
[53,54].28 It should be reiterated, however, that the
average potential now is not known, but the determina-
tion of this potential is the central problem of this part
of solid theory. Many different methods exist; they are
reviewed by Reitz [55]; see also Herman [56]. For
present purposes the following points are pertinent:

(a) Since in these calculations, one wants to deter-
mine both the wave functions of the electrons as well as
the periodic field in which they move, one should per-
form a self-consistent calculation. Unfortunately, the
computational difficulties preclude a systematic
approach of this type, so one actually picks a physically
plausible potential for each state, and then solves the
one-electron problem for this potential. This common
approach immediately suggests two further points.

(b) Just how sensitive is the computed band struc-
ture to the assumed potential? If one picks a Vg, in an
ad hoc fashion, it is clear that only those results which
are reasonably insensitive to the choice can be trusted.

(c) It is common to assume the same potential V in
(86) for all states. How accurate this is is not known at
present.

It is unfortunate that even the most careful calculations
done to date still do not produce good agreement with
experiment. Even though the qualitative features of the
band scheme seem to be reproduced fairly well, it
appears that the details of the band structure are re-
markably sensitive to the details of the form of V4. (An
extensive comparison between theory and experiment
is given by Ziman [57].) This quantitative failure is
even stronger in the light of the success of all the quali-
tative notions introduced by the one electron descrip-
tion of solids. Concepts such as reduced wave vectors,
effective masses, and Brillouin zones, all obtained
within the one-electron picture, have been most effective

18 Some of the results of these studies, the state of an electron
in a periodic potential is determined by a band index 8 and a
wave vector k, the energy for given 8 is a continuous function of
k, have been anticipated by the notation used in Eq. (86).



TRANSPORT AND GALVANOMAGNETIC PHENOMENA

in the description of experimental results. Very likely
these concepts have a validity much beyond the one-
electron approach. For this reason any attempt to
obtain such ideas from a many-particle viewpoint
[cf. Eq. (81)] is of unusual interest. Section C.5 con-
tains some remarks related to current attempts in
this direction. For the discussion of conductivity prob-
lems, the questions raised here concerning the one elec-
tron potential and its influence on the band structure
are of lesser importance. In these phenomena only the
electrons near the Fermi surface play a significant role.
Hence only that portion of the band structure affects
the transport properties. For metals in particular a
knowledge of the band structure near the Fermi surface
is the only relevant part of the band structure. It is a
fortunate circumstance for conductivity theory that
there are separate and independent experimental pro-
cedures which allow one to obtain information about
the Fermi surface (de Haas-van Alphen effect, see
Part II). This information can then be used in the
interpretation of transport properties, so that an appeal
to an incomplete theory can be avoided.

(b) Fermi statistics. The great computational power
of the one-electron formulation of solid-state theory
stems from the fact that one may apply Fermi statistics
to the system of electrons. This is possible since all
electrons possess the identical energy spectrum. This
therefore yields a description of the complete electronic
system. The number of electrons in an energy interval
dE (per unit volume) is written as #(E)dE. The density
of states in an energy range dE (of one spin direction)
is written g(E)dE.” This entity may be defined by

B+AE

1
g(E)AE=— f k.
3 B

8

(87)

The integration in (87) is over a region in %k space
between two surfaces of constant energy. In the special
case where E is a function of the magnitude of the
vector k (written as k) only, one sees from (87) that the
density of states may be written as

g(E)=4% (k/m)*(dk/dE). (87a)

It is clear from either (87) or (87a) that g(£) depends
explicitly on the structure of the solid through the de-
pendence of the energy on the wave number. Thus
Es(k) in (86) must be known, in order to calculate g(E).
For free electrons g(E) is given by

g(E)=2n(2m) 3L+ (87b)

(h is the Planck constant). In other cases, (87b) is still
often used but with an effective mass m*, treated as an
empirical parameter, rather than m. The number of
electrons #(E) is given by 2

19 The density of states in many books is denoted by some
form of the letter N (script NV in [53] and [57]). In Wannier
[45], g(E) is used.

2 No effort is made to distinguish the absolute value of the wave
number & from the Boltzmann constant %.
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n(E)dE=2g(E)dE/e POk 4-1=2¢(E) fo(E). (88)

The factor 2 in (88) comes from the two spin directions;
(88) defines fo, the Fermi distribution. The temperature-
dependent parameter { is determined by the total
number of electrons per unit volume #:

fw 2g(E) fo(E)dE=n. (89)

It is of some interest to distinguish {, determined by
(89), from the Fermi energy Er, defined by

Ep
f 2g(E)dE=n. (89a)
0

L isindependent of the temperature. The evaluation
of the integrals defining { and Ep is reasonably simple
for free electrons [587. For other systems g can become
quite complicated and the evaluation becomes very
involved. The point of recalling these well-known re-
lations is to stress that if the energy spectrum of a
system is changed, say by putting the system in a
magnetic field, the function g(E) is altered and so is the
relation between Ex and ¢. The usual situation (without
magnetic field) encountered in most metals is that { and
Er are approximately equal. The altered relation
between ¢ and Er in a magnetic field is important later.
A number of physical phenomena depend on the char-
acter of the solid, just through g(E), not through the
complete energy band picture. For example, the com-
plete theory of the electronic specific heat is contained
in the average energy:

2 f To(E)g(E)EdE=(E).

Clearly, if E(k), hence g(E), were precisely known, the
discussion of the specific heat would be reduced to an
exercise in integration, for ¢(T)=d(E)/dT. Actually,
neither E(k) nor g(E) is usually known, a priori, so one
inverts the procedure and employs the experimental
information about the specific heat to learn something
about g(E). Since other experiments, the intensities of
x-ray emission and absorption of metals, depend on the
same g(E), one may relate different experimental results
to one another. In a theoretical vein, it is possible to
relate the density of states g to the previously men-
tioned partition function Z [see formulas (38) and
(39)]. Let E; be the energy eigenstates of a system,
and N (E) the number of states whose energy is less than
E. It is clear that the number of states in the range AE
is given by

N(E+AE)—N(E)=(dN/dE)AE=g(E)AE. (90)

N(E) may be simply expressed in terms of a function
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6(x) defined by

6(x)=0 x<0
0(x)=% x=0 91
0(x)=1 x>0.
One has (just using the definition)
N(E)=3:0(E—E)E+~E,. (92)

It is known? that 6(x) has the integral representation

1 b gy
0(x)=—f —e,

(93)
2

y—iw &

The integral in the complex z plane is parallel to the
imaginary axis; vy is a positive (real) number. From (93)
and (92) one obtains

1 v gy
LV(E)=—- f —e?l Z e—2bi

27r'i y—in 2 T

1 prtieds
= —e* 7 (z).

(94)
21

y—in 2

e *i=Z(2) is the partition function previously
defined, (39).2 By (90) one finds for the density of states

1 v+
(= f 567 (3), 95)
Y—1%

T

which expresses the interesting relation that g(E), the
density of states, is the inverse Laplace transform of the
partition function Z. By inverting this relation one
obtains the partition function as the Laplace transform
of the density of states:

Z()= f " derg(R). (95a)

Apart from the interesting formal connection which
these relations demonstrate, the complex-variables
method provides a powerful technique for the handling
of practical problems. Consider, for example, the cal-
culation of the free energy (per unit volume) of a Fermi-
Dirac system. This is given by [59]

F—ng=—(2/8) " log(1+efG=59),  (96)

where F is the free energy per unit volume, » the
number of electrons per unit volume, 37! as always is
kT, and { is defined by (89). The evaluation of sums of

% One could consult G. Doetsch, Theorie and Auwendung der
Laplace Transformation (Dover Publications, New York, 1943),
p. 105, but it is probably simpler and faster to apply the Cauchy
theorem to (93) and verify the required properties of 6 from the
integral representation.

22 More precisely, the partition function Z(B)=ZX;e 8% is
defined for real 3, hence Z(z) is the analytic continuation of the
partition function.

MAX DRESDEN

this type is more difficult than the calculation of Z(B)
as given by (39). By using the technique just outlined,
one shows that F—n{ can always be obtained once
Z(B) is known. To illustrate the method, suppose one
wants to evaluate a sum S,

S=Y",; B(E). 97)

B(E) is some given functions of E. One verifies imme-
diately [using the fact that the derivative of 8(x), with
respect to x is a & function]] that

®» 0B
S f dE— N (E). (98)
0 Ak
Now define a function M, so that
N(E)=dM/dE (99a)
or
E
M(E)= f N(EIE
I
- f A — f e 2(2)
—0 2mi y—in &
1 priiody
= —e*27(z).  (99b)
2wt y—i% 22

Here one has used (94). It is clear that if the partition
function Z(8) [actually its continuation Z(z) ] is known,
M (E) can be found by performing just one complex
integration. If one now substitutes dM/dE for N in
(98) and performs a partial integration (assuming
appropriate behavior at the boundaries 0 and ), one
obtains for S

“ 3B
S= f dE—M (E). (100)
o O

The point of this development was to show that a
knowledge of the partition function Z(B) yields M and
S. In the case of actual interest, (96),

B(E)=—B" log(1+4e8¢—1),

In that case, (100) simplifies to

= 9
Feng=2 f dEan(E)g—ZM(Ep). (101)
0 M

The last step in (101) utilized the well-known (approxi-
mate) 6-function character of the derivative of the
Fermi function f, defined by (88). This technique is of
particular importance in the discussion of the behavior
of electrons in magnetic fields [34].? Considering the
intimate connection between the partition function and

28 The use of this technique enabled these authors to obtain an
exact expression for the partition function of a system of (free)
electrons in a magnetic field.
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the density of states just demonstrated, it is not sur-
prising that the approximation procedures developed
in connection with the evaluation of the partition func-
tion (see Sec. B.3) have corresponding counterparts in
the discussion of the density of states [60]. This con-
nection is of great use in obtaining the magnetic prop-
erties of an electron gas.

(¢c) Singularities in g(E). Inasmuch as the function
g(E), the density of states, determines many of the
quantities of physical importance, any procedure yield-
ing a priort information about this function is of great
interest. A similar situation exists in the theory of the
lattice vibrations, where a similar distribution function
g(w?), the number of lattice oscillations per unit fre-
quency interval, determines the thermodynamic be-
havior of the lattice (in particular the lattice specific
heat). The frequencies of the lattice are determined by
a secular equation which depends on the force constants
of the lattice. In simple crystals one obtains three fre-
quencies and three polarization directions for a given
phonon wave vector q [617]. The reason for referring to
the problem of determining the frequency spectrum
g(w?) of the lattice vibrations, apart from its obvious
relevance to conductivity theory, originates from the
fact that recent advances in this field have a direct
bearing on the problem of determining the nature of
g(E). Tt was first shown by van Hove [62] that the
function g(w?) possesses of necessity a number of singu-
larities. The existence of these singularities can be
traced back directly to the existence of critical points,
i.e., points where V,w(q)=0. The existence of these
critical points in turn follows (via a nontrivial mathe-
matical theorem of Morse, see Rosenstock [637)
exclusively from the periodic character of the frequency
o as a function of the wave vector q. The only physical
statement used in reaching the conclusion about the
singularities in g(«?) is the periodicity of w. Exactly the
same situation applies to the electronic energy Eg as a
function of the wave number k. In fact, Eg(k) in (86)
possesses the well-known periodicity Eg(k++*)= Eg(k),
where «* is a general lattice vector in the reciprocal
lattice. Hence, via Morse’s theorem the existence of
critical points V. E=0 follows, and by van Hove’s
analysis, singularities in g(£). The existence of this last
relation may be inferred by writing the density of states
g(E) instead of (87) as®

as
B=f—
&5 f(leEiZ)%

This reformulation of (87) is a purely mathematical
one; it is essentially a change of variables in the integral
(87). S is a surface of constant energy in % space. From

(102)

24 Actually (102) is written for just a single band. It should
contain some constants as well as a summation over the various
branches of the multiple-valued function E(k). Equation (102)
was given just to suggest the close relationship between critical
points and possible singularities of g(£).
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(102) one can immediately appreciate the close rela-
tionship between critical points in £ and singularities
of g. The van Hove result, which is of the character of
a mathematical existence theorem, has been effectively
applied by Rosenstock [637], to enumerate and locate
the critical points of the function g(w?) for various
crystal lattices. Once one has obtained @/ the singular-
ities one knows a considerable amount about the
qualitative features of the spectrum. Still, a knowledge
of the critical points determines the spectrum just near
the critical frequencies. In between such frequencies
one needs some kind of interpolation scheme to obtain
g(w)2. Actually, a more severe limitation comes from
the lack of a systematic procedure which obtains and
classifies all the critical points, and it is just this infor-
mation which is needed for a complete description of
the spectrum. Attempts in this direction have been
made by Rosenstock [64] and Rosenstock and Phillips
[65], but so far the problem remains unsolved. In two-
dimensional situations (as usual) the situation is
simpler, and in that case one has [63] obtained detailed
results. In obtaining these it was necessary to combine
the information about the critical points with informa-
tion provided by the secular equation of the lattice
vibrations. It is also necessary to assume numerical
values for the force constants occurring in the secular
equation to obtain specific results. In spite of these
limitations, the method provides a remarkable amount
of qualitative information; it would seem profitable to
pursue this kind of investigation. Detailed applications
to the electronic density of state functions seem to be
called for, especially since the critical energies [ where
¢(E) is its derivative] are singular—correspond to band
edges—and the physical parameters near these edges
are well known in the band scheme [66].

3. Imtroduction of External Fields

(a) General vemarks. In the development of the ideas
of solid-state theory so far presented, only the inter-
action of the constituents of the system with one
another (electron-ion, electron-electron) was taken into
account. In actual physical situations, the interaction
between the electrons and external fields is of major
importance. Most of the phenomena mentioned before
as yielding significant solid-state parameters— de Haas-
van Alphen effect and cyclotron resonance—involve
such external fields explicitly. In principle it ought to
be straightforward to introduce such fields. One could
start from the initial Hamiltonian (69) for electrons
and nuclei, and replace the electronic momenta p; by
pi— (e/c)A(r;) and the nuclear momenta P, by
P,— (e/c)A(R,), where A is the vector potential of the
external magnetic field. The interactions with an electric
field could be described as always by adding a term
eP(x,!) for each particle at position x and change e to
the Hamiltonian. One then could go through the
reduction again, the adiabatic theorem, Taylor develop-
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ment, separation, equivalent one-electron problem. In
practice one never does this. The general approach is
much the same as in atomic structure problems. In
studying the Zeeman effect of a hydrogen atom, one
does not start out with an electron and a proton in a
magnetic field and then perform a separation of vari-
ables (although this is actually the proper way to do it).
Rather one introduces the field directly in the already
separated equation. The physical basis of this procedure
is the conviction that the energy level scheme of the
system is but slightly affected by the introduction of
the outside fields. Similarly in solid-state consideration,
it is usually assumed that the band structure is essen-
tially unaffected by the introduction of such fields. In
atomic problems, one would expect this procedure to
be valid for fields such that a typical energy level
separation is large compared to the interaction energy
per particle. The effect of a perturbing potential such
as a magnetic field on the eigenfunctions in a band
scheme is extremely profound. Free electrons in a mag-
netic field are highly degenerate. The introduction of
a perturbing periodic potential spreads these levels into
bands. This much is sure. But it is hard to obtain even
qualitative information about the details of that band
structure. The main difficulty which occurs under
various guises over and over again concerns the circum-
stance that the perturbed Hamiltonian has nonvanish-
ing matrix elements between unperturbed wave
functions of different bands. If 8 indicates the band
index, (8]|Hioa1|B’) 1s generally different from zero.
Thus one generally cannot restrict oneself to the dis-
cussion of a single band. The new energy spectrum
(with the field) is not always just a trivial shift or dis-
placement of the old one (without a field), but it may
well show qualitatively different features.

(b) Electric fields. The introduction of an electric
field in the one-electron picture, as described by (86),
may be obtained by adding a term H’ to the Hamil-
tonian of (86). The total (time-dependent) problem
would be described by a Schrédinger equation?®

7 h OV
(-——Z—-A—i—Vﬁ—i—H’)\I!(r,t):—j——. (103)
m

72 0

(H' is some function of r, perhaps of ¢, but does not
contain operators.)

It is interesting to observe the following alternate
form of this Schrodinger problem. As before let Eg(k)
be the energy eigenvalue of [ — (4%/2m)A+Vg]. One
knows that Ejg is periodic:

Ep(k++*) = Lg(k). (104)

Construct from Eg(k) an operator Eg(—iV). V is a
gradient operation with respect to the electronic coor-

25 The B in Vg(k) is kept as much for identification of the
(periodic) effective one-electron potential as to indicate an explicit
dependence on the band index. A similar remark applies to Fg(k)
occurring in (86) and later on as well.

MAX DRESDEN

dinates. One then has

Lg(—iV)s(r) = Lp(k)gs(r). (105)

In other words, Ez(—iV) has as eigenvalues FEg(k),
and as eigenfunctions yg(k,r). These Bloch functions
have the known periodicity properties [67]

Yp(1+12) = exp (ike)ys(r) (106)

(= as always stands for a general lattice vector, R, for
a lattice point) or

1//5(1‘) = eik’uk,g(r), %k,ﬂ(l’-‘—‘v) =uk,,3(r). (106&)

From these properties one proves (105) very easily.
From the periodicity of /g in the reciprocal lattice
space, it follows that £ may be developed in terms of
laltice vectors R :

Es(k)=3" Egq exp(ikR.9). (107)
Ry
The operator Eg(—iV) may now be written as
Eg(—iV)=Y_ Ego exp(RL-V). (107a)

Ry
Hence

Eg(—iV)yp(k,1)=3" Egq exp(Ra- V)¢p(k,1)
"% Baae(l, 1RY). (107h)

Rea

(This follows by expanding the exponential and using
the Taylor expansion of .) If one now uses the property
(106) for ¥ (k,r+R.% in conjunction with (107), one
just obtains (105) [68].

Now suppose it were possible to construct a solution
of (103) in the form

W' (1) = 2w a(l (ki x). (108)
Note that in (108) no sum over § is performed. Then

ﬁZ
(——2—A+ V)xlr'(r,w:zk ok, Es (k)5 (k)

=2 a(k,D) Eg(—iV)s(r) = Lg(—iV)V'.

The crucial point is the possibility to exchange the
operator Eg(—1V) with the summation over &. One also
used (86) and (105). Then ¥’ satisfies the so-called
equivalent Schrodinger equation [via (108a) and (103)]:

[Eg(—iV)+H' ¥ (r,t)= — (h/1) (d¥'/81).  (109)

This in a way is a surprising result; that the Bloch
encrgy plays the role of an equivalent kinetic energy
operator is certainly not obvious. Once one knows Eg(k),
one has in (109) an equation which can describe this
solid in a variety of external fields. For quasi-free elec-
trons where Fg(k)=72k%/2m*, the operator Eg(—iV)
becomes just the kinetic energy operator but with an
effective mass m*. For a semiconductor where E(k)

(1082)
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=b;;kiki+bo (with measured effective masses related
to b.;), the appropriate equation becomes

92 # oV’
(—bi, +bo+H’>\If’= ——
anarj i Ot

The effect of the lattice is completely contained in the
operator Eg(—:V). Actually (109) is only approxi-
mately valid (a good approximation for semiconductors),
for one cannot develop a solution of (103) in a set of
functions y(k,r) belonging to a given band only. The
¥s(k,r) for given B do not form a complete set. Physi-
cally, one expects the approximation to be a good one if
one can expect the electrons to remain in the band in
question under the influence of the perturbation.
Whereas one generally would expect this to be so, the
derivation given does not provide any clues as to when
this would or would not be the case. Another point of
physical interest to bear in mind is that if one chooses
an incomplete set of functions (the Bloch functions in
one band) in which the electronic wave function is
developed, the resultant wave packet can provide only
an incomplete localization (in space). At times it is
advantageous to describe the effect of fields in a classical
or semiclassical vein. In order to accomplish this, one
must describe the electron by a very narrow wave
packet, and such a wave packet cannot be constructed
from the wave functions of just a single band. This
situation occurs in describing the helical motion of an
electron (in a lattice) in a magnetic field. The radius of
the helix becomes smaller for increasing fields. It is
clear that if this radius becomes smaller than the degree
of localization obtainable (by using wave functions of
one band), one cannot use both a semiclassical picture
and this incomplete set of wave functions. Mathe-
matically, one could develop ¥, the solution of (103),
in any complete set of states. Since one hopes to devise
approximation procedures which yield as a first approxi-
mation a description in terms of an equivalent Hamil-
tonian, and which allow successive refinements, the
choice of the set must be tailored to the physical
situation. In fact, existing different procedures differ
exactly in their choice of the proper set. The other ideas
in the derivations are already contained in the discussion
of the proof of (105), namely, the possibility of expand-
ing the Bloch energy (107a) and the use of the operator
exp(R,-V) as a shift operator (107b).

As an illustration, introduce a set of Wannier
functions expressed in terms of Bloch functions by?®

Xe(r— RO ="k exp(—ikRO¢:(r) (110a)
with the inversion
YD) =2, exp(kR)x.(r—R0).  (110b)

[The band index g is dropped; the summation is over
the wave numbers in one band ; ¢ satisfied (86).] These

26 A normalization factor has been omitted from (110). One can
show that the functions x are orthogonal to one another.
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functions have the important property that they drop
off very rapidly as | r— R.%|>>a. [One sees this directly
by using the “periodic” representation (106b) for y;
the exponential in the sum becomes exp[ —itk(Ro2—7)]
when | R%7|a>>1; this term oscillates very rapidly.] It
is this feature which makes the Wannier functions
especially useful in the description of perturbed periodic
lattices. Therefore a development of ¥, (103), in
Wannier functions is called for. Write

Y (1,8) =20 Ca(l)Xar (111)

Note that ¢, stands for ¢(R.0,#), and x. for x.(r— Ro0).
The problem is now to determine the equation which
the ¢, satisfy. Since the x.’s are given, and the equation
for W is known, it is necessary only to substitute (111)
into (103). Consider first the term H' V=", c.H' (¥)Xa.
Now H’ represents the external field; since x. drops to
zero in a few lattice distances, one may write, if the
external field does not vary much over such distances,

HY2Y o coall' (R xa (112)

Next study the action of — (%#2/2m)A+ V4 on ¥, using
(110a) :

ﬁ?
(_—M—Vﬁ)‘l’:Z ¢a(f) exp(—1kRo) E(k)yu(r).
2m ok

Apply the development of E(k) as given by (107)
(remember that the band index is still omitted) and
resubstitute ¥ (r) in terms of x, (110b); then

A2
(——A-I— Vﬁ)\I,)
2m

= > ca(t) exp[ik(R,,O—{—R)\O—-Rao)]E,,x,\

ok, u, N
= aZi CaruBuXe (113a)
The only point remaining is to recall that
Catn=Cc(R"+R.0);
thus one may write formally
Caru=exp(-+R2 V,)ca. (113b)

Note particularly that V, is a gradient operator with
respect to a lattice point. The sum over u in (113a)
combines, using (113b) and (107a), to E(—iV). Thus
the substitution of (111) in (103) yields

% ca
2 LE(=iVa)catcaH (Re) Jxa=——2 —5t—xa. (114)
a 1 @

From the linear independence of the x., one obtains the
Schrodinger equation for the development coefficients
¢ [69, 707:

E(—=iVa)catH (a)ca= — (/i) (dco/0t).  (115)
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As before in (109), one has obtained an equation which
looks very much like a Schrodinger equation, with the
Bloch energy taking over the role of a kinetic energy.
The important conclusion to be drawn from this
derivation is that to the extent that the approximations
made are valid, the eigenvalue spectrum of the energy
operator Hioia1= (—72/2m)A+V s+ H' is identical with
that of E(—iV)-+H’? Thus one may obtain (ap-
proximate) eigenvalues of Higa1 by studing those of
E(—1iV)+H’, and this is an important practical use of
(115). It is also clear from this derivation how the
derivatives with respect to lattice vectors arise [71].

(¢) Introduction of magnetic fields. It is also possible
to construct equivalent Hamiltonians for systems which
are subject to magnetic fields. If one has an electron in
both a periodic field [called V(r) or Vg(r)] and a
magnetic field characterized by a vector potential A,
the appropriate Hamiltonian is

1 e \?
HM=-.-(p——A) +Vg(rx) (116)
2m c

[the operator p=(%/1)V]. The existence of an equiva-
lent Hamiltonian means that the eigenvalues of the
Hamiltonian (116) are (in an approximate sense) given
by the eigenvalues of the operator

E[—iV— (e/h)A].

E(k) as before is the Bloch energy, in terms of the
wave number k, of an electron in the periodic field V.
A proof of this approximate equivalence follows the
pattern of the one just given for an electric field. The
main difference consists in the fact that one develops
the wave functions not just in Wannier functions as
before (110b), but rather as

(1162)

i f :0A<s>ds)xa. (117

The integral is along a straight line joining R.° and r.
With this expansion the argument is basically identical
to that given before [69]. Hence an approximate
equivalent Hamiltonian exists in the magnetic case as
well. It is of interest not only to have an equivalent
Hamiltonian, but to see how one in principle could
continue and improve the development. For such
purposes one must start from the Hamiltonian (116).
There are a few exact consequences of that Hamiltonian,
which follow just from the periodicity of V' [72]. If one

V=3 cq(l) exp(

27 This is probably obvious from what has been said before;
in detail, let A* be the eigenvalues of E(—iVa)4H'(R.Y), co* the
eigenvectors. Then
H ot W= Hiotal 2 Ca'Xa= ZuEE("‘7va) + 14 (a) ]Ca"Xa

=)\H# Ea Calx = NIA,
Tt is clear that the eigenvalues of the operator £(—iVa)-+H' (R

are independent of a; R,? is just an independent variable in terms
of which the operator may be expressed.
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calls the eigenvalues of Hy, W and the eigenfunctions
W ,%8 one has as the basic eigenvalue equation

HuyVyr=W¥y. (118)
From (118) one may deduce in the case where A is a
linear function of r (the magnetic field is constant):
Vi (r+x) =exp{i[ ke (e/fc)r-A(x) ]}
X¥k —(e/igac (1),  (119)
Wk~ (e/hc)A(x) =W (k). (119Db)

= can be any one of the primitive translations of the
lattice; A(z) denotes A evaluated at the value =. These
relations which are obvious generalizations of (106a)
are due to Harper [ 727]. Just as the Bloch wave function
may be written in the form (106b), one may deduce
from (119a) that ¥ may be written as

W, (r)=e* U k— (e/fc)A(r); r; k. (120)

U is a function of three variables; it has the periodicity
properties

Ulk— (e/hc)A(x), 147, k]

= U[k— (¢/h0)A(¥), 1, k], (120a)
Ulk— (e/tc) A (x), ¥, k+(e/fic) A(r)]
= U(k— (¢/hc)A(1),1,K). (120b)

Use of the linearity of A, A(r+<)=4(r)+A(=),
allows one to verify the property (119a) by straight
substitution from (120). Since the relations (119) are
the only exact consequences of (118), and their deriva-
tion is elegant and short, it seems worthwhile to give it
here. From the translational invariance of (116), it
follows that®

‘I’A(l‘—f—m‘i)ZCXI)[(’L.e/fM)A(ci)I‘] ; Cy)\i\l’)\'(l‘). (121)

One could also obtain (121) by verifying by differen-
tiation that if W(r) satisfies (118) for a given W, so
does ¥ (r) exp— (ie/fic)rA(x;)]. This function must
therefore be a linear combination of the eigenfunctions
of H s for a given W. This linear combination is what
is written down in (121); the coefficients Can? are just
numbers; C¢ is a matrix (it depends on the specific
translation made). From the fact that ¥y (r+=4=;)
=¥, (r++=;-+=.), one obtains, by applying (121) twice,

CiCi=CiC? exp{(ie/fic)[A(x;) - =i— A)=a)=i ). (122)

A change in labeling of the eigenfunctions ¥y belonging
to the given W changes the representation of the C’s.
One checks by substitution that a representation of C’s

28 Tt is obvious that ¥ is a much overused designation; an
attempt has been made to distinguish between wave functions
referring to different physical situations. Still, in the following
discussion, M is often dropped.

29 The sum is over all wave functions ¥y belonging to a given
energy W.
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defined by
(k| C9|k)y=exp(ik=;)0[k'—k+ (e/7ic) A(=9)]* (123)

satisfies (122). Use of this representation in (121) and
the é-function character yields (119a) directly. Since
all the N’s refer to a definite energy, the different k’s do
likewise; Wip=W),. This in conjunction with the &
function in (123) yields (119b).

The further discussion of the function U is a good
deal more complicated. It is certainly reasonable to
exploit the known periodicity of this function and
expand U in the Bloch functions ¥, or alternately one
could use an expansion in plane waves in terms of the re-
ciprocal lattice vectors. On using the original Schrodinger
equation (118), one obtains an infinite set of equations
for the development coefficients. One has now arrived
at the same point where the previous discussion [see
Eq. (110), for example] started.*® The results (119a)
extract the exact information. Further developments are
concerned with a discussion of the coupled equations
satisfied by the development coefficients ; one recognizes
that transitions between bands again play a significant
role; the development as a whole is hard to survey
however. Recently Kohn [73] succeeded in giving a
prescription (not a unique one) which may yield a
systematic development. The starting point is again
(116), H ». Kohn succeeded in constructing an operator
Hg=Hg[p—(¢/c)A] and a set of states @gx, which have
the property that

HM@B)F%: (' |Hg| k) 2. (124)

No mixing of the bands. (Even though this result is
approximate, the sense in which it is approximate is
well defined.)
The functions g have again symmetry character-
istics
ps(k++%) =2 ¢p(k). (125)
The operators g depend on the operator [ p— (¢/c)AJ;
they can be expanded in terms of the external field H¢* :

He=Hg o+HoHg ,+HeHg ot -. (126)

In this sense this is a weak-field development. The
operators Hg have the important periodicity property

that _ B
Hglp— (¢/c)A++*]=Hs[p—(¢/c)A], (127)

which is reminiscent of (104). Also, Hg ¢ is indeed the
one-band Hamilton Ez(—iV). Thus, with the con-
struction of the functions @ and the operators Hg, one
appears to have a systematic development. For some
reason the actual implementation of this sound and

% One could for instance construct a solution of (118) by writing
War=2rg cx,0k,8 (Sum over both k and band index). This
yields an intractable set of equations for ck,s. By expanding U,
(120), one makes better use of the periodicity character of the
problem.

3L H, is a dimensionless parameter proportional to the external
magnetic field.
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sensible program is extremely complicated; points
which one would expect to be of technical difficulty
become major obstacles; one can but join Kohn [737%
in hoping that more transparent methods to obtain
these important results will in time be found.

4. Semiclassical Description. Dispersion Law

(a) General remarks. In the preceding sections the
various assumptions and simplifications underlying the
treatment of electrons in solids have been discussed. It
is true that the behavior of electrons must necessarily
be governed by quantum-mechanical laws; the band
scheme itself is of quantum-mechanical origin. Within
a band one deals with a continuum of energy levels; the
wave functions of a single band allow localization of a
particle of the order of lattice distances a. In dealing
with phenomena where the localization is not that
precise (larger than @), one could construct wave
packets consisting of wave functions all in one band,
which would describe the situation with sufficient
accuracy. Such a wave packet, however, might well be
described classically. Another argument suggesting that
a pseudoclassical description might be useful is that
once the Bloch energies Eg are known as a function of
the wave number k, many classical relations appear to
hold; for example, the relation between (average)
velocity and energy :

v=H1V,E. (128)

[Quantum mechanically one proves-that 9;=7%"1V,E;
one could define a v by (128).] Finally, one can also
think of a more fundamental approach to the whole
question of the behavior of electrons in a solid. In the
treatment so far the electron-electron interactions were
neglected altogether. One believes that the introduction
of these interactions does not affect the qualitative
features of the one-electron model. In the discussion of
the low-lying states of the many-body problem, it is
found that the excitation spectrum of the system may
be described in terms of ‘“‘single-particle type” excita-
tions. These excitations, quasi-particles, have a well-
defined but not simple relation between energy and
momentum. This understanding would lead one to
study the classical and quantum mechanics of (quasi)
particles with a given relation between E and k, a given
dispersion law, without bothering further about the
origin of the dispersion law. Hence one can study a
system of particles (actually quasi-particles) with a
given relation between E and k; Eg= Eg(k) possessing
the basic periodicity

Eg(k++%) = Lg(k) (129)

satisfying Fermi statistics. The purpose®® of such a

2Tt is a pleasure to see an author refer to his own results as
“shockingly complicated” rather than as results obviously to be
anticipated.

3 A very beautiful account of this approach is given by Lifshitz
and Kaganov [74]. The discussion in this section is largely based
on their presentation,
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study is to find out just how macroscopic observable
quantities may be expressed in terms of the attributes
of the quasi-particles. The surfaces in k space, where
Eg(k) is a constant, play a significantrolein the analysis.
Because of the periodicity condition (129), these
surfaces are repeated periodically in k space. The anal-
ysis of these surfaces again depends on the location of
critical points [where V,E=0; see Sec. C.2(c)]. Near
such a critical point %o, one may expand E in a Taylor
expression
*Eg
—(ku—ky0) (By—ky,0). (130)

uO oy

By (k) = L (ko) +3

The character of this critical point is determined by
the reciprocal mass tensor

M =12(PE/0k,dks), uy,v=1,2,3. (130a)

The constant energy surfaces even for simple dispersion
laws can be extremely complicated. The purpose of
many experiments is to obtain information about three
surfaces. Among these, the study of the Fermi surface
E(k)= Ep is especially significant.

(b) The Hamilionian. Consider a particle of quasi-
momentum p= 17k in an external magnetic field Hexs;
it describes a helix of radius 7= pc/eHexi. To allow one
to have a semiclassical description, certain conditions
have to be satisfied:

(1) The de Broglie wavelength of the particle must
be much less than 7. This allows one to localize the
particle among its orbit. Formally,

pc/eH x> h/p. (131a)

(2) The radius » must be much larger than the lattice
constant ¢. [If » were smaller than @, one would need
the detailed description of the periodic part #;(r) of the
Bloch function yg(k,r)= e (r), for if r<a, Ys(k,r)
(). ]

Hence

0 (131b)

(3) The energy level separation of the levels in the
field H oy, should be small compared to the energy of the
electrons; this corresponds to the fact that the external
fields produce a small perturbation of the band scheme.
Formally,

fiwg = h(eH o/ mc)< Ep=Fermi energy. (131c)

These three conditions all produce a restriction on H:
H should be less than ~ 108 oe. Since this is a condition
which can be met (in many experimental situations)
one can sensibly attempt to construct such a classical
theory. The dynamics are specified by a classical
Hamiltonian

Ho=Eg i 'P— (e/hic) A]+ed. (132)

Here A and & are the vector and scalar potential of the
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external field; P is defined by
’ k=#"P—(e/c)A(x)]; (132a)

k is the wave vector in the Bloch theory (#k is the
crystal momentum). One further specifies that P and r
are conjugate variables, and Fg(k) is a given function
satisfying the periodicity condition (129). For given A
and @, the Hamiltonian equations yield, in principle, P
and r as functions of the time; hence both the motion
of the electron in ordinary space and that in k space
[obtained from P via (134a)] are determined.
From (132) one obtains

dl‘/dt‘—: ﬁklvkEg (k) =YV,

dk 1dr
h—“:e(Ecxt+” —XHext)
dt cdi

(133a)

1
ze[Eext"*“(VX Hext)]- (133]3)
4

Even though these equations appear seductively
similar to the Lorentz force equation, it is well to
remind oneself that writing v in (133b) makes the
formula look familiar, but it is of no help in solving the
problem. To do that one must use the complicated
dependence of Eg on kin both (133a) and (133b). With
Eqgs. (132) and (132a) [and (133a) and (133b)] one
has a complete classical dynamical description for the
behavior of electrons (quasi electrons) in crystals of
given dispersion law. The character of the crystals is
contained in the form of Eg(k). This classical system
cannot be solved in general for an arbitrary dispersion
law. Interesting and important results can be obtained
in special cases [75].

Let Het=0; Eo= E,=const. Equation (133b) now
becomes fidk,/dt=¢E,, dk,/di=dk,/dt=0; hence,

ky— (eE./h)t=const. (134a)
The x component of (133a) yields dr./dt= 0L/ dx, or

1 ¢ aEg 1 ka aE,;
ra()—rd=— f A= f ——dk,
By Ok B Ik dx, Ok

1
ek,

=——{ Ep(kakyk:)— Ep(k kyyk:) ] (134b)

k0 and 7.0 are the x components of the initial wave
vector and position vector. Equation (134) describes
the motion of the electron in & space as well as position
space. Assume that the crystal is such that the x
direction (field direction) is one of the directions of the
reciprocal lattice, let its magnitude be a*. Then the
fundamental periodicity requirement (129) reads

Eg(koA-a* ky ko) = Eg(k.k,k?).
Trom (134a) one sees therefore that in a time 7,

T=ha*/eF 22h/eal,. (135a)
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ki has changed by an amount a* hence the energy g
returns to its initial value; &, in turn has moved to an
equivalent point k,4a*; in this sense the motion is
periodic in & space. One observes similarly from (134b)
that after a time 7', because of the periodicity of Eg,
7:(T)=r,0, the motion is also periodic in position space.
The amplitude 4 of the oscillation may be obtained
from (134b) as

A=AEg/eE, AEg=bandwidth. (135b)

Thus one concludes that the motion of an electron in a
crystal in a constant field (in the direction of a reciprocal
lattice vector) is periodic with an amplitude given by
(135b) and a period given by (135a). This is strikingly
different from the behavior usually expected of an
electron. One, however, does not see these oscillations;
for typical fields E,, say of 1 v/m, one finds 4 ~100 cm,
and 7'=107° sec. In a normal situation the time between
collisions is of the order 1072 sec, hence the oscillatory
motion described never gets a chance to be established
—the collisions destroy the oscillatory motion. Ex-
cessively high fields would be needed to make 7" suf-
ficiently small so that many oscillations could take
place before a collision would destroy the periodic
motion. As a second example, consider the case where
Hexi=constant, Ee=0. This case is of great practical
importance. Equation (133b) becomes in this case

dk/di= (e/hc)[ v X Hexy . (136)
From (136) one sees that vdk/di=0; hence

f ‘v~—dt— f (ViEg)dk; (Eg)i=(Eg)e.

This implies that the quantity Eg(k) remains
constant during the motion in % space, or the motion
takes place on a constant energy surface. From (136)
one observes further that (for constant external fields)
(d/d)[Hex-k)=0; during the motion the component
of k in the direction of the field remains constant. Pick
H..w=H,. One then knows that the trajectory must
have constant %, and constant Eg(k); it must be the
intersection of a surface of constant energy with a
plane parallel to the k.k, plane. It is clear that the
nature of the intersection depends on the nature of the
energy surface. If the energy surface is simply con-
nected, this intersection is closed curve. (This is one
of the defining characteristics of a simply connected
surface.) In general, one needs a picture of the energy
surfaces as they repeat from zone to zone to study the
intersections and hence the trajectories in k& space.
Since the trajectories are in planes perpendicular to the
field direction, it follows that by wvarying the field
directions relative to the crystallographic axes, one
samples different slices of the energy surface. In so
doing, one may obtain closed orbits within a zone, open
orbits, or closed orbits extending over several zones. For
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the case Hexy=1H,, Eq. (136) reduces to
dky/dt=(e/hc)v,H,, dk,/dt=— (e/hc)v,,,
dk./di=0. (137)

The element of arc length along this trajectory is
given by (ds)?= (dk.)*+ (dk,)?. In the course of time the
electron in % space moves along this trajectory (since
k.= constant, this is a plane curve):

(ds/dt)= (cH,/hc) (v2+v,2) = (eH./lic)vy. (138)

If one now knows that the orbit is closed (this is not
determined by the dynamics but rather by the nature
of the dispersion law), the motion is periodic, and (138)
yields for the period

fic ds
Ty= —
eH 2 V1

% ds

I . (139)
[(OF/0k.)*+ (OE/ 9k, ) T}

The integral is along the trajectory. As it stands,
(139) is not useful, since v, depends on k in a compli-
cated manner through the dispersion law and (133a).
Equation (139) may be transformed. Suppose one has
an ordinary two-dimensional integral to be integrated
over a region bounded by a curve C, defined by
f(x,y)=C. The area A(C)=J Sdxdy. If ds is the
element of length of a curve f(x,y)=X\ (a level curve),
the area may be written as

A(C)= ffdxdy jfd)\—

_ f i f b (140)
0 [(a7/0x)*+(8f/ay)*]¥

which may be directly applied. Let S(Zg,k,) be the
area contained in the closed curve,® then applying (140)
in a differential form yields

N ds
=¢ — (140a)
0L V1L
which, when combined with (139), gives
Tu= (Wc/eH,)(8S/dE). (141)

For free electrons, one has closed orbits; the fre-
quency of the oscillations is given by eH,/mc; in the
present case, oscillations (for certain electrons in any
case) again occur. Define, therefore, an effective (cyclo-
tron) mass m* by

wg= 27r/TH= eHZ/m*c, (142)

3 This closed curve is the intersection of the energy surface
Eg(k) = Eg with the plane k. is constant.
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so that

m*=(#2/2mw) (3S/IE). (142a)

Equations (141) and (142) are the basic relations
needed for the interpretation of cyclotron resonance
experiments. It is clear that with the observation of the
resonance frequencies w, one determines effective
masses, and via (142a) one obtains information about
the surface of constant energy. In practice, one often
gives a dispersion law, say of the type (130), computes
S (k,) (apurely geometrical calculation), and then deter-
mines the coefficients m,; by direct comparison with
experiment through (142). One should remember that
this definition of effective mass works only for closed
orbits; no analogous definition exists for open orbits.
It should also be remembered that m™* depends on I4
and k.; hence, different electrons carry out different
periodic motions. These two cases discussed probably
are sufficient to indicate the general character of these
semiclassical methods. The basic equations are always
(132), and although in principle everything is straight-
forward, the periodic character of Ez and the resulting
involved nature of the energy surfaces give rise to a
wealth of unusual situations and unexpected physical
phenomena. Angular dependence of resonance fre-
quencies would be in this class. The semiclassical dis-
cussion is essential for whatever understanding one has
of these complicated effects.

Other effects, notably the various oscillatory effects,
also can be treated by similar methods. In most of those
phenomena, quantum effects play a predominant role,
and hence the semiclassical discussion has to be supple-
mented by quantum ideas. This can be done; one can
graft quantum rules onto the classical formalism
outlined so far. For the de Haas-van Alphen effect, this
is a powerful method of description. The actual for-
malism is of a hybrid character; the dispersion law is
quantum mechanical in origin. One then constructs a
semiclassical theory based on it and applies Sommerfeld-
- Wilson type quantum rules to that pseudoclassical
theory. It is certain that the resulting formalism has
considerable heuristic value. Its status within the
general solid-state framework is unclear. For the same
reason it would appear unclear just what one can expect
from a precise quantum-mechanical theory based on an
arbitrary dispersion law. For the qualitative features, a
classical theory with quantum rules should be sufficient ;
for finer details one would expect that a theory of more
fundamental character is needed. It may well be that
from the many-body approach mentioned previously,
one may obtain the approximate validity of such a
quantum description with arbitrary dispersion law.

5. Fundamental Considerations

(a) Many-body approach. There can be no doubt that
the concepts introduced through the one-electron ap-
proximation have shown a surprising power to describe
experimental situations. It is therefore of great im-
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portance to understand these concepts on a more funda-
mental basis. The first systematic study of this kind
was undertaken by Kohn [767]. The purpose of this
particular paper was to give a fundamental explanation
of the effective mass notion. The precise result proven
was the following : Consider a perfect insulating crystal
with fixed nuclei. Introduce a point charge ¢ and an
additional electron. The assertion is now that all the
low-lying energy levels of the complete system are
obtained from a one-particle Schrodinger equation,

[— (B2/2m*)A— (eq/k*M) |F= EF. (143)
Here m* is the effective mass and &% the dielectric
constant. It is of interest to point out the starting point
of these considerations. It is provided by the many-body
Hamiltonian

N+1 72 2y
H=—Y —A~Y ———
i=1 2m ai | 1;— RSO
é 1 Z
+32 —qed. —+2 ¢—. (144)
lr@_r1| i Ty @ Rao

In H one recognizes the kinetic energy of (V1)
electrons, their interaction with fixed nuclei (second
term) (Z, is the nuclear charge number), and their
Coulomb interaction. The point charge ¢ causing the
perturbation, placed at the origin, contributes the last
two terms in (144). One studies the low-lying energy
levels of H. There is no effective mass, no dielectric
constant in H. One would hope that such type entities
arise more or less naturally in the discussion. It is
indeed true that these quantities do arise, but their
identification with the conventional definition is far
from easy (Kohn [77]). The result of Kohn may be
generalized still further (Klein [78]). The response of
a solid plus one electron, described previously, to an
electromagnetic field 4,(r,)) may for low-lying excita-
tions be described by a one-particle Schrodinger
equation, involving three parameters m*, k¥, and the
magnetic permeability. For this to be true, the external
fields must be slowly varying over distances of the
order of lattice spacings @, (1/4,)V4,&1/a, and slowly
varying in time, (1/4,)(94,/0t)<<KAE/#h, where AE is
some characteristic energy. Low-lying excitation means
more precisely that the energy difference between
ground state and excited states is less than AE. AE is
of the order of electron volts.

The results of Kohn and Klein are of great interest;
that all the complicated interactions exhibited in (144)
are digested so as to just yield a one-particle equation
with two parameters is surprising and remarkable. This
is the basic justification of the one-electron picture.
The proofs are rather complicated and as yet not too
transparent. But a most promising beginning has been
made in the derivation of one-particle properties on a
sound basis.
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(0) Fermi surface. The Fermi surface has been men-
tioned several times. The Fermi level Er was defined by

Ep
n= 2f g(E)dE; (145)
0

however, no precise definition of the Fermi surface was
given. One usually describes this surface as representing
the limit of occupation in k space of the one-particle
quasi-momentum states k in the ground state of the
the system [797. All states with momenta less than
the Fermi momentum are occupied, all others are
empty. The question is how to formulate just what is
meant by a Fermi surface for a system of interacting
fermions. It is known that for noninteracting particles
at absolute zero the number of particles as a function
of & exhibit a singularity. (This is the well-known graph
of fo for complete degeneracy.) The effect of a finite
temperature is to destroy that discontinuity. To define
a Fermi surface generally, for a system of interacting
fermions with a Hamiltonian [80]

H=H+H,, (146)

one must first state what is meant by ‘“number of par-
ticles in a given state.” A precise definition of this would
be the mean occupation number of the state &, or the
ensemble average of the number operator a,fa;= n,

ii=(ar'ar). (147)

The a’s and o' are the usual annihilation and creation
operators of particles in state &, 7 depends on the
temperature through the ensemble average. Now the
Fermi surface is defined as the locus of the discon-
tinuities of limy_072; (Luttinger [817]). It was shown by
Luttinger that the volume enclosed by this locus is the
same as that enclosed by the Fermi sphere for non-
interacting electrons. In the case of no interaction, this
definition also reduces to the usual one. It is satis-
factory that one can give a precise meaning to the
Fermi surface even in the case of interacting particles,
but perhaps disillusioning that one needs a rather
high-brow formalism (grand ensemble in a second
quantized theory) to give a precise definition of the
Fermi surface.
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not valid for nonequilibrium situations. Dissipation effects in
particular are not included in the Liouville hierarchy-—even
if this hierarchy is supplemented with the superposition
assumption.

N. Bogoliubov, J. Phys. U.S.S.R. 10, 265 (1946).

Reference 9. An extensive exposition of the ideas of Bogoliubov
[23]. A further systematic presentation can be found in Proc.
Midwest Conf. Theoret. Phys., Washington Univ., St. Louis,
Missouri (1958). Actual use of the procedure outlined by
Bogoliubov—such as corrections to the Boltzmann equation
due to triple collisions—was made by S. T. Choh (disserta-
tion, University of Michigan, Ann Arbor, Michigan, 1958).
H. Grad, in Handbuch der Physik edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 12. A very interesting
review of many aspects of kinetic theory. The different levels
on which one can study the Boltzmann equation are noted.
There is (pp. 216-233) a careful study of the mathematical
features of the various derivations of the Boltzmann equation.
The doubtful character of the various limiting processes is
pointed out. This critique appears to indicate (as does the
text) that only applications to new physical situations will
enable one to decide which one (if any) of the current pro-
cedures is the appropriate one.

Reference 1, Chap. X. A detailed description of the properties
of the Einstein-Bose and Fermi-Dirac distribution laws.
Reference 3, Chap. II.

Reference 4, Secs. 9 and 10. The treatment given in this book
has been used liberally in the discussion in this paper. Al-
though the details are different, the philosophy used in this
book and the present paper are certainly similar.

Reference 2, pp. 314. A succinct statement of the density
matrix ideas. The discussion of the consequences of the canoni-
cal density matrix is particularly nice.

Reference 1, Chap. XII. A very meticulous discussion of the
basis on which one picks an ensemble. The justification of the
ensemble is discussed at length.

Reference 4, Sec. 11.

Reference 2. Choice of the energy eigenfunctions #, as an
orthogonal set yields a diagonal density matrix in an “energy
representation” only, see (41b), but in the ¢ representation
one obtains

14 ,
o(dq" =z Z un*(q")e BBy (q') (A3)

which is not diagonal.

A. J. F. Siegert, J. Chem. Phys. 20, 572 (1952). This paper
uses the function Z(¢’,¢”,8) [cf. (42)] to give an alternate
expansion of the partition function. Consider a Hamiltonian
H=H,+H,, and let #, and %,° be eigenstates of H and H,,
respectively; E, and E,? are the energy eigenvalues. Define

Z(¢',q".8) =2 ux*(q")e Blrun(q’) (Ada)

Z2g",q" B) =2 [u:(q") J* exp(—=BEL) (). (Adb)
reference 33 establishes a connection between Z and Z°:
Z(g'q" 8)=2"(¢"q".8)

B
"o [ @@ as-nm@2GaN. (49
0

This integral equation may be iterated and one obtains a de-
velopment identical to the one described in the text [see (46)],
but for Z(q',¢”,8) rather than for the operator R.

E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951). In this paper an exact expression for the
partition function of free electrons in a constant magnetic is
obtained. Since Z(¢,¢”8) satisfies Eq. (43a), which is in this
case just the Schriodinger equation for a free electron in a
constant magnetic field, which can be solved, one can find
Z(q',q",8); hence, by (43c), one can obtain Z(B).
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T. Nakajima, Advances in Phys. 4, 363 (1955). A very nice
treatment of some of the perturbation procedures current in
statistical mechanics. The discussion here is basically a repe-
tition of a part of this paper. There are occasional nontrivial
misprints; some have been noted in the text.

G. E. Uhlenbeck and Th. Uehling, Phys. Rev. 43, 552 (1933).
In this paper, the collision term in the Boltzmann equation
was written in the form (58). The Bose-Einstein case was also
discussed. The solution of the equation was obtained as an
expansion similar to Chapman and Enskog development (see
reference 6, Chap. VII).

Reference 1, pp. 436. All the possible details of this perturba-
tion calculation are given.

M. Born and H. S. Green, Proc. Roy. Soc. (London) A192,
166 (1947). This is one of a series of papers devoted to the
study of the Liouville hierarchy. This particular paper is con-
cerned with the quantum-mechanical Liouville hierarchy,
using the reduced density matrices. Although generally the
method is similar to that sketched in the text, Born and Green
do not (at least not explicitly) introduce any time averaging
or coarse graining. Since the Liouville hierarchy is equivalent
to the dynamical equations, and as such completely reversible,
the introduction of irreversibility in their formalism must
result from the mathematical approximations made. It would
appear preferable to introduce the probability notions needed
to obtain irreversibility in a more explicit manner. That dif-
ferent time scales are essential in obtaining rate equations is
not at all clear from this formalism.

E. Wigner, Phys. Rev. 40, 749 (1932). The introduction of
the function Wy, the derivation of the equation W satisfies,
and the classical limit all are contained in this remarkable
paper, which remained unquoted until about 1946.

J. H. Irving and R. W. Zwanzig, J. Chem. Phys. 19, 1173
(1951). This paper contains a proof of the general validity of
Eq. (64); the formalism presented in the text is similar to the
one developed in this reference. The formal equations of hydro-
dynamics are also obtained. [The possibility of using the
Wigner function for this purpose was pointed out earlier
by M. Dresden, Phys. Rev. 71, 143 (1947).] If one does not
invoke any time smoothing, the Wigner function formalism
gives the same results as the reduced density matrix method
[38].

J. Kirkwood and J. Ross, J. Chem. Phys. 22, 1094 (1954).
The Uhlenbeck-Uehling equation is derived from the Wigner
function formalism. One first introduces W, the time-
smoothed Wigner function (68), then one obtains an equation
for reduced distribution function fi,¢. If one now has a dilute
system, and if one is allowed to make a Born approximation
to describe the scattering, one may reproduce the Uhlenbeck-
Uehling equation. It is unlikely that this equation has a range
of validity beyond the Born approximation. So far no explicit
calculation of the extra terms expected for dense, strongly
interacting systems have been made.

F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940): Although the discussion of the
adiabatic approximation on p. 470 is rather brief, it is still
one of the best discussions available. The fact that a given
accuracy of an energy does not imply a comparable accuracy
of the wave function is stressed. This is an important point.
Apart from the general observation that the validity of the
adiabatic approximation is tied to the small value of m/M,
no further validity criteria are mentioned.

R. E. Peierls, Quantum Theory of Solids (Clarendon Press
Oxford, England, 1955). A very nice qualitative discussion of
the validity of the adiabatic approximation (p. 4). The cri-
terion (77) is mentioned there. Although this is well known,
there seem to be very few places where this limitation is ex-
plicitly stated. The treatment of the book as a whole is of a
rather refined simplicity. No formal aspects of the adiabatic
approximation are discussed.
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W. Pauli, “Prinzipien der Wellenmechanik,” in Handbuch dre
Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1934),
Vol. 24, p. 163. Pauli obtained these equations to illustrate
quantum mechanical problems in which one has a dependence
on outside parameters.

G. Wannier, Elements of Solid State Theory (Cambridge Uni-
versity Press, New York, 1959). The theorem of Bloch re-
ferred to is discussed in many solid-state books. This book has
both a nice selection of topics as well as an interesting treat-
ment. The Bloch theorem and the tight binding approximation
are discussed (pp. 133-136 and 159) in a very straightforward
manner.

J. R. Ziman, Proc. Cambridge Phil. Soc. 51, 707 (1955). If
one uses the wave function ¥ (#,R) = o (R)¥»(,R), Eq. (72)
in the text, with ¢, (7,R) satisfying (71), one finds an equation
¢ has to satisfy. There are terms coupling ¥ and ¢, the 4 and
B terms in (74). It is shown in this paper that if these terms
are used in a perturbation calculation, then in first order the
matrix elements of transition (or the electron-phonon scat-
tering amplitude) are the same as in the usual theory, using
the Bloch perturbation terms, (82c).

A. Haug, Z. Physik 146, 75 (1956). A discussion of the adia-
batic approximation. In the notation of the text, the unper-
turbed states are given by products of ¥, and ¢4, ,0:

#
(—--2;% 2 AT (r,R))npn: en(R)¢n. (A6)
Here V, includes V and U:
»
(_W % A“+en(R))‘anu(o>=Enﬂ¢n#(0)- (A7)

Hence unperturbed states are |mu>=¥,,©=y,(r,R)
X @n(R). The terms 4 and B are again treated as a per-
turbation. These perturbations couple the electronic states,
described by |#> and the lattice states described by ¢n, 0.
As always, the perturbation causes transitions changing both
the electronic and lattice states. A typical transition matrix
element would be [see (74)]. :

.;Lz
~ 2. fd’dR%*(r,R)[m"(R)J*
XZ (2Vaon Ve’ + en'w®Aan’).  (A8)

This matrix element can be reduced further using (A7) and
(A0). If one in particular assumes that /"dry (,R) is independ-
ent of R and if one makes again a Taylor expansion, one can
write this matrix element as

f ™ () o's0) (7 TV Wn ) o 3), (A9)

which one recognizes as a matrix element of (82c) between
product states of lattice and electrons. Thus references 47 and
46 both show that a consistent application of the adiabatic
approximation and the more common Bloch perturbation
term (82c) give the same result in first order.

Reference 45, Chap. I. A very readable description of the
geometric of the periodic lattices.

C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1953), Chap. L.

J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955). The
relation between the frequencies 2 and w is derived in this
paper. The starting Hamiltonian is obtained—it is very similar
to (82). The Hamiltonian is written in second quantized form;
for the derivation of the relations between w and € and the
phonon-electron matrix element, use is made of the transfor-
mation to collective coordinates. A significant paper, but not
an easy one to read.

. A. Kitano and H. Nakano, Progr. Theoret. Physics (Kyoto)

9, 370 (1953). The Taylor development alluded to in the text
was carried out in this paper. This is a rather straightforward
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52.

54.

S5.

56.

57,

S8.
59.

60.

matter. The paper calls attention to the difference between
w and € in connection with problems in superconductivity.
Again a transformation to collective coordinates is made to
obtain the relation between w and €. (The paper is full of
misprints!) .

Reference 50. The ~alculation mentioned in the text is carried
out in Appendix A of this paper.

. A. H. Wilson, The Theory of Metals (Cambridge University

Press, New York, 1958), 2nd ed. Chapter II gives a nice
simple yet precise discussion of the results one can obtain
from the study of a Schrodinger equation with periodic co-
efficients such as (86). The treatment here as in later chapters
is lucid and to the point.

Reference 42, Chap. VIII. A compact and straightforward
discussion of the qualitative and quantitative features of the
band approximation can be found here. In particular, the
connection between zone structure and crystal symmetry
alluded to in the text is obtained in a direct manner.

J. R. Reitz, “Methods of the one electron theory of solids,” in
Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press, Inc., New York, 1955), Vol. 1, p. 1. This is
a complete and easily readable exposition of the various
methods available for the calculation of electron wave func-
tions in solids. The treatment is sufficiently detailed so that
it can be followed by any person who has mastered the mate-
rial in a typical solid-state textbook.

F. Herman, Revs. Modern Phys. 30, 102 (1958). A thoughtful
and interesting discussion of the physical assumptions under-
lying band theory. The discussion given in the text was in-
fluenced to a considerable extent by this reference. The various
methods employed are briefly outlined (not in the detail of re-
ference 55. The illustrative examples of band structure are of
special interest since they demonstrate how a combination of
theoretical and experimental methods may be used to obtain
quite definite information about the band structures.

J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,
England, 1960). This book appeared while the present paper
was in preparation. The general topic is the theory of trans-
port phenomena in solids. It stops short of an application of
density matrix techniques to transport processes, which is the
main concern of this paper, but treats the theory up till that
point in detail. It seemed natural in a way to use this work as
a general reference of the pre-density matrix work and base
the remainder of this paper in it. Parts I and II of the present
paper could then have been eliminated. It became soon ap-
parent that Part I.B, statistical mechanics, would have to be
retained in entirety; part of the interest in transport phe-
nomena in solids is based in the unusual problems in statistical
mechanics they present. This feature is absent in reference 57
Several sections of Part I.C also would have to be retained.
The greatest duplication occurs in Part IT, but even there the
difference in the discussion of details and the difference in
basic philosophy is so large that a separate treatment seemed
justified. In spite of these differences, reference 57 is exceed-
ingly useful. Not the least reason for this is the detailed careful
comparison made between theory and experiment. Section
2.12 contains a thorough discussion of the electronic proper-
ties of the elements. The conclusion substantiates what has
been mentioned in the text: the band structure depends to an
unfortunate extent in the form of the atomic potential. In
this connection the absence of an iterated solution of the
Hartree-Fock equation for a solid is noted.

Reference 53, Sec. 1.81 and Appendexes A-3 and A-4.

The needed properties of the integrals are given.

Reference 53, p. 164. The discussion in the text is essentially
the same as that contained in this reference.

R. C. O’Rourke and A. W. Saentz, Revs. Modern Phys. 27,
381 (1955). An extensive discussion of formulas such as (94)
in the text. The partition function is expanded using the same
expansion as given in Sec. B, Eq. (48). The effects of walls are
discussed with unusual care. Applications are to free electrons
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in o constant magnetic field, reproducin’ the results of refer-
ence 34. These results are exact. Applications, using approxi-
mation procedures are made to clectrons in a periodic field
and outside magnetic field.

Reference 45, pp. 63-65. A simple discussion of the vibrations
of crystal lattices is given.

L. van Hove, Phys. Rev. 89, 1189 (1953). In this fundamental
paper the connection between the periodicity of the frequency
and the existence of critical points was first explicitly stated,
invoking the use of a theorem due to Morse. The relation
between the singularities in g(w) and the critical points is also
pointed out.

H. Rosenstock, Phys. Rev. 97, 200 (1955). A detailed dis-
cussion of reference 62; applications of the considerations of
reference 02 to specific lattices. A method is proposed for ob-
taining the critical points, in reference 62 just statements
ahout their existence were made.

H. Rosenstock, J. Phys. Chem. Solids 2, 44 (1957). An attempt
is made to relate the number of three-dimensional saddle
points, maxima and minima, in a region to the number of two-
aumensional critical points on the boundary. See, however
reference 65.

J. C. Phillips and H. B. Rosenstock, J. Phys. Chem. Solids
5, 288 (1958). A sequel to the study of reference 64, showing
that the results derived therein are not always correct. How-
ever, relations of this general type can be shown to exist.

A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. Weiss,
Revs. Modern Phys. 30, 175 (1958). A beautiful discussion of
the lattice vibrations of diatomic lattices. Pertinent is a brief
but simple exposition of the ideas of reference 62 as well as a
two-dimensional illustration of the theorem of Morse (which
is the mathematical basis of the whole development).
Reference 53, p. 29. Actually, any book on solid-state theory
contains the formulas (106).

Practically the identical argument is used in reference 57,
pp. 93-95. 1t is stated there that there is no experimental evi-
dence for a lack of validity of equations such as (109) or
(116a). This indeed is the case. Yet it is of interest to investi-
gate the precise status of such equations within the theory.
J. M. Luttinger, Phys. Rev. 84, 814 (1951). The cquivalence
proven by Luttinger in this paper is in fact the one between
(116) and (116a). The proof given in the text is an adaptation
of that method for the simpler situation of just an external
electric field.

J. C. Slater, Phys. Rev. 76, 1592 (1949). A theorem equivalent
to (115) was first stated and proved in this reference. Wannier
functions were used for this purpose for the first time. Actuall
reference 69 is an extension of the methods of reference 70
to the magnetic case.

Reference 45, p. 200.

P. G. Harper, Proc. Phys. Soc. (London) A68, 879 (1955).
The derivation of the relation (119) is copied directly from
Harper’s paper. The function # is expanded in Fourier plane
waves. The equations coupling the Fourier coefficiente are
studied in detail for the case where the lattice potential is
sinusoidal. One of the results obtained is that the lattice forces
tend to broaden the magnetic levels. The level separation is
also affected by the lattice; it is no longer uniform. Other con-
clusions such as the effect of the overlap of bands seem to
depend on the details of the model chosen. This is a very in-
structive paper.

W. Kohn, Phys. Rev. 115, 1460 (1959). The main results of
this impressive paper were mentioned in the text. As a sample
of the strange difficulties encountered, one might mention the
choice of a basic set of functions. Let ¢g(k,r) =eug(r) be
an ordinary Bloch wave. Then a very useful complete orthogo-
nal set consists of the functions uge’™®*, where k is restricted
to the first Brillouion zone. Since one wants to describe Bloch
wave packets, which under the influence of the magnetic field
travel through many zones, one would not like k restricted to
the first zone. On letting k vary over many zones, a redundant
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sct et is produced. This set is the one picked, but in part
because of the redundancy, the calculation is quite unwicldy.

/4. 1. M. Lifshitz and M. I. Kaganov, Soviet Phys.—Uspekhi 2,
831 (1960). An extremely well-written summary of the
pseudo- or semiclassical description of electrons in metals.
The treatment is self-contained and the mathematics simple,
although a little tricky at times. In spite of its simplicity the
subject is a rather subtle one, not all the conclusions are as
obvious as the authors make them appear.

75. The discussion here follows the one given in reference 45,
p. 191.

76. W. Kohn, Phys. Rev. 105, 509 (1957). The relation between
(143) and (144) was established in this paper, the method
employed is an expansion of the wave functions of I [given
by (144)7] in those of H°.

77. W. Kohn, Phys. Rev. 110, 587 (1958). In this paper the
identity of £* and the conventionally defined static dielectric
constant was demonstrated. The proof makes extensive use
of the graphical methods of the many-body theory (and field
theory).

78. A. Klein, Phys. Rev. 115, 1136 (1959). The basic theorem
concerning the response of a system plus one electron to an
outside field conjectured by Kohn in reference 76 is proven
here. The methods of second quantization are used through-
out. Inasmuch as one needs to compare systems with different
number of particles, this is a natural method to use. The proof
is lengthy.

79. Reference 58, p. 66. A typical definition of the Fermi surface.

80. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
The purpose of this study is to investigate the ground state
of a many-Fermion system. Onc needs to calculate the grand
partition function;

Zy="Tr (e FU—sN)), (A10)
where N is the number operator Zagfar, u the chemical
potential, and

H=H°—|—f]’=2 ekak_‘l'ak—l—% 2 adelTak'Gz’(kll V!k’l’), (All)
k k1

178
where ¢, is the single-particle energy in state %, and
(k| V| k') is an ordinary matrix element of two-body inter-
actions. aj, and @} are annihilation and creation operators of
particles in state k2. The evaluation of Z, follows a perturba-
tion-type patterns; it may be cast in a diagrammatic
development.

81. J. M. Luttinger, Phys. Rev. 119, 1153 (1960). Define

fir=(Zy) ™! Trartare B HuN), (A12)

This is the average number of particles in state k. It may be
studied using the methods of reference 80. The locus of its
singularities in % space as 7" — 0 define the Fermi surface.

II. RELATIONSHIP BETWEEN OBSERVED ENTITIES
AND THE THEORETICAL PARAMETERS

A. Nature of Conductivity Calculations

Section A applies the various solid-state and statisti-
cal mechanical ideas outlined in I' to a conductivity
calculation. It is intended to carry the development to
a point where one obtains relations between observable
transport quantities, and the parameters introduced in
the theoretical description. An explicit discussion of
such relations always demands extensive numerical
computations; these are not given in the present work.
In this section the emphasis is on the physical ideas
and assumptions contained (explicitly or implicitly)

1 For the text, Part I is referred to as I, Dart IT as II.
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in the calculation of the electrical conductivity. There
are a few rather scattered remarks about the thermal
conductivity. In Sec. A.1 the influence of external mag-
netic fields on the conductivity is described. There are
many detailed treatments of the subject matter at
hand. Of these, the books by Wilson [ 1 and Ziman [ 2]
and the review articles by Sondheimer [3], Blatt [4],
and McDonald [5] should be especially noted. The
purposes of including this reasonably well-known and
readily available material are (a) to establish a uniform
notation, (b) to collect and analyze the many different
assumptions, and (c) to provide an organized framework
against which the later development can be presented.
Section A is divided into two subsections. In Sec. A.1
the general outline of a typical calculation is presented.
New physical situations are encountered when a mag-
netic field is introduced ; in Sec. A.2 a conductivity cal-
culation in the presence of such fields is presented.

1. General Pattern of a Conductivity Calculation

(a) General outline. The basic physical idea under-
lying all conductivity calculations is the possibility of
describing a solid in terms of the electronic system and
the lattice system separately. The interaction between
these two systems can be introduced afferwards. The
great success of the separate descriptions of the elec-
tronic and lattice systems in correlating and organizing
experimental information would suggest such a pro-
cedure. One therefore describes the systems in terms of
their respective unperturbed wave functions—the elec-
trons by Bloch waves, or some refinement thereof, the
lattice system by its quantized vibrations as phonons.
The effect of the interactions, in the spirit of perturba-
tion theory, consists of producing transitions between
these unperturbed states. Both the electron and the
phonon distributions are affected by the interaction
between the two systems. In addition, both electron
and phonon distributions are influenced by the inter-
actions with imperfections in the crystal. The presence
of external constraints, such as electric and magnetic
fields and thermal gradients, also affects the electron
and phonon distributions. The computations of the
changes which these various interactions produce in the
electron and lattice wave functions, a purely quantum-
mechanical problem, is the first part of the calculation.
The next part of the calculation is statistical in char-
acter: By using the computed transition probabilities of
the various processes, it is possible to set up a gain-loss
Boltzmann-type equation for both the electron and
phonon distribution functions. Whereas in principle this
is straightforward, the complexity of the problem (the
many separate participating processes) makes this a
rather untransparent part of the theory. Once the

2 The notation in II is generally the same as in I. Bracketed
numbers refer to references listed in the Literature Survey at the
end of Part II. References to the Literature Survey of I are pre-
fixed by 1. Formulas and sections referred to without a part
number are those of II; those of T are prefixed by I.
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Boltzmann equation is set up, the statistical problem
is, in principle, solved. The practical problem is all but
solved, for one needs the solutions of the Boltzmann
equations to obtain results of physical interest. This
third part of the problem is, in principle, purely mathe-
matical in character; to obtain the equations and solu-
tions in a manageable form, one needs all kinds of
simplifications and approximations. The justifications
of these procedures can come only from physical con-
siderations, so even the supposedly purely mathematical
manipulations lean heavily on physical considerations.

Once the solution of the Boltzmann equation is ob-
tained, the calculation of the transport coefficients is
straightforward. In the absence of any interactions, the
electron and phonon distributions are their respective
equilibrium distributions. For the electrons this is the
Fermi distribution fo; the equilibrium distribution of
the phonons #,0 (the lattice vibrations) is not so ex-
plicitly available. It depends on the quantity g(w?)
discussed in I, Sec. C.3(c). (A common approximation
to n is the well-known Bose distribution [67].) The
following scheme summarizes the different aspects of a
typical calculation.

1. Quantum-mechanical part. One starts from un-
perturbed wave functions which are products of elec-
tronic and phonon wave functions. The effect of the
various perturbations (electron phonon interactions,
impurities, external fields) is calculated. It is clear that
the matrix elements of the perturbing operators,
between unperturbed states, play a crucial role in this
discussion. The operator describing the electron phonon
interaction was discussed in I. (See I, Sec. 2.)

2. Statistical part. The effect of these interactions is
to cause deviations from the equilibrium electron and
phonon distributions. If one assumes that both an elec-
tron and phonon distribution function can be defined,
it is straightforward to transcribe the effects of the
interactions to the distribution functions. It is at this
point that one decides just what processes are to be
taken into account. Once can now construct gain-loss
equations for the distribution functions, which in princi-
ple should determine these functions.

3. Technical part. The next task is the solution of
these equations. One always seeks stationary solutions;
approximate methods have to be used to obtain them.
From the electron distribution f,® the electrical current
j follows in the usual manner:

e
]:?4; fvdek. €))

It should be noted that* the “particle” velocity v is

given by
V=1V Es. (1a)

3 The number of electrons in a volume element d% with wave
vector d®k is given by (1/4x3) f (k,r)d%d3k.

4 The notation is the same as in I. The Jattice Hamiltonian is
frequently referred to as the phonon Hamiltonian.
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Thus, a knowledge of botk the dispersion law E= E (k)
and the distribution f is required to obtain the current
j. The (electronic) thermal current (per unit area) is

1
Q=Z—3fE(k)vfd . 2)

v

The methods used in obtaining approximate expressions
for f depend on the detailed problem at hand. Some
examples are given later.

It can be seen from the rough outline just presented
that there are many different areas all properly belong-
ing to conductivity theory. The division just given is a
useful one [7] to classify the many studies in this field.
Before entering upon a more quantitative discussion,
the following points should still be noted.

(a) In most of the calculations actually performed,
one does not discuss the effect of the interactions on
both the electron and phonon distribution functions.
Most often® one assumes a given stationary phonon
distribution; just the changes in the electron distribu-
tion are considered.

(b) Physically, the exchange of energy and momen-
tum between the electronic systems and the lattice
system is the mechanism which is responsible for the
resistance of a substance (excluding impurity resist-
ance). Actually, within the outline just presented, there
is noting to indicate the drreversible character of the
exchange of energy between the lattice and the elec-
tronic system. Whereas the possibility of the energy
transfer between the two parts of the system is clear,
the discussion given so far contains no indications of
the origin of this irreversibility.® The finite conductivity
[via (1)] comes from a lack of symmetry of the dis-
tribution function f, but the connection of this asym-
metry with an irreversible exchange of energy is cer-
tainly not transparent.”

(c) In the discussion of the lattice Hamiltonian
(L.82b), cubic terms in the Taylor expansion were
omitted. It is clear that if they were included, they
would affect the phonon distribution. If there are tem-
perature ranges in which these terms can be expected
to be important, the phonon Boltzmann equation
contains additional terms, corresponding processes de-
scribed by these terms (phonon-phonon scattering).
Thus, the actual structure of the transport equations
may be different in different ranges of physical parame-
ters. This circumstance causes very considerable com-
plications in the general discussion of transport
processes.

5 An exception is discussed in Sec. B.

¢ In fact, nothing prohibits an electron from picking up energy
from the lattice.

7 This is connected with the fact that the approximate solutions
of the Boltzmann equation are always expansions in which one
keeps only the first power of the applied field. The Joule heat,
which is the manifestation of the irreversible electron-phonon
interaction, depends 1 the square of the external field.
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(b) Electron-phonon interactions. The electrons are de-
scribed by Bloch wave functions as given in (1.86), to
be denoted by ¥«(r). The band index § is usually sup-
pressed. The matrix elements for any perturbation are
written as (k'|perturbation|). The lattice vibrations
are described by the Hamiltonian Hj, given by®

hz

Hypo=—— Z Aa‘*“% Z U(Ra 0)
2M o a,B

+i X YapYapsUapss’ 3)

a,B,s,s’

The y’s are the displacement of the ions, the Uag, . are
derivatives of forces, Uag,ss° is symmetrical in s and
s'; it depends on R.2—Rg? only [see (I. 83a)].

In the usual manner H i gives rise to equations for
the displacements Ma,s=—2_ Uap,ss¥s,s’. A special
solution of this classical problem may be written as®

yaZBq eXPD (qRo}’——wt)—I, 4)

where q is the wave number of the lattice waves, and
the frequency w is determined via the equation of
motion from the secular equation

[ Y a Uss®(e) exp(iqe) —8s0Maw?| =0. (5)

(The fact that U depends on the difference R.2—Rg’
only has been used. Occasionally « is used for R.0.)
Equation (5) gives the dispersion law (the relation be-
tween frequency w and the wave number q) for the
lattice waves. From (5), one concludes:

(a) For a given wave vector ¢, there are three real
roots for w, wi, ws, ws (written as w,, p=1,2,3).

(b) The cigenvectors By, Bs, B; belonging to these
roots are mutually perpendicular (written as B,
u=123).

Both (a) and (b) follow from the obvious observation
that the w’s and B’s are the eigenvalues and the eigen-
vectors of a symmetric matrix.

(c) For long waves (meaning 2m/|g¢|>> lattice dis-
tance), one can show that one of the eigenvectors B is
parallel to q;the others are perpendicular to q. Thus, for
waves of long wavelength, one has an approximate split-
ting in transversal and longitudinal waves. Further, if
B.||g, one has v,=sound velocity =w1/|¢|, wa=ws=1,'q.

For a given lattice wave vector q, there are three
possible frequencies written as w,=1,2,3. The normal
coordinates &4, are defined by

1
2 2g,uq,u expli(qR) ], (6)

Ya=—— "
(NMQ)% B

where Q is the volume of the solid. The g,,, are unit

8 This formula is identical with (I.82h); occasionally, formulas
are repeated as an aid in reading. The notation is the same as
before; recall in particular that s is a Cartesian index from 1 to 3.

9 In this discussion one assumes one atom per unit cell.
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polarization vectors [proportional to the vectors B in
O '

The orthogonality of the vectors B, previously noted,
may be expressed as

(6a)

(sqn' 8:11') = Oppe
One may verify directly that the &'s satisfy
Eq.n“}'wq.uzgq,u:o- )

Thus, the lattice oscillations may be described as a set
of uncoupled oscillators. The transition to the quantum
theory is now obvious. The quanta of these oscillators
are the phonons. The state of the lattice may be de-
scribed by a lattice wave function

‘1’n1--~ng-~-(£1-~-£q---)

en ()oY}

¥ is a product (corresponding to the independent oscil-
lators) of harmonic oscillator wave functions, with the
characteristic Hermite functions Hn, Equivalently,
the state of the lattice may be described by a set of
occupation numbers {#,} giving the number of phonons
of momentum 7q, and energy #w,,. The matrix ele-
ments of &£ and 9/9¢ are all familiar; for instance,

B\ /0 +1\}
(ng'| £|n,")= (—) [( ) Ong’’ ng+1’
W 2
7 \?
+(7) 6nq",nq’—1]. (83)

The state of the solid as a whole may therefore be speci-
fied by (antisymmetrized) products of Bloch waves (for
the electrons) and lattice wave functions such as (8)
written compactly as (k,z,].

When one deals with an infinite solid, both the
phonon wave vector q and the electron wave vector k
have a continuous spectrum. If the lattice altogether
consists of L;LsL; unit cells, so that it is a parallelepiped
having sides Li%1, Lowe, and Lges, the periodicity con-
ditions allows only values of q and k given by

I Iy I3
k,q=27 (—‘vl*+—'cz*+~—e3*) ; (9)
Ly Lo Ls

I, b, 13 are integers; the =¥, =%, =3* are the primitive
translation of the reciprocal lattice (I.79). To obtain
the effect of the phonon-electron interactions, one has
to compute the matrix elements

(I {ng} | Hine| ki {nd'})- (10)
One therefore needs some explicit expression for Hips.

10 Compare the remarks made by Ziman [8] in this connection.
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In (1.82) the form of this interaction was obtained as

fIint:'”Z Ya'VaV(ri_ RaO)E“Z ya,svi,ﬂ,h‘m)' (11)

This form as written assumes a rigid displacement of
the ions. In general, it is better to just assume that the
potential seen by the electrons is a linear function of the
ionic displacments yo. (This should be thought of as
the first term of expansion in y.) The actual form of V,
its relation to the atomic potential, and the degree to
which it depends on screening by condution electrons
should properly be left open. From (11) one obtains the
matrix element (10) by direct substitution. The product
character of the unperturbed wave function and the
perturbation operator results in a matrix element which
itself is a product. The form of the matrix element (8a)
demonstrates that only transitions in which the phonon
occupation number of a given q changes by one are
allowed (in this order). One obtains

(K'y1q| Hins| K, 1g+1)

=— 2 €us eXp(iqRao) dPr o™ (ry)

i,0,u

1 (B, 41

(12)
(NMQ)

XV s a,6(7s)

2w,

A similar matrix element may be written for (&',14| Hint|
| k,ny—1). There is one signficant general feature these
matrix elements possess, independent of the particular
form of V and the wave function. It depends on the
periodicity of the potential V only. Recall that V.
stands for V.V (r;—R.) evaluated at the equilibrium
position. If one uses the periodicity of the Bloch func-
tions (I.106a) in the matrix element (12), one obtains
(the phonon factors are omitted)

> fd:“m exp(—ik'ri+ikrAiqri)eg s

X o e®(#)up(ri)Va,sV exp[ ((q(R—1;)].  (12a)
From the periodicity of the functions #;, and the peri-
odicity of the potential, one infers that the sum is a
periodic function of r;. From this fact one deduces that
the integral is different from zero only if

kK'=k-+q-+2ns%, (13)

where =¥ is a general vector of the reciprocal lattice.
The proof of this last statement is very simple. Let
F () be periodic: F(r)=F (r+=). Consider

fdarF(r) exp[i(k—Dr]=1y;

change the integration variable to r=r'+4; this does
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not change the value of the integral. Therefore
Ia=exp[i(k—1)=< ;.

If exp[i(k—1)=]>#1, it follows that I;; must vanish. On
the other hand, for /;; not to vanish, (k—1)x=integer
27 or k—1=2x<* where «* is an arbitrary vector of
the reciprocal lattice. This is (13).]

The selection rule (13) is of great importance. It is
clear that the matrix elements describe physical proc-
esses—the matrix element (12) describes the emission
of a phonon of wave number q by an electron of wave
number k’. Processes in which £*=0 are usually called
normal processes; if ©*0, they are referred to as U
or (Umklapp) processes [97]. For normal processes, (13)
appears to express a momentum conservation law.
However, the very fact that =* need not be zero, shows
that this interpretation cannot be strictly valid. It is
better to view (13) as a selection rule operating in
phonon electron scattering. On using this selection rule,
there remains the electronic part of the matrix element
which, apart from constants, is given by

M= sq,,,fd%b;cr*(r)VaV"w(r). (14)

M depends on the phonon wave number through e,
on the polarization index u, and on kk’, and q. The
calculation of M is just the evaluation of the integral
in (14). To study that integral one needs to know both
the potential ¥ and the wave function yy. There are a
number of different studies all concerned with the ap-
propriate choice of V. These studies are admirably
summarized by Ziman [107]. For present purposes it is
pertinent to point out that the detailed choice of V
(rigid ion, Bloch approximation, Bardeen self-consistent
calculation) has a decided influence on the results ob-
tained, although the results are qualitatively similar.
For the further reduction of M given by (14), still
other simplifications are necessary. It is, therefore, not
so that the matrix element M is an a priori given entity,
not even for very simple solids. The general features of
the matrix element M may be obtained by examining
M for special choices of the potential V. It appears that
most of the features can be summarized by an expression

~of the type

M=re,,k=K)C(|k=K]). (14a)

C is a function depending on the choice of potential; it
has an explicit dependence on the scattering angle. The
specific forms for M, derived on the basis of special
assumptions about ¥ [11-137, all have this form (14a).
Some results may be inferred from (14a):

(a) One observes from (14a) and (13) that in the

IUTf one assumes the perturbing potential V to be proportional
to the local displacement (as for a continuous medium), M
becomes ~ fyp* exp(iqrVViyy; the other extreme, a rigid ion
displacement, gives M~ fYr*VV iV is the potential of ion «
[as written in (14)].
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case of normal scattering (¢¥*=0) M contains a term
(e4-q). For long waves, one of the ¢,,, is parallel to q.
Since (e4.-q)=0 for the transversal modes, the inter-
action electrons and longitudinal phonons appears to
be the main one. It is clear that this argument breaks
down for U collisions even for the special form (14a).
The term in M becomes (&,,-q+27<*), and there is no
reason why q-2w%* should be parallel to q; in general,
it is not.

(b) The magnitude of C depends [as one can see
through (14)] on the exact wave function ¢. C as
written has the dimensions of an energy. In the special
cases that C has been computed one finds that it is of
the order of the Fermi energy. In terms of the factor C,
the final expression for the matrix element (12) becomes

<k/: nqi IIint| k) nq_l' 1>

~1 A0 T
- l [ q o (k/_k>
(NMQ)7 qu,#
XC627FT*,k’~k—Q‘ (lsa')
Similarly,
<k,:nQIHintl k: Ng— 1>
—1  (hing)
cqu(k,_ k)ca%rr*,k—k'—q- (15b)

(VM) 2,

The term (15a) corresponds to the emission of a phonon
of momentum q by an electron in state k’; similarly,
(15b) corresponds to an absorption process. The Kro-
necker §, in (15), expresses the selection rule (13). From
the matrix elements the probability of a transition (per
unit time) can be obtained directly. Perturbation theory
gives for the transition rate from ¢ to f:

Aisg= 2n /)| (i| Hine| f)|?0(Ei—~ Ey)
O(E)=sin(Et/h)/wE.

(16a)
(16b)

O has the properties: (a) O(E;—E;) has appreciable
values only in the range ‘

|E;—Ei| <h/1; (16c)
(b) O(E) for large ¢ approaches a & function; (c) one
checks directly that

+0
f O(E)dE=1. (16d)

In general, O(E) has the characteristics of a 8 function.
In some studies [147], O(E) is so written.

With the formulas (16) and (15) the number of
transitions per second caused by the electron phonon
interaction is explicitly given. The characteristics of the
solid are largely contained in C. [One could write the
same relations without specializing the matrix element
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M to the form (14a); the expression (14) would work
as well. In many applications C is simply taken as a
constant and then the form (14a) is preferable.| This
is the end of the purely quantum-mechanical considera-
tions; a statistical treatment is needed to obtain the
transport coefficients. It is still important to note from
(16) that because of the Hermitean character of Hiy
[obvious from (11)7, the quantity A possesses the

symmetry property
A=A (17

Another mechanism which redistributes the electrons
over the energy levels is scattering of the electron waves
by static impurities. This process is basically simpler
than the one discussed before. Since impurity ions are
some 10* heavier than electrons, the scattering of elec-
trons may be treated as purely elastic. Furthermore,
one usually is not interested in the disposition of the
impurity centers, just their effects on the electron and
possibly the phonon distribution are of importance.
The calculation of the number of electrons scattered
from k' to k proceeds much the same as the one pre-
viously outlined. The perturbing potential is now pro-
vided by the impurities which could create a spherically
symmetric or a much more complicated potential. In
any case one needs the matrix elements of this potential
between Bloch states. From these matrix elements the
transition probabilities follow again by (16). The tran-
sition rates possess the symmetry (17) for the same
reason as before. The detailed numerical discussion of
the matrix element requires a knowledge of the impurity
potential and the Bloch wave function. The statistical
discussion can be carried out knowing just that there
exists a scattering probability per unit time. For an
explicit form of the impurity scattering matrix element,
Wilson [157 should be consulted.

(c) Boltzmann equation. Let f;(¢) be the number of
electrons in state &, at time ¢; similarly, let #,(f) repre-
sent the number of phonons of wave number ¢. The
changes in these functions due to the electron phonon
interaction are obtained through (16) and (15). Sub-
stitutions of (15a) and (15b) in (16) yields directly:

Emission of a phonon of wave number'?: q

Transition from |k n,> — |knA1>

nge+1
Alc'—blc,q=_ _“ESQ,;;(I(’—'k)]2C2627"*’kr_k_q
Wy, p
XO(Ekf—Ek— ﬁwq)E (nq-i—l)Bk'_,k,q. (183)
Absorption of a phonon of wave number g¢:
Transition from |k n,> — |[kn,—1>
Ny T
Ak’,q—ﬂc= —[eq,u' (k/_' k):]2C2527rr*,k—k’—q
Wq,u
XO(Ep~+liw,— Er)=n,Bi gor. (18b)

2 The vector signs k,q are omitted when these entities are
needed as subscripts as in #g, Agroskyq.
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The quantities B defined by (18a) and (18b) depend on
k, k', ¢, =%, and p, the polarization index ; they, however,
do not depend on the phonon occupation numbers. On
using (18a) and (18b), the changes in the electron dis-
tribution function f’ can be obtained directly as

fr
(52) == £ e l= i DB
a7, L

+ for (1= for)nBir g |
+ 20 [fw (1= fo) (1) Birr s g
k'’q
+ i (1= fi)ngBrrr qmw .

Each one of the terms in (19) has a very transparent
interpretation. The first term represents the losses of
the electrons in state %/, through the emission of a
phonon ¢ by an electron in state %'. The second term
similarly represents the depletion of the electrons in %
through the absorption of a phonon by these electrons.
The factors (1— f3’") occuring in (19) express the Pauli
principle for the electrons. If 2"’ is occupied, no transi-
tion to k" can be made. Similarly, factors like (7,41)
express the Bose statistics of the phonons. The fact that
these factors occur “naturally” in the matrix element,

(19)

while those like (1— fi7) for the electrons have to be

put in, comes from the fact that in the quantization of
the lattice oscillations in the manner described, the
Bose statistics is already contained. Indeed, a common
way to describe the quantized lattice oscillations is by
phonon creation and annihilation operators satisfying
the Bose commutation rules. In this way one describes
a many-body Bose system. In contrast, the electron
system, so far, has been described in terms of a single
electron moving in an average field. It is therefore not
surprising that in describing tke system of electrons, as
is done in (19), the Fermi statistics must be explicitly
introduced.

External electric and magnetic fields also cause a
redistribution of the electrons over the energy levels.
Their effects can be described through the streaming
terms in the Boltzmann equation (I1.10). For stationary
distributions (8f/d¢), the complete equation reads

e(Bext ¢ [VXHext Vi fHVV. f= (9f/01)c.  (20)

In (20) Eey and He, are the external electric and mag-
netic fields; (9f/8t). is given by (19). In spite of its
obvious appearance, (20) cannot just be taken over
from the classical equation (10). One should note that
v in (20) is, in fact, given by (la) which depends ex-
plicitly on the band structure Eg(k). The streaming
terms describe the succession of states through which
an electron in a periodic lattice moves under the in-
fluence of outside fields. They can be obtained [as
written in (20)] by using standard perturbation theory
[16]. The main limitation is that the electric field
should be sufficiently weak so that no band-to-band
transitions can occur. This is just the limitation re-
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quired for the validity of the semiclassical discussion
of electrons in periodic lattices as given in I, Sec. C.4.
The Lorentz force as used in (20) was already given
there in (1.133a). The magnetic term in (20) also
results from a (time dependent) perturbation develop-
ment. As a consequence it can be expected to be valid
only for small times. In this case this means times small
compared to 2mc/eHe, [17]. Equation (20) with
(0f1/0t) given by (19) is the basic transport equation
which must be solved. It is clear by inspection of the
collision term (19) that (20), for given Eo and He
and a given dispersion law, is still not an equation for
£ alone. The phonon distribution #4(#) occurs explicitly
in (19). From the transition probabilities for the proc-
esses (18a) and (18b), one can set up a ‘“‘phonon”
Boltzmann equation. (See Sec. B2.) This equation also
depends on both f and #; one has a pair of coupled
Boltzmann equations. [Compare (I.11c.)] As a first
(much needed) simplification, the phonons are usually
assumed to be in their appropriate thermal equilibrium
state,”® so that the 7, in some sense are known. In any
case, (19) becomes a single integral equation rather
than one of a pair of coupled equations. Its solution
now depends on the assumed phonon distribution. The
second approximation customarily made is to ignore all
U processes, or equivalently one puts £*=0 in the ex-
pressions (18). This leaves as only possible processes
those described by Brygoi,q and Bj_g,qr The 6 func-
tion also reduces the double summation in (19) to a
single one. Substitution of this simplification, using also
that Broi—q,¢=Bi—q,qos [as may be verified directly
from (18a) and (18b)] gives

(i’ﬁ)fzq Biguailtafia(1= 12)

a
— (ng+1) fr(1= fi-g)]
+2° Biigokyd (1) frra(1— f1)
q e fil= fu) )

To obtain this form of the collision term it is necessary
only to neglect the U processes in (19) ; nothing need be
assumed about 7, Equation (21) may be cast in a more
transparent form. Note that the summation over the
vector g is over the first Brillouin zone. Call q, —q in
the first term of (21). Then (21), after a trivial re-
arrangement, reads

(21)

I¢]
(ai;k) =2 frra(1— fi) [ Brsg,~griti—q

+ (77'41"}' 1)Bk+q—>k,q]
=2 [fe(1= frsa) [ Brra,—a—k (n_q+1)
- “Jf'”qBHq»k,q]- (22)

13 The nature and validity of the assumptions are discussed in
detail in Sec. B.
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If one now calls k+¢=Fk" a new summation index, one
obtains the collision term in the form

Sk
o/, #

Str= B bt kit
+ (7'Lk’~k+ 1)Blc’—>k,/c’-k-

That the second terms in (22) may indeed be written
as Sy’ follows just from the form of (22) (and the prop-
erties of B); however, Si'#£.S5’5. One does not need to
assume any special properties of the #, One has to
assume that the phonon energy 7w, does not depend on
the sign of the vector q. Equation (23a) is the kind of
formula one usually writes down [[187]. In the derivation
given here, one has the explicit form of .S (in terms of
the B’s); the dependence of S on the phonon distribu-
tion is obvious. For formal manipulations (and also for
some practical calculations), (23a) is a more convenient
form. However, sooner or later the sum (actually a
triple integral) over ¢ in (22) or the sum over &' in
(23a) has to be performed. Then it becomes a matter
of choosing appropriate integration variables, and either
form can have advantages. In an equilibrium situation
(both a phonon and electron equilibrium), one knows
that the collision term vanishes, so that V', defined by

Vie= fk’((” (1 — ka)Sk'lc: S/ck’fko (1 - fk ’0) = Vi, (24)

is a symmetrical function of & and %’ (although S in
general is not).” The further discussion of the Boltz-
mann equation consists of the description of the ap-
proximations necessary to obtain tractable solutions
of Eq. (20).

(@) Linearized Bolizmann equation.'> Relaxation limes.
The Boltzmann equation as it stands is a nonlinear
integro-differential equation; the streaming terms [ the
left-hand side of (20)] contain the derivatives of the
distribution function; the collision terms contain the
integrals. It is practically always assumed in all trans-
port calculations that the external agencies causing the
derivations from the equilibrium are small. The thermal
gradients outside fields are such that products or squares
of these entities in some sense may be neglected. The
nonequilibrium distribution therefore is assumed to be
near the equilibrium distribution f° (the Fermi
distribution) :

JUE)= (eE-DFT 1)1 [see (1.88)].  (25)

It is therefore reasonable as a first approximation to use
the equilibrium distribution f°in the streaming terms
of the Boltzmann equation. One then neglects the gra-
dients (V, and V) of the correction to the equilibrium
distribution function. Thus, the streaming terms are

(23b)

14If one assumes that n,+12u, and also that ng=n_, one
can show from (23b) that S does become symmetric.
15 In this discussion, magnetic fields are not considered ; Hexy=0.
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now known; from (20) and (25) they become, in this
approximation,

e(Eext ‘v) (3f°/6E)+V : (afO/aT)mT, (26)

In writing (26) one has assumed that the only depend-
ence on position 7 of f°is through the dependence of the
temperature on position. One has a local Fermi distri-
bution, but the local temperature may vary from point
to point. The v in the first term of (26) comes from the
#7V3E term. In this approximation (which is always
used), the Boltzmann equation becomes an inhomo-
geneous integral equation. The approximation to the
distribution function just described may be written as'®

Jie= [+ i = fid—=P(8f°/ IE)
= [+ f’ (1= /i) (1/ ko).

® is now the unknown function, and it is small by
assumption. If (27) is substituted in the symmetrical
form of the collision term (23a), one obtains, using (24)
and keeping linear terms only

(0fi/00)= (1/kT) 2Zp (B —Pi) Vi
The equation for ® is now an inhomogeneous linear
integral equation:

afe af°

1
e(Boxe V) v 9, = — f B (B ) V.
oE oT koT

27

(28)

(29)

The kernel of the integral equation V' is symmetric,
(24); in addition, the entities V' are all positive [see
(24) and the definitions of .S and B]. The kernel of the
integral equation is known through the relation of V
to S [via (24)], the relation of S to B [via (23b)], the
form of the matrix element B as given by (18a). The
solution of this integral equation is no trivial task
either, especially since in general the quantity C [in
(18a)] is a complicated function of k and k. In the
special case that C' is treated as a constant or a function
or a function of |k—k’|, one can analyze the equation
further. It is best for that purpose to use the form (29)
of the collision term. Substitute V back into .S, S into B,
and reintroduce the phonon wave number as an inde-
pendent variable. One then ends up with an expression
of the form

fd3<l @rya—Px) frr, (A= fi%)

X[ Bitq,—qitt—gt (1) Brygor,a].  (30)

Without entering in all the details of the reduction of
this integral (which may be found in Wilson [197],
Sommerfeld and Bethe [207), the following observa-
tions may be sufficient to round out this part of the

16 When the Boltzmann constant % occurs in the same formulas
as a wave vector, the Boltzmann constant is written as k.
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calculation:

(a) It is clear that some assumption must be made
regarding the quantities 7, the phonon occupation
numbers. It is customary to replace them by their
average value

Ng=Tlg= (e"a/tT— 1)1,

1)

In so doing one has assumed a separate phonon equilib-
rium state.

(b) To discuss the integral (30) further, one must
know the dispersion law of the lattice waves. w, occurs
both in the phonon distribution and in the matrix
elements B. One usually assumes the dispersion law for
long wavelengths,

(32)

This should explain the presence of the velocity of
sound (or the Debye temperature) in the final results.

(c¢) The integration over q should include only the
first Brillouin zone. If one replaces this first zone by a
sphere of equal volume, one has

Jmax = 27 (3/4'”90)%1

1=, ¢= |q].

(33)

where Qo is the volume of a unit cell. Actually, the limi-
tation to normal processes in which energy is conserved
provides another restriction on the phonon wave
numbers which may occur in the integral (30). One has
for an emission process k — (k—q), q that

E(k)=E(k—q)+#w,. (34a)

From this conservation law, one obtains (in the special
case that E,="2k2/2m* and w,=hvsq) the inequality

hq/2m* < (hk/m*)+05qmax <2kr (1+v,/vr).  (34b)

['This follows just by noting that the cosine occuring in
(2/2m*) (k—q)? has to be less than 1].

Since generally the velocity of sound v, is much less
than the Fermi velocity vr, one has the effective re-
striction on the phonon wave number Gm.x<2krp
(kr=TFermi wave number). For a discussion of which
limitations, (34a) or (34b), should be used, consult
Blatt [217] and Wilson [22].

(d) In the actual evaluation of (30) one is helped by
the & function character of the functions O [defined by
(16b)]. This can be exploited by introducing
Ey, ,— E;—hw, as a new variable in (30) ; then one inte-
gration can be performed. There still remain two inte-
grals to be performed. If one assumes further that E;
is a quadratic function of %, and also that

® (k) = kax (£), (35)

one can perform one more integration.!” The result
then is a linear integral equation, involving a single
integral only, for the unknown function x. x is a function
of just one variable. The collision term has the structure

17 It is also necessary to neglect terms of order (fwg/Lir)?.
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(apart from factors)

9 +0/T
(_f 1 f dsLa@x () —B@x(n+2)]. (36)
ot/ . —/T

Here Z=lw,/kT, n= (E—{)/kT, and a and 8 are known
expressions depending on the integration variable z
and the constants in the problem. The occurrence of the
Debye temperature © in the limit of the integral can
be traced back to the limit of integration in the q space,
as exemplified by (33). One feature may be appreciated
just from the form (36). At high temperatures 7°>0;
the range of integration over z is small (from —6/T to
+©/T). One can therefore expand x (n-+2) in terms of
2. This means that at high temperatures one has ap-

proximately, from (36) [remember x(n+3z)=Zx(n)
+ax' )+ ],
(9f/0t)cou=rkax (n) (quantity depending onn,T) (37a)
=& (quantity depending on 7,7’ (37b)
and by (27)
0f/88)c=—(f=f)/r. (38)

Here 7 is an entity which can depend on E, , and other
constants. The important thing to remember is that in
the high-temperature limit, (37) shows that 9f/d¢ is
proportional to the deviation from the equilibrium
state as expressed by ®=k,x. The proportionality
constant depends on the form of a and 8 in (36). The
quantity 7 is often called a relaxation time. The pre-
ceding analysis showed that in the high-temperature
limit such a relaxation time actually exists. In fact, a
careful expansion of the integrals in (36) yields an
explicit form for 7. In many calculations, the existence
of a relaxation time 7, defined by (38), is simply
assumed. This has the tremendous advantage that the
Boltzmann equation becomes extremely simple. For
instance, in an external field E.x; (no thermal gradients),
Eq. (20) becomes

¢(Bexy ) (0f©V/0E)=— (f=J)/7. (39)
From (39) one obtains a solution
f=1@—er(Bexy-v)(31%/IE). (39a)
The current given by (1) is just'®
. e \ é afe
]M=;—3fv#fd k= ——;;; fw,ﬂ)yEext,gE. (39b)
The conductivity tensor is usually defined® by
Ju= 0wl ext. (39¢)

From (39b) and the definition (39c), one obtains an

18 Here and in the sequel, y, », etc., are used as Cartesian indexes
running from 1 to 3.

19 This is an experimental definition; one applies a field E in
some direction and measures the current in another direction.
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expression for oy,:

0

e 0 f
Opy=——— fdskf(k)v,ﬂ),,—.
478 oE

Z

(39d)

Thus, with a few lines of calculation, one has obtained
an explicit expression for an experimentally observable
quantity, the conductivity tensor. o, is not yet al-
logether explicit ; one needs to know the band structure,
for v must be known as a function of k to discuss (39d).
[v is given as always by %#'V;E, hence E(k) must be
known.) (k) must be known as well. To utilize the §
function type character of 9 f%/9E, it is best to write the
volume element in % space as

&= dS(dE/VE). (40)

One then can transform the % integration to one over
the energy and the surface. dS is a surface element of
a constant energy surface, ViE is the normal derivative.
On using (40), one obtains

€ af° p 100, e TV,
op=—— | dE— f dS=~=— f dsS,
478 oFE Vil 4ud Iy Vil

(41)
e T1%dS
O == - f ~.
1278 Vilt

The last relation in (41) is valid for cubic crystals
only. An exactly similar calculation for the thermal
conductivity starts from the Boltzmann equation

¢E02(8 %/ 9E)+0.(3/%/0T) (9T/8x) = — (f— 1)/ 7. (42)

(Both the electric field E, and the temperature gradient
are assumed to be in the x direction only). Equation
(42) only needs rearranging to give f. The definitions
of the electric current (la) and thermal current then
give again explicit expressions for the thermal conduc-
tivity. As is well known, one fixes the field E, by the
requirement that j,=0; the proportionality between
0T/dx and Q, then gives the thermal conductivity.
Use of the same é-function character of df°/dE (one
actually needs one more term in the expansion of these
integrals in terms of £7/¢) yields for the thermal con-
ductivity « .

BT T0%dS
k= . (43)
36w Yy Vil
Comparison with (41) shows that
L=«/aT=(x%/3)(k*/e*)=const. (44)

Note that the constancy of the Lorentz number L
depends only on (a) the existence of a relaxation time;
(b) the approximation of the streaming terms by their
equilibrium values; (c) the validity of the expansions
of the integral over the energy. The accuracy of this
expansion depends on the degree to which 4f©/0E
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represents a & function; this in turn depends on the
degree of degeneracy of the electron gas.

Experimentally, one finds that the value for L is
indeed the expected value for high temperatures and
again for very low temperatures. For intermediate
values, however, L varies with temperature. This aspect
cannot be reproduced by the theoretical discussion
described by (41), (43), and (44).

The whole point of this excursion on relaxation time
just given was to emphasize the fact that the introduc-
tion of a new adjustable parameter in the theory,
through 7, is not nearly as serious as the assumption
that a relation of the type (38) holds. After all, the
integral equation (36) contains, through the matrix
elements B, entities such as C, (18a), which are not
really given by the theory either. But as demonstrated
in the derivation of the Lorentz number, the assumption
of a relaxation time has consequences which are inde-
pendent of the structure of the solid. These therefore
test the validity of (38) directly. It was made plausible
from (36) that at high temperatures a relaxation indeed
does exist. At low temperatures, the solution of (36) is
quite trivial, it becomes x(z)=constant. Then it is
quite easy to see from (36) and the succeeding argument
that a relaxation time again exists, although in a
trivial sense.

In general, however, a relaxation time does not exist
for phonon-electron scattering: An assumption of the
type (38) cannot hold true. One has to perform the
analysis using the Boltzmann integral equation. It is
important to emphasize again that the proof of the
existence of a relaxation time, always makes use of
solutions of the Boltzmann equation of a certain type,
those mear equilibrium f= f'—®(9f°/dE). Even for
processes for which a relaxation time can be defined, (38)
is not necessarily valid for all states of the system,
Usually it applies to just those stages of a nonequilib-
rium process which are near equilibrium. Relaxation
time arguments play an important role in impurity
scattering. In Sec. 1(b) it was mentioned that the
scattering of electrons by impurities is a separate mecha-
nism for the redistribution of electrons. The description
of this process is substantially simpler (the scattering
is elastic) than the one given before. If # is a perturbing
potential, one has only two scattering processes [com-
pare (18)] transitions from k’—k, and those from
k — k’. The number of such processes? per second is,

by (16),
A= (2n/1) | (k|| k') |26(Ex— Er)  (45a)
Apor= 2n/n) | (K |u|k) |26(Exy— Ei).  (45b)
One observes that for this case of elastic scattering
Aprsr=Arsp. (45¢)
2 The function previously called O, which behaves as a &
function, is here written as a 8 function. The important symmetry

relation (45c) was mentioned in (17). The various 4’s can be
distinguished by their subscripts.
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The change in f, due to these collisions, may be written
immediately :

O f
( ) TEAL'kfk'U )= Aww fr(1= fr) ]
at

—:/.; Apw (for—fr), (46)

which is linear as one would expect; the scattering of
electrons of fixed impurities should result in a linear
equation. If one assumes a distribution function of the

form
Je= 1) — ka3 f°/IE)x (E)

and if E=E(|k|), a relaxation time always exists. To
show this, note that in an elastic collision, E=F/,
|[k|=|%],and /3@ = fr©, the equilibrium distribution
depends on E alone. Use of (47a) in (46) gives

(47)

afk 3f° af
( ) > A[ <E>]
6 (')E
afe Bo—Fs — f®
=k / P A k*fk (f;c
k = T
(48)
1/7 has been defined as
! boke (49)
T(k)— ~ . k' %

It is clear that 7, so defined, depends on %, and on the
matrix elements of the perturbation, but not on the
occupation numbers. In (48), (47) has been applied.
From the form of (48), it is clear that for impurity scat-
tering a relaxation time always exists. As stressed before,
this must be understood in the sense that if there are
solutions to the full equation of the form (47), the
collision terms for these solutions can be written as (48).
The evaluation of is still a separate question; it depends
on the details of the scattering mechanism.

2. Conductivity in an External Magnetic Field

The general pattern of a conductivity calculation for
a solid in a magnetic field is much the same as that
outlined previously. There are, however, some technical
differences as well as some matters of principle which
make a separate discussion worthwhile. In addition,
there is a wealth of phenomena associated with the
behavior of solids in magnetic fields, which have an
intrinsic interest and yield significant solid-state param-
eters as well. The discussion outlined in this section
stops short of the treatment using density matrix
techniques. This discussion is on the ‘“Boltzmannian
level”; the transport equation in one form or another
is still the basis of the discussion. The assumptions made
are noted; their limitations are discussed in detail in
Sec. B. The limitations of the treatment given here are
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some of the more compelling reasons for attempting
the density matrix approach.

(a) Obvious calculation. It is clear that the physical
mechanism which produces electrical resistance should
not qualitatively be affected by the presence of a mag-
netic field. The scattering of electron waves by im-
purities, the electron-phonon interactions, may in their
details be dependent on such fields, but the general
features should remain much the same. As a first ap-
proximation, it is in fact reasonable to assume that the
scattering term in the Boltzmann equation is unaffected
by the magnetic field. [See, however, the discussion in
Sec. A. 2(e)]. A straight imitation of the procedure used
previously would suggest starting from Eq. (20), with a
given external field He replacing in the usual manner
the unknown distribution function f by f° (the equi-
librium distribution) in the streaming terms. [ See the
discussion in Sec. A. 1(d).] The magnetic terms would
become, in that case,

af°

[2 e
_’I:v >< Hextjka(o) = _I:VXHOX‘C]V <
fic fic

0

e f
=-[vXH]—:v=0. (50)
¢ IE

Hence, one sees that the magnetic field does not change

the streaming terms in the Boltzmann equation in

equilibrium. The magnetic field rotates the velocity

vectors around the field direction, but this does not

result (in equilibrium) in any set steaming in % space.
Write again [compare (27)]

f=1O+ 1. (51)

f© is the Fermi distribution; f® is the correction to it.
One must retain this correction in the magnetic field
term. Hence, the Boltzmann equation for f® becomes

ofo
E(Eexg . V)
. oE

(4
+—|:V><Hext]ka(l)
fic
of
+vv,f<0>=(—) . (52)
at coll

For the present, the existence of a relaxation time is
just assumed. The discussion is based on

af(o)
e<Ecxt : V)—_"l"'—_[vx Hextjkau)
AFE  he

f<o> Fo
V,T=—"—.
T

T

(53)

This equation has been the subject of a large number of
investigations [23, 247]. Whereas the solutions of (53),
and especially the transport coefficients deduced from
them, are frequently difficult to analyze, it should be
noted that (53) as it stands is a first-order inhomo-
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geneous partial differential equation— not too com-
plicated a mathematical object. Later a solution
applicable in general is given. To appreciate the large
variety of phenomena, (53) can describe with a minimum
of calculation, it is instructive to solve (53) for the case
of a spherical band structure E=#%?k?/2m*, so that

v=F"V, E=hk/m*. (54)

This simple relation between v and k is essential for
this method.
Write (51) as*

fzf(0)+f(1)=f(0)_K(E>‘k(af0/6E).

x is now the new unknown function; it depends on E
only. One shows directly (by carrying out the gradient
operation and frequent use of the orthogonality of
[vXHexs ] and v) that

[vXHexi 1571V, f=— (e/fic) v- [Hexs X ¢ 1(8 f°/ E). (55a)

If one assumes as before that the only (x,y,2) de-
pendence in f° is through the temperature, one checks
that

(55)

V,f@=(3f/9E)T-V,(E=¢/T).
Substitution of these results in (53) yields
eEexi— (/1) [Hex X ]

+TV,(E—¢/T)— (m*/hr)x. (56)

This equation can be solved without further approxima-
tions. [ Take the scalar and vector product of (56) with
Hex and compare the resulting equations.] One ob-
tains, calling

P=¢E+TV.(E—¢/T), (57)
I3 P“'(J[T[Hextx P]+a272Hext(HextP)
X=—_7T i (58)
m* 1+ () H oxi?
a=e/m*c. (58a)

With (58) one has obtained a solution for f, valid for
rather general situations and arbitrary orientations of
the electric and magnetic fields, with possible thermal
gradients. One may see just by inspection that the
vector x may be written as

(m*/hT)XM = dIPM+ (12 euvaVOPp_i— G3HM0HPOPP
=3, UnP,
U,“, = a@,,—l— aze,w,,H,,(O) +G3HM(O)HP © .

(59)
(59a)

In these relations u, », and p run from 1 to 3; the sum-
mation convention (sums over indices occurring twice)
is implied. €., is the Levi-Civita symbol, different from
zero only if all indices are different; in that case its
value is +1 for even, (—1) for odd permutations of the
indices. From (58) one sees that the coefficients @ in

21 This is suggested by (27) and (35).

313

(59) are simple functions of the relaxation time 7 and
the magnitude of the magnetic field. The components
of Hexs have, in (59), been written as H,°. The quantities
of experimental interest, the electrical and thermal
currents, can now be directly expressed, using (54),
(55), (59), and (61), as??

.7.#: Tﬂpelpm
e ﬁ 2 0
el — . 3h__
T, 41r3( m*) fd kaEk“k,U,pT (k),

QM= TnpthP I3

(60a)

e [ h\? af°
T,h=——(— fdsk—*/e,‘k,,U,,p'r (R)E(k). (60b)
473\ m* oE

The linear relation between the currents produced
and the impressed outside fields as given by P, (57), is
an immediate consequence of the use of the linear
approximation. The calculation of the responses pro-
duced is reduced to a calculation of the tensors T,
which are given as integrals. These integrations are
straightforward, apart from the fact that they contain
7(k), the relaxation time, both explicitly and through
the coefficients ¢ in U, (59). One needs to say something
about (k) before a comparison with experiment can
be made. The enormous variety?® of effects which can
occur can be appreciated from these relations. The
directions of the currents produced are connected in a
rather indirect manner (through 7 to U) to the direction
of the applied magnetic field. It is, in principle, not
difficult but in practice rather involved, to analyze
any given situation in detail. The tensor U (hence T) is
not symmetrical. This asymmetry originates from the
vector product term in (58) which produces the term
6o, In (59a) and €.,,H, O ¢€,,H,®. In actual
practice one does not deal with the most general orienta-
tions of the fields and temperature gradients. In fact, the
feasible orientations are often dictated by experiment.

(1) Longitudinal effects. Suppose the external mag-
netic field Hexs is parallel to P (if isothermal conditions
prevail, this would mean Eexi|Hex:). In that case x
simplifies appreciably (the vector product term is zero)
and one obtains

w= (/m*)rP. (61)

This surprising result shows that x is independent of
the applied magnetic field and so is the current. Hence,
for spherical energy surfaces, using only the existence
of a relaxation time (the dependence of 7 on k did not

22 The conductivity tensor is defined by the relation between
the current and the applied field

(60c)

in the absence of any thermal gradients. T, in (60) symbolizes a
general tensor relation.

2 For an exhaustive listing of all these effects, see Jan [25].
Brlfatt [26] also has an interesting discussion of the variety of
effects.

T t
Jp=0wE,xt,
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i
F16. 1. Directions in the Hall effect.

enter the discussion), this development shows that there
can be no longitudinal effects. There is zo longitudinal
magnetoresistance, and no change of resistance in a
longitudinal magnetic field. When a relaxation time can
be defined at all, the presence of longitudinal effects is
generally considered as an indication of more compli-
cated band structures.

(2) Transversal effects. In the transversal situation
the electric and magnetic fields are perpendicular to
one another: (Eext- Hext) =0. On assuming an isothermal
situation, P=eE.x, Eq. (59) for x, simplifies to

hire
Xp= ,___; ((llb,,e“-"‘(lgen ypHyextEpext) .
m

(62)

Substitution of this form of x in the expressions for the
current gives

ﬁ 2 eZ af()
]“—_(Z;) ;r;f ey

X (1B, ase,pnH D).

(63)

At this point the dependence of = on the wave vector
comes into play. Since it was already assumed that E
depends just on the absolute value ||, it is certainly
reasonable to make the same assumption for 7. Then
" both a; and a@,, which depend on k through r, depend on
|k|. f© depends on E by the same isotropy assumption
on |k|. Hence, the integrand in (63) has the form
kR F( k[ ); if us£», the integrand is an odd function,
hence the integral vanishes. The integral may be
written as

j“ = O'E(S,AyEyGXt_}" Gflauvevp)\Hpex‘;E)\EXt (643‘)
or, in vector notation,
i ext‘l—UH[Hexthext] (64b)
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The relation between the conductivity tensor o,
(60c), and o and oy is given by

(64¢)

The oz and oy are obtained from the integral expression
(63) just by putting u=rv, so one has k.2 in the integrand
which may be replaced by $%% On using the expressions
for @y and @, given by (59) and (58), one obtains the
explicit expressions

& 2 af°
op=——— | &kr(k)

1273 1+ (arHoxe)? OF

0’1{—‘—— J‘d2

One can check that (65a) reduces to (39d) if Hex;=0
[and the isotropic case is taken in (39)]. From (64b) one
sees immediately that j is perpendicular to the external
field H.y;. (This is intuitively appealing. The only forces
acting on electrons are the electric force and the Lorentz
force, and both of these are perpendicular to Hex; the
net current produced j should be perpendicular to Hext.)

If 7 is known or given, the quantities oz and oy may
be calculated. On the other hand, the entities oz and
on are directly connected to quantities which can be
measured. As written, the current j has a definite direc-
tion in a plane perpendicular to Hy (see Fig. 1). One can
measure the conductivity in the direction of j in a
given field Hexi. For this one needs the component of
Eexs in the j direction, which is E;= 77'(E-j). The con-
ductivity is obtained from ¢, E;= j; hence, from (64b),

o1=7%(G-E)= (ex*+on’Hexi)) /o . (66)

Tt is possible to evaluate this quantity explicitly using
(65a) and (65b). The surprising result is that if one
evaluates the integrals involving the Fermi function
f° to zeroth order in kT/¢, one finds the same value for
the conductivity as without the field Hoxs.

For spherical energy surfaces, with isotropic relaxa-
tion time, the transversal magnetoresistance is zero in
zeroth order. (3/°/9E is used just as a 6 function; if one
takes higher terms in £T/{ into account, one gets a
nonvanishing value for the transversal magnetoresist-
ance.) The Hall coefficient may also be obtained from
or and og. The Hall coefficient R is defined by

EHall: Rchxt-

[ UEBMV_i_oII e,u)\VH)\GXt

(65a)

2ot afe

(k)

(65b)
14 (a1 H exy)? oL

(67)

Here 7§ is the current, Hex; the magnetic field acting on
it, which in fact causes a deflection of the electrons
from their previous path. Eman is the electric field
perpendicular to the current which just balances the -
deflection caused by the magnetic field. In the case
under discussion, the electric field acting perpendicular
to the current?* is given by Eex sind. If one imposes a

24 Tt should be kept in mind that Eex, and Hexg are given and
fixed. The current produced is j.



TRANSPORT AND GALVANOMAGNETIC PHENOMENA

field Eext sinf perpendicular to 7 in addition, one has a
total electric field of Ecx cosf in the direction of j. This
experimental situation is appropriate for a measurement
of ¢;. Furthermore, the balancing field Fe sinf equals
the Hall field. From (64), one obtains

(] ‘ Eext) = O’EEextQ; also jZ____ 0'E2ont2-l"U’,I"Iflext?’laoxt2

Hence

Enain=RjHcxy= Eoxt sinf=opHexEoxi2/j  (68)
R= UIIEext2/j2= O'H/G’Ez_}"Hext?a'H?-

Hence the two experimentally observable entities o)
and R, the transversal magnetoresistance and the Hall
coefficient, are expressed in terms of the computed
quantities oz and on. The discussion so far was based
on the linearized equation (53), coupled with the addi-
tional assumption that the energy surfaces are spheres.
Since the results are surprising (and in conflict with
experiment), it is certainly of interest to perform similar
calculations for general energy surfaces. The starting
equation is again (53); however, instead of writing
fO=—kx(E)(3f°/dE) as was done in (55), assume
not that the deviation

fO=—g3/dE. (69)

®, the unknown is now generally a function of k. & may
be substituted in (53). A first-order differential equation
results, which may be solved by standard methods?
[277]. The result, however, is not in a particularly useful
form for the calculation of the currents. One can obtain
a simple approximate solution by writing Eq. (53) (for
the isothermal case) as

0

f er
- T(eEext . V)_= (1+_[vaext:] : Vk)f(l)
dFE fic

=(1+Q)f0.

Here (70) defines the operator ©; it can be written in
either vector or tensor notation:

Q= (eT/ﬁC)[vX Hext] Vi
= (e7/¢) €upotH ,M 2~1(3/09,).

(70)

(71)

The second form of (71) results upon changing the
differentiation with respect to %, into one with respect
to v, using the definition of the effective mass tensor:

Ma—t=T2(02E/ 0k, k). (72)

The vector form of the operator Q is useful to establish
such results as QF(E)=0. From (70) one obtains the

2 From this exact solution, valid for all values of Hext, one can
obtain the “small field expansion,” derived in an alternate way
in the text, with the same results. One can, however, also obtain
a ‘‘high-field expansion,” which also can be derived in an alternate
way (see Sec. C). A careful study of the exact solution might well
be worthwhile.
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formal solution

a 0
fo= (1—;—9)—1( Bl
d

L

af
= (1_Q+QZ . ')(““TeEextv—)' (73)
oE

&

From the form of (71) one can see that this is just a
development in increasing powers of the magnetic field
strength. The electric field strength occurs only as Eext.
The action of the Q operator on the E.; term is particu-
larly simple if one neglects the v (or %) dependence of
the relaxation time, or if 7 depends on E only. For in
that case the only velocity dependence in the inhomo-
geneous term is contained in v (@ acts on functions of
E alone, just as if they were constants). Since f® can
be written as a power series in Hex, the applied field,
the current can be similarly written:

ju:: o.#yEyexb_}_a,#vp (l)Eyexthext

_I_o.“ypr(Z)Eyext.Hpext[]Text_l_. .., (74)

The expressions for a,,,®, etc., can be directly obtained

from (73) and (71) and the definition of the current (1).

For instance, in the case that 7 depends on E only, one

obtains for ,,,*) (using just the linear terms in @ in 73).
é af°

Cunp V= €pe—— | Plr>—0,0,M 7. (75)

4rdc oFE

The dependence of the conductivity tensor on the

effective mass can be seen explicitly.

The use of these and similar expressions is pretty
much restricted to energy surfaces, which are quadratic
functions of %. In that case the integrals are still manage-
able. There are also reasons to believe that in certain
materials the band structure may be appropriately
represented by such surfaces. It is no doubt clear that
the expansion described is an expansion valid for small
magnetic fields. This should be contrasted with the
results obtained before, which were valid for all values
of the applied field. The limitations and restrictions of
these procedures are discussed in Sec. B.

(b) General features of the conductivity tensor. So far
all considerations were based on the Boltzmann equa-
tion (53) in which the existence of a relaxation time was
simply assumed. It is possible to deduce some results
of a rather general and formal character on the basis
of the linearized Boltzman equation without the relaxa-
tion time assumption. The distribution function is again
written as

F=fO—83fO/9E. (76)

This is exactly the form used previously in (27); hence,
the reduction of the collision term (assuming all the
time that the magnetic field does not affect the scatter-
ing) proceeds as before. If for simplicity an isothermal
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situation is considered, Eq. (52) may be written as

aro 1
=— | &k (P —Pr)Virs
0F kT -

6(Eext . V)

€
+;EVXHG)(§] * V[g(I) (77)
C .

It is convenient?® to introduce the linear operator O by

1 - ,
ov=- fd PR —S(E) Ver  (19)
On using (78) and (71) one may write
(0f%/9E)e(Eexy-v)= (0+Qu)®. (77a)

[Qz differs from © (71) by a factor 7. The notation Qx
shows that the Q operator depends explicitly on Hext,
the operator O does not depend on Hexs.)

Note that both O and @ are scalar operators (operat-
ing on scalars they again yield scalars). If one writes

&= eBexsx=€eE,**x,, (76a)
the unknown vector components x, satisfy the equation
3,01/ 0E= (0+Qm)X,- (77b)

The operators O and © both satisfy certain simple sym-
metry properties: If &, and ®, are functions of the wave
vector k, one has

f D, 0P, = f BD,0Py, (79a)

f D0 (H)Dy= f PE0Q(—H)dy.  (79D)

[The proofs of these relations are straightforward. In
(79a) one just uses the definition of O, then a renaming
of the integration variables in conjunction with the
symmetry of V leads to (79a). To verify (79b), one
needs to apply Gauss’ theorem, together with a few
vector identities.] The calculation of the current
demands as always

e
P = o P
I 4 fzufd k.
Use of (76) gives

e afe (80)
fu=—— | v,—.
= ) Yon

In the procedures so far presented, one always at-
tempted to calculate ®. However, to study formal
properties it is actually better to eliminate 9f°/dE by

26 It is actually more than convenient. A thorough knowledge
of the operator O, its eigenvalues and eigen vectors, would describe
the manner in which the phonon electron equilibrium is
approached.
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(77b) [287]. If one uses (77b) in (80), one obtains

e
Ju=—— fdsk@(()"f‘ﬂﬂ)xu
4q8
e2

:_; BRE, ™, (0+Qmrm) X u
T

(81)
From (81) one obtains for the conductivity tensor
relating 7 and Ee*,

j#= ‘TMV(H)EVEXt; (823}

e2
O',W(IJ) _— fdgkxy(O+Q[1)Xﬂ. (821))
4r?

In contrast to the tensor T written in (60a), this o as
written is not known, since the x’s [the solutions of
(77b)] are not known. It is interesting to consider the
following symmetry. Let ®*, or x*, be the solutions of
the transport equations for the magnetic field Hex, so
that

2,0/ dE=[0+Q(H) Ix,*. (77b)

Now consider a physical situation where the direction
of the magnetic field Hey; is reversed, everything else
is the same. The solutions ® or x are now different, and
are denoted by ®~ and x~. The x,~ satisfy

0.0/°/IE=[0+2(—H) Ixu (77¢)

Comparison of (77b) and (77¢) gives [O+Q(—H) x,~
=[0+Q(H)]x,. Substitute this into (82a):

ou(H)= ——(—32- f Sl O0+HQ(—H) I~ (83)
! 478 '

From (83) one sees immediately via the symmetry
relations (79) that

Ouv (H> = Owu ( - IJ) . (84>

Equation (84) is a general property; it just depends on
the linearity of the Boltzmann equation. Results of this
type are of general and formal interest. One deduces
immediately that the symmetrical part of the conduc-
tivity tensor is an even function of H, while the anti-
symmetrical part of ¢ is an odd function of H.

In the more general situations, when one has external
magnetic and electric fields, as well as thermal gradients
present, a very similar argument yields again a tensor
relation between the currents produced and the outside
agencies producing them. Formally,

T 0 s¢
]'u:: T’”(I)(H)I:Evext__,_ __(__):'
e ar,\T

10T
+Tw(2)(H)E - (85a)

7y



TRANSPORT

Qu="T,,® (H)[Eyext_z i(i)]
e I, \T

19T
+7,9H)——. (85b)
T or,

Equations (85) replace Ohm’s law (82b); the symmetry
relations follow as before from (79a) and (79b). They are

Tw® (H)=T,®(—H) (86a)
Tw® (H)=Ty® (— H), (86b)
Tw®(H)=—T,%(—H). (86¢)

It should be clear from the preceding discussion that
these relations follow from the linearized Boltzmann
equation. It was not necessary to construct explicit
solutions to obtain the relations (86); rather, all solu-
tions must be in harmony with the symmetry relations.
For a detailed comparison with experiment, one needs
the explicit form of the tensors T'; not just the general
symmetry characteristics [29].

(¢c) Bolizmann equation on the “Fermi surface.” With
the formulas (75) and (74), one has obtained formal ex-
pressions for the conductivity in external magnetic
fields. As was mentioned at that point, the use of these
formulas is restricted to relatively small external mag-
netic fields. In practice, there is also the additional re-
striction to spherical—or generally quadratic—energy
surfaces. Assuming such surfaces one attempts to fit the
elements of the mass tensor occurring in (75) with the
magneto-resistance data. Reasonable fits can often be
obtained and one learns something about the effective
masses of the electrons. For many purposes it is neces-
sary to find out something about the character of the
constant energy surfaces, the relations given are not
suitable for such purposes. There is a considerable differ-
ence between showing that an assumed form of an energy
surface with appropriately adjusted parameters fits the
the data and the systematic investigation of the char-
acter of such surfaces. For this latter study, the for-
malism given is not suitable; it is also not sufficient
to restrict the investigation to small magnetic fields.
What one needs, since one has to start from the trans-
port equation in any case, is a reformulation of the
Boltzmann equation which relates the transport equa-
tion more intimately to the trajectories of the electrons
in the % space. It is reasonably clear that this must be
possible. For one has neglected the effect of the external
fields in the scattering in any case; the collisions can be
treated as before. The effect of the external electric and
magnetic fields on the electrons consists of a redistribu-
tion of the electrons in % space, according to the equa-
tions of motion:

hdk/dl: 8<Eext+ C‘l[vaext)] (87)
v=dr/dt=h"V,Es(k). (87a)

Here one uses the semiclassical description of the
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electrons in % space. Eg(k) is the (given) dispersion law.
The effect of external fields on the electrons was de-
scribed in detail in I, Sec. C.4. From the discussion there
one recalls that if an external magnetic field acts on an
electron, both its energy and the component of % in the
direction of the field are fixed. Thus, the electron de-
scribes a trajectory which is the intersection of a plane
k.=constant, with a constant energy surface. If the
line element of a trajectory is ds, one has from (1.138)%"

(fic/eH oxt) (ds/v.) = dt. (88a)

One can introduce an angle measured along the tra-
jectory by

do=wn(ch/eH ext) (ds/v,) = widt,

W= eHext/m*C.

(88Db)
(88¢c)

Thus, under the influence of a magnetic field alone,
just the variable ¢ would change (and very simply at
that, ¢=wpy). A distribution function describing the
effect of such a field would be just a function of .
Actually when both an electric and a magnetic field act,
the energy, as well as the %, of an electron, changes in a
manner determined by (87). The remarks just made
suggest that it might be advantageous to use as inde-
pendent variables describing the electrons, under the
influence of an external field, the energy E(k), k., and
¢ defined by (88b).2® In terms of these variables the
Boltzmann equation becomes [30, 317]

(0f/9¢) o+ (3f/ 0k A (3f/OE)E= (8f/30)c.  (89)

@, k., and E, must be determined from (87). Assume
H=H, only, then one obtains from (81)

E= VkE'k':e(V'Eext),
k.= (e/h)E.,
e=wp{14 (c[EXv,1./H.0.2)}. (90)

The distribution function depends on all three variables;
the trajectory of an electron now does not lie on a
constant energy surface. However, the amount of energy
an electron picks up from the field is usually small
compared to the Fermi energy ¢, and small compared
to the thermal energy of the electrons. The electron’s
trajectory therefore remains quite near the Fermi
surface, roughly within a “distance” of k7. It would
be a reasonable first approximation to describe the
orbit as lying on that surface. Approximately one has
then ¢=~wgy. [That approximation gets better as H
increases, for the first term of ¢ in (90) is of order H,
see (88c); the second is independent of H.] The Boltz-
mann equation may now be rewritten as

win(0f/d)+(81/0k:)(e/h) E-Ae(v-Eex) (0f/0E)
=(8f/00).. (90a)

The net result of the preceding analysis was to yield

27 The symbols are all defined in connection with (I1.138).
28 In this way one takes the geometry of the constant energy
surfaces into account in a more natural fashion.
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this much simpler appearing equation for f= f(k., ¢, E).
The remaining discussion of (90) is quite similar to the
usual discussion of the transport equation. The following
brief sketch should describe the situation. As always,
one considers states near equilibrium, so one makes an
expansion away from the equilibrium state. Write

=10+ (ks 0,E). (91a)

(Note that now, since k, and E are treated as inde-
pendent variables, 9f°/dk.=0.)

The equation for f® becomes quite simple [neglect
as always quadratic terms in E,; this causes the neglect
of (f®/dk,)E,]. The equation for f@ is

wir(0f0/0¢)+e(v-Eexi) (9f©/OE) = (3f/ 31).,

which can be discussed very simply if one assumes a
relaxation time

(0f/ ) o= — (f=f @)/ 7=—=f®/1.

With this assumption, the equation for f® becomes
trivial and the solution can be written down at once®:

e df©® ¢
f(l)= I —*EGX'A'

wir oE 0

(92)

(93)

de'v(¢ k. F)

Xexp[— (¢—¢)/wnr]. (94)

Before discussing the application of this formula, it
is interesting to point out that a similar solution of the
linearized Boltzmann equation exists under rather
general circumstances. Let f satisfy the linearized
Boltzmann equation

Hext —f®
v )V}c =—f / (95)

(k)

Then f®=f—f© can always be written as

af e
ﬁ+ A& Vrf+_( Eext+
ot h

[2

afo ¢
jo-—— f dleEun (' 1) v (¥ 1)

a
¢ dt”

Xexp{ — f ) 96
p( )
Here E. and H.,; can be functions of r and ¢; 7 can
depend on k. The integration in (96) is over the time.
r’ and ¢ refer to a place and time along the trajectory of
an electron, which at time # reaches a position r and a
quasi-momentum k. Both E and v in (96) depend on
the actual orbit of the electron; f@ depends implicitly
on the magnetic field Hexs, through the dependence of

the orbit on Hey.

It is reasonably straightforward to verify that f®
indeed is a solution of (95) [33]. It is also clear that
when both E, and 7 are constants, (96) reduces to
(94). [The connection between ¢ and the time variable
is given by (88b).] The calculation of the current from

2 There is a misprint in the sign of the exponential in the cor-
responding formula of Ziman [32].
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f® follows the familiar pattern. One just needs to
apply (1). It should be kept in mind, however, that the
independent variables in v are ¢, k., and E; hence, d°
should be expressed in terms of these variables (even
if this is not written explicitly). After a change of inte-
gration variables, one obtains for the conductivity

tensor,
62 9 f() 0
f &*h— f d¢'vu (o)
Ardwrr dE Yy

va(¢;+ QD,)C_W//“’HT.

ou(H)=—

(97)

In spite of its simple appearance, (97) is not a par-
ticularly transparent expression. Its complexity stems
from the integration over ¢. Just as in the general case
in (96) one has to integrate over the trajectory of the
electron. The ¢ integration is over the trajectory of the
electron on a surface of constant energy. With the
approximations made to arrive at (94), the orbit is
practically located on the Fermi surface. Hence, (97)
expresses the conductivity tensor in terms of integrals
over the trajectory which an electron describes on the
Fermi surface under the influence of an external mag-
netic field. The nature of this trajectory depends on the
nature of the Fermi surface. The simplest situation is
that the Fermi surface is a simply connected closed
surface completely contained within a zone. The inter-
sections of the surface with planes of constant kz
(which give the trajectories) are then closed curves. In
that case, the variable ¢, ranges from 0 to 2w, clearly
2(¢) is a periodic function. [This is the situation de-
scribed before. See (1.142).7] The more usual situation
for metals is that several zones are partly filled. The
Fermi surface intersects zone boundaries, and the
periodic repetition from cell to cell in the reciprocal
lattice space yields a complicated surface. A cross
section of such a surface may or may not yield closed
curves. It was explained previously that the plane of
the trajectory is perpendicular to the field direction.
By varying the field direction, relative to the crystal
axis, the intersection may change character—from a
closed to an open curve. The change by virtue of (97)
should be reflected in the conductivity tensor [30]. It
is this fact which suggests that the magnetoresistance
may vary quite strongly with the magnetic field direc-
tion. Actually, the use of (97) is not so trivial either.
Knowing the energy as a function of %k, one should
calculate the vector v=%"1V,E, as a function k. Then
one should transform from &.k,%. to E, ¢, k.; substitute
that in v and integrate, to obtain (97). In the case of
closed orbits, the periodicity of » (with period 2)
simplifies matters. The integral from 0 to « can be
reduced to an integral from 0 to 2r:

0 0 2w (n+1)
[ dentorgresrm=x
0 =0 oS gy

2m
:Z e——27rn/w[1‘rf .
n 0
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On using this, one obtains for (97), by summing the
geometric series,

¢ a1
ow(H)=—— | dp———
47['3 aE 1_ —2T [ WHT

2
Xf A1, ()0, (@ ' )e o' len,
0

At this point is is possible to expand the exponentials.
This is a useful expansion when wy7<K1 is a high-field
expansion. The integrals remaining are quite tractable.
In this manner one obtains asymptotic values of o in
high magnetic fields. From this brief sketch it can be
seen that the Boltzmann equation (90a) or (92) yields
specific results for the conductivity tensor. Two points
should still be mentioned.

(1) Lifshitz et al. [30] have developed these ideas,
without the explicit use of a relaxation time; instead,
they average Eq. (90a) over a period T'; then one obtains
(using the periodicity of the motion)

(0f/8t)e= eV Bexs) (3f*/ OE).

This gives a certain amount of information about the
collision term. Then, using an expansion of the unknown
function in inverse powers of the field, one can construct
a successive approximation scheme to determine the
distribution function. The lowest order gives the be-
havior at high fields. That discussion applies to closed
orbits only.

(2) The actual behavior predicted at high fields for
a given orientation of the crystal is a magnetoresistance
which should either saturate or increase as H2. Both
have been reported, as have a variety of other
behaviors.

The interpretation of experiments on polycrystalline
materials is not always clear cut; the observed behavior
is then an average over many directions. The analysis
of open orbits can be carried out using similar methods
[34]. The qualitative predictions of these theoretical
ideas have received striking confirmation.

Detailed experiments of the anisotropy of the mag-
netoresistance of single crystals show a surprising
amount of structure. This tends to confirm the general
ideas of the theory ; it shows also that the Fermi surfaces
are generally quite complicated open surfaces. From a
theoretical standpoint, however, the use of the high-field
expansion (with wy7>1), coupled with the use of
classical distribution functions and a semiclassical
description of the electrons, might well give cause for
concern. This particular point is elaborated in Sec. B.
It is clear from (97) that no matter what further
expansion is employed, there is an immediate connection
between the character of the electron trajectories on
(or near) the FFermi surface and the conductivity tensor.
The method reported here exhibits this connection
quite directly. It is to be kept in mind, however, that
for the very large fields contemplated here (wpr>1),
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other effects, notably quantum effects, would begin to
play a significant role so that the predictions made by
the theory might well be seriously modified.

Note added in proof. The current experimental situa-
tion is summarized in a conference report on The Fermi
Surface [77].

(2) Effect of strong magnetic fields. de Haas-van Alphen
effect. From the foregoing description it is no doubt clear
that the further discussion of the conductivity in high
magnetic fields is of great interest. The validity of the
statistical basis of the discussion, the linearized Boltz-
mann equation, has so far not been questioned. Within
the framework of the Boltzmann equation, several re-
finements are still possible, which are particularly per-
tinent for the description of electrons in high magnetic
fields. Since these refinements can have a considerable
influence on the expected behavior it is appropriate to
describe them briefly.

In many ways the most striking example of the
influence of a strong magnetic field on a system of
electrons is the dé¢ Haas-van Alphen effect; the oscil-
latory dependence of the magnetic susceptibility on the
applied magnetic field. It is generally known that these
oscillations are quantum mechanical in origin. They
arise from the quantization of the electronic energy
levels in a constant magnetic field. The literature on
the de Haas-van Alphen effect is extensive [35]; just
the aspects which are important for transport theory
are summarized here. The starting point of most dis-
cussions is the effect of a homogeneous magnetic field
Hz on a system of free electrons. The starting Hamil-

tonian is
Hy=(1/2m)[p— (e/c)AT- (98)

A is the vector potential in these calculations, usually
picked as [36] :
A=(0,H.x,0). . (99)

[Tt is to be noted that this starting point is a little
embarrassing. One clearly describes a free electron (gas).
No band structure of any kind is involved. The only
possible solid state effect one can introduce is through
the use of an effective mass m™* in (98). Yet the results
of this analysis are applied to electrons in certain solids,
with in fact rather good results. ]

The use of the vector potential (99) in the Hamil-
tonian gives

Hy=(1/2m)[p>+ (py—monx)*+p."]  (100)

with
(100a)

This Hamiltonian yields the eigenfunctions ¢y and
eigenvalues E of an electron in a magnetic field (the
Schrédinger equation is exactly soluble):

Unkyh,= (L, L) ettvveikery, [ x— [k, /mown)],
Entyr.= (n+3) o+ (A2k.2/2m).

Here #, is a normalized harmonic oscillator wave

wy=eH/mc.

(101a)
(101b)
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function; the dimensions of the box are L.L,(L.); the
k., ky, k. are the wave numbers of the electron.® The
wave function and energy should be contrasted with
those of free electrons:

= (L,L,L.) e, (102a)
= (7*/2m) (k2+k2+k7).  (102b)

It is important to note that the energy (101b) is
degenerate; in fact, it is infinitely degenerate (k, can
assume an infinite number of values k,=integer 2r/L,
all for the same energy) in contrast to the free electron,
where the only degeneracies are accidental ones. It was
explained in I, Sec. C.2(b), that many of the important
properties of a system are determined by the density of
states g(E) as a function of E. The partition function
is given as the Laplace transform of the density of states
[see (1.87) and (95a)]. The differences of the expres-
sions for the energy, with and without magnetic fields,
(101b) and (102b), lead to strikingly different expres-
sions for the density of states in the two cases. One has
from (102b) in the usual manner®

g (k.kyk,) = const dk.dk,dk., (103a)
g"(E)=const E¥E. (103b)

[See also (1.87b); the relationship between (103a) and
(103b) depends explicitly on the connection between
the energy and the wave number (102b).]

The number of states (with the magnetic field on)
with given # lying in a range dk,dk. is proportional to
dk,dk.. The number of states of given » in the range
dk, is (since E does not depend on k,)

Yo hyk,®

Ekkyk,’

+(mwH /%) Lz
f dk,=proportional to wy;

—(mog ) Lo

in fact

g(n,k.)dk,= (1/47%) (mwn/%). (104a)
From (101b), one has

dk,~dAE/[ E— (n+3%)hon .
Thus, on combining these results, one sees that

Q 2m\ # ;

g(l})db——; ~ﬁwH( ) ;m, (104h)

where Q is the volume L.L,L,. The sum is over all non-
negative integers, which leaves

E— (03 heon>0.

3 Strictly speaking, one could use an infinite domain in « for
the harmonic oscillator wave function. It is a little simpler to use
a finite dimension in the x direction as well. This also limits the
values of ky to ky==(mwy/%)Ls. One thus neglects that part
of the oscillator wave function that spills over the boundary. This
should not cause any trouble.

31 g0 indicates the density of states in the absence of a field. g is
used to denote the density of states with a field present.
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One can see either from the graph (Fig. 2), or from
(104b), that whenever the energy E approaches an
oscillator level (n+3%)%wy, the number of states g(E)
diverges. Certain periodic features of the density of
states are also immediately evident. This becomes more
obvious by considering > .[ (E/#wn)— (n+%) ]t (This
is actually the quantity which is graphed in Fig. 2.)
This quantity is a function of E/fiwy= Emc/heH =E.
In this notation, (104b) reads

g(E) 4x?
Q  (hwn)t

=F(§). (104c)

h?

( 2m) X": [6— (n+5)]
The function F(§) is approximately periodic in £, With
period 1. This is precisely true for values of £=3, §,
and approximately true near this value. Consider now £,
not as a function of E, but as a function of H. The right-
hand side of (104c), a function of &, is unaffected by
this reinterpretation. The left-hand side gives, apart
from constants g(Z)/H? the density of states of a
given energy (apart from H?) as a function of £ From
the approximate periodicity of F as a function of £, one
therefore infers that the density of states for a given
energy is approximately periodicin £, i.e., in the variable
1/H. [Again, this statement really refers to g(£)/H?%.]
The period of the periodicity of the density of states as
a function £ is unity; in terms of 1/H, it is

A(1/H)=eh/Emc. (105)

Thus, with the limitation noted, a change of 1/H of
eh/Emc in the external magnetic field essentially
reproduces the density of states of the energy E. For
values of E, near (n43)%ws, the value of g(E) is very
nearly reproduced. If phenomena are determined to a
considerable extent by the density of states at just one
given energy (as most transport properties are deter-
mined by the density of states at the Fermi energy),
one expects a periodic repetition of these phenomena
characterized by a period in the inverse magnetic field
strength, given by

A(1/H)=eh/Epmec. (105a)

It is this peridocity in the density of states, contained
in (104b) which is the basis for all the oscillatory
effects, be they equilibrium processes as the suscepti-
bility oscillations, or oscillations in the magnetore-
sistance. The oscillatory effects need a much more
explicit treatment than that presented here.®> In the
applications to actual solids, the starting Hamiltonian
of free electrons is not a very suitable one. Still, it is the

32 Fven though the method presented here gives the physical
reason for the occurrence of the oscillations, the practical appli-
cations of the de Haas-van Alphen effect are most interesting for
materials with complicated FFermi surfaces. By applying a quantum
rule of the type #'Lp— (¢/c)Adds= (n-+~)#%; 0<vy <1, Onsager has
been able to relate the period (105a) to the Sxternal cross-sectional
area of the Fermi surfaces perpendicular to /7. A careful inves-
tigation of the oscillations would therefore give a considerable
amount of information about the geometry of the Fermi surface.
These quantum rules are hard to justify a priori.
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only case which can be rigorously solved. As such and
for the qualitative insight it provides, the free electron
gas is worth discussing. It is interesting to point out
that inasmuch as g(E) in (104b) the density of states,
is known, the Laplace transform of g(E), which is also
known, gives the partition function (1.95a). From the
partition function, the free energy of the system can
be obtained using (1.101). Thus, from (104) one is only
two complex integrations away from results which can
be compared with experiment.

In the further development of these ideas, it is
necessary to introduce a Boltzmann distribution
function, f(n,k,,k.) which replaces the previously used
fr. f(nkyk,) gives (approximately) the probability for
an electron to be in a state described by a wave function
gbnkykz.

One assumes the Fermi form for such a function:

T (n,kyk:) = {exp[ B (Entyk— ") 1},

Here {¥ actually depends on the external magnetic
field, as can be seen from the equation which deter-
mines (¥

(106)

w

g(E) f*(E)dE.

1hoH

N
—=2 (107)
Q

It is only possible to evaluate the sums and integrals in
special cases. The dependence of ¢ on H need only be
considered in very high fields. In that case the energy
¢#, shows again an approximate periodic dependence
onl/H.

(e) Influence of magnetic fields on relaxation time. It
has been assumed throughout the discussion of the
transport phenomena in magnetic fields, that the inter-
actions between electrons and phonons, or between
electrons and impurities, is unaffected by the external
magnetic field. Since the effects of large magnetic fields
are interesting and not too transparent, it is of im-
portance to investigate just what effects magnetic
fields can be expected to have on the scattering mech-
anisms. This study amounts to a recalculation of the
various scattering matrix elements given before, Egs.
(11) and (12). The general problem is hard, just to
study the modifications of the Bloch wave functions in
a constant magnetic field is an extremely difficult task.
(See 1, Sec. C.3). As an orientation, it will help if one
studies the effect of a strong magnetic field on the
scattering of free electrons by phonons and impurities.
The advantage of studying this case, is that through
(101) the wave functions and energies of such a system
of electrons are explicitly known. Thus, the magnetic
field can be taken into account exactly, the various
scattering processes are treated as perturbations.® The
general outline is again the same as usual:

3 For this calculation, one should consult the papers of Argyres
and Adams [37] and Argyres [38]. The longitudinal case only is
treated in these papers.
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Fic. 2. Density of states in a magnetic field.

Wave functions

¥

Matrix elements of the perturbation

s

Transition rates — relaxation time

¥

Boltzmann equation — conductivity.

The wave functions of the Hamiltonian (98) have been
given ; states will be denoted by |#,k,.). It is interesting
to observe that the expectation values of the velocity
operators are given by

<v,>E< Zi‘" >= [ w*%/:o,

BI]M py—ma)yx
= Vo [y —y—0, (108
@) <6Py> Jr=—""=0, o)

<vz>< > f ~¢—

The current is in the same (z) direction as the magnetic
field. One now needs to study the matrix elements of
the electron phonon interaction:

(0'ks'ky’ | Hing| 1, koky). (109)

This should be compared with the exactly analogous
expression (12). Consider the lattice vibrations as the
oscillation of a continuum, so that the perturbing

. potential Hiny may be written as proportional to the

local displacement 3 ¢?9%, where ¢ is the phonon wave
number. The matrix element (109) becomes, therefore,
S Bxynky k€ Yn, kb, k.. This matrix element can be
calculated. Call the three quantum numbers #,k,k. =a.
One obtains the number of scattering processes from «
to o, due to the lattice vibrations as (apart from
constants)

Aasw=const)_q|{a'|€19%|a) |2 (Ee— Eo). (110)
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Actually, (110) contains several assumptions, the most
important ones are:

(a) The phonons may be treated as a gas in equi-
librium, in contrast with (31).

(b) The collisions between the electrons and phonons
are effectively elastic: #w,&KE,. This is the reason why
the structure of (110) is so much simpler than that of
(30). It makes the calculation of the matrix element
more akin to that of the scattering of electrons by
impurities (45a).

From (110) and (101a), one may after a rather tedious
calculation [387] obtain the number of transitions per
second from nk,k, — n'k,:

A(nkyk, 'k, )= A(n, byk.— n'k,'s,”)
Iy’
mwpm
ZB(EQ,—E,,)T. (110&)

The importance of this relation lies in the fact that it
shows the probabilities for transitions from nk, — #'k./,
are the same as those from #'k,’ — u,k,, or the prob-
abilities for forward and backward scattering in the
direction are the same.

Next calculate the loss of momentum of the electrons
in the z direction due to the scattering:

(kz)sz Z A4 (n:kllkz777’lky/k2,) (kz,—' kz) (111)
nky' k!
= > A(nkk,n'k) (k' —F.), (111b)
n' ks’
ko=—k. X Amkk. k). (111a)
n'ks!

Because of the symmetry of the 4 (nk,k.,n'k.’), with
respect to k.’ and —k.’, and k.’ terms canceled the
—k,/ terms in the summation in (111b). Define the
relaxation time of an electron in state # by

1 k.
—_— —— = Z A(nk'ykz,n’kz/)'

Tn kz n' ks’

(112)

To obtain an explicit expression for 7, one merely needs
to substitute A (nk,k., #',k.”) given by (110a), and
perform the summations over #’ and k.. Since A4,
contains an energy 6 function, it is sensible to replace
the summation over &,/ for fixed #’, by an integration
over the energy E’. This brings in the density of states
of a given energy; by using the same type argument
that yielded (104b), one now obtains

1
—= Constfg (E"6(E'— E)dE' = constg(E)

Tn

1
= constliwy

. (113)
o [En— (' +3)hon |

DRESDEN

Expression (104b) has been used to write the explicit
form of 1/7,. Observe that the periodic repetitions of
the density of states yields a similar periodicity of the
relaxation time. For energy levels where £,= (n+%)#w,
the relaxation time vanishes as a result of the infinite
density of levels in the immediate proximity of the level
in question.

The main results of this study are, therefore:

(a) For free electrons in a strong magnetic field, a
relaxation time exists.

(b) The explicit expression for the relaxation time
depends on the density of states.

(c) The constant in (113), not explicitly written,
contains a temperature factor 7°. This factor 7" comes
from a factor #,, the phonon occupation number, which
occurs in the expression for the number of phonon
electron scattering processes; see (21), for example.
One assumed 7,22kT/#w,, and this factor persists in
the expression for 7. A very similar analysis can be
given for the scattering of electrons by impurities. The
transition probability may be written down immedi-
ately [compare (39a)]:

Aa— )= Q2r/B)Z[{a|U(x—Ri)|a)[?

X(Eod—Es), (114)

where U is the impurity potential. To evaluate 4, an
explicit form for U must be assumed. The sum in (114)
is over all impurities. The computations are rather
nastier than those previously given. The results ob-
tained are that:

(a) A relaxation time does exist for impurity scat-
tering.

(b) There is in general no symmetry between
backward and forward scattering.

From the preceding discussion, it is now easy to
calculate the conductivity. First one has to calculate
the collision terms in the Boltzmann equation. From
the arguments presented in connection with (46), and
from (110), one obtains

(af/at’)collzzw (fa’—fa)/la’ay (115)

(This simple form results only because the scattering
was considered as elastic.) Since one contemplates
electric fields in the z direction only (longitudinal case),
one would write f, the distribution function, as

f= 10+ k2, (116)

where ®, the deviation from the equilibrium state,
depends on E only; hence, ®(E,)=d=d(E,)=2".
Therefore, (115) may be written as

(af/at)coll = Z (kz,_ kz)‘r’aA o a

(kz/ — k,g)/l o= q)akz (kz/kz)
= — (=) re

o,

n'ky' k2’

(117)
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The last two equalities in this chain follow directly
from (111), (111a), (112), and (116). Actually, the
crucial step is that of equating of &, and ®,. For this
allows ®, to be pulled out of the summation over ’ and
this establishes the characteristic form of a relaxation
time. It is to be noted that the possibility to achieve
this depends on the assumed form (116) of the distribu-
tion function. Both this form and the elastic scattering
were essential to derive (117). It is therefore a little
misleading to assert that (112) proves the existence of
a relaxation time. More precisely, the form (117) in
which one uses the relaxation time does not follow just
from the validity of (112).

With the assumption of (117), one can now write
the transport equation as [see (39)]

eE.0,(0f0/0E)=—(f—fO)/r  (118)
with the solution
f=fO—erE,(3f©/E). (118a)

The current in the z direction j, follows* from (1) as
always:
2 w et
je=r

478 =0 J_,,

dng(n,kz)e(vz>f(1z,kz). (1 19)

Here g(n,k.) is the number of states with given # in a
range between k. and k.+dk,, the factor 2 in (119)
comes from the two spin directions. The integration
over k, [which should be present in (119)] has been
carried out. Since fin (118a) depends on %, and E (or %),
but not on %, it can be carried out trivially. On using
(104a) and (v,)=7%k./m (108), the longitudinal con-
ductivity (o..) is
0

® f
o=constliwg > | kir(E)—dk..
n=0 6E

(120)

This can be transformed in a variety of ways: by
introducing £ as an integration variable, instead of k.,
using (101b); by introducing 7 as given by (113). If
this is done, one obtains

" TalE— Do
OB X[ E— (n+3)hon ]

From this point on, detailed integrations need to be
done to study the exact dependence of the longitudinal
magnetoresistance on the magnetic field. As one might
anticipate, there is indeed a periodic dependence of the
longitudinal magnetoresistance on H, but only for a
degenerate electron gas. The amplitude appears to be
smaller than that for the corresponding de Haas-van
Alphen oscillations. (Even for the nondegenerate elec-
tron gas, there is some effect, but this is no longer
oscillatory.)

o(H,)= constf

hoH (2

(121)

.3 One should take into account that the » quantum number is
discrete. The integral over ks, ky, and %, thus becomes a sum over
n, with integrals over %, and %,
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The general conclusion one can draw from these con-
siderations, is that many different physical mechanisms
can influence the magnetoresistance in a profound
manner. The discussion just presented indicates that
there indeed can be a nonvanishing longitudinal mag-
netoresistance, even for a solid having only one spherical
energy surface. The theory here presented is mainly
pertinent for semiconductors, but there one knows one
has more complicated energy surfaces. These more com-
plicated surfaces also effect the magnetoresistance. It
becomes therefore a real challenge to disentangle the
many possible effects. It is probably impossible to
decide the significance of these various factors, from
just a single experiment. It would seem very appropriate
to combine the information obtained here about the
field dependence of the relaxation time with the dis-
cussion of the Boltzmann equation on the Fermi surface
(Sec. C). It is not at all impossible that this field
dependence of the relaxation time just deduced would
alter the estimates about the high-field asymptotic
behavior of the conductivity tensor. This in turn
would be important for the comparison with experi-
ment. It is also desirable to start from as fundamental a
theoretical framework as possible, so that the simpli-
fications and approximations can be noted in the
process of computation. This is better than starting in
the middle not knowing just what is assumed, but this
latter procedure is often the only one feasible in
practice.

B. Structure of Conductivity Theory

In Sec. A, the general pattern of a conductivity
calculation was outlined. In the course of this outline,
the assumptions made were usually noted. No dis-
cussion of the validity was attempted at that time. In
this section, the various assumptions are analyzed in
detail. This is a useful study; not only is the logical
structure of a theory clarified by an explicit discussion
of the assumptions, but possible extensions, improved
agreement with experiment, can often be obtained
through the elimination of unwarranted restrictions.
This rather brief section is divided into three sub-
sections. In Sec. 1 the assumptions made are listed,
without much comment. The general character of the
agreement with experiment is noted. (For detailed
comparisons of that type, reviews written for that
specific purpose should be consulted [5, 397]. The lack
of agreement between theory and experiment is the
strongest stimulus for a reconsideration of the assump-
tions made in the calculation. Section 2 contains a more
detailed analysis of some of the assumptions made.
Several of the attempts to free the theory from unre-
alistic restrictions are reported as well. Section 3
contains a discussion of intrinsic difficulties. It is clear
that the distinction between an “‘intrinsic difficulty”
and a serious “practical difficulty” is ambiguous. In
Sec. 3, those aspects of the theory which appear to
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require a possible enlargement of the conceptual
framework used in conductivity theory are treated.
Section 2, on the other hand, contains refinements of
the theory, generally within the framework of the
Boltzmann transport theory. But it must be admitted
that the distinction is tenuous at best, so perhaps it
should not be taken too seriously.

1. Assumptions and Their Consequences

(@) Summary of the assumptions made (in order of
appearance). As a help in assessing the reliability of the
theoretical predictions of conductivity theory, the
various assumptions usually made are collected at this
point.*® (Most of the assumptions written here have
been noted before. The sections in this paper, most
relevant to the assumption in question, are given.)

As a problem in solid-state theory, conductivity
theory inherits a large number of the assumptions, as
well as the general framework of solid state theory.
This was summarized in I, Sec. C; for the present the
following points are especially pertinent:

(1) One generally considers lattice waves of long
wavelength only, so that the waves can be separated in
longitudinal and transversal waves.

(2) In the lattice (phonon) Hamiltonian, cubic terms
in the ionic displacements are neglected (no phonon-
phonon interaction).

(3) The one-electron picture of a solid (in one form
or another) is used. Coulomb, exchange, and correlation
effects are usually neglected or introduced as corrections.

(4) The electron phonon interaction is treated by
perturbation theory. The form of the perturbing poten-
tial itself is not @ priori given. It depends on the model
chosen to describe the electron-phonon interaction.

(5) The electron-phonon interaction matrix element
depends on the form of the one-electron wave function.
Special simplifying assumptions about the wave function
are made in the reduction of the matrix element. One
usually assumes that the phonon energy 7w, is small
compared to the electron energy [;.

These simplifications usually allow an explicit computa-
tion of the matrix element.

(6) It is frequently assumed that C, (14a), is a
constant. One of the results obtained in the calculation
of the matrix element is the selection rule for the elec-
tron and phonon wave numbers k'=k-+q4-27<*, Eq.
(13).

(7) In many?®® calculations the restriction £*=0 in
(13) is used. Only N processes—no U (Umklapp)
processes are considered. It is then a consequence of the

3 There are studies where several of the assumptions mentioned
here are not made. Some of these are noted later. The purpose of
this summary is to provide a reasonably complete list of the
usual assumptions as made in a typical calculation [40].

3 A considerable amount of work has and is being done in
removing this quite artificial assumption. See Sec. 2.
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assumptions (4), (5), (7), and (1) that the electrons
interact only with the longitudinal lattice modes.

The assumptions (1)-(7) written so far have their’
origin in the solid-state nature of the conductivity
problem. There are assumptions of a rather different
character, resulting from the transport nature of the
conduction process.

(8) It is almost always assumed that it is possible to
define a meaningful distribution function fx, which
gives the (probable) number of electrons in state k.
A similar assumption (usually less explicit) is made
regarding the number of phonons of wave number q.

(9) The existence of a Boltzmann gain loss equation
both for fix and 4 is usually taken for granted.

(10) In the Boltzmann equation, there are terms
expressing the effect of external electric and magnetic
fields on the distribution function. It is generally
supposed that these fields do not materially affect the
states of the system. The effects of these external fields
are calculated using perturbation theory. Transitions
between bands are neglected. Sometimes one uses a
semiclassical description for these terms.

(11) The interaction of electrons with lattice imper-
fections of one kind or another is also treated using
perturbation theory.

By using the assumptions (8)-(11) and (4), one can
construct a coupled set of equations for fr and #,,
which express the manner in which these functions
change in the course of time.

(12) Tt is usually assumed that the phonons by them-
selves are in a thermodynamic equilibrium state. Thus,
the electrons are interacting with a phonon gas, which
itself is unaffected by the interactions (and the outside
gradients).

(13) A variety of assumptions can be made regarding
this equilibrium phonon spectrum. One of the more
common forms used is the Debye spectrum. Somewhere
along the way the relation between w and q, the dis-
persion law of the lattice waves, is also required.

A systematic use of the assumptions so far described
yields an integral equation for the electron distribution
function. The further discussion is concerned with the
construction of approximate solutions to that equation.
Further approximations and simplifications need be
made to obtain usable expressions.

(14) One solves the Boltzmann equations, for states,
which are near the equilibrium state. This allows a
linearization of the Boltzmann equation. Within
transport theory there are no examples of the use of the
nonlinear equation.

(15) The solutions obtained are always expansions in
the outside electric field strength (or the thermal
gradients). Just the first term of these expansions is
used.
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(16) A common simplification of the collision term
consists of assuming the existence of relaxation times
for electron-phonon scattering and electron impurity
scattering.

With the assumption of a relaxation time, the integral
equation for f becomes a differential equation which can
generally be solved. The transport parameters then
can be expressed in terms of integrals over the Fermi
surface (in which the relaxation times enter). There
are known series expansion [41] for such integrals;
however, one needs some knowledge of the Fermi
surface and the relaxation times to evaluate them.

(17) In the evaluation of the integral expressions for
transport quantities, spherical, quadratic, or approxi-
mately quadratic, Fermi surfaces are usually assumed.
In addition, a simple dependence of r and E, or ||
only is postulated. (7 is often taken to be a constant.)

In the assumptions given so far, the strength of the
outside fields was not explicitly mentioned. From (15)
one infers that the electric fields and thermal gradients
are taken into account only in the first order, so they
in some sense should be small. Nothing of the kind was
assumed about the magnetic fields, so presumably they
could be of arbitrary strength. It is worth noting that
in the discussion of the magnetoresistance given in
[Sec. A 2(c)], where limiting values (for high fields) for
the conductivity tensor were calculated, assumption
(10) is still maintained. In a strong magnetic field, it is
no longer appropriate to describe an electron in terms of
Bloch waves—even free electrons in such a field are
described by #kyk, rather than k.

(18) In describing conductivity in very strong fields,
assumption (10) is maintained. The existence of a
(perhaps modified) distribution function is also
assumed.

Assumption (18) is not a new assumption; it is rather
an extension of assumptions (10) and (8) to rather
extreme circumstances. In high fields, quantum effects
may well assume a significant role. It is for that reason
that assumption (18), which insists that a classical type
distribution can be obtained, should really be examined
with care.

A similar situation exists regarding the investigations
of the influence of strong magnetic fields on the electron-
phonon relaxation time. As stated, the effect of the field
was studied for free electrons and applied to electrons
and solids. Underlying this and many similar studies is
the assumption that:

(19) Qualitative features of the effects of strong
fields on electrons in solids, may be studied by consider-
ing the electrons as effectively free.

It is clear that if the magnetoconductivity is strongly
dependent on the Fermi surface, as was indicated pre-
viously (19) may be quite wrong. The assumptions
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outlined here are the main ones employed. For detailed
numerical studies, all kinds of special techniques often
approximate in character are used. These special tech-
niques are not included here among the assumptions,
although it is not at all uncommon that a procedure is
particularly effective in special circumstances only. A
discussion of such procedures is essential for the analysis
of detailed situations, but no such discussions are con-
templated here.

(0) Results; comparison with experiments. The specific
results which are obtained using the assumptions out-
lined, are collected here [42].

(1) Let o stand for the conductivity; p=1/c is the
resistivity. Then in the approximation in which the
previous considerations apply, one has

p=1/o=p,+p;, (122)

where p, is the residual resistance, independent of the
temperature, varying from sample to sample. p; is the
resistivity of the ideal pure metal; it depends on the
temperature:

=44 (T/0)Js(0/T). (123)

4 is a constant (it contains the C? the square of the
matrix element), and © is the Debye temperature.
Equation (122) expresses a physical law, Mathiessen
rule; it is certainly valid whenever a separate (constant)
relaxation time can be defined for each of the scattering
processes separately :

2"dz
/)= f(62 1)(1—e)

(2) There are corresponding results for the thermal
resistivity :

(124)

1/x=1/k,41/x;. (125)

Here the thermal and electrical (residual) conductivities
are connected by the Franz-Wiedemann law

1/kr=p,/LT, (126)

where L is the Lorentz number equal to % (wk/e)?. [This
result can be made plausible without calculation. If the
various scattering mechanisms act independently as
suggested by (122) and (125), one is allowed to consider
just the effect of the impurity scattering. It was shown
that for impurity scattering a relaxation time generally
exists (49). It was also demonstrated that whenever a
relaxation time does exist, the Lorentz number L is
constant. This is just the content of (126).]

A (Y} o

where N, is the number of conduction electrons per
atom. The comparison of the theory with experiment?’

37 There is also an explicit expression for the thermoelectric
power in terms of the same entities. It actually plays a significant
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is based on formulas (122)-(127). In general, one finds
reasonable agreement between theory and experiment.
One would expect that the agreement should be best for
alkali metals since they most nearly approximate the
type of behavior of the solids which has been assumed.
The theoretical calculations generally do not reproduce
the degree of variety that the experiments possess.
[This is not surprising, assuming, for example, that the
dispersion law Eg(k)="7/2%2/2m* does not allow for the
variation in band structure, which solids actually
possess. | Even for Na, where the assumptions made are
probably most nearly satisfied, the agreement is far
from perfect, especially as far as the thermal conduc-
tivity is concerned.®® The other alkali metals follow the
qualitative predictions of the theory; for instance,
(123) predicts that p;— 7% for 7<<©. This is indeed
found for the alkali metals, but at a temperature much
below that computed by the theory. This same pattern
of qualitative agreement and quantitative conflict also
applies to the thermal conductivities. The agreement
there is generally not quite as good as for the electrical
conductivities. For elements other than alkali metals,
even the qualitative agreement between theory and
experiment largely disappears. To make further
progress, the theory must take the band structure of
the metal into account in considerably greater detail
than has been done heretofore.

This detailed study must be carried out before one
can draw any further general conclusions regarding the
basic agreement or disagreement of the theory and
experiment. Two points should still be made in this
general connection.

(a) The Debye temperature ® is used as an adjusta-
ble parameter in the comparison with the experiments.
In general, the value of © obtained from the conduc-
tivity data is not the same as that obtained from, say,
specific heat data. For materials other than Na, it is not
always possible to fit the conductivity data with just a
single ©. If O(T) is a rapidly varying function, this
means only that (123) does not hold at all.

(b) Whereas the thermal and electrical conductivities
show, at least in a general way, the behavior predicted
by the simple theory, this is no longer so for the ther-
moelectric power. Even the sign of the effect is not
always predicted correctly; the simplest metals at low
temperatures generally show a much larger thermo-
electric power than the theory predicts. One of the im-
portant assumptions (12) made in the calculation is
certain to be violated.

A further detailed comparison of theory and experiment
is given by Ziman [43].

role in this comparison. Formulas (122)-(127) are not exact
solutions of the Boltzmann equation. For high and low tempera-
ture they do go over in the exact expressions; hence, they have
the status of interpolation formulas.

38 Some of the refinements to be discussed later yield substantial
improvements for Na.
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The assumptions made in a conductivity calculation
in an external field are much the same as those made in
calculation without field. Thus, a comparison of those
calculated results with experiments is also called for.
The basic relations to be compared are of the type
(652) and (65b), or generally (97). The computed quan-
tities result as integrals over the Fermi surface. As
pointed out previously, they are extremely sensitive to
the character of the trajectories on the Fermi surface.
So one actually uses magnetoresistance data to map out
the Fermi surface. It is hard to decide that one has
agreement or disagreement of magnetoresistance data
with a transport theory when one is dealing with a
substance whose Fermi surface is unknown. If one has
alternate information about the Fermi surface, either
by calculation or other experimentation, one may in-
vestigate the consistency of these two types of informa-
tion [447]. An example of the kind of information ob-
tained is contained in an investigation of Olsen and
Rodriguez [45] in which the magnetoresistance of Cu
was studied (a single crystal). The result obtained is
that if the experiment is analyzed assuming the Boltz-
mann transport theory assuming a relaxation time,
then the data are inconsistent with a Fermi surface,
which is a single closed surface within the first Brillouin
zone not touching the zone boundary. Hence, one con-
cludes that the Fermi surface does touch the zone
boundary. This is a typical example of the type of .
result obtained. The calculations are made, assuming a
particular form; of the surfaces of constant energy this
fixes the quantities M of the constant energy surfaces.
Then using a low-field expansion (70), one calculates,
say 04,0, (75) ; this may be compared with experiment.
In the comparison with experiment, the data of most
significance are those obtained using single crystals. As
expected, the magnetoresistance is extremely aniso-
tropic [46]. It would appear that the theoretical ideas
underlying the interpretation of these experiments are
generally sound. The situation in very high fields is less
clear cut. It has been suggested [30] that the magneto-
resistance should either saturate or increase as HZ
Although both have been found, so has a linear behavior
of Ap/p. This could be due to the fact that this behavior
is observed for polycrystalline samples; hence, an
average over crystallographic direction is observed
[34,477, but it is probably fair to say that the general
question of the high-field behavior has not definitely
been settled. Detailed experiments of a variety of
effects, magnetoresistance and de Haas-van Alphen for
example, on a single crystal would be very useful.

Note added in proof. For new significant results consult
the recent conference report on The Fermi Surface [77].

2. Discussion, FExtensions, and Refinements

(a) General remarks. With as large a number of as-
sumptions involved in a typical calculation, the number
of possible and sensible modifications which can be
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made is very large. There is no point in just changing
assumptions around to see whether an ad /hoc change
here or there produces a better agreement with experi-
ment in some isolated instances. One rather seeks some
general viewpoint which would allow one, in a system-
atic manner, to refine the physical description and
obtain successively better agreement with experiment.
Many of the assumptions which have been listed are
actually quite reasonable, in spite of their ad hoc ap-
pearance. A number of the assumptions refer to the
perturbation treatment of the various interactions.
Although this is generally hard to justify rigorously,
perturbation theory in solid-state theory usually pro-
vides a reliable guide (with some notable exceptions).
Assumptions such as (14) and (15) are obviously ex-
pressions of what is known experimentally. The known
linearity of the experimental relation between the
currents produced and the impressed fields is the physical
reason that one investigates the solutions of the line-
arized Boltzmann equation. Within the Boltzmannian
framework, the most arbitrary assumptions are perhaps
those referring to the independent equilibrium of the
phonon system (12), and the special character of that
system. Before analyzing the basis of these (and other)
assumptions, it should be noted that apart from the
theoretical ideas, one uses experimental information to
obtain the final results for o or x. Specifically, the dis-
persion law E= Eg(k) of the electrons is used, as is the
phonon spectrum. So, before altering any assumptions
(using the simplest form of the transport theory), one
should investigate the effect of the use of more realistic
dispersion laws and a phonon spectra on the transport
coefficients. It is not unreasonable to hope that in this
manner one can reproduce more variety in the behavior
of the transport properties than is obtained from (122)-
(124). Certainly this study needs to be undertaken,
perhaps even before other generalizations are con-
sidered. Occasional investigations of this type have
been undertaken. Cornish and McDonald [48] investi-
gated the effect of change in the dependence of w on q
on the electrical conductivity. Substantial effects were
found, but a systematic series of such studies appears
to be lacking.

The next most obvious refinement concerns more
precise solutions of the transport equation. Use of either
numerical methods or a version of the variation princi-
ple [49,507] enables one to obtain more accurate solu-
tions to the Boltzmann integral equation (relaxation
times need not be assumed). Sometimes the agreement
between theory and experiment is somewhat improved
by these more precise computations, but generally
serious quantitative discrepancies remain. Thus, as one
would rather expect, the problem is mainly a physical
one. Several refinements can be made in connection
with the calculations of the electron phonon scattering
matrix element M (14a),

M=¢,,(k—k)Ck' —k). (128)
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In the comparison with experiment so far discussed, C
was actually taken to be a constant. An obvious im-
provement should result if one uses for C a more real-
istic function, for instance, the one obtained from the
self-consistent calculation of Bardeen [127]. This type
of calculation was made by Ziman [517], who showed
that with this form of the matrix element, one can
achieve excellent agreement with experiment for Na.*®
It would be worthwhile to have a general study of the
dependence of the temperature variation of electrical
and thermal conductivity (and thermoelectric power)
as they depend on C. Through the recent advances in
the fundamental understanding of the relationship of
the one- (free) electron picture to the more rigorous
many-electron system [527, the assumptions (1)-(6)
can all be considered to be on a much firmer footing.
The use of the collective description which enables one
to take correlation effects into account leads to a modi-
fied density of states for the electron system g(E). As
one would expect, such a modified density of states
leads to changed values of the conductivities and ther-
moelectric power. The actual magnitudes of the effects
are different for different materials [53], but it does
not at present appear that an appeal to this modification
alone can remove all the discrepancies between theory
and experiment.

(0) Coupled phonon-electron system. Steady state of
the lattice. It was shown in Sec. A.1(c) how one can set
up a gain-loss Boltzmann equation for the electron in
terms of the distribution function of transition proba-
bilities B, defined by (18a) and (18b). The equation for
the change of the electron distribution function had the
form

dfw
—==2/ Lfw (1= fir) (mgt+1)Br spr o
dt k'’ ,q

+ i (1= far)naBis g ]
+ 2 [fwr (A= fir) (ng+1) B s
k'’ q
+ frrr (1= fu)ngBrr goi .

These identical processes cause changes in the phonon
distribution function. There is, therefore, an equation
describing the time rate of change of n, which is the
exact counterpart of (129), namely,

(129)

dny
—= 2" [fi(1= fur) (ng+1) Bioi g
i kx

+ i (1= fi) g +1) B k0]
- %' L/e(1— fu)ngBa,gonr
' + fi (1= f)neBir o] (130)

In both (129) and (130), the selection rule (13) must be
satisfied; i.e., in the summations in (129) and (130)

% One has to invoke U processes to obtain this agreement. See
the discussion in Sec. (b).
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a relation of the type —k’-+k—g¢=27+* must be satis-
fied. Equation (130) can be written more compactly by
combining terms; but (130) shows the connection
with (129) most directly. A difference, worth noting in
(129) and (130) is that the summations are over dif-
ferent variables: k’ and q in (129); k and kK’ in (130).

The complete description of the electron-phonon
system should be given in terms of two coupled integral
equations, (129) and (130). Each equation has appro-
priate streaming terms, the collision terms are the ones
written in (129) and (130). These equations should form
the basis for the discussion of the joint electron-phonon
system.

One of the important assumptions made in most con-
ductivity calculations is that the phonon distribution
may be considered as unaffected by the electron-phonon
interaction. Stated differently, the phonons maintain
an equilibrium independent of the electron-phonon
interactions.

In addition, it is supposed that the transport co-
efficients depend in an insensitive manner on the
phonon distribution [assumptions (12) and (13)]. These
assumptions would be sensible only if one could find
physical mechanisms which would cause a phonon equi-
librium to be established much more rapidly than the
electron equilibrium. Equivalently, the phonon relaxa-
tion time should be much shorter than the electron
relaxation time. It would be interesting if these con-
clusions could be obtained from the coupled system of
equations. There is no evidence that this is the case.
The assumption that the lattice may be considered in
equilibrium is so far rather arbitrary.®’ States in which
both the electrons and phonons are in equilibrium do
exist. In fact, a repetition of the argument which
yielded (129) shows that the number of scattering
processes of the type k' —k-q (F,k, and ¢ have
specified values) is given by (f&")(1— f&) (,+1)Bi’ 5 k0.
The number of inverse processes (k,g — k') is by the
same type argument fi(1— fp)nBrqer’. In equilibrium,
one expects (by the general principles of statistical
mechanics) these numbers to be equal so that

(A=) (nd+1)=[i*A—= fi)n,  (131)
for all &'}k, and ¢ which can be ‘“connected by a scat-

tering process.” Hence, (131) has to hold for all #,%,
and ¢ which satisfy

E(K) = E(K)~+ho,. (131a)

From (131) and (131a) one obtains the equilibrium
distributions as

[ © = (BT 1)1 (132a)
0= (ehealkT— 1)1, (132b)

4 Tt is possible to show that, for temperatures high compared to
the Debye. temperatures, the collisions between phonons (often
omitted) do indeed provide a mechanism which allows the phonon
system to remain in or near equilibrium. For this, one has to take
the anharmonicity into account explicity. For low temperatures
this does not work, the lattice cannot be considered in equilibrium.
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This is just what is to be expected for a Fermi and a
Bose gas in equilibrium. Substitution of (132) into the
transport equation shows that the collision terms do
indeed vanish ; hence, the equilibrium, once it is reached,
persists. These remarks do not help in justifying the use
of an equilibrium phonon distribution and a non-
equilibrium electron distribution. One might hope to
show that any given electron-phonon distribution would
evolve in time towards the distributions (132).4 Even
this, though interesting,-is irrelevant for the transport
problem where one certainly deals with a nonequilib-
brium electron distribution. How and in what way the
equilibrium is reached is closely connected with the kind
of scattering processes considered. It is common [as-
sumption (7)] to restrict one’s self to NV processes, de-
fined by choosing £*=0 in (13), so that

K=k+q.

With this assumption one has introduced another con-
servation law in the scattering process. Thus, the
“stationary distribution’” under these conditions is de-
termined by (131), (131a), and (131b). The general
equilibrium solution is now

14 = (B Bi—t—ka) 4 1)1,

nq0= (eﬂ(ﬁqua) —_— 1)—1.

(131b)

(133a)
(133b)

Here a is an arbitrary constant vector, 3=1/k,T.

It is easy to check and important to observe that, for
these distributions, the currents do not vanish. There is
nothing very unusual about the fact that an additional
conservation law affects the form of the distribution
function. {In ordinary kinetic theory one deduces from
the principle of detailed balancing f.f;=/fi (fi
=number of molecules in cell ), together with the con-
servation of energy at collision €,+¢;=e€x+€;, and the
conservation of momentum p;+p;=pr+p;, that f has
the general form f;=A4 exp[—@B(e;+ap:)], a is arbi-
trary.} Thisis a stationary distribution where the system
as a whole moves with a momentum proportional to a.
Equations (133a) and (133b) are the exact counterparts
of these distributions [547].

Even though mathematically (133a) and (133b) are
perfectly satisfactory (even rigorous) stationary solu-
tions of the coupled transport equations in the absence
of external fields, they describe curious physical situa-
tions. One has no external fields, but yet from (133)
nonvanishing persistent currents. This corresponds to
infinite conductivities. Another way to describe these
rather startling results is to consider R, the total (quasi
momentum) defined by

R=3"ikfi+3 qn,.

By virtue of the conservation law (131b), valid for N
scattering processes, R does not change in the course of
time even if fand » do. In equilibrium, R is independent

(134)

4 In statistical mechanics, this type of statement is proven by
using the H theorem.
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of the time. Now consider a system in a uniform electron
field E;; then the total change in R, is
OR, IR, IR,
G GG o
9t 7/ tota1 at /, 9t 7 tiaa

In a stationary state, (9R./d%)twtar should be zero.
One already knows that (dR,/dt)eon is zero; hence,

OR, IR, A fx
GG =G
0t 7 sotal 0t / fiea k 0t 7 fiaa

e of ek, nell,
=———E$fd3kkx——=-— fd3kf=
h ok, ki fi

Consequently, dR,/3t7%0; R, is not time independent.
In fact, R; is increasing linearly with the time—a sta-
tionary state is not established. This is a restatement of
the result obtained previously which states that finite
currents can occur without field. For every given R,
one can determine a, in (133a), which in turn deter-
mines a current (JSvjfi). The present result (135)
asserts that for a given constant external field the
current increases without bound (since R does). Both
formulations have the same physical content; without
a field one can have a finite current, with a field, an
infinite current. It is now no doubt clear that the
common reason for the occurrence of a in (133a) and
the constancy of R is the restriction of the scattering
events by (131b), the omission of U processes. For the
establishment of a stationary state for finite values of
the transport coefficients, the U processes are essential.
From the fundamental significance of the U processes
for the electron phonon interactions, it may appear
puzzling that their omission (as in the ordinary theory)
gives reasonable results. Actually, (131b) is precisely
valid for electron interacting with a continuous medium.
In that case one is no longer interested in describing the
continuous medium and the electrons as part of one
dynamical system. The medium rather functions as a
heat reservoir affecting the electrons, but not influenced
by them. The usual Boltzmann equation for the elec-
trons describes just the stationary state established
under the combined influence of the outside fields and
the “phonon” reservoir. It appears that under certain
circumstances this is not too bad a description.

The moment U processes are taken into account, one
so to say acknowledges that the phonons are a part of
the total dynamical system. In that case one genuinely
discusses a coupled system. Consequently, the various
aspects of the phonon system (the phonon spectrum,
in particular) have to be taken into account in a much
more detailed manner.

In principle, it is easy enough to take the U processes
into account. Instead of imposing the restriction (131b)
on the summations in the Boltzmann equations (129)
and (130), one now uses the proper selection rule (13),

k'—k—q=2n<*. (136)

(135)
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Since one restricts k and k’ as well as q to lie in the first
Brillouin zone, it follows that for given k and k', there
exists a uniqué value of q. (For a graphical demon-
stration see Ziman [55].) Actually, the evaluation of
the integrals, the detailed investigation of the implica-
tions of the transport equations, becomes enormously
more difficult.®? Extensive studies of the effect of UK
processes on conductivity and thermoelectric power
have been made by Ziman [56], Bailyn [57], and
many others.

It appears very difficult to make arguments which
would allow one to assess the significance of the UK
processes in general. When UK processes are considered,
it is no longer true that the phonon-electron interaction
is predominantly between the longitudinal modes and
the electrons [as can be seen from (14a)]. Thus, with
the introduction of U processes, a whole new class of
other scattering events (between electrons and trans-
verse phonons) is introduced as well. The results also
become (as one might expect) much more dependent on
the details of the phonon distribution. Finally, with the
UK processes taken into account, the matrix element
M (14a), or the function C, also enters the calculation,
in new ways. The behavior of M as a function of k and
K, therefore also enters in a different form in the final
results. It is practically impossible to estimate the com-
bined effect of these various interrelated factors without
detailed calculations.

The general picture which emerges is certainly not
clear in all its details, but certain features seem to be
standing out as reasonably definite:

1. UK processes are significant, down to the very
lowest temperatures for both electrical and thermal
conductivities.

2. The contribution of the transversal phonons is
generally significant; at low temperatures the trans-
versal contributions are the dominant ones.

3. The transport phenomena, at low temperatures in
particular, are extremely sensitive to the assumed
phonon spectrum.

For a more precise discussion, including the many
calculational details on which these results are based,
[56] and [57] as representative references should be
consulted. The general significance of the UK processes,
of the coupled Boltzmann equations, can be appreci-
ated from the foregoing discussion.

(¢) Relaxation times. The status of assumption (16),
the existence of a relaxation time, is somewhat peculiar.
One can actually prove the existence of relaxation times
for certain processes as was done in (49) and (112). It
was already pointed out that for the phonon-electron
scattering there is a relaxation time for high tempera-
ture and one for low temperature, but no relaxation

1t is clear from (136) that the actual zone structure of the
material plays a much more significant role in these calculations
than in the previous ones where ©* was necessarily zero. This too
complicates the explicit discussion.
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time in general. The proof of the existence of relaxation
times is restricted to solutions of the transport equation
of a special form, those near equilibrium. One then in-
vestigates the nature of the collision term for solutions
of that type. It is often convenient, however, to de-
scribe processes by relaxation times. For instance, the
interactions between phonons can, in an approximate
manner, be taken into account by introducing a phonon-
phonon relaxation time. In order to describe the coupled
phonon-electron problem in a more realistic way,
Hanna and Sondheimer [58] introduce the following
refinements in the usual description:

(1) They did not assume that the lattice is in
equilibrium.

(2) They assumed that both transverse and longi-
tudinal modes interact with conduction electrons.

The simplest way to introduce these refinements is
just to introduce three relaxation times (three separate
mean free paths), one for the longitudinal modes, and
two for the transversal one. These mean free paths (or
relaxation times related to them) can strictly be defined
in the high-temperature limit; each one now depends
on an appropriate interaction constant C;. In addition,
one has to introduce a number of mean free paths
(relaxation times) to schematize the various processes
which can scatter phkonons, such as impurities and an-
harmonicity of the lattice (phonon-phonon scattering).
These relaxation times, corresponding to the efficiency
of the processes they represent, are strongly tempera-
ture dependent. At low temperatures the main mecha-
nism scattering phonons is impurity scattering, while
at high temperatures the phonon-phonon scattering
predominates. This kind of information is fed into the
formalism through the assumed dependence of the
relaxation times on temperature. With these assump-
tions, one can now explicitly calculate the electrons and
phonon distributions, hence, the transport coefficients.

Since this is a well-defined extension of the customary
theory, the effects of the lack of the equilibrium of the
lattice can be explicitly obtained. On carrying out this
program, one finds a reasonable agreement between
theory and experiment. (It should be noted that one
has also introduced a substantial number of new param-
eters, so that it is not too easy to judge whether or not
the agreement obtained is fortuitous [59].) Whereas
tnese remarks indicate the utility of the relaxation time
notion, they are of no help in understanding the
question of the existence of a relaxation time in general
situations. The basic point of introducing a relaxation
time is that it allows the replacement

@f/9t) == (f=f)/,

where (8 f/dt), is usually given as an integral operator.
That (137) is a tremendous simplification is evident.
Consider, in order to study the general validity of (137),
the linearized Boltzmann equation written in the form

(137)
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(9/90)=0F; (138)

0 is defined by (78). fis assumed to vary only because
of collisions described by the operator O. O is a linear
operator. [In fact, (79a) shows that O is a self-adjoint
operator if one restricts one’s self to real functions f.]
Suppose one knows the eigenfunctions (#,) and eigen-
values A\, of the operator O, so that

Ottn=Nnttn. (139)

The u, are now known functions of %, the A, are real
numbers. Any solution of (138) can be written as

F(kt) =3 Cre™ras, (k). (140)

The C, are coefficients, independent of k and ¢; they
are determined by the initial value of f. The possibility
of writing (140) depends on the linear character of O.
It is now easy to formulate some conditions for the
eigenvalues of the collision operator, which in some
sense yield the approximate validity of (137).

(1) Suppose that O is one of the eigenvalues.
(2) Suppose all other eigenvalues are negative and
distinct. From (140), one sees that in that case

lil’nt—m f(k,lf) = CQU() (k)

(for all the exponential factors will go zero in that limit).
Couo(k) is the limiting distribution for infinite time;
this is the equilibrium distribution. In that case, (140)
may be rewritten as

f(k;t) = CO%()“{" Cle)‘l ‘ul (k) —{-— Cze)‘z t%g (k) + e,
Assume further that
) A< [ << As]

This means that for times 1/A;>>£3>1/A, the exponen-
tials of all but the first are practically equal to zero. For
such times one may write

(141)

f(k,t)gC0%0+C1€)“tu1(k). (141a)
From (141a), one sees that for such times
(df/ oty (f— 1%
fo=the equilibrium distribution). (141b)

This indeed is the relation usually employed to define
a relaxation time. (Note that the eigenvalues A were
assumed to be negative.) “The” relaxation time is the
negative eigenvalue of the collision operator nearest
ZET0.

Whether the collision operator O does indeed possess
the characteristics (1)-(3), which allow the approximate
definition of a relaxation time, depends on the kernel V
of the integral operator. This in turn depends on the
character of the interaction.

From this very simple minded argument, one can
see that in the approach to the equilibrium, there are
certain characteristic times (in fact infinitely many)
which describe the various stages of the process. It is
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interesting that the relaxation times emerge as eigen-
values of the collision operator.

This technique was applied very effectively by Chang
and Uhlenbeck [607] in connection with the following
problem. A particle, mass #, is under the influence of
given forces. It is bound harmonically to a center, as
well as acted upon by a periodic external force. It is
surrounded by a gas of particles of mass M. The particle
wm and the molecules M can collide, with a given force
law. The problem is to find the power absorbed by the
particle from the external field. For the present dis-
cussion, the pertinent point is the observation that this
problem again reverts to a discussion of the Boltzmann
equation, which in this case reads [the notation is the
same as in (L.11e)]:

af
_+ vvzf—'_vaf
at
- f oy f 4l (8 0)[F'f'—Ff1=0f. (142)

Here F is the given (Maxwellian) distribution of the
gas M .% The equation for f is again an integral equa-
tion, a linear one. The collision term has the general
form assumed in (138). The problem as stated can be
solved exactly for certain force laws between m and M.
This corresponds to certain special forms of the scatter-
ing cross section I.* The reason the problem can be
solved is just that for these special force laws one can
obtain the spectrum of the operator O. [One may verify
by explicit construction of the eigenvalues that the
eigenvalue spectrum does indeed have the properties
(1) and (2).]

With an exact solution available one can now test
the validity of the approximate expressions of the colli-
sion term. Of particular interest here is the question of
the validity of the approximation (137). In this special
case (the force between m and M is a repulsion propor-
tional to 775, the external force is an alternating one,
el coswt; m is bound harmonically to the origin with
potential —3mw*?) the approximation (37) cannot be
valid for all values of the mass ratio /M. This actually
can be seen in a reasonably elementary manner by
studying the equation for the average velocity and
position. These entities are defined by

Tu= f f dPrddvx, f,
D= f f dPxd®v, f.

4 1In the solid-state context, (42) describes the Boltzmann
equation of electrons of mass , interacting with an equilibrium
phonon distribution which in this case is Maxwellian. The analysis
has not been carried out for a Bose distribution for F; this might
be amusing.

“ IFor the special case considered g7 (g,6) is a function of 6 alone.

(143a)

(143b)

331

Now from (142) one may obtain equations for # and
by multiplication by #, and v,, respectively, and inte-
gration over d®x and d®. On carrying out these opera-
tions, one obtains

4z, /di=7,
d&,/di= X, (T)— 7715,

(144a)
(144b)

Here 7! is a reasonably complicated but known
integral over I, X,(Z) is the external force evaluated at
Z. (X depends linearly on x in this case.) Equation
(144) is an exact consequence of (142). (From these
equations one could calculate the time dependence of
Z and 7; hence, the power absorbed by the particle m
by taking the time average of #.E, coswt.) If one uses
instead of (142) the relaxation approximation (137),
one can again find the equation of motion for the
average values very easily; this time they read?®

4%,/ di=0,— (&,/7), (145a)
v,/ di=X,(7)— (3,/7). (145b)

It is evident by inspection that (144) and (145) are
not the same. They do indeed lead to different observ-
able results (such as a different power loss). In general,
even in this simple case, the relaxation time assumption
is not valid. It would be of great interest to have a
systematic investigation of the relationship between the
character of the intramolecular forces and the degree
of validity of a solution obtained by a simple relaxation
time. Among other things this would involve the study
of the spectra of the collision operator as a function
of the intramolecular forces (or the electron phonon
interaction). It is worth noting (with regret) that the
electron-phonon system is basically a coupled one. It is
not so obvious how one should apply techniques of the
type described, which are valid for linear operators
only, to those situations. Probably some judicious
linearization can be performed and perhaps something
can be learned about a more precise way of introducing
relaxation times in the formalism. No studies of this
kind seem to exist at present.

3. Imtrinsic Difficulties

The refinements discussed in the preceding section
were all elaborations of the same underlying framework.
The basic notions, the distribution functions, and the
equations they were to satisfy, were all on the “Boltz-
mannian level.” (Reverting back to Table II, one can
see that they refer to the “useful” Boltzmann equation.)
Since even within this framework there are so many
additional assumptions which need be made for practical
calculations, it might appear unreasonable to discuss an

- even broader framework as a basis for the computations.

There are, however, a number of separate arguments,

%1t should be noted that the 7, introduced in (145a) is the
assumed relaxation time in (137). It seems reasonable to pick it
as the same entity occurring in (144b).
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which all indicate that the Boltzmann level is indeed
inadequate to describe several of the physical situations
which occur in transport processes. Some of the argu-
ments are more compelling than others and not all of
them apply to identical situations, but it would appear
that together they provide a strong incentive for basing
the investigation of a number of transport phenomena
on the density matrix (described in I, Sec. B) rather
than on the transport equation.*® In this section several
of the arguments leading to this conclusion are pre-
sented. Some brief comments are added to the some-
what disconnected remarks to present a more unified
picture.

(a) Difficuliies of generalization of the Bolizmann
equation. The classical Boltzmann equation as usually
written down [ (I.11)] applies to dilute gases. It would
appear reasonable to expect that one can, by a fairly
straightforward procedure, generalize the equation to
dense systems, so that one might take triple and higher
collisions into account in a systematic manner. Actually,
the generalization to higher densities is not at all
straightforward ; one has, so to say, to take “‘the long way
around.” It is only possible to obtain such a generaliza-
tion starting from the Liouville hierarchy [(1.20), see
also Table IT], then integrations and additional smooth-
ing or averaging operations need be performed. (Some
of the necessary procedures were described in I.) The
method is certainly not direct, but most important is
the observation that this generalization (to a reasonable
new physical situation: dense gases) can only be per-
formed by enlarging the Boltzmannian framework. It
was not until fairly recently that the correction terms
for such higher terms were written down correctly [61].

The fact that it is difficult to generalize the Boltzmann
equation to dense system, cannot be considered as an
objection to the equation as such. It is, however, rather
disturbing that the framework on which the Boltzmann
equation is based seems incapable of describing a
physical situation, which does not appear qualitatively
different. One needs a drastic revision instead.

(0) Lack of systematic development. In all the calcula-
tions given, just the first approximation to the distri-
bution function was used. Higher approximations in the
external field strength, for example, are rarely con-
sidered. In fact, in certain perfectly respectable con-
ductivity theories, one cannot even make a systematic
development including terms in Eex. [An example is
given in Sec. (d).]

In the Lorentz theory of conductivity, the electrons
scatter elastically from fixed ions. Thus, no energy can
be transferred from the electron system to the lattice.
In particular, this means that there can be no Joule heat.
Since the Joule heat is proportional to Eex?, one sees
that it is not possible in this theory to have a consistent
development as far as E.x?. In general, the description

46 In fact, in some instances, one has no choice, but to base the
discussion on the density matrix formalism. Transversal mag-
netoresistance is a case in point.
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of the Joule heat would demand the introduction of
dissipative terms in the equation for f. This could be
done most effectively by introducing a separate phonon
equation coupled to the electron equation, as was
sketched in Sec. B.2(b). One then should really prove
that from these equations the dissipative character
follows. Thus, in this case again, a slight refinement
of the procedure changes the formalism in a rather de-
cisive manner. One cannot, without making other modi-
fications, extend the development to higher orders and
keep a physically sensible situation. This is no con-
vincing argument against the use of the Boltzmann
equation, it rather serves once again to stress its limited
domain of applicability.

(¢) Definition of distribution function. The two points
discussed so far referred to the classical situation; f, the
distribution function, was defined in the u space (x, v
space). In the conductivity calculation, however, one
deals most definitely with a quantum situation. It was
stated before (I, Sec. A.3) that in quantum theory,
because of the uncertainty principle, one cannot,
strictly speaking, define a u-space distribution function.
Thus, it makes no sense to discuss an equation for
f(k,x,¢). This is a very basic objection; it would seem
to destroy the Boltzmann equation as a legitimate
means of description of quantum transport processes.
In principle this is true. In many applications, however,
one considers the distribution function as a function of
k and ¢ only (not of x); the uncertainty principle does
not preclude the use of these functions. When a posi-
tional dependence is considered at all, it usually occurs
through the dependence of the distribution function on
the external parameters, such as the dependence of the
temperature on x. For example,

1%/ = (9°/9T) (9T /).

In order that this expression makes sense, it is only
necessary that an electron can be localized over macro-
scopic distances such as (7197/dx)~". This can be done
using wave packets which contain only a very small
range of wave numbers. In this limited and approximate
sense, one can use a distribution function which is a
function both of k and x. Even though there is no
objection in principle against using a distribution func-
tion f, it is worth observing that it must be carefully
defined when one is dealing with a strongly interacting
system of particles. For noninteracting particles, fx
just gives the number of particles in state &, where %
labels the free particle states. For inferacting particles
one cannot give individual particle characteristics such
as k and obtain a description of the system as a whole.
One seeks in the interacting case a set of variables
which describes either the particles, or some combina-
tion of particles, or the excitation spectrum of the system
in such a way that in first approximation these entities
may be considered independent of one another. Just as
in the free particle case, the energy is a sum E=)_; E.;
one now seeks new variables 5, so that the total energy
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can be written E=)_ E,. Refinements can then be
introduced later. A typical example occurs in the col-
lective description of an electron gas [627], where the
complicated and strong Coulomb interaction between
electrons are replaced by a ““collective” energy which is
a sum over the separate collective modes. In addition,
there is a much smaller screened electron interaction.
One could phrase the search for variables 5 as a search
for “good” quantum numbers. The description of the
system as a whole consists of the distributions of the
“constituents” of the system over the states defined by
the “good” quantum numbers. “Constituent” now can
stand for an actual particle (as for noninteracting
systems) or for a pair of particles (as in superconduc-
tivity), an excitation, etc.

In these circumstances, one can again define a dis-
tribution function, although its changed meaning
should be recognized.

These considerations become a good deal easier to
formulate within the context of second quantization
[63]. Let |£) stand for a single particle state, a; and
a;t for annihilation and creation operators. Then
artar=mny is always the number operator of particles
in state k, whatever that state & is. The “state” of the
system as a whole can now be described as a super-
position of eigenstates of the number operators ;.
The system of a one-particle wave function |k) is
arbitrary in this formulation. One set |£) can be more
convenient than another, but any complete set can be
used [64]. It is no longer true that #; and the Hamil-
tonian commute; the interaction generally redistributes
the particles. The statistical discussion proceeds straight-
forwardly ; if a Hamiltonian is given, say of the form

H=Y ea’ar+ > aitai'Vaia,, (146)
k €, 5k,
one may define the grand partition function
Zy=Tr(ePH=+N)): N=3 aytar, B=1/keT. (147)

The average number of particles in state % is then

fig=— Tr(aytare BEH-N)
g

(148)

which is the definition of the distribution function
which is always valid.

In using this definition of a distribution function (so
far only defined for equilibrium states), one has gone
well beyond the scope of the Boltzmannian description.
(If this same level of description is used in nonequi-
librium situations, one is just using the density matrix
formalism.) Perhaps this brief discussion shows that a
consideration of the precise definitions of a distribution
function in quantum theory leads rather naturally to a
description in terms of occupation numbers (which are
just the eigenvalues of the number operators) and hence
to a use of a second quantized formalism.
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(@) Limitations of Boltzmann equation. The general
idea of the conductivity calculation is to study the
changes produced in the electron distribution by the
electron-phonon interaction together with the external
electric field; however, even assuming that such an
electron distribution can be defined, it does not neces-
sarily follow that a Boltzmann equation for that
function can be constructed.

The distribution function gives the number of
electrons in state k, more precisely in an interval &*%
around state k. The numbers f, change rather rapidly
(as a function of energy) in a region 2T around the
Fermi energy Ep=¢. In order to define a distribution
function, it should be possible to give the number of
electrons in energy ranges which are small in com-
parison with 7. When dealing with electrons inter-
acting with phonons, the lifetime of the specific electron
state is rather short, of the order of a relaxation time.
From the uncertainty relation, one obtains then an
intrinsic indefiniteness in the energy of order 7/7. One
must demand that the uncertainty in the energy is less
than the thermal energy or

#/r<ET. (149)

For if #/7>kT, the basic uncertainty in the electron
energy would be larger than the energy width over
which the electrons are distributed. To have an electron
distribution function at all, one needs an energy dis-
crimination well defined up to fractions of 2T. The
intrinsic uncertainty %/7 should be smaller than that.
This is the content of (149) [65].

It would appear that (149) is a necessary condition
for the possible definition of a distribution function.
This same condition reappears in a different connection.
The collision term in the Boltzmann equation (always
obtained in a perturbation expansion) contains terms
of the following type [ (16a) and (16b)]:

Zw[FUR) 2 (fo— fil O(E—E').  (150)

U is some perturbing potential.” The function O has a
general é-function type character, as was mentioned
before. If one uses O as a § function in the sum, one in
fact asserts that O(E)=sin(Et/%)/wE is a rapidly
varying function compared to the other factors in the
integral. O hasappreciable values only when E— E' <#%/t,
where ¢ is a measure of the lifetime of state E. However,
in the interval 27 near the Fermi surface, the functions
Jfw and fi may vary appreciably; hence, one cannot
generally treat them as a constant or, what is the same,
treat O as a § function. If, however, the range %/¢, where
O is appreciable, is only a small fraction of T, the
variation of O in that region is much larger than the
variation of f (which has all of 2T to achieve its vari-
ation). Hence, if %#/#<<kT, O in (150) may be replaced
by a é function. If one identifies the lifetime of a state
with ¢, this condition is again equivalent with (149).

4 In (150) one has written the matrix element for the scat-
tering by impurities.
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Unfortunately, (149) is not satisfied for many metals.
Typical values would be %/7~0.1 ev; 27~0.01 ev. The
nature of this severe limitation of the validity of the
transport equation has been the subject of several
investigations [66-70].

The study by van Wieringen [69] is in many ways
the most straightforward. One expands the wave
function of the actual system (electrons plus impurities)
in terms of unperturbed Bloch wave functions:

W (x,)= fd%gbk(x)ak(x,t)e—(“h)Ekt. (151)

From the Schrédinger equations for ¥, which contains
the scattering potential U, one obtains the usual equa-
tions for the development coefficients a;. One now
makes an expansion

a(f)=aO+a O+ - - (152a)
with the solution
1
ar) == [aeravi
X e~ ilm Be— Eentgn—1(K' 1), (152b)

The calculations of @ to second order give just the
transitions rate (150). One can now carry the develop-
ment to fourth order. On using the fact that the scat-
tering potential is a sum of randomly arranged impur-
ities, one can estimate the various terms and in this
way establish that the fourth-order terms are negligible

as long as

This inequality is generally satisfied. It is certainly
striking that the parameter #/7kT does not enter in
the calculation at all.

This calculation shows that the perturbation ex-
pansion under the restriction (153) is a sensible one.
However, the physical reasons for the validity of the
expansion are not yet clear, nor has the possibility of
defining a distribution function [for which (149)
appears essential ] been demonstrated. Equation (153)
can be given a very intuitive interpretation. Call

A=vpr, (154)
where vp=Fermi velocity, and A is the mean free path
of an electron, the average distance traveled between
collisions. If one wants to talk about a classical orbit
at all, with electrons experiencing a well-defined set of
collisions, A must be larger than the de Broglie wave-
length A of an electron or

A>N, vp=>h/mvp, mvpr>h/T. (155)

This one recognizes as (153), which therefore appears
as a condition for the semiclassical description of an
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electron in a lattice.*® However, neither the intuitive
appealing condition (153) nor the wider validity of the
perturbation expansion dispose of the inequality (149),
which is generally not satisfied.

The most precise discussion of this question has been
given by Lewis [67]; there are a few closely related
subtle points involved.

(1) It should first be noted that an electron makes
generally both elastic and inelastic collisions. That
means that one should be extremely careful with the
uncritical application of the results of nondegenerate
perturbation calculus as in (150). The electronic states
to which (16) is applied are either degenerate or very
nearly so. So one should analyze the effects of this
degeneracy (this is exactly what was done by Lewis
L671).

(2) The energy uncertainty of a state is determined
by AE=%/T, where T is some characteristic time. This
T must be the lifetime for the decay of the state with a
change in energy. Thus, the time which should properly
go in (149) is the relaxation time ¢ for inelastic collisions
only. For the actual relaxation process, occuring in
conductivity and nonequilibrium theory, elastic col-
lisions are every bit as effective as inelastic ones. In
the aforementioned Lorentz study theory of con-
ductivity, one has only elastic collisions. Use of
AE=%/7 would, in that case, yield an infinite lifetime,
whereas the actual relaxation time is finite. This is due
to the “relaxation” effect of the elastic collisions.

It is asserted?® [66] that the relaxation time for
inelastic collision is

Tine1= (Er/kT) Tetastio

Since, by the previous argument, the condition (149)
should properly by replaced by %/7ima<X%T, one reob-
tains, using (156), the condition (153).

The + which should enter the indefiniteness of the
energy of the electrons AE=7/7; is not necessarily the
experimental relaxation time, but a longer time (156).
This makes the intrinsic uncertainty AE much smaller;
this in turn allows the construction of a distribution
function. The confusion as to what precise time interval
should be used in the uncertainty relation is closely
connected with the uncritical use of the nondegenerate
perturbation calculation in transport theory. To eluci-
date this point, one may consider a simple example
given by Lewis [67]. Consider the one-dimensional
elastic scattering of electrons from impurity centers.
Suppose there is also an electric field E,. The transport
equations, in the notation used throughout, is now

(156)

48 The conditions (155) and (153) guarantee that the electron-
phonon interactions can be described as a succession of ‘“‘col-
lisions” of well-defined duration, while in between the collisions,
the electron can be described classically.

49 Tn order to obtain this result, one has to estimate the relative
efficiency of elastic and inelastic collisions. Although there are
many plausible ways to do this [using (16)] just by counting the
available states, none seem particularly compelling.
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fe Esofe +
—_— ——:f dk’[(l_f/c)f/c’/llc’—»/c

o hook J
— (1= fi)Apsw ). (157)

The A’s are [see (18a) and (18b)] the transition rates.
The A’s contain the functions O, which are often
replaced by & functions. It is this point which needs
investigation. The 4’s have the general symmetry noted
in (46¢),

Aklk‘—“Akk'. (158)

This symmetry is valid independent of the replacement
of the O functions by the ¢ functions; it follows just
from the form of the matrix elements 4 and the even
character of the O functions [Eq. (16)].

The customary treatment of the transport theory can
be applied to (157). Note first that because of (158),
one can write

afe E.0f = af
j-i-——{ f Ak Api(fo—fi)= (—) .
at 7 ok — a¢ ccll

One checks the conservation of particles by integrating
(157a):

(157a)

8 pto
— | arf=o0.
at J_y

(159)

Suppose now one replaces the O functions occurring in
the transition rates 4 by strict energy 6 functions, (this
corresponds to the usual procedure). A can then be
written [see (45) again]

A= (K| U |R) |26 (k2= F2). (160)

The only transitions which can occur are from & ——k;
this is physically sensible in a one-dimensional elastic
scattering. The unperturbed states are e?** and e~ for
a given energy.’® On using

[k — (k") ]= (1/2| k)8 (k—k)+o(k+E)],
one may write
A= BR)[3(k—F)+0(k+E) . (161)

One observes from (160) that since #'= -k, B; must be
an even function of k. Substitution of (161) into (157a)

immediately gives
of
( ) . (162a)

ofi E:0f
—7+-a—~B(k)[f( k)—f(k) 1=
This equation corresponds precisely to the Boltzmann
equation (20), which is the starting point for all con-
ductivity calculations. One can now proceed in the
usual way, seek stationary solutions of (162a) by
expanding the stationary solutions in powers of E,,

% It is quite evident that one deals with a doubly degenerate
system.
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keeping only first powers in E,. Writing
f=/9+E® (163)

and carrying out the indicated procedure yields, after
a trivial calculation,

E, of°
2hB(k) Ok

ffO— (163a)

when f0 is the equilibrium Fermi distribution. The
current is found again in the time-honored manner®

4o o ik
i f ofdk~ f e fdk
—o0 —o0 m

ok o9fo
_E f ok (16ia)
= B(k) 9
The conductivity thus has the familiar form
kdk 0 f° kr
o=— | — o (164b)
B(k) 0k B(kr)

Just how accurate the last approximation in (164b) is
depends on the degree of degeneracy of the electron
gas. But in any case (164b) yields o.

The similarity of the development just given [Eqgs.
(157a)-(164b)] to the typical conductivity calculation
is no doubt evident. One special feature of these equa-
tions is worth noting; from (162a), one sees that

Lof(k)/atT+[of (—k)/0t].=0. (165)

Hence, the function [ f(%,)+ f(—,£)] is unaffected by
collision states which are not equilibrium states, but
which are symmetric (are not influenced by collisions).
Stated yet differently, symmetric deviations from the
equilibrium state do not relax towards equilibrium.
Their relaxation time is infinite.

One may now relax the strict 6 function character of
the matrix element Az and yet obtain a similar result.
In fact, the perturbation calculations gives not a 6
function, but a function having a sharp maximum,
near k=Fk’. Transitions from % — %’ < —k are possible.
So one replaces the ¢ function by a function which has
its values in ranges of %’ near |k| such that the corre-
sponding variation of energy E'—E~#%/7. One can
then apply the integral mean value theorem to the
integrals over &' in (157a); the equation becomes

0fr z
U B0 1)

166a
at h ok ( )

Here &* is some value of %, in the interval A%. The
interval is given by

(72 2m)[ (k) — (k') ]~AE=%/7.

8 Factors 2w, other constants are omitted in this calculation.
One also assumed v="7%k/m.
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Equation (166a) is an exact consequence of (157a).
One can now follow the general pattern, and obtain an
approximate solution to (166a), which again yields a
current and a conductivity. The only condition involved
for the validity of the procedure is that the energy
difference (#%/2m)(k*—k’?) be a small fraction of the
Fermi energy. [This in particular allows the approxi-
mation in formulas (164b) to be made in this case as
well. ] It thus appears possible to relax the § function
condition and obtain a next approximation subject only
to the restriction

(#2/2m) (B2— k%)~ AE=1/ 1< Ep. (167)

This is in harmony with (153). To show the great
care one must exercise in using equations in transport
theory, it is amusing to show that even though the
development starting from (162a) follows the same
outline as that in conductivity theory, with formally
identical results, the calculation is actually somewhat
deceiving. Note that the stationary solution f; satisfies

(Eo/7) (3f/ 0k)=B(R)L/(—k)—f(k)]. (162b)

It can be shown that rigorously (i.e., without ex-
pansion in E,) Eq. (162b) has no solution at all. One
sees from (162b) that df/dk is an odd function of k;
hence (without approximation), f(k) is an even function.
But this means that the current j= fkfdk=0. Thus,
from (162b) one has an identically vanishing current.
In fact, since f is even, (162b) becomes 9f/dk=0; Eq.
(162b) has no sensible solution at all. Yet (163) is (to
first order in E) an approximation, which one feels has
rather more significance than the equation which it
solves. But from a formal standpoint the stationary
equation (162b) has no noritrivial solutions.? Although
the one dimensionality of this model causes this example
to be rather extreme, the result illustrates a point made
before: Equations are valid in limited ranges only ; they
usually have only approximate solutions which are
meaningful ; improvements, in principle, are impossible.
To make refinements one cannot find better approximate
solutions to a given equation; one has to start from a
different equation having a different domain of validity.

(e) Quantum limit. The basic limitation of the
Boltzmannian description is that A>\. (The mean free
path of the electron is large compared to the de Broglie
wavelength.) Basically, this means that one describes
the electrons using wave packets. The condition just
given expresses the possibility of localization of the
electron within a mean free path as a (physically
obvious) condition for the validity of that description.
There are other inequalities required for such a descrip-
tion; for instance, A should be small compared to

52Tt should be realized that a similar conclusion cannot be
obtained if one studies the #ime-dependent equation (162a). This
already indicates that one should properly study the fime evolution
of a given deviation from equilibrium. One would also find that
the time-dependent solutions behave very differently for different
time intervals. The study of the stationary state alone is the
crudest possible approach.
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distances over which the external parameters vary
appreciably. This condition is always satisfied. If a
magnetic field is applied, altogether new situations may
arise. The field causes electrons to spiral around the
field direction, with a frequency wy=¢H/mc. (It should
be noted that m is for a real metal or semiconductor, the
effective mass. Thus m may be as much as a hundred
times smaller than the mass of a free electron ,and wy
a corresponding amount higher). An electron of velocity
v describes a circular orbit of radius 75 =v/wy. For high
fields 7 becomes very small. In the presence of a mag-
netic field, there are therefore at least three charac-
teristics lengths, 7y the radius of the circular orbit, A
the mean free path and N the de Broglie wavelength.
The physical situation depends very sensitively on the
relative magnitudes of those lengths. (There are three
characteristic times, corresponding to these lengths:
1/ws, the cyclotron resonance period, the relaxation
time 7, and the ‘“duration” of a collision A/vr.) The
presentation of conductivity theory given so far refers
to the usual case where A <A <7y ; this is a small field
semiclassical situation. As soon as rz~A, or wr~1,
the situation changes. For then the electron moves for
an appreciable time under the influence of a magnetic
field with only occasional collisions. In that case one
cannot take the magnetic field into account as a per-
turbation, one can take the collisions into account as a
perturbation and treat the magnetic field more pre-
cisely. These are quantum phenomena, associated with
the motion of electrons in magnetic field, the de Haas-
van Alphen effect was a manifestiations of these
quantum phenomena. Hence, in fields strong enough so
that wyr>1, the quantization [Sec. B.2(d)] of the
individual electrons must be taken into account. It is
important to note that a typical relaxation time
7~10""; hence, for wyT~1; wg=210", the correspond-
ing level separation is iwg=0.1 ev. This level separation
is much larger than 27 (at 10°). (Actually, a frequency
wp~ 10" requires a magnetic field of order H=10°; for
those electrons having a small effective mass, the
necessary field can be much smaller.)

Another consequence of the introduction of a strong
field is that k.k,k. are no longer ‘“good” quantum
numbers. One cannot use the Bloch scheme to classify
the states. One can use k,, E, and # [see (101b)] to
characterize states; the distributions over these states
with #, a discrete variable, demand a quantum
treatment.

The de Haas-van Alphen oscillations have their
origin in the quantized energy levels of an electron in
a magnetic field (it is a genuine macroscopic quantum
phenomenon). This same level structure also gives rise
to a variety of oscillatory transport effects. Oscillations
in the magnetoresistance [717], the Hall effect [72],
and the thermal magnetoconductivity [73]. (See [74].)
Just as the discussion of the de Haas-van Alphen effect
requires the study of the consequences of the energy
level scheme, the oscillatory transport phenomena can
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be described only by an explicit investigation of the
effect of this level structure. This can be done only in a
consistent manner by using the density matrix
technique.

There is a point of rather formal character which,
however, demonstrates clearly that the density matrix
method is the proper one to describe certain phenomena.
Consider a system of electrons in a constant magnetic
field H, oriented along the z axis. This system was
discussed using the Hamiltonian (100). One may recall
that the velocity operators were defined by (108):

0= 0H 3/ dpo= p/m,
vy=0Hn/dp,= (p,—mwnx)/m,
V,= aHM/apz=pz/m

The matrix elements of the velocity operators between
Landau States® can easily be obtained [74,75]:

(11’7kl 1);;[11’,k’>

(168)

ﬁml{ b 1 1
=1 (*‘—) ['— (’VH‘ 1)5571',n+1+%i5n/,n—1]5kk',
2m

(n.k|o,|n' k') (169)

ﬁwH % 1 1
= (2_") [_ (n_,'l)ian',n+1+nian’,n-1]5kk')

m

hik,
(k| v, | 'Ky =8, k.
m

One sees from (169) that if z=#’, both (v,) and (v,)
are zero; the transversal components of the current have
only off diagonal matrix elements. This causes the
vanishing of the quantum average of these operators
in any state. A special case of this was noted in (108).
v,, however, does have diagonal matrix elements; its
average values does not vanish. One now would be
tempted to give a statistical description of this system
of electrons using the distribution function f(u,k,,k.).
Thus, the current in the z direction would be given by
(apart from constants) (119) and (108)5:

jz=Z(ﬂz>g(ﬂ,kz)f(%,kmkz)- (170)

The discussion of this sum was given previously. In
the same way one would obtain the x component of the

current:
jx=Z(vx>g<”:kZ)f(n:kme):O- (1703)

Thus, one concludes that the transversal current is
necessarily zero. It is at this point that the difference
between the results of the density matrix technique
(which is rigorous) and the distribution function
method (which is approximate) becomes quite explicit.

% Landau states, the basis of the Landau representations, are
the exact eigenstates of an electron in a constant field given by
(101a). They often be abbreviated as |n,k:k.).

5 (;) stands for the quantum average, an expectation value
of .
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According to the density matrix method, the observed
current is the ensemble average of v, or, using (1.31),

Je=((ev:))=e Zk . (nike|v:|n', B'Yn'E | p|mk)

hk.
=2 e—(nk[p|n,k)
nk  m

= Zk(vz>g (n,k2) f (ke k). (171)

The fact that », has diagonal matrix elements (169)
has been used. Since only diagonal matrix element of
the density matrix occur, one can utilize the identity
of the diagonal matrix elements of p with the function
g(n,k.) f(n,ky,k.). The direct relation between diagonal
density matrix elements and distribution functions was
noted before. Thus, (171), using the density matrix,
gives the identical result as (170), using the distribution
function. However, consider 7,; next

Jo=ela))y=e X (nk|v.|W'F)Yn'k |p|nk)

n' k%’

=e¢ Z,<n[m]n')<n']pln>;é0. (171a)

Since {n|v,|n’) is nongero only if #'=n=1, the non-
diagonal matrix elements of p, which have no distribu-
tion function type interpretations, play a crucial role.5
Equation (171b) is not identical with (170b); Eq.
(171b) is correct. In this transversal case one cannot
use a distribution function; the density matrix is
required. The use of the Boltzmann distribution
function gives indeed qualitatively incorrect results.
An even more extreme quantum-mechanical situation
occurs when the radius of curvature 7z, becomes com-
parable with the de Broglie wavelength \ or, what
amounts to the same thing, when #%wy~ Ep. This
happens in extremely strong fields only (10"— 108gauss) ;
but again for electrons with a small effective mass,
this limit may well be within reach. In this case again,
a detailed quantum-mechanical treatment is needed.
When one is dealing with systems where the thermal
gradients vary very rapidly or, more realistically, when
a system is subject to a periodic external perturbation,
new characteristic times (or distances) appear, and
with them a whole new class of interesting phenomena.
The task of obtaining a firmer basis for the transport
equation is thus of both fundamental and practical
interest. It is unfortunate that the path from the well-
defined starting point, the density matrix, to the actual
applications is so tortuous and long. One, however, may
take solace from the facts that much of the work
presented so far can indeed be justified, so it was worth
doing, yet some physical situations require the density

5 By using distribution functions, one can take only the diagonal
elements of p into account. When only off-diagonal elements play
a role as in (171b), the Boltzmann approach is bound to give
incorrect results.
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matrix approach (even the simplification to a master

equation is not allowed), this justifies the labor to come.

wt

LITERATURE SURVEY AND BIBLIOGRAPHICAL
NOTES

. A. H. Wilson, reference 153. Chapters VIII and IX contain

perhaps the most systematic treatment of conductivity theory
available. In Chap. VIII, a relaxation time is assum=d: in
Chap. IX, the interaction between phonons and electrons is
treated in detail. In addition to the general discussion, appli-
cations are worked out for solids with given band structures.
The computed quantities are then compared with experiment.
Much of the discussion in II parallels the discussion in this
reference.

. J. M. Ziman, reference 1 57. The parts of this reference

relevant to the material in IT are: Chap. V, “Electron-phonon
interaction”; Chap. VII, “Formal transport theory”; Chap.
IX, “Electronic conduction in metals.” The treatment is de-
tailed and well documented. Especially useful are the com-
parisons of the various methods to calculate phonon electron
interactions in Chap. V. Chapter VII contains a lucid dis-
cussion of the variation principle, which compliments the one
given in reference 1. Chapter IX contains the most up-to-date
and complete conductivity calculations leaving little to the
imagination. The involved character of the calculation is
evident in spite of the fact that this is one of the more trans-
parent discussions.

. E. H. Sondheimer, “Electron transport phenomena in metals,”

in Progress in Low Temperature Physics (North-Holland
Publishing Company, Amsterdam, 1957), Vol. II. An ex-
tremely readable summary of the status of transport phe-
nomena in metals. Most attention is given to the comparison
of theory and experiment at low temperatures. The theoretical
basis is outlined and several of the attempted refinements are
given.

. F. Blatt, “Theory of mobility of electrons in solids,” in Solid

State Physics, edited by F. Seitz and D. Turnbull (Academic
Press, Inc., New York, 1957), Vol. 6, p. 200. A complete dis-
cussion of the applications of the transport equation to solid-
state theory. In addition to some standard material, many
specialized topics are discussed in detail. Among these are the
applications of transport theory to semiconductors, the con-
ductivity tensor in #-type germanium and silicon. The treat-
ment is generally easy to read, occasionally it is quite
condensed. The extremely detailed comparisons with experi-
ment are most useful.

. D. K. C. McDonald, “Resistance of metals at low tempera-

tures,” Inst. intern. phys. Solvay, Conseil phys, 10¢ Conseil,
Brussels, 1955 (1956). This is an extremely stimulating report
on the experimental status of transport properties in 1955.
Special attention is called to the phenomena which are only
incompletely understood. Among these are the resistivity
minimum, both in simple metals and in alloys. It is in a way
unfortunate that this excellent report (and others in the same
volume) is contained in a book which is not too easily
obtainable.

. J. M. Ziman, reference 157. In the detailed conductivity

calculation presented in this reference, Chap. IX, the Bose
distribution for 7, is explicitly used.

. Reference 3. The general tone of the summary in the text

has been influenced strongly by this reference.

. J. M. Ziman, reference 157, Chap. I, p. 19. The use of the

periodic boundary conditions is common place in solid-state
discussions. Their purpose is always to avoid a detailed dis-
cussion of the surface effects. In addition, one can use plane
waves exp(iqx) which are momentum eigenstates, which
simplifies the discussion. One can, if so desired, give a geo-
metrical representation of this boundary condition. In two

10.

11.

12.

13.

14.

15.

16.
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dimensions this means that one wraps the surface on a torus.
In three dimensions one must imagine that points on opposite
sides of a parallelepiped are identified. One then obtains a
perfectly well-defined manifold. Contrary to Ziman’s state-
ment that “for topological reasons” the boundary conditions
cannot be satisfied, the parallelepiped with identified opposite
sides is a much studied topological manifold. It cannot be
imbedded in a three-dimensional Euclidean space, but this is
irrevelevant both for the topological study and the utilization
of the periodic boundary condition. It is a real problem to
demonstrate that as L, Ly L; and N go to infinity, with N/Q
fixed, the entities of physical interest approach a finite well-
defined limit. Results of this type are demonstrated in certain
studies in statistical mechanics.

. R. E. Peierls, reference 143, pp. 41 and 138. Practically all

standard texts in solid state have a discussion of the Umklapp
processes. Whereas reference 157 contains many more appli-
cations of U processes than 143, the physical description in
the latter is perhaps as clear as any.

J. M. Ziman, reference 157, Chap. V. A detailed discussion of
the dependence of the matrix element M given by (14a) on
the various forms of the assumed electron-phonon interaction.
The calculations are given in detail for the rigid-ion approxi-
mation (5.4), the deformable ion [the Bloch case (5.5)], and
the Bardeen self-consistent calculation (5.7). It was perhaps
not stressed sufficiently in the text that the assumed form of
the matrix element M and the character of C can be con-
sidered appropriate only for alkali metals. The treatment given
in this reference had a decisive influence in the presentation
given in the text.

A. H. Wilson, reference 153, Sec. 9.3. A detailed treatment of
the calculation of the electron-phonon matrix element for
rigid ions. The discussion is as clear and straightforward as
possible given the tenuous character of the subject matter.

J. Bardeen, Phys. Rev. 52, 688 (1937). This calculation of
the electron-phonon interaction is one of the classics of solid-
state theory. The electron-phonon interaction is computed by
using a self-consistent procedure. It was recognized in this
paper that conduction electrons follow the displaced ions very
rapidly, with a consequent screening of the scattering po-
tential. It is this fact which makes a self-consistent calculation
sensible. This same feature is also the basis for the weak short-
range screened electron-electron interactions in metals, rather
than the strong long-range Coulomb interaction.

J. M. Ziman, reference 157, Chap. V, Sec. 5.8. A valuable
summary of the net results of the many studies of the electron-
phonon interaction. The only notable omission is the elec-
tron-phonon interaction treated by the use of collective co-
ordinates (see reference 150). Although Ziman correctly
points out that the calculated results are not materially dif-
ferent from those obtained by more conventional means, the
introduction of collective coordinates provides a different
viewpoint in the descriptions of electrons in a solid; as such
it would appear to be of unusual importance.

Reference 4. In Blatt’s discussion, the function O(E;— Ey) in
(16b) is written as a & function. Although it is indeed correct
that in many instances O does act like a & function, there are
circumstances where this replacement must be done with care.
[See Sec. B 3(d).]

A. H. Wilson, reference 153, Sec. 9.4. An explicit calculation
of the relaxation time for impurity scattering. A similar and
much simplified version of this calculation is given in the text.
A. H. Wilson, reference 153, Secs. 2.82, 2.83, and 2.85. Details
of a perturbation calculation which shows how a wave function
changes under the influence of external electric and magnetic
fields are given. Let ¥ (x,£) be the wave function of the electron
in the external electric and magnetic field, let ¢+(x) be Bloch
wave functions. If one develops ¥(x,f)=Zcu/r(x) so that
lex(®) |2 is the probability that the electron is in state % at
time 7, one obtains
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This is used to obtain (20) in the text.

E. N. Adams and P. N. Argyres, Phys. Rev. 102, 605 (1956).
This paper contains a critique of the customary method of
proof of the “effective mass theorem” in solid-state theory.
The failure of the theorem to hold (for short times) stems from
the mixing of wave functions of different bands. By con-
structing new wave functions so as to eliminate interband
couplings, one may reestablish the theorem in first order in the
applied fields. (The result applies only to time-independent
outside fields.)

Reference 4, Eq. (3.4).

A. H. Wilson, reference 153. This discussion starts from
Eq. (30), with explicit expressions for the transition rates B.
One integration can be performed because of the & function
character of B (it contains an “almost & function” of
L — Er—7w,). On introducing this as a variable, one integral
can be performed. If i1, is a quadratic function of %, and some
other simplifications are made: (30) may be reduced to a
single integral.

A. Sommerfeld and H. Bethe, Handbuch der Plysik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1934), Vol. 24, p. 2. This
is one of the older references to solid-state theory generally
and to transport calculations in particular. In spite of this
(or perhaps because of it), the treatment is thoughtful and
detailed. The pattern of the conductivity outlined in the text
is very similar to the one followed in this reference. The
Boltzmann equation [like (30)] is set up, and the reduction
of the integral is given in great detail, as are the simplifying
assumptions. This treatment is one of the most complete
available. No UK processes or other refinements are included.
Reference 4. To decide which inequality, (34b) or (33), gives
a more stringent restriction on ¢, one need only express
the Fermi wave number kr in terms of the electron density.
A. H. Wilson, reference 153. This reference shows that (33)
may be rewritten as #w,<kf: 6 is the Debye temperature.
Equation (33) applies when #>1N,, (34b) applies when
n<3:Ny: N, is the number of atoms per unit volume, » the
number density of electrons.

A. H. Wilson, reference 153. An exact solution to Eq. (53) is
given.

Reference 4. The treatment given in the text follows the dis-
cussion given in this reference rather closely.

. J. P. Jan, Galvanomagnetic and thermomagnetic effects in

metals in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press, Inc., New York, 1957), Vol. 5, p. 3. An
extensive compilation of the many experimental results in
this field. The emphasis is definitely on experiments, theory
is introduced only in so far as needed to describe the experi-
ments. Special attention is devoted to the detailed interpre-
tation of specific experiments. There is some discussion of the
oscillatory effects.

Reference 4. A useful classification of the transport effects in
magnetic fields. The discussion is not as extensive as in refer-
ence 25, but Table III is very useful.

A. H. Wilson, reference 153, Eq. (8.55.5).

Max Kohler, Ann. Physik 40, Ser. 5, 601 (1942). The deriva-
tion of the symmetry relations (94), as presented in the text,
is taken from this paper. This reference also contains the
derivation of the more general results (86), which were men-
tioned but not proven in the text. In addition, Kohler’s paper
contains an interesting derivation of the analog of the Franz-
Wiedemann law, in the presence of magnetic fields. If one
assumes that (a) the collisions which electrons suffer are
practically elastic collfsions, (b) the solutions x are slowly
varying functions of energy, and (c) the electron gas is de-
generate, one can show that the Franz-Wiedemann law holds
for the individual tensor elements of the thermal and electrical
conductivity tensor. This paper also contains one of the first
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classifications of the galvanomagnetic and thermomagnetic
effects of single crystals. A significant paper.

A. H. Wilson, reference 153. Formulas corresponding to
Egs. (85a) and (85b), Egs. (8.1.9) and (8.1.10) are given
without proof. It is correctly stated there that the whole
theory of conductivity is contained in the tensors 7',» of
(85): however, one might gain the impression from this
reference that these tensors are knmown. Actually they are
expressed in terms of (unknown) solutions of the Boltzmann
equation. This enables one to deduce the symmetry properties,
but Kohler’s argument [287] does not yield the explicit form
of the solutions.

I. M. Lifshitz, M. Ia. Azbel, and M. I. Kaganov, “Theory of
the galvanomagnetic effects in metals,” Soviet Phys.—JETP.
4, 41 (1957). Part 1 of this paper contains a discussion of the
behavior of conduction electrons in metals. This part of the
discussion is reproduced in the text, in I, Sec. C.4. Much of
this same material is reviewed in reference 174. The distinction
between open and closed orbits on the Fermi surface is given.
Part 2 of this reference deals with Eq. (89) in the text, there
referred to as the “kinetic equation.” The equation is solved
by a power series in 1/H,, H. is the applied field. Very de-
tailed predictions about the high-field behavior of the con-
ductivity tensor are made. The o,;, component can be shown
to be given by 4= (ec/H) (n1—n,), where

ni=number of electrons

nz=number of holes. (A14)

This was one of the first papers which suggested that the mag-
netoconductivity might show a strong angular dependence,
which could be used to obtain the detailed structure of the
Fermi surface. The discussion in the text should make it
easier to read this paper, but the text provides a beginning
only. This paper contains a great deal more than is reported
here.

J. W. McClure, Phys. Rev. 101, 1642 (1956). This paper
contains a discussion of Eq. (89), more precisely of Eq. (90).
The approximation is made that even in the presence of an
external field, the trajectory lies on the Fermi surface. This
has as a consequence that the motion is periodic, this perio-
dicity is exploited in this paper by expanding f in a Fourier
series. The conductivity tensor can be expressed in terms of
the Fourier components of the velocity v.

J. M. Ziman, reference 157. Equation (94) in the text corre-
sponds to Ziman’s formulas 12-7. 11. There is a difference in
sign between Ziman’s expression and (94). Equation (94)
agrees with the sign used by Heine. Ziman starts the discussion
from (92), rather then from (89), but the discussion given in
the text is in many ways similar to the treatment of Ziman.
V. Heine, Phys. Rev. 107, 431 (1957). It is shown by straight-
forward substitution (in the Appendix of this paper) that f®
defined by (96) satisfies (95).

I. M. Lifshitz and V. G. Peschanshi, Soviet Phys.—JETP
35, 875 (1959). This paper is a continuation of reference 30.
Most of the analysis there was concerned with closed orbits;
this reference is concerned with the extension to open Fermi
surfaces.

The methods are much the same as those in reference 30;
the specific predictions are: (a) In some directions the re-
sistivity approaches saturation, in others it rises without limit
(p~H?). (b) In polycrystalline samples there may be a linear
increase of the resistivity with H as a consequence of the
average over orientations. Special examples are worked out
for typical Fermi surfaces.

. D. Shoenberg, in Progress in Low Temperature Physics (North-

Holland Publishing Company, Amsterdam, 1957), Vol. II,
p. 226; A. B. Pippard, Inst. intern. phys. Solvay, 10 Conseil,
Brussels, 1955, 123 (1956). These two references together
provide an excellent description of the theoretical background,
the experimental techniques, and the uses of the de Haas-van
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Alphen effect. The remarkable degree of structure in the sus-
ceptibility oscillations is directly connected to a number of
significant parameters; for instance, it was shown by Onsager
that the period of oscillations is inversely proportional to
extreme cross-sectional area of the Fermi surface. (This is the
maximum area cut of the Fermi surface by planes perpendicu-
lar to the field direction.) Onsager’s result thus allows the cal-
culation of the external areas from observation of the periods
as functions of the field directions. It is possible to obtain a
great deal of information about this Fermi surface from these
extremal areas. Hence, the de Haas-van Alphen effect is a sig-
nificant tool in studying the Fermi surface. It is in this con-
nection that the de Haas-van Alphen effect is discussed in
Pippard’s work.

Shoenberg’s work contains both the theory and a very
lucid discussion of the relationship of finer details of the oscil-
lations, such as their phase, the variations of amplitude with
temperature, with the various theoretical quantities, such as
the electron velocity on the Fermi surface. Both references
are well worth studying in detail. The importance of the
de Haas-van Alphen effect for the present is twofold : it shows
the importance of quantum phenomena; it provides significant
information about the Fermi surface.

A. H. Kahn and H. P. R. Frederikse, “Oscillatory behavior
of magnetic susceptibility and electronic conductivity,” in
Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press, Inc., New York, 1959), Vol. 9, p. 257. Many
of the phenomena to be described in the text are contained in
this interesting summary. The discussion is shorter than in
the text but quite lucid. The notation used in the text is very
similar to that used in this reference. (The sign of the electric
charge is opposite.) Specific references to this paper are given
many times at appropriate places. The choice of material in
Sec. (d) has been influenced by the presentation in this
reference.

P. N. Argyres and E. N. Adams, Phys. Rev. 104, 900 (1956).
The calculation presented in the text [Sec. 2(d)]is taken
directly from this paper and reference 38.

P. N. Argyres, J. Phys. Chem. Solids 4, 19 (1958). The papers
referred to in references 37 and 38 treat the same problem:
the influence of magnetic fields on the relaxation times of
electron phonon and electrons impurity scattering. Reference
38 contains only a discussion of the electron-phonon relaxation
time; reference 37 discusses the electron impurity scattering
as well. The methods and the formal results are sketched in
the text; the main result is (113). In these papers the formal
expressions and the various sums are evaluated for degenerate
electron gases. Actually, references 37 and 38 are extraordi-
narily similar; in reference 37, it is assumed that the # quan-
tum number [in (109), for example] is zero and remains zero.
This is the extreme quantum limit. This restriction is dropped
in reference 38; this causes some computational complications,
but the general character of the calculation is much the same.
Reference 3, Sec. 2.

A. H. Wilson, reference 153. “A typical” calculation can be
exemplified by the discussion given: the assumptions are
given in Chap. IX of this reference.

A. H. Wilson, reference 153, Appendexes A4 and AS5. Detailed
series expansions as well as numerical values of the integrals
in question are given.

Reference 3. The discussion given in the text follows that of
this reference very closely.

J. M. Ziman, reference 157. All of Chap. IX is devoted to the
electronic conduction in metals; substantial parts of this
chapter analyze the agreement between theory and experi-
ment. Several phenomena are discussed : the resistance mini-
mum in alloys, lattice resistance, and the electrical resistance
of transition metals. This is at present probably the most
up-to-date and complete comparison available.

44.

45,

40.

47.

48.

49,

50.

31,

52.

53.

MAX DRESDEN

Garcia Moliner, Proc. Phys. Soc. (London) A72, 996, 111
(1958). :

This is a typical calculation of the kind mentioned in the
text: (a) a specific form of the Fermi surface was assumed;
(b) a single relaxation time was assumed. On this basis one
can thus compute the magnetoresistance which comes out in
terms of the assumed asymmetry parameters of the Fermi
surface. (One uses the iterative solution of the Boltzmann
equation for this calculation.) Then one can perform an
average over-all directions so as to obtain results valid for a
polycrystal. These results can be compared with experiment.
The consistency of assumed forms of the Fermi surface may
be tested in this manner. For Na only does one find that the
Fermi surface can be approximately spherical.

R. Olson and S. Rodriguez, Phys. Rev. 108, 1212 (1957). The
result of the experiments on the magnetoresistance of single
Cu crystals lead to the conclusion mentioned in the text, that
the Fermi surface of Cu in all probability intersects the
boundary of the first Brillouin zone. Certain assumptions
(such as the existence of isotropic relaxation times) are always
contained in the analysis.

N. E. Alekseevski and Yu. P. Gaidnkov, Soviet Phys.—JETP
10, 481 (1960). The experiments measuring the fractional
change of the resistivity as a function of angle, for fixed field,
show a remarkable amount of structure. (In harmony with the
general predictions of Lifshitz, et al., reference 30, and Lifshitz
and Peschanski, reference 34.) If for fixed field one averages
at each H over all angles, a linear behavior as a function of H
results (in harmony with older measurements).

J. M. Ziman, reference 157, Chap. XIIL. An outline of the
reference 30. Some of the arguments are perhaps a little
easier to follow, but reference 30 is much more complete than
Ziman’s review. In Chap. XII it is also suggested the linear
behavior of the fractional change in resistivity with H is due
to the polycrystalline nature of the sample. [ For similar views
see references 30 and 34.7]

R. A. Cornish and D. K. C. McDonald, Phil. Mag. 42, 1406
(1951). In this study a rather different phonon spectrum was
assumed. The spectrum was supposed to consist of a number of
linear portions. This has an effect on the resistivity calculated
with this new phonon spectrum. The agreement with experi-
ment was definitely improved.

E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 75
(1950). In this paper higher order terms are included in the
variational solutions of the integral equations of transport
theory. The correction terms introduced by this improved cal-
culation are small. They do not materially improve the agree-
ment with experiment.

J. M. Ziman, reference 157, Sec. 7.7. A simple exposition of
the variational principle. It is perhaps well to point out that
one of the weaknesses of a variational procedure is the fact
that it is hard to assess the accuracy of a solution. Also one
cannot make a systematic improvement of the solutions one
obtains. Even so the variational procedure is a powerful tool
in the numerical analysis of the Boltzmann equation.

J. M. Ziman, reference 157, formula 9.7.5.

The numerical work in connection with this calculation is
contained in J. M. Ziman, Proc. Roy. Soc. (London) A226,
436 (1954).

J. Bardeen and D. Pines, reference 150. This paper contains
many references to earlier work on the collective description.
There is also a very clear summarizing discussion by Pines of
the collective description of an electron gas in the proceedings
of the 10th Solvay Congress, which was referred to in refer-
ence 5. A similar review is D. Pines, in Solid State Physics
(Academic Press, Inc., New York, 1955), Vol. 1, p. 368.

Reference 4. A short discussion of the effect which the modi-
fications of the dispersion law E=E(k), demanded by the
collective description, have on the transport properties of
alkali metals is given. The calculations were made by R. Barrie
[Phys. Rev. 103, 1581 (1956).] For Li, the changes are
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largest; but even for Na, the correction in the conductivities
is far from negligible.

S. Chapman and T. G. Cowling, reference 16; D. ter Haar,
reference 15.

J. M. Ziman, reference 157, Fig. 112.

J. M. Ziman, reference 157. In the discussion of the electronic
conduction, the contribution of the U processes is considered
in detail (Chap. 9.5). The calculation becomes involved, and
a variety of approximations dealing with the specific geome-
try of the U processes, need be made to obtain tractable
results. The results as they refer to conductivity are quoted
M. Bailyn Phys. Rev. 112, 1587 (1958). “Transport in metals
I,” “Transport in metals II"” (this second paper was in pre-
print form when this review was written). These papers con-
tain perhaps the most organized studies of the effect of UK
processes (in I), and the effect of the detailed form of the pho-
non spectrum on the calculated transport properties. In addi-
tion, a more precise calculation of the electrons phonon matrix
element is given (this is quite similar to the results obtained
by J. Bardeen and D. Pines, reference 150). In this reference
the coupled integral equations for the electron phonon systems
are written down. A relaxation time is assumed for the elec-
tron-electron interactions, as well as for the phonon-phonon
interactions but #ot for the electron phonon interactions. This
study is the most refined which can be made within the
Boltzmannian framework.

Solutions of the coupled systems are constructed by means
of the variational principle. (It is pointed out in this paper
that the variational trial functions are always of the form for
an electric field in the x direction.)

== f/E) (VE)s Eexix (E). (A15)

Here x () is written as a power series, whose coefficients are
to be determined. The restriction that x is a function of E
alone is a severe limitation whose validity is hard to judge.
This situation is inherent in any use of a variational procedure.
See also the remark made in connection with reference 50.
The qualitative results of the calculations are quoted in the
text. The quantitative results are still not very satisfactory.
It is suggested by Bailyn that this may be due to an unrealistic
phonon spectrum. This type study is certainly of great
interest: further detailed work of this character is most
necessary. The papers are not easy to read.

I. I. Hanna and E. H. Sondheimer, Proc. Roy. Soc. (I.ondon)
A239, 247 (1957). The discussion in the text is directly based
on this paper.

J. M. Ziman, reference 157, Chap. IX. This reference objects
to the manner in which the phonon mean free path for im-
purity scattering was fixed by Hanna and Sondheimer in their
calculation. This is in harmony with the remark made in the
text. The large number of free parameters in such theories
(as Hanna and Sondheimer) make a crucial confrontation of
theory and experiment quite difficult. )

W. Chang and G. E. Uhlenbeck, “Kinetic theory of a gas in
alternating outside force fields,” University of Michigan, Ann
Arbor, Michigan, Tech. Rept. 2457-3-T. The discussion in the
text is based on this work. It is a pity that this very interesting
paper is not generally available. A summary is contained in
reference 120.

S. T. Choh and G. E. Uhlenbeck, “Kinetic theory of phe-
nomena in dense gases,” U. S. Navy theoretical physics con-
tract. An extensive and detailed discussion of the applications
of the ideas of Bogolinbov, to the study of dense gases. The
Triple collision terms are explicitly written down. See also
reference 124.

‘D. Bohm and D. Pines, see reference 150.

L. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1949), Sec. 46.

R. Gatto, Nuovo cimento 10, 592 (1955). There are many
formulations of statistical mechanics using the second quan-
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tized formalism. This reference is one of the earlier and
simpler papers on this subject. It is mainly devoted to equi-
librium statistics. There are a large number of such formula-
tions for nonequilibrium situations, which are especially
pertinent in connection with the problem of the approach to
equilibrium. This will be discussed in Part III and appropriate
references will be given at that time.

R. E. Peierls, reference 143, p. 124. Actually Peierls derives
this relation from the well-known fact that a time-dependent
perturbation calculation is a short-time expansion. If the time
during which it can be valid is ¢; ¢<r. Since the time of the
validity is of order #%/kT, one must have #/kT <, or /7 <kT.
(It is not obvious that the time during which the perturbation
expansion can be expected to be valid is indeed given by
ti~n/kT.)

Reference 4. A discussion of this question is given. It is
recognized in this reference that one must be very careful
about the interpretation of the time, which should be used in
the uncertainty relation. Many of the comments made are
based on the work of H. W. Lewis, reference 67.

H. W. Lewis, “Wave packets and transport of electrons in
metals,” in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press, Inc., New York, 1957), Vol. 7, p. 353.
The main concern of this paper is with the nature of the in-
equality (149). The discussion is extremely lucid. The under-
lying physical reasons for the validity of the transport equa-
tion, even when (149) is not satisfied are discussed. The treat-
ment in the text, is to a large extent based on this reference.
Two related points are stressed. One cannot neglect the fact
that one deals with a degenerate situation (in electron im-
purity scattering), this affects the way in which the entities
entering the uncertainty relation must be interpreted. The
one-dimensional model mentioned in the text is directly copied
from this reference. The general physical interpretation is
again that expressed by Lewis.

D. A. Greenwood, Proc. Phys. Soc. (London) A71, 585 (1958).
This paper is devoted to the inequality (149). The method of
showing that this can be replaced by the weaker condition
(153), is based on the density matrix. This will be discussed
further in Part ITI.

J. S. van Wieringen, Proc. Phys. Soc. (London) A67, 206
(1954). The discussion given is an outline of this paper.
Although the conclusions are easy to phrase, the calculations
are quite annoying. It is worth noting, that in all these dis-
cussions of the validity of the Boltzmann equation, one always
treats the case of the scattering of electrons of randomly dis-
tributed impurities (or of a stationary phonon distribution
with random phases). No comparable discussion appears to
exist for the system of coupled Boltzmann equations.

R. E. Peierls, reference 143, pp. 140-142. An argument is
given which indicates that the correct conditions for the
validity of the transport equation are (153) not (149). The
argument is perhaps not as convincing as one might hope.
The crucial point appears to be the form (155) of the in-
equality (149), i.e., the possibility of defining collisions which
are localized events.

P. B. Alers and R. T. Webber, Phys. Rev. 91, 1060 (1953).
Experimental observation of oscillations in the magneto-
resistance.

J. M. Reynolds, H. W. Hemstreet, T. E. Leinhardt, and
D. D. Triantas, Phys. Rev. 96, 1203 (1954). Observations of
the oscillations in the Hall effect.

P. B. Alers, Phys. Rev. 101, 41 (1956). Observation of the
oscillations in the thermal magnetoresistance. (The effect
of a magnetic field on the thermal conductivity.)

Reference 36. An up-to-date summary of the oscillatory trans-
port properties can be found in this reference (most of the
detailed discussion refers to bismuth).

Reference 38. The wave functions and the necessary recursion
relations are given.
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76. P. N. Argyrcs and L. M. Roth, J. Phys. Chem. Solids 12, 89

717.

(1959). The matrix elements of the velocity operator (169)
are given in many places. This reference is one of them.

The Fermi Surface, edited by W. A. Harrison and M. B.
Webb, proceedings of an international conference held at
Cooperstown, New York, August 22-24, 1960 (John Wiley &
Sons, Inc., New York, 1961). This conference report appeared
when this review was already in print. Many of the general
conclusions mentioned in the text appear to be substantiated
by the recent results. From the theoretical side, the intrusion
of many-body perturbation theory techniques into solid-state
physics seems to continue at an accelerated pace. On the
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experimental side, the variety and richness of solid-state phe-
nomena such as magnetoresistance, the anomalous skin effect,
and ultrasonic attenuation continues to grow at an even
greater pace. The relationship between the fundamental
theory and the experiments appears to be getting less direct.
Indeed, one needs a separate ‘“theory for the experiments.”
This naturally leads to the construction of special models and
several such models are suggested and discussed in this refer-
ence. The summarizing reports, as well as the discussions, are
extremely invaluable; they give a vivid picture of the tre-
mendous amount of detailed work going on and the tenuous
character of the interpretation of the effects.



