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computed using C;™! rather than C, as a measure of
strain. Our analysis shows that any other molecular
model must give the same or an equivalent result,
provided only that terms of order o(]|G(s)||) may be
neglected.

As we have remarked in Sec. 5, the norm [|G(s)|| is
small in particular for “slow” motions, and hence the
finite linear theory applies in this case. For slow flows
in simple fluids, the finite linear theory is actually
equivalent to the classical theory of Newtonian fluids,
provided that the influence function % satisfies the
relation (6.3) with »>$. This fact and analogous results
for fluids of higher order are proved in reference 9.

LINEAR VISCOELASTICITY
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Rivlin and his co-workers* in recent years have
developed memory theories involving multiple integrals
similar to the second-order theory proposed in Sec. 6.
The emphasis in their work has been on the represen-
tation theorems following from material objectivity anp
symmetry. In particular, the representations mentioned
here in Secs. 5 and 6 can be derived using their results.
An investigation of higher order theories of viscoelas-
ticity based on the existence and complete continuity
of Fréchet differentials of order >2 would make much
more use of such representation theorems.

4 A. J. M. Spencer and R. S. Rivlin, Arch. Ratl. Mech. Anal. 4,
214 (1960).
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1. INTRODUCTION

UCLEAR magnetic resonance and relaxation

involves the interaction of nuclear spins with

each other, with externally applied magnetic fields, and

with the molecular surroundings of the spins. The

Hamiltonian of the system of spins and their molecular
surroundings can be written in the form

Ke=aLE(s,)+F(9)+G(s,9)], ¢

where %E(s,t) is the part of the Hamiltonian that
depends only on the spin variables s and the time (for
example, the interaction energy of the nuclear magnetic
moments with the time-dependent externally applied
magnetic fields), #F(q) is the energy of the molecular
degrees of freedom ¢, and %G (s,q) is the energy of inter-
action of the spins and the molecular surroundings.
Since the system represented by this Hamiltonian is in
general quite complicated, consisting of many nuclei
and molecules, it can be appropriately treated by con-
sidering an ensemble of such systems and calculating
the average behavior by the methods of statistical
mechanics.

Bloch! has used the density operator formalism of
quantum statistical mechanics to derive a differential
equation for a reduced density operator o(s,f) in terms
of which the ensemble average of the expectation value
of any spin operator Q(s) is given by

(Q)=Trlo(s)Q(s)]. ()

* Supported in part by the National Science Foundation.
L F. Bloch, Phys. Rev. 105, 1206 (1957).

Redfield? has independently derived a similar theory,
but it is limited to the case in which E does not depend
explicitly on the time. Tomita has developed more
specialized density operator theories of magnetic reso-
nance saturation® and magnetic double resonance.*
Redfield® has also derived an equation for ¢ by for-

K=n[E()+G@n], - ©)

where G(s,t) is a random function of the time. The
random time dependence of G is usually the result of
the random variation with time of coordinates ¢ upon

G depends:
G(s,)=G(s,9(2)). 4)

Since the time dependence of the ¢(¢) is usually deter-
mined by considering the ¢ to be coordinates of a
system whose motion is calculated classically, the
resulting relaxation theory is called semiclassical. The
transition probability method introduced by’ Bloem-
bergen, Purcell, and Pound® (BPP) for the calculation
of nuclear magnetic relaxation is in effect a special case
of Redfield’s semiclassical theory, involving only the
diagonal elements of ¢ between eigenstates of E, these
diagonal elements being proportional to the probable
relative populations of the energy levels of E as a

2 A. G. Redfield, IBM J. Research Develop. 1, 19 (1957).

8 K. Tomita, Progr. Theoret. Phys. (Kyoto) 19, 541 (1958).

4 K. Tomita, Progr. Theoret. Phys. (Kyoto) 20, 743 (1958).

® N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948). Hereafter referred to as BPP.
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function of time. The BPP method is correct only for
cases in which the differential equations for the diagonal
matrix elements of ¢ are independent of the off diagonal
elements. Redfield’s semiclassical theory is restricted
to problems in which the spin energy E does not depend
explicitly on the time: In addition, it has the disad-
vantage that Boltzmann factors must be introduced in
an ad hoc manner in order for the theory to predict the
expected Boltzmann form for the density operator of
the spin system in thermal equilibrium. Nonetheless,
the semiclassical relaxation theory, in which the motion
of the molecular surroundings is treated classically, has
been very useful in predicting nuclear magnetic relaxa-
tion rates in terms of the classical properties of the
molecular surroundings, the calculation of the longi-
tudinal relaxation time of water by BPP being a classic
example.

In this paper it is shown that both quantum-mechan-
ical and semiclassical forms of a density operator
relaxation theory can be derived from a common
formulation. The quantum-mechanical form of the
theory is similar to that given by Bloch. Both the
quantum-mechanical and semiclassical forms of the
relaxation theory are applicable when the spin energy
E depends explicitly on the time, and both forms of the
theory predict without ad koc assumptions the expected
thermal equilibrium form of o.

As an example, the theory is used to calculate the
behavior of a system of NV identical spin 4 nuclei in
equivalent positions in a liquid when the system is
exposed to the usual large constant magnetic field and
transverse rotating field, and is relaxed by the dipole-
dipole interactions between the nuclear magnetic
moments. The rotating field is not considered as a
perturbation, so that the results apply in the case of
saturation. The results obtained are similar to those of
a previous treatment by Tomita®; however, it is shown
that the validity of the calculation is restricted by the
assumption that the dipole-dipole interaction between
any two spins is uncorrelated with the dipole-dipole
interactions between either of these spins and any
other spin.

2. GENERAL THEORY

It is shown in quantum statistical mechanics that
an ensemble of identical noninteracting systems, each
having Hamiltonian 3¢, can be described by a density
operator p in the sense that the expectation value of
any operator , averaged over the ensemble, is given by

(@)=Tr[p(1Q]. ©®)
The density operator is a solution of the equation
it (dp/dt)=[3C,p], (6)
subject to the condition that for all values of ¢,
Tr[p()]=1. (7
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The density operator describing Maxwell-Boltzmann
systems in thermal equilibrium at temperature T is

p"=exp(—=3C/kT)/Tr[exp(—3/kT)]. (8)

Consider the formulation of the problem of nuclear
magnetic resonance and relaxation described in the
first paragraph of Sec. 1. The notation here is changed
slightly, the Hamiltonian of a representative system
now being written

Re=n[ L (s,)+F(9)+G"(,5)], 9)

where #/°(s,t) is the Hamiltonian of the spin part of
the system, #F(¢) the Hamiltonian of the molecular
degrees of freedom or bath, and #%G°(g,s) the Hamil-
tonian of the interaction between the spin system and
its molecular surroundings. The spin energy is now
redefined to include the average over an ensemble of
baths in thermal equilibrium of the interaction G°(g,s):

E(s,)=E"(5,)+(G"(4,5) ), (10)
G(g,5)=G"(g,5)—(G*(¢,5) oy (11)
where
(G*(g,9))e=Tr[p"(9)G"(g,8)], (12)
pT(q)=eFF/Tr[e#F ], (13)
and
B=1/kT. (14)

A trace is independent of the representation in which
it is evaluated, so any complete set of functions of the
bath coordinates can be used in calculating the trace in
(12). On using (10) and (11), the Hamiltonian of a
system in the ensemble can be written

se=nLE(s,)+F(q)+G(g,5)]. (15)
All interactions of interest can be written in the form
G(g,8)=2:U () VE(s), (16)

where U*(q) and V*(s) operate, respectively, on vari-
ables of the bath and variables of the spin system.
G(g,s) can always be written in the form (16) if G°(qg,s)
can be so written. G must be Hermitian even though
U* and V* need not be. This can be accomplished by
defining U* and V* so that

Ur=(UR', V=r= (V91 a7

the index £ being summed over negative as well as
positive integers in (16).

If (15) is substituted in (6), the time dependence of
the density operator is determined by

idp/dl=[E+F+G, p]. (18)
Unitary spin operators S*(¢) defined as solutions of
dS/dt=iSE, dS7'/di=—iES™, S*¥(0)=1, (19)

are now introduced. A unifary transformation of an
operator Q by the S*+!(f) produces an operator denoted
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by Q'(9):
Q' (=517 (®).

A unitary transformation of Q by the bath operators
exp(==7F?) results in an operator denoted by Q(¢). Thus

Q' (1) = et ()OS (£)e T, 1)

(20)

Transformation of Eq. (18) by the operators S*'(1)
Xexp(FiFt) gives

dp'/di=—i[G' (0),p' (D ].

The solution of (22) for 5’ at time {;={-+Af in terms of
p’ at time ¢ can be obtained by successive approxi-
mations, with the result

(22)

p'(zo=p'<z>+§anp'<tl,t>=§ A (), (23)

n=0
where

Aop' (1) =5'"(1) (24a)

and, for n > 1,

Anp () = —1 f " [G'(#), A;—lﬁ'(i’,t)]dl'- (24b)

Since the part of the Hamiltonian involving just the
bath coordinates is much greater in magnitude than the
parts involving the spin variables, [F|>>|E+G]|, the
state of the bath is affected very little by changes in
the spin system. Therefore to good approximation the
bath can be considered to be independent of the spin
system, and can be assumed to be in thermal equi-
librium at all times. Thus, the density operator p(g,s,t)
describing the bath and spin system is assumed to have
the form

p(g,5,0)=0(s,0)p"(q),

where p”(g) is the Boltzmann equilibrium density
operator for the bath, given by (13). The reduced
density operator o(s,f) describes the spin system in the
sense that the average value over the ensemble of a
spin operator Q(s) is given by

QEN=Trle(s)Q()],

where the trace can be evaluated using any complete
set of spin functions or vectors. From (21) and (25),

' (g,5,0=0"(s,)0"(q). @n

If (27) is substituted into (23), and the trace over the
bath variables taken, the result can be written

(25)

(26)

o (1) =0' )+ An’ (1), (29)
n=1
where
AnO" (t1,t)=Tl‘q Aﬂﬁ’(tl,l)s (29)
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the A,p’(t1,6) for n 2> 1 being given by (24b), and
Aﬂﬁ,(tlyt)=a,(8;t)pT(Q)’

The series in (23) converges rapidly if Ai=t—1 is
sufficiently small, and hence so also does the series in
(28). The first two terms in the series in (28) are now
considered in detail. The higher order terms are assumed
to be negligible for values of A¢ for which the first terms
are themselves small compared to ¢’(f). From (24b),
(29), and (30), the first-order term is

(30)

Ao’ (t,) = -—if Trq[é’(z’),a'(t)pT(q)]dt’
‘ (31)
——i f [Tr Lo ()& (¢)], o' (1) 1dt' =0,

since ¢’ does not depend on the bath coordinates ¢, and,
for any time ¢, _
Tr[p"(9)G (1) ]=0.

The relation (32) follows from the fact that exp(==1Ft?)
commutes that p?(g), and from (11), Tr,(o?(q)G]=0.
Itisapparent that the first-order term (31) is identically
zero only because (G°), has been included in E.

The second-order term in (28) is

(32)

t1 t’
Ago’ (t1,0) = — f ay f dt’ Tr,[Q' (),
t t

XLG' ("), o' p"(9)T]. (33)

Use is now made of the fact that G can be expressed
as a sum of products of a spin operator and a bath
operator. On applying the transformations (21) to the
expression for G, (16), one obtains

GO=p UHOV¥ ()=30 UFQVEW),  (34)

where in the second form the bar and the prime have
been omitted from U*(f) and V*(f), respectively,
because the time dependence is sufficient to distinguish
the transformed operators:

Uk(f) = e LU ke iF*,
VE@)=S () VES1(2).

(35)
(36)

The operator U*(t) is the Heisenberg time-dependent
operator for U* for a system whose Hamiltonian is
#F (q), while V*(f) is the Heisenberg time-dependent
operator for V* for a system whose Hamiltonian is
#hE(s,t). After substitution of (34) into the second-order
term, Eq. (33), the bath operators can be grouped
together since they commute with the spin operators.
The bath operators can then be rearranged by use of
the fact that a trace of a product of operators is
unchanged by a cyclic permutation of the operators;
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the result is

Azd”(h,t)
1 t’

—— f i f A" YA Tr " (U —") U]
¢ ¢ kL

XLVE@),VHE")e' ()]
+Trp" (U U@ =1") Lo’ () VI(E"), VF() ). (37)

It is assumed that it is possible to expand the time-
dependent spin operators V%(¢) in a series or integral
of periodic terms. The series case is considered ex-
plicitly :

VEO=S@VESL({)=2, V.* exp(iw,*f),

where V,* is a time-independent spin operator and w,*
is a number. The relation V—*= (V) that is frequently
satisfied by the operators V* (17), can be maintained
by summing 7 in (38) over negative as well as positive
values, and requiring that

VI=V_* o, F=—uwt (39)

After substitution of (38) into (37), the variable of
integration #” is changed to r=¢—#" and the order of
integration over /' and 7 then interchanged:

(38)

At

exp (Tw,s*1AL) — exp (fw,s'7)
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1 t’ i1 t—t
fdt’f dt”—»f dt’f dr
t t t 0
~f
0

where as before ¢;=¢-+ At. Hence

At

t+AL
dr f dr', (40)

tHr

At
dr exp(—1iws'r)

Ao’ (t1,t) ==Y

klrs g
t+AL
X f dt’ exp(iw,sF1’)
tr
X{Au(n)[V5Vie' ()]
+Au(=n)['OVLVE]), (41)
where
wrsklerk_l"wsl; (42)

and the dependence of Aye” on the bath is contained in
the functions Az;(7) defined by

Ar(r)=Tr,[pT(QU*(r) Ul] )

A (1) =— 2

kirs

f dr exp(—iws'r)
0

Towps " AL

If w,**=0, the value of the first term in braces is its
limit as w,** — 0, {1—17/At}. Some of the frequencies
w,s" are zero in all problems: if the relations (39) are
satisfied, w_,,~**=0.

The trace occurring in (43) is now evaluated in a
representation in which F is diagonal with eigenvalues f.
Degenerate states are distinguished by a parameter d:

A= ZpaP(f)e?(fd|U"| f'd’)
Xe=#'"(f'd'|UY fd),

P(f) =/ prare ",

It is assumed that the energy levels of the bath are so
closely spaced that the sums over the eigenvalues in
(45) can be replaced by integrals:

(45)
where
(46)

afna(f), (47)

—00

PIEDY
id d

where 74(f) is the density of energy levels of F with
degeneracy parameter d. Hence

D=t [5 [ afmanigien, as)

=Tr[p"(Qe Ute=F7U"]. (43)
After the integral over ¢ in (41) is performed,
]At exp (twrs*)
X{4u(@LV V' O+ Au(—n)'OVLV} (44)
and . "
2u)=% [ af [ apa(man)P()
X(fA|UF| fa)f'd' | U] fd)e=i "=, (49)

The variable of integration f’ in (49) is next changed
to w by the relation w=f'—f. The result can be
expressed as

Akl(1)=f Ly(w)e ™ dw, (50)
where - -
Lu@=F [ dpra(amHOPO)

X{fd| U*| f+w, d')f+w, d'| U fd). (51)

Ly:1(w) is assumed to be a continuous function of w that
is absolutely integrable over (— %, ). Since P(f+w)
= P(f) exp(—pw), it follows from the definition (51)
that

LZk(—w)=Lkl(w) exp(—-,Bw). (52)
From (50) it is apparent that A (7) is the Fourier
transform of Ly:(w), so that
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1 -]
Liyy(w)y=— f Ap(r)etrdr, (53)
21 J_p

Since Lii(w) is a continuous function of w,
| Liz(w+ Aw) — Ly (w) |

can be made arbitrarily small by choosing |Aw| sui-
ficiently small. The rate of change of Lz (w) can be
rather loosely characterized by a frequency w* such
that

Lkl(w—i—Aw)szz(w) if

| Aw | <Kw*. (54)

The reciprocal of the characteristic frequency,
re= @,

is called the correlation time of the bath. According to
this definition, the characteristic frequency, and hence
the correlation time, depend on the temperature. From
the relation (52) it follows that w* and 7, must satisfy
the approximate inequality

7o= (@*) 12 B=H/kT. (35)

The correlation time 7, can be related to the manner
in which the magnitude of A (r) decreases as |7|
increases. From (53),

0

1
Lkz(w-l-Aw):E_ f AkZ(T)eiw‘reiAwrdT,

T YV

.which is apparently approximately equal to Ly;(w) only
if |Awr|<1 for all values of 7 for which 4 (7) has an
appreciable magnitude. Hence |4 (7)| =0if |Awr| 21,
so that, since |Aw|<Kw*,

[Ag(r)| =0 if |7|>7.= (™) (56)
Consider now Eq. (44) when
A>T, 87

Since A (7) and Ay (—7) are large only for |r| K7,
the integrand is large only for |r| <7, Terms in the
sums over 7, s, k, and / for which

leorH 1AL 1 (58)

have
lwrskll Tc<<1, (59)
so that in these terms exp (iw,*7) may be replaced by 1.

Terms not satisfying (58) are smaller than the terms
that do satisfy this relation because of the factor

exp (tw,s"1AL) — exp (fws*'r) ]
10,5t AL

occurring in (44). Hence little error is introduced in
Aso’ (1,8) by replacing exp(iw,s*'r) by 1 in all terms.
Also, the limit of integration A¢ can be extended to
infinity without appreciably changing the value of the
integral, since the integrand in large only for |r|<At.

253

Thus (44) becomes
Ago’ (81,1)

exp (tw.s*F AL —1
A

} exp (1w,"%)
iwnkl

Xf dr exp(—iws' ) {Au(r)[V.5 V' (D]
0

+Au(—7)[dOVLVF])
The expression (50) for Ax;(7) is next substituted into
(60), the variable of integration w in Azi(7) is changed

to o'=w+w,! and the integration over r performed by
use of the relation

(60)

® 7
f e dr=md(w’) —FP—, (61)
0 o

where @ indicates the principal value is to be taken
when (16) occurs in an integrand. The result can be
expressed as

t+AL
Azo’ () = f {R'(o'(0,1)+iR" (o' (1),1)}dt',  (62)
where t
R, (0" (If),l,)EW Zklrs CXP (iwrsklt’)
X{Lkl(_wsl)l:vslo', (t)yVTk:l
+le(wsl)[Vrka‘7,(t)Vsl]} (63)
and
R'(0' (1) )= 3 exp(iw,s’)
klrs
X® f (L~ o)V A Vo' ()]
do’
+Liy(—o'Fw [’ () VJ,V,"]}—,, (64)

Expression (64) can be further simplified in the follow-
ing manner. Interchange of the summation indexes %
with 7 and r with s in the second term in the integrand
gives

R ()= ¥ explion )
klrs
XG’f {Lu(o—w V5V (0)]
. .
+Lu(—otede OV LV —.  (65)
w

As before, when R’ is integrated with respect to #
over an interval A>7,, the terms contributing appre-
ciably to the sum in (65) are those for which |c,*?| <™.
For these terms w,* and —w,’ differ from their mean
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value »,#'=1(w,*—w,!) by an amount small compared
to w*. Hence, in view of (54), little error is introduced
by replacing Lp(w—wst) with Ly(eo+r,*) and
Lkl(—w-l—wrk) with L“(-—w—l— Vrskl). If the range of
integration is next converted from (— o, «) to (0, «),
and the commutators written out explicitly, it is found
that half the terms in the integrand cancel, with the

result that
R (o' (0),1")="[a"(1),N'(¥)], (66)

where
N (=Y. exp(iw ")V V!

klrs
© dw
% f [Lia(rret =)= Lus(moHb ) Jme (67)
0 w

If one combines (66), (62), and (31), the expression
(28) for o’ (1+Af) to second order in the interaction G

becomes
t+At

o (1A =o' () + f (R (),0)

+i[o’ (), N'(¢) 1}dt'.  (68)
The higher order terms in (28) are assumed to be
negligible for values of A/ for which the fractional
change in ¢’(¢) as given by (68) is small. If | R| and ||
denote the magnitudes of the operators multiplying ¢’
in the integrand in (68), we therefore require that
|R|At, |N|Aik1. Since it has also been assumed in
deriving (68) that A>r., Eq. (57), the conditions for
which (68) gives o’ (4 Af) to good approximation can
be summarized as

.= (W) KA | R, [N L (69)

It is now asserted that the time dependence of o’
can be determined with good approximation from the
differential equation

do’(t)/dt=ils'(),N' () H-R' (' (1),t)  (70)

kirs

R0 D)= 5 explioon ) (e, sech (~ws ){eXp( e )[Vsla’(t) v ’“]—!—exp(—ws )[Vr 20 VJ]I

klrs

= 5 emlinn ) utw| V.00, Vrk]-l-tanh(—ws Jov v o3 £
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if

o= (@) TI[R[T, [N, (71)
where N'(f) and R'(s(2),t) are given, respectively, by
(67) and (63).

Equation (70) follows formally from (68) if in that
equation ¢’(f) is transposed to the left-hand side, the
equation is divided by A¢#, and the limit taken as At — 0;
however, because (68) is valid only if AZ>7,, (69), it
is not rigorously permissible to let Af— 0.

The approximate validity of Eq. (70) can be demon-
strated in a somewhat more satisfactory manner by
showing that step-by-step integration of the equation
over appropriate time intervals gives the same result
predicted by the previously obtained expression (68).
Owing to condition (71), one can choose a At that
satisfies condition (69), so that o' (#+Af) is given
accurately in terms of ¢'(¢) by Eq. (68). Furthermore,
the relations |N|Af |R|AiK1 that follow from (69)
are sufficient to ensure that ¢’(¢+A¢) as predicted by
Eq. (70) is accurately represented by the first-order
forward integration of that equation. The result so
obtained from (70) is identical with the expression (68).
Since o’ at a time #>¢ can be obtained by successive
integrations over intervals Af, at each step of which
the change in ¢’ is small and agrees with the correct
expression (68), it is concluded that the differential
equation (70) does indeed accurately predict the time
dependence of ¢'(1).

In order to facilitate the derivation of the semiclas-
sical theory in the next section, we define

Ju(w)= (r/2)[1+e L1 ()

=7 cosh(Bw/2) exp(—Bw/2) Lii(w). (72)
From Eq. (52) it follows that
Ju(—w)=Ju(w), (73)
and from (54) and (55)
Ju(wtAw) = Ju(w) if |As|<Kw*. (74)

Substitution of (72) into (63) and (67) gives, after use
of (73),

(75a)

(75b)

N ()= (2/m) S expliont ) ViV f (14 exp[ =B H—) D s (reetl— )

klrs

dw
— (1+exp[—B (v +w) )T (vrst+w)}—.  (76)

A differential equation for ¢ () can be obtained from (70) by multiplying on the left-hand side by S(¢#) and

on the right-hand side by S(#), and using the relation
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S—(do’/dt)S=1i[E,0 ]+ (do/dt). (77)
Equation (70) then gives
(do/dt)+i[E+N, 1= R(0), (78)

where
R(a)=S"'R'(¢',1)S 5
=215 €xpiwst)J 1 (wsh) sech (Ewsl)

B
X ! exp ( —Ewsl ) [S~1VSe,VF]

+exp(§ws’)[V",aS“lelS:|], (79)
=2_k1s €XP (100,0)T 11 (w05
X [ [[S-VS,0],V¥]+tanh (gwsl)
XLVELSV iS04 ] }, (79b)

use having been made of Eq. (38) to perform the sum
over 7, and
N=SN'(#)S. (80)

The conditions of validity of (78) are given by (71),
where now |R| and |N| are, respectively, the magni-
tudes of (79) and (80).

The quantum-mechanical form of the density
operator relaxation theory derived in this section is
similar to Bloch’s generalized relaxation theory. The
significant differences in the present treatment are

(a) the average over the bath coordinates of the
interaction G is included in the spin energy E, Eq. (10);

(b) the interaction G is written as a sum of products
of a spin operator and a bath operator, Eq. (16); and

(c) the correlation time 7, is defined in such a manner
that it depends on the temperature, Eq. (55).

The change (a) is essential to the derivation of the
semiclassical form of the theory in the following section,
and the change (b) facilitates that derivation.

3. SEMICLASSICAL RELAXATION THEORY

The correlation function Cy(r) of U* and U’ is
defined as the average over an ensemble of baths in
thermal equilibrium of the symmetrized product of the
Heisenberg operators U*(t+7) and U(¢):

Cu(r)={U*@+7r)UHD)}),

={U (1) U0)})q, (81)
where the braces denote the symmetrized product
{UHADU )} =3[U* @+ U

+UOU )] (82)
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The correlation function can be written in terms of the
function A4i(7) defined by (43):

Cr(r)=3[Ar(r)+Au(—7)]. (83)
From (83) it follows that
Cr(r)=Cu(—1). (84)

If Aii(7) is evaluated quantum mechanically as in the
previous section, assuming the eigenvalues of the bath
Hamiltonian are so closely spaced that they can be
considered continuous, Cx;(7) can be expressed in terms
of Lyi(w) by (50), and hence in terms of Jy;(w) by use
of (72) and (73). The result is

1 0
Cra(r) =~ f Ta(w)e=wrdw, (85)

Inversion of Eq. (85) by use of the Fourier integral
theorem gives

Talw)=} f Calr)eivdr. (36)

With regard to the quantum-mechanical relaxation
theory, (86) is simply an alternative expression for
Ji(w) that is equal to the expression used in the
previous section.

Since the properties of the bath enter the relaxation
theory only through the functions Jy;(w), a semiclassical
form of the theory, in which the bath is treated clas-
sically, can be obtained simply by considering the
Cri(7) in the expression (86) for Ji;(w) to be classical
correlation functions; that is, U*(t4+7) and U'(¢) are
considered to be functions of the classical coordinates
of the bath rather than quantum-mechanical operators,
and the average indicated in (81) is performed clas-
sically.

It follows from the fact that Cj;(+) can be expressed
in terms of Aw(7), Eq. (83), and from the fact that
Aw(7) can be considered to be zero for |r|>7., Eq.
(56), that

Ckz(T) ~0 if l'rl>>7'c, (87)

where 7, is the correlation time previously introduced.
The classical correlation function Cr;(7) goes to zero as
|7| goes to infinity as a consequence of the fact that
U* and U' have been defined in such a manner that
they individually have zero average value, Eq. (11).
It is important to note that the quantum-mechanical
and semiclassical forms of the relaxation theory do not
differ in their dependence on the operators of the spin
system, but only in the manner in which the quantities
Jii(w) containing the effects of the bath are evaluated.
The usefulness of the semiclassical form of the theory is
due to the fact that it is usually very difficult to evaluate
the Jii(w) quantum mechanically, while a reasonable
choice of a classical model of the bath permits the cal-
culation of these functions through the use of Eq. (86).
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4. SPECIAL CASES

In this section important special cases of the relaxa-
tion theory are discussed. The results apply to both the
quantum-mechanical and semiclassical forms of the
theory.

A. Spin Hamiltonian Independent of the Time

If the spin Hamiltonian #E does not depend explicitly
on the time, the solutions of Egs. (19) are

S:tl(t)= etiEt, (88)
Hence

V) =S () VIS-1() = eiEt P lg—iEe, (89)

The expression for V() can be expanded in the form
(38),
Vit)=2", Vs exp(iw,t),

if the frequencies w,' are chosen to be the differences
between the eigenvalues of E, denoted by E,,

(90)

w'=Eq— Ey=wau, (91)
and the operators V,! are defined by the condition that
=0 for a value of s for which
1 w!FE Ey— E (92)
(alVi!la) =(a| V! o) fora value of s for which
wst=Eq—Eg4.

The correctness of the expansion (90) with the defini-
tions (91) and (92) can be easily demonstrated by
showing that a matrix element in any representation of
the expression (90) for V!(¢) is the same as the matrix
element of expression (89) between the same states. The
following relations can also be proved by considering
the matrix elements of the expressions and using (91)
and (92):

Vl:zs Vsl; (93)
[E, Vsl]= wslel, (94)
SV AS=V ! exp(—iwsk). (95)

Substitution of (95) into (79) and (80) gives

R((T) = Zlcls ]lk(wsl) sech(gws’)
X l exp( —-gws‘)[Vs’a,V’“:I
B
+exp(§ws )[Vk,tTVs ]}, (96a)
=S Ju)| [TV 17]

+tanh(§wsl) [VA[Veli] }, (96b)
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2 0
N=— V.V L 1— —B(r,H =)L
> f {( xpL—B(rmH—w)])

T klrs

X]kl(yrskl_w) - (1 __,_exp[_ﬁ(ymkl_}_w)])—l

dw
X (st 4w) t—.  (97)

w

Note that R(s) and N do not depend explicitly on ¢ when
E is independent of ¢.

It is now shown that expression (96) for the relaxation
term vanishes when o=o7, where

qTE e‘ﬂE/Tr[e“ﬂE].
On using (94), one obtains the equation

(4/d8) (92 JobF) = — PP,V o
= —w, (e 7FEV lePE),

(98)

On integrating, and replacing 8 by £4/2,

exp( FRE/2)V ! exp(£BE/2)
=Vl exp( Fpws/2).

Substitution of (99) into (96a) gives

R(o)=2r1sJ 1 (ws?) sech(Bwst/2)
X{[exp(—BE/2)V ' exp(BE/2)a,V*]
—[o exp(BE/2)V,' exp(—BE/2, V¥]}. (100)

From expression (100) for R(s), valid when E is inde-
pendent of ¢ it is apparent that R(c”)=0.

The free relaxation of the magnetization of a system
of nuclear spins in a strong constant magnetic field is a
case for which the total spin Hamiltonian does not
depend explicitly on the time. If E is much greater in
magnitude than the interaction G so that & is negligible
in comparison to E, Eq. (78) reduces to

(do/dt)+i[Ee]=R(0), (101)

where either (96) or (100) can be used for R(c). Since
R(¢7)=0 in this case, and o7 commutes with E, an
equilibrium expression for ¢ is the expected Boltzmann
form o”.

For the case considered in the previous paragraph it
is sometimes convenient to formulate the problem in
terms of a spin operator x defined as the difference
between the reduced density operator and its thermal
equilibrium value:

(99)

x(=o(®)—0". (102)
The operator x obeys the differential equation
(dx/di)+i[Ex]=R(x) (103)

subject to the normalization condition Tr[x]=0.

B. High Temperature

The temperature is said to be “high” if, for all the
frequencies w,,
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lwst| BK1, (104)

where as before 3=%/kT. Thus, if the temperature is
high, tanh(Bws!/2) can be replaced by (Bws!/2) with
little error, so that expression (79b) gives

R(0)=Tt1s exp (iw:t) T (w){[[SV1S,0 ], VE]
+ B/ 2)LVELS VS0 1 ]}, (105a)

In many problems it can be expected that the fractional
difference between o (f) and the normalized unit density
operator (1/Tr[1]) is less than or of the order of the
largest of the values Bw,! for all times ¢. In such a case,
an expression for R(s) correct to first order in Sw,! can
be obtained from (105) by replacing ¢ by (1/Tr[1]) in
the term multiplied by (8w;'/2), with the result

R(0)=2k1s exp (i) T (w){[[SV1S,0 ], V*]
8w, [V, SV 1ST/Te[1]}. (105b)

For the case in which E is independent of ¢, it was
shown in Sec. 4A that R(¢T)=0, so that R(o)
=R(0c—0a7), where R is given by Egs. (96) or Eq. (100).
If also the temperature is high, so that terms second
order in Bw,’ can be omitted with little error, Eq. (96b)
gives the much simpler result

R(o)=R(o—0T)=211sT (")
X[[Vs, o—aT], V¥]. (106)

Expression (106) has been obtained by assuming that
o—o7 is first order in Bw,!, so that the term

tanh(Bw,'/2)LV*, [V, 0—0"1i]

is second order in Bw,!, and can be omitted from Eq.
(96b) for R(c—0oT). Equation (106) is correct only to
first order in Bw,’.

The expression for V also simplifies if the temperature
is high. If |ws|B<1, then |[»,*|B<K1, so that
exp[ —B(v,s*'w)] can be replaced by exp(FBw) in
Eq. (76) for N’ and Eq. (80) for N.

C. Short Correlation Time

The correlation time is termed “short” if
|wst | L7t (107)

for all frequencies w,! occurring in R(c). Consider ex-
pression (86) for Ji(w,"). Since Cyi(7) has appreciable
magnitude only for |7| <7, if the correlation time is
short it is permissible to replace the factor exp (iw,'r) in
the integrand by unity. Hence, for short correlation
time,

Jzk(ws’)z%f Cu(r)dr=T1(0). (108)

Since 7,28, Eq. (55), it follows that if the correlation
time is short then also the temperature is high. From
(38)

25 STV S exp(iwsit) =V,
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and from (38) and (19)
> s WSV S exp (iw i) = [E, VY]

By use of Eq. (108) and the preceding two relations, one
obtains from Eq. (105b) the expression

R(o)=2r Ju(0){[[V'e],V*]
+BLVELE VY]]/Tr[1]}. (109a)

For the case in which E is constant, one obtains from
(106) by use of (108) and (93) the expression

R(e)=R(c—0aT)
=2 JuO)[[V, o—0oT], V¥].

5. RELAXATION BY DIPOLE-DIPOLE INTERACTIONS

(109b)

As an example, the theory is applied to a situation of
considerable importance in nuclear magnetic resonance.
We consider a system of N identical nuclei in equivalent
positions in the molecules of a liquid, each nuclei
having a spin of $ and a gyromagnetic ratio y. The
system is exposed to the usual strong constant magnetic
field and rotating transverse magnetic field:

H(¢)= H k+ H, (coswhi —sinwtj). (110)

The relaxation mechanism %G consists of the magnetic
dipole-dipole interactions between the spins. G can be
written in the form

N 2
G=2 X (1=8:)Us*V sk,

2,7=1 k=—2

(111)

where
U= G /10) v hri 3 (— )*Y 57 (05, 05).  (112)

The V5* are normalized spherical harmonics defined as

Y6, 0)=— (5/167)¥(1—3 cos?), (113a)
V,#(0,0)= F(15/87)% cosf sinfetie,  (113b)
Vo£2(0,0)= (15/32x)% sin?fet?iv, (113¢)

which satisfy the relations
V¥(0,0)= (= 1)*Yy*(6,0), (114)

27 T
f f Yo4(0,0) V¥ (6,0) sinddbdo=5.  (115)
0 0

7i; 1s the length of the vector r;; from the jth to the ith
nucleus, and 6;; and ¢;; are the polar angles specifying
the direction of r;. Since ¢ji= @i+, 8;;=m—0;;, and

Tii="1ji
Yo*(0is,0i1) = Y 2 (03, 050), (116a)
and
Uijk': U_”k (116b)
The spin operators V;* are defined by
Vif=— 8/3NI 10— (I +I7)], (117a)
Vijj:lE + ([iOIj:I:I._I_Iiil[jO), (117b)
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TaBLE I. Matrix di (8), ¢=cosf, s=sind.

kl
W .

0 1 2

()

3\? 3\?
0 (—) 52 —(—) s¢
8 2

)

SN E
o))
OO
(7)o
R

0= [ EI] .
V= — A

(117¢)
in terms of the spin operators
I#A=1,xil,, I10=I,,. (118)

It is assumed that the average of G over the bath
coordinates is zero, which is the case if every direction
of the vectors r;; is equally probable and independent
of the length 7., so that the average values of the
Vo (8:5,¢4;) are zero. This situation usually applies for
nuclei in the molecules of a liquid.

Substitution of (112) into (111) gives

G=QBr/10)% 3 (1=8:)ri 223 (—=1)*

i,7=1 k=—2

XY5*0ij,0i) Vit (119)
The sum over k in expression (119) is in the form of the
scalar product of two irreducible spherical tensors of
second rank.® It is well known that the spherical har-
monics ¥;™ constitute a spherical tensor of rank /. The
quantities V;;#, k=—2,—1,0,1, 2, are thus also the
components of a spherical tensor of rank two, and
satisfy the commutation relations

LIV i J= AV o4, (120)

where I*=Y_; I* and
A=k, (121a)
AP =[(2 Fk)(3xk) ] (121b)

The commutation relation (120) can be verified directly
by use of the commutation relations for the components
of angular momentum operators:

- L+ 17]= (=D (u—w) #T8,;.  (122b)

8 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

The quantities A,* satisfy the following symmetry
relations: :

A= — (=)A= A _4_». (123)

The following transformation properties of the quan-
tities V,;* are needed later:

exp (01 ,)V ;;* exp (—6I,)=V ;;* exp(ik0), (124a)
exp (101,,) V“k exp(——i@ly) = Zk’ dlck' (0) Vr[jk,, (124}2))

where I,=);I;, etc. The elements of the matrix
d (6) are listed in Table I, where cosf and sind are
abbreviated, respectively, as ¢ and s. Equation (124a)
can be obtained by denoting the left-hand side of
(124a) by f(0), differentiating with respect to 6, and
using (120) to obtain the differential equation f’(6)
=1kf(0), the solution of which is Eq. (124a). Equation
(124b) can be verified in the following manner. Dif-
ferentiation of Eq. (124b) with respect to 6 gives

€Xp (ZBIZI) Eily, Vq,]k] exp ( - ZBIy) = Zk’ dlkk' (9) V i]_k"
Since il,=1(I*—17), Egs. (120) and (124b) can be
used to obtain
S duw @)V~
=1 exp(i0I,) LAV ;#H— AV i) exp(—ibl,)
=3 3[ Ay, (0)— Ax 7 dpr p (0) JV 1.

On equating the coefficients of V' ;;*" on each side of the
preceding equation, we obtain the differential equation

d'ow (0) =3 Ai A1, 0) — 3 A5 dp1.0 (6).

The system of five simultaneous differential equations
obtained by putting 2=—2,1,0, 1, 2 in the preceding
equation, with the initial condition dy (0)= 8-, can be
readily solved by use of Laplace transforms, giving the
values of dj (6) listed in Table I. It is apparent from
inspection of Table I that the matrix elements satisfy
the following symmetry relations:
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dk;k’ (9) = dk'k(—‘ 0) = (— 1)k4—k’dk,k(0) = d_kl —k (0)
Also, since a unitary transformation of V,;* by

exp (i01,) exp (—ib1,)=exp(—ibl,) exp(i0l,)=1

(125)

must give V;;*:
Sk A O (—0) =21+ dier (—0)dprirr (6) = Sarr. (126)

The part of the Hamiltonian of the system that
involves the spin variables and the time consists of the
interaction energy of the nuclear magnetic moments
with the applied magnetic field:

wE=—u H()=—vhI-H(1),
where I=3", I,. On using expression (110) for H(¥),
E=—wold— (wy/2) (Ieiot+T-e=i),  (127)

where wy=vH, and w;=vH;.

The operators representing the components of spin
angular momentum in a coordinate system rotating
with the applied magnetic field are

Ir=exp (iwtl)I” exp(—iwtl%) = I'eot,  (128)
We wish to calculate the expectation values of these
quantities.

The straightforward method of obtaining (I*)
=Tr[¢I'] is to calculate from (78) the matrix elements
of ¢ in a convenient representation, and then use the
matrix elements to evaluate the trace if ¢I”. However,
it is sometimes possible to avoid explicit calculation of
matrix elements by using another procedure. If Eq.
(78) is multiplied on the right by I”, use made of the
relation

do_ d _ arr 4 _ -
—I'=—(¢]")—o—=—(cI")—ivwol’,
i dt dtdt

and the trace of the equation taken, one obtains

(d/dt)(I")—ive (I*)+i Tr[E+N, o ]I’
=Tr[R(s)I’]. (129)

Two of the terms in (129) contain the desired quantities
(I*). If the other terms in the equation can be reduced
to functions of the quantities (I*), or to functions of
(I*), and the expectation values of a few other quan-
tities for which differential equations can be similarly
obtained by use of Eq. (78), the equations can in
principle be solved for the desired expectation values. It
is shown that, for the problem under consideration,
Eq. (129) provides three simultaneous differential
equations for the quantities (I*), v=—1, 0, 1, if certain
conditions to be specified later are satisfied, and hence
provides a convenient method of determining (I*) for
this case.

It is assumed that the applied magnetic field is suf-
ficiently strong such that the term N, which is second
order in the interaction G, is negligible compared to E,
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so that

i Tr[E+N, o [P ~i Tr[ E,o ]I’

=i Tr o[I,EJe¢, (130)

the last equality resulting from cyclic permutation of
the elements in the trace and use of Eq. (128). With E
given by (127), the commutator [I”,E] is easily evalu-
ated by use of (122b); when the resulting expression
for (130) is substituted into (129), one obtains

(@/dt)(I')+ifrdo(P)+ (01/2) (— 1)
XL=D) T+ e+ )T ]}
=Tr[R(c)I'], (131)
where Aj=wo—w.

In order to evaluate the right-hand side of Eq. (131),
it is first necessary to identify the operators V¥, U*, and
V. that occur in the general theory. The interaction G
for the present problem, given by (111), is the sum of
products of a bath operator U,;* and a spin operator
Vi;*, as required by Eq. (16), but now each term is
specified by three indexes ¢, 7, and % rather than by the
single index k. The general theory derived is hence
applicable here with the following changes in notation:

k—1i, 5,k -, 4,1
VE—s Vit Vs Vil
Uk — U”k U — Uirj'l (132)

Z—>ZZ Z—>ZZ

1, 7=1 k=—2 i, 3=l [=—2

The solutions of Eqs. (19) for S and S~! when E is
given by (127) are

— g— iAol rtwils) tp—iwl st — p—i0Iyp—iw' Ity iblyp—iwlst
S=e¢iBolrtwil) tp—ivlst = p—iblyg—iw'Iztgiblyy iwlzt

S—1= givlstgiolstorls) t— givlstg—ilygin’ Istgilly (133)
where w’= (Ad+w?)? and tanf=w,/Ay, so
Ay=w’ cosh, (134a)
wi=w' sinf. (134b)

By use of Eq. (133) and Eqs. (124), one obtains

2
SViES™= 2 {V:*}r exp(iw,*0),

(135)
r=—0
where
{(Viit}r =20 dir(0)dps (—0)V i, (136)
and
w,= — (ko+rw'). (137)

Equation (135) is in the form of Eq. (38), where now
V,k is replaced by {V;;*}.. By again using Eq. (133)
and Eqgs. (124), and in addition Eq. (126), one obtains

STV i3S =Tbr dir(O)dae (—O)V 1 ei¥e4re . (138)
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It is assumed that
Bwi, Pwy, PuKl, (139)

so that the high-temperature condition |w,!|f<1, Eq.
(104), is satisfied. Thus expression (105b), correct to
first order in Bw,’, can be used for R(s). By use of Egs.
(137) and (138), and the notational changes (132), one
obtains from Eq. (105b)

Rlo)= 2 (1=0:))(1—8yjr) 25 et=Det

idir KLl
Xdis (0)dsr (—0)T orjry iy (i)
X{[[ViitolVii*]
FBws [V, Ve iyt 1/ Tr[11},
where, from Eq. (86), with the notational changes (132),

(140)

J i ipw) = %f (Uit t+1)U# ()} )oe™mdr.
- (141)

From (116b) it follows that expression (141) is
unchanged by interchange of ¢’ with j/ or ¢ with 7, and
from Eq. (73) it follows that

T iny (@) =T (ijy i iy (—w). (142)

Equation (140) is next multiplied by I*=1I" exp(ivwi),
and the trace taken. Since the trace of a product of
operators is unchanged by a cyclic permutation of the
operators, the operators can be permuted so that the
expression can be written

Tr[R(o)1"]
=i (1= 0:) (1= 840 j0) w0 V1008
Xdis(O)dsr (—0)T 7y i (ws)
XA{Tr o[ [V, "],V e ]
+Buwst Te[ I,V i #V 3V /T 1]} (143)
By use of Eq. (120) for the commutator of V;;* and I,
one obtains from (143) the expression

Tr[R(0)I"]
Ligwrir (1= 8:5) (1= 05 ) Zpar se* V=70
Xdis0)dor (—0)T (v iy iy (w:) ¥’
X{Tr o[V ¥,V 3]
+Bwg! Te[V iV vV )/ Tr[1]}.
Consider the terms in Eq. (144) that involve the trace
not containing ¢, and suppose that the trace is evaluated
in the uncoupled representation in which I.? and 7.° are
diagonal for all the individual spins. Since the trace of
any component of a spin operator is zero, and since
i#4 and 7 in the sums in Eq. (144), one can in
(144) make the substitution
Tr[V o "'Vt = 8:085 Te[V i Vit ]
+30i040 Tr[Vjil’Vij’“+"].

(144)

(145)
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Consider next the trace containing ¢ in Eq. (144).
The commutator of V;;# with V¥ is zero unless at
least one of the primed subscripts is equal to one of the
unprimed subscripts. Thus

[Vi' j'l,,Vij’H—”]
=V " Vi 8085580 8ije
8w (1= 855)+ 0,5 (1—8:wr)
+0s;(1—08:)+8:7(1—82;)].  (146)

When expressions (145) and (146) are substituted
into Eq. (144), use made of the fact that V;#* is
unchanged by an interchange of 7 with 7, and J s/ (s *(w)
is unchanged by an interchange of ¢’ with j” or ¢ with 7,
Eq. (141b), and the sums over the primed indices in
the Kronecker deltas performed, the result is

Tr[R(s)]"]
=Y ks €V (0)d o (—60) i
X{2 X ii(1=8:)J (i i (ws)
X (TI‘ U[Vijl',Vijk""”]-*"ﬁwsl
XTr[V i Vit Y Tr1 D) +4 2 i (1—845)
X (1=845) (1= 859)T iy cin " (ws')
XTr a’[Vijll',Vijk""’]}. (147)

It can be shown by evaluation in the uncoupled
representation that -

Te[V iVt 1/ Te[1]= 8 (= D*EPEUAH1?, - (148)

where I is the total spin quantum number of each of
the identical nuclei. Thus the terms in Eq. (147) that
do not contain ¢ reduce to numbers, and do not involve
expectation values of the spin components I.

Consider next the terms involving ¢ in Eq. (147). By
use of the commutation relations for the components of
spin operators, Eq. (122b), the commutator [V;",
V"] can be reduced to a sum of products of the
components of the spin operators of the ith, jth, and
7'th nuclei. In the terms in the sums over ¢ and j but
not 7' in (147), the foregoing commutators occurs with
j'=4, but i5% . If the nuclei have spins of 3, so that
the following relation is valid,

Il =5 (k=) (— 1)L s et3o,u(14460),
one can show by actual evaluation that
Vi Vit ]=3(=1% 2 Seaeu(1—307)
p=—1,0,1
XA (I #4114,

where the 4;* are given by Eqgs. (121). Thus the terms
involving ¢ in the sums over 4 and j but not j’ in (147)
result in an expression linear in the expectation values
of the components of the spins. The terms in the sums
over 4, 4, and 7’ cannot be so reduced by use of commuta-
tion or anticommutation relations because all the terms
contain products of three spin operators of three dif-
ferent spins. Furthermore, the sum of these terms is

(149)

(150)
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not in general zero. However, for the special case in
which the dipole-dipole interaction between spins ¢ and
7 1s uncorrelated with the dipole-dipole interaction
between spins ¢ and j’, so that

J (ign (i (@)= 85T (ijy (i (@), (151)

all the terms in the sums over 4, 7, and 7' in (147)
obviously vanish.

On assuming that (151) is satisfied, and using (150)
and (148) with I=1, one obtains from Eq. (147)

Tr[R (o) ]= e’V 1%y, (0)dsr (—0) Ay
X2 4i(1=8:)J (igy i " (wsh) (— 1) ¥+
X2k Oy, —vrpu (1 —=FuD) Aoy # (L #4-1 #)
+%ﬁwsl6k+v,—l’}-
All of the spins are assumed to be in equivalent
positions, which means that the relaxation effect on any
one spin of all the other spins is the same for each spin.
More specifically,
22i(1=84)J (i i ** (@)
=2 i(1=8:)J iy (in*(w)=Tuw(w), (153)
where the Jy(w) defined by (153) is the same for all
values of the index ¢ or j not summed over. On making

use of (153), (123), the Kronecker deltas present in
(152), and the relation

Sl =2 (I #)= (I*)=exp(—iuawl) (I*),

one obtains a simplified expression for Tr[R(c)I"]
which, when substituted into Eq. (131), gives

d
E(T”>+i{vAo(7”)+ (Ge) (—1)”

(152)

XL (= )T+ v+ )T}

= ks ¢ FOT (0D dis (6)dsr (—0) A (— 1)V
X{—=2 Xy Skpo—rn(1—3p2) A_px(T¥)

+3NBws Bk pv,—1r}.

If Eq. (154) is written out for »=—1, 0, 1, one obtains
three simultaneous linear inhomogeneous first-order
differential equations for the three quantities (I*!),
(I’). The equations in general do not have constant

(154)
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coefficients because of the oscillating factors
exp[—i(k+Dwt].

However, it is fortunate that in most actual applica-
tions the oscillating terms are either (a) not present
because they are multiplied by zero coefficients, or (b),
produce a negligible effect on the time dependence of
the quantities (I*) and can be omitted in the solution
of the equations.

The coefficients of the oscillating terms are zero in
physical situations in which the average distribution
about the position of any one spin of all the other spins
is spherically symmetric, as for example when the spins
are in liquid molecules whose translational and rota-
tional diffusion is isotropic. In such a case,

Ju (w) = 51'_16]1,__1(0)), (155)

as can be shown from the properties of the spherical
harmonics Y ¥, so that the oscillating terms vanish in
(154).

Even when Eq. (155) is not satisfied, it is permissible
to omit the oscillating terms from the differential
equations (154) if

> Tal@)], Ao, o (156)

If (156) is satisfied, one can choose a Af such that
> (A)™> | Tu(w) |, |Aol, wi. A solution of the differ-
ential equations by successive approximations for the
(I") at t+At in terms of their values at ¢ is given ac-
curately by the first approximation because | NBuw,!| is
less than or of the same order of magnitude as the (I*),
and |Jx(w)| A, [A¢] Al wi;AK1. Furthermore, in the
time Af in which the relative change in (I*) is small, the
oscillating terms contribute changes that are smaller by
a factor of order of magnitude [wA#|~<1 than the
changes produced by the nonoscillating terms for which
k+1=0. Thus, if (156) is satisfied, the effect of the
oscillating terms on the time dependence of the (I*) is
negligible compared to the effect of the nonoscillating
terms, so that omission of the oscillating terms in the
solution of the differential equations for the (I*) intro-
duces little error.

If the oscillating terms are omitted for the reasons
just discussed, Eqgs. (154) can be written in the matrix
form

i [(T_1> —iAp+R 1,01 w1 +R 10 R u (I R_IO]
-d—tl <TO> + 'iwl/2+R0,_1 Roo —’iw1/2+R01 <T0> = Roo ) (157)
<Tl> Ry —iwi1+Ruo t1Ao+Rn (Tl> Ry J
where the time-independent elements R,, and R, are R=3NB > i J1,—1(wsl)d1:(0)d;1—ry (—0)
given, respectively, by XA_p(—1) e, (159)

Rqu 2 le’sjl,—l(wsl)dls(o)dsl’ (0) (— 1)l,

X (1 — %M?‘)A_z"A_l'”al_y,l'_“, (158)

and

It follows from the symmetry properties of the dy;(6),
Eq. (125), and of the 4x*, Eq. (123), that

Ryu=R_,_,, (160a)
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and

RO=R_J). (160b)

The stationary solution of Eqs. (157) can be readily
obtained and the results expressed as follows:
<7x>st=%(<‘p>si+ (Tu]>st)

= (1/D){ROOERm(R—n—Rn)+w1A0]

+RO[Roo(Ru—R_1)+wi]}, (161a)
(Tz/>st= (1/2i)(<jl>st— (T_l>st)
= (1/D){Re’[w1(Rui+R_11)+AoRio]
- —Ri°[2w1R014-AoRoo ]}, (161b)
<]z>st= <Io>st
= (1/D){RP[R1*— R_1*+Ad]
F+RO[2R01 (R_y1— Rur)Fwido ]}, (161c)
where
D=Ry(Ri1:>*—R_1>+A¢)+2R10Rop1(R_11— R11)
Fo(RutR_11)+Awi (Rio+2Ror).  (162)

Since [di;(0)], | V4;%] £1, the condition of validity of
the general theory, Eq. (71), applied to Eq. (140) for
R(0), is satisfied if condition (139) is satisfied, Bw, Bw;,
[BAg| <1, so that exp(=Bws’/2) =1, and if

[2 i i (L= 845) (1= 840 )T (ir oy iy ¥ (i) [ Lo,

The quantities R,, provide a measure of the magnitude
of the left-hand side of (163), so that (163) can be
replaced by the more easily verified condition

| Ryu| "> 70

(163)

(164)

The expressions for R,, and R,% are so complicated
that further discussion of Egs. (157) and their sta-
tionary solutions (161) is confined to a few interesting
special cases.

A. Free Relaxation

If no rotating field is present, w;=0, corresponding
to 6=0, so that use can be made of the relation
o (0)= 8. If one uses also Eq. (137), wil= —lw—so’,
Eq. (141a), J; —i(wsH) =J_1,1(—w,?), and Egs. (160), the
expression for R,,, (158), gives

Roo:‘z Zl(——l)llzfl,;l(—lwo)E (1/T1), (165&)
Ru=R_1 1=21(—DH6—1)J1,1(—lw)= (1/Ty),

(165b)
and
Riw=Ro11=R _11=R; =0, (165c¢)
and the expression (159) for R,° gives
R =0 (166a)
and
RP=%NBwo 2 i(— V)T _i(—lwa)={I.)"/T, (166b)
where
(I.)"=iNBwo=tNyhH o/ kT (167)

HUBBARD

is the equilibrium magnetization at temperature T of a
system of V spin 4 nuclei in a magnetic field H,, correct
to first order in Bwy=~7%H/kT. Use of (165) and (166)
reduces Eqs. (157) to

(d/dt){I°)+(1/ T)(I)= (1/T1){I.)", (168a)
(@/dt)(TF)+ (1/ TykiA){IT#)=0.  (168b)

The solutions of Eqs. (168) for the components in the
laboratory reference frame, (I”)=(I") exp(—ivwt), are

(1% — {I,)T=coe~ /11, (169a)
<Ii1>t= Ci16$iw0 te—t/T2. (169b)

Thus, as might have been expected, in the laboratory
reference frame the component of (I) parallel to the
constant applied field H, relaxes exponentially to (I,)”
with time constant 73, and the components of (I)
perpendicular to H, relax to zero with time constant T,
while simultaneously precessing about H, with the
Larmor frequency wo="vyH,.

In order to compare the expressions obtained for the
relaxation times 7'y and T's with the results of previous
treatments, we define

Ji@) =5 (1~5:) f (P A+ 0)F ()} ) dr,

(170)
where
Fi=r;i3(1—3 cos¥;;)
= =772 (167/5)}V (05, 0:5), (171a)
FiF=r,;;7 cosb,; sinb,; exp(Fip,;)
= Fri(8r/15)V ¥ (6,5, 0:5), (171b)
Fi#=r;8 sin®;; exp(£2iey;)
=7;73(32r/15) 3V o2(6,5,04;). (171c)

By comparing Eqs. (171) with the definition of Jy(w),
Eq. (153), which involves Eqs. (141) and (112), it is
found that

J00(0)= (3/64) (v*%)*J (0), (172a)
J11(—wo)=—(9/32) (v*h)* T 1(wo),  (172b)
o a(—200) = (9/128) (v?h)T 5 (2we).  (1726)

Hence Egs. (165) for T; and T, can be expressed in
terms of either the J;,_;(—Iwy) or the J;(lwo):

1/T1= 4['—.]1,_1(—600)"{‘4]2,_2(— 2w0):|
= (9/8) (v*1)*[J1(wo)+J 2 (2w0) ],

(1/T2)=[6]0’0(0)—10.]1,_1(—0)0) .
+47,,5(—2wi)] (174a)

+]2(2wn)]- (174b)

Expressions (173b) and (174b) agree in the case of

(173a)
(173b)
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nuclei of spin % with the results of Kubo and Tomita,’
which they obtained by a different method.

The calculation of the longitudinal nuclear relaxation
of water by Bloembergen, Purcell, and Pound® is a
famous example of the usefulness of the semiclassical
form of the relaxation theory. The expression for T}
used by BPP was the same as Eq. (173b) except for an
incorrect factor of 3 before J»(2w,). They calculated the
correlation functions occurring in J; and J, by con-
sidering the water molecules to be spheres diffusing
classically in a viscous fluid. This simple model resulted
in a value of the relaxation time that agreed well with
experiment.

It should be remembered that the foregoing ex-
pressions were obtained by assuming that the dipole-
dipole interaction between any two spins is uncorrelated
with the dipole-dipole interaction between either of
these spins and any third spin. If this condition, Eq.
(151), is not satisfied, the longitudinal free relaxation
of the system of spin % nuclei is not in general described
by a single decaying exponential, but rather by a sum
of exponentially decaying terms.®

B. Very Weak Rotating Field near Resonance
If the following condition is satisfied,

w1, ‘ Ao l <<wo,w*—3 T{l,

(175)
s0 that w'= (w24 Ae?) 2wy, w¥, it is permissible accord-
ing to Eq. (74) to replace J;,—1(ws') by J1,—1(—lwy). The
sum over s in Eq. (158) then becomes

Zs dls(o)dsl’(_o) = 5”!,

Eq. (126), so that R,,=é,,R,,, where the nonzero
quantities are given by the same expressions obtained
for the case of free relaxation, Egs. (165).

Replacement of J;_i(ws?) by Ji,—i(—lwe) in (159)
leads to the expression

RO=3NBwd,o 2_1(— 1)1 _1(—lwo)
—iNBW X1 J1,-1(—lwo)dis (6)

Xdsn (—OA_y(—1)s.  (176)

Since from (175) w =we>w’,
RO =(I.)*/T,, (177a)
| Rt || RS (177b)

If one uses (165) and (177), the stationary solutions,
Egs. (161), reduce to the familiar form predicted by
the Bloch phenomenological equations,

- w1A0T 9
<Ix>st= <Iz>T; (178a)
14 (AcT9)2 4w T
I,y oy )
st= 1.)7, 178b
A (AT Lol Ty T

" 7R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
$P, S, Hubbard, Phys. Rev. 109, 1153 (1958).
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B 14 (AoTy)?
14 (A0T2)2+w12T1T2

<IZ>st

Iy (1780)

The relaxation times 7' and T, are given, respectively,
by (173) and (174); they are independent of the mag-
nitude of the rotating field.

The differential equations (157) assume the form of
the Bloch phenomenological equations when conditions
(175) are satisfied only if the inequality | R.’|<<|R¢],
(177b), is interpreted as meaning that it is permissible
to replace R.1® by zero in (157). The fact that the Ry,
are small but not zero means that the transverse com-
ponents of the expectation value of the spin of the
system tend to relax not to zero, but rather to small but
finite values that depend on the magnitude of the
rotating field and how much its frequency differs from
the resonance frequency.

C. Weak Rotating Field near Resonance

In this section we consider a situation in which the
rotating field is strong enough, or the correlation time
long enough, that the rate of relaxation of the system
is affected by the rotating field. It is assumed that

wi, | o] <Kwo, (179)

so that w'&w. It is further assumed that, as a con-
sequence of (179),

Ji (ko) =T (wt20")

zfl,_l((;)) %fz,*l(wo), (1808,)
]1,_1(2w:|:w') z]1,_1(2(4):]:2(.0’)
%J;,fl(Zw) z]z,_l(zwo), (180b)

even though it is not required that w;, |A¢|<Kw*. Use
of relations (180) in (158) leads to the following ex-
pressions for R,,:

Roo= /Ty, (181a)
Ry 41=0, (181b)
Ru=R_;
= (1/T2)+ (9/2)[(3c*—262—1)T 00(0)
+4522 T g0 (— ')+ 00(—20")], (181c)
Ry1,0=3sc[(1—3¢%)T00(0)+2(2c2—~1)J go(— )
+ 52T 00(—2w’)], (181d)
Ri,1=R_1,1= 55 (3¢2—1)J 00 (0) — 4¢*J oo (— ")
+ (14 T0(—2)], (181e)

where c¢=cosf=Ay/w’, s=sinf=w;/w’, and T; and T,
are again given by (173) and (174), respectively. Note
that lf w'<<w*, SO that J()()(_20)I) z]()0('—(«.") A""/J()()(O),
the bracketed expressions in Egs. (181) vanish, and the
expressions reduce to the same form obtained in the
previous section where the condition o'<&w* was
assumed.
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Use of relations (180) in (159) leads to the expression

R=§NBuwdyo 2 1(— 1) 2T 1 _1(—lwy)
+3NBw" s (— ) {0 (— 50" )dos (6)
Xdsn (=040 (—1)
+2°1(1=810)J 1,2 (—lwo)dy (6)
Xdsqn(—0)A_r(—1)}.
Since as in the previous section w ~we>>w’, one obtains
again Eqs. (177) for the R.).
As consequence of Egs. (177) and the form Eqs. (181),
the stationary solutions, Eqgs. (161), reduce to

(182)

(Ie)se= (1/D)[R1o(R-11— Ru1)+w:1A¢ JRoo{I.)7,  (183a)
(I,)se= (1/D)[w1(Ru+R_11)+AocR10]Roo(I.)T, (183b)
(I.)se= (1/D)[Ri2— R_12+ A& IR (I)7, (183¢)
where
D= Roo (R112—R—112+ Ao2)+wl2 (R11+R—11)

+AwiRye.  (184)

Although the conditions (179) and (180) permit the
R,, to be written out explicitly as in Eqgs. (181), the
expressions are nonetheless still too complicated to be
conveniently substituted into Eqgs. (183) and (184).
The stationary solutions, Eqgs. (183), depend on the
magnitude and frequency of the rotating field in a con-
siderably more complicated manner than do Eqs. (178),
the stationary solutions of the phenomenological equa-
tions. Furthermore, Eqs. (183) cannot be transformed
to the form of Egs. (178) by defining two new frequency-
independent relaxation times Ty and T, even if these
quantities are permitted to depend on the magnitude
of the rotating field.

At resonance, Ap=0, w’=w;, cos#=0, and sinf=1, so
that the expressions (181) for R,, reduce to

Row=1/T1, Ro41=R;1,=0,
Ru= (1/T5)+ (9/ D[ oo(—2w1) — J00(0) ],
R_y1=3[Joo(—2w1)—J00(0) ],
and hence Eq. (183a) reduces to
w Ty

_T Sty w =wp= ———————
& 1+weT Ty

(L7,
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where. T'; is given as before by Eq. (173), and T/,
which depends on the magnitude of the rotating field,
is defined by

1/T2’= (1/T2)—3[:]00(0)—]00(—2601)]

in terms of Ts, Eq. (174). Thus the absorption mode
at resonance is of the same form as predicted by the
phenomenological equations, Eq. (178b), with the
modified T, given by the preceding equation.

The treatment of relaxation by dipole-dipole inter-
actions presented is similar to the calculation of Tomita,?
corresponding to his case of “rapidly fluctuating lattice.”
Tomita assumes that the correlation functions have a
decaying exponential time dependence, while the fore-
going treatment permits a more general form. The
treatment here depends on the assumption that the
dipole-dipole interaction between two spins in uncor-
related with the dipole-dipole interaction between either
of the spins and any third spin. Tomita appears to
make the same assumption from the beginning of his
calculation, although he never explicitly states that he
is doing so. The validity of the results obtained here
and of those given by Tomita is considerably limited
by this assumption. A previous calculation of the
longitudinal free relaxation of liquid molecules con-
taining three or four equidistant spin % nuclei has shown
that when cross-correlations between different dipole-
dipole interactions is included the relaxation is the sum
of two exponentials, but that the coefficient multiplying
one of the exponentials is only a few percent of the
coefficient multiplying the other exponential.® Advan-
tages of the present treatment neglecting cross corre-
lations are that (a) the number of interacting spins in
the system is not limited, and intermolecular as well as
intramolecular interactions can be included; (b) the
transverse as well as the longitudinal component of the
expectation value of the nuclear spin is calculated;
and (c) the rotating field is included and not treated
as a perturbation.
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