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1. INTRODUCTION

HE classical linear theory of viscoelasticity was
apparently 6rst formulated by Boltzmann' in

1874. His original presentation covered the three-dimen-
sional case, but was restricted to isotropic materials.
The extension of the theory to anisotropic materials is,
however, almost immediately evident on reading
Boltzmann's paper, and the basic hypotheses of the
theory have not changed since 1874. Since that date,
much work has been done on the following aspects of
linear viscoelasticity: solution of special boundary value
problems, "reformulation' 4 of the one-dimensional ver-
sion of the theory in terms of new material functions
(such as "creep functions" and frequency-dependent
complex "impedances") which appear to be directly ac-
cessible to measurement, experimental determination'
of the material functions for those materials for which
the theory appears useful, prediction of the form of the
material functions from molecular models, and, recently,
axiomatization" of the theory. In this article, instead of
being concerned with these matters, we reexamine the
fundamental hypotheses of linear viscoelasticity in
the light of recent advances in nonlinear continuum
mechanics.

The basic assumption of the classical linear theory of
viscosity is a constitutive equation relating the stress
tensor T(t) at time t to the history of the infinitesimal
strain tensor E(l—s), 0&s & ~ . This assumption asserts
that if E(t s), taken relative—to a natural reference con-
figuration corresponding to zero equilibrium stress, is
smu// in magnitude for a// s, then

~00

T(t) = Q{E(t))+4(0){E(t))+ 4 (s) {E(t—s))ds,
~0

(1 1)
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where

+(s)= (dlds) +(s), (1.2)

and W is such that

lim 4 (s) =0.
zl~0()

(1.3)

For an isotropic solid, Q is determined by the two Lame
constants.

We refer to the classical linear theory based on Eqs.
(1.1)—(1.3) as iejirutesimal t'ai scoelasticity because,
roughly speaking, it can be applicable only to those
situations in which the strain is small at all times.

In Sec. 4 we show how Eq. (1.1) must be modified
when the reference configuration is arbitrary and not
necessarily one in which the equilibrium stress is zero.
In particular, in the case of a fluid, T(l) should be
replaced by T(t)+p,I, where p„ is the equilibrium
hydrostatic pressure corresponding to the reference
configuration, and I denotes the unit (or identity)
tensor. For a Quid Q is determined by the equilibrium

compressibility.
It is often claimed that the theory of infinitesimal

viscoelasticity can be derived from an assumption that
on a microscopic level rnatter can be regarded as
composed of "linear viscous elements" (also called

39

Here N(s){ } (for each s) and Q{ ) are linear trans-
formations of the space of symmetric tensors into itself.
As a function of time, W has a simple physical signif-
icance and is called the "stress relaxation function. "For
if we consider a deformation history such that the
material is kept in its natural reference configuration
(E=O) for all times t&0 and has the strain E* for all
times t) 0, then for such a history Eq. (1.1) yields

if t(0
T(l) = (1.4)

e(t){E*)+a{E*jif t&0.

In the familiar special case of an isotropic material,
+(t) is completely determined by two scalar-valued
functions of time: the stress relaxation functions for
shear and dilatation. The linear transformation Q
characterizes the "linear equilibrium stress-strain law"
of infinitesimal elasticity theory; i.e., Eqs. (1.3) and
(1.4) yield

lim T(t) = Q{E*).
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"dashpots") and "linear elastic elements" (called
"springs") connected together in intricate "networks. " '
The motivation behind some of the recent work on
spring and dashpot networks appears to be the hope
that the consideration of such readily visualized models
will suggest a formalism for immersing viscoelasticity in
a general thermodynamical theory of irreversible
processes.

We feel that the physicist's confidence in the useful-
ness of the theory of in6nitesimal viscoelasticity does
not stem from a belief that the materials to which the
theory is applied are really composed of microscopic
networks of springs and dashpots, but comes rather
from other considerations. First, there is the observation
that the theory works for many real materials. But
second, and perhaps more important to theoreticians,
is the fact that the theory looks plausible because it
seems to be a mathematization of little more than
certain intuitive prejudices about smoothness in macro-
scopic phenomena. It is natural to assume that the
dependence of the stress on the history of the deforma-
tion should be, in some sense, a smooth depertdence
(Smoothness assumptions are usually so "natural" to
physicists that they are seldom made explicit. ) Since
we know that in small neighborhoods smooth de-
pendences are approximately /&sear, it is felt that if
only small deformations are considered, the stress
should be given by a linear functional of the deformation
history, and that this functional should yield the form
exhibited in Eqs. (1.1)—(1.3).

This article tries to make precise these observations
about smoothness, and in so doing seeks to obtain a
mathematical derivation of in6nitesimal viscoelasticity
from plausible macroscopic assumptions. To do this one
must first presume a nonlinear theory of the mechanical
behavior of materials with memory, and, if the under-
taking is to be at all worthwhile, the presumed nonlinear
theory must rest on constitutive equations based only
on very general physical principles. Our development
starts with the recently formulated general theory' of
"simple materials" (i.e., materials for which the stress
depends in an arbitrary way on the history of the first
spatial gradient of the displacement). The theory of
simple materials is outlined in Sec. 3.

To make precise the notion of smoothness we must
introduce a topology into the space of functions charac-
terizing the history of the deformation; i.e., we must
have a way of knowing when two histories are close to
each other. We do this by defining a norm. The par-
ticular norm used here is one of those considered in our

paper on memory functionals. ' This norm has two
important properties: first, it makes our space of
histories a Hilbert space; second, it places greater

emphasis on the deformations which occurred in the
recent past than on those which occurred in the distant
past. We believe that this second property is essential
if one is to formulate a smoothness assumption for
macroscopic phenomena that is compatible with the
everyday observation that memories are imperfect. The
memory of a macroscopic object for its papt defor-
mations fades in the sense that deformations which
occurred in the distant past have a smaller effect on the
present forces than have more recent deformations.

We mathematize the notion of smoothness by assum-

ing that the constitutive functionals which give the
stress in a simple material are Frechet digereeti able in our
Hilbert space of histories.

In considering finite deformations in simple materials,
it is often convenient to take the present configuration
as the reference configuration for describing the history
of the deformation. Indeed, when dealing with a Quid,
this is the natural thing to do, because a Quid has no
preferred con6gurations. However, we can do this even
for solids, provided we maintain in the constitutive
equations a tensor parameter which tells how the
present configuration is related to a preferred con-
figuration.

The function space norm which we use has the
property that the norm of a history is small if the
deformations have been small at all times in the past;
indeed, our derivation of infinitesimal viscoelasticity is
a combination of this fact with our di6erentiability
assumption. However, when one takes the present state
as a reference, the deformation at the present time is

zero, and if one further notes that the distant past is of
little importance, it becomes clear that there are several

ways in which a history can be small in norm. In par-
ticular, any history for which the motion has been sloe
in the recent past has a small norm, This observation
has suggested to us the consideration of a new linear
approximation for the general constitutive functionals
of simple materials. We call the theory based on this
new approximation filite tirtear eiscoelasticity; it includes
the classical infinitesimal theory as a special case, but
has the advantage of being meaningful in situations
involving 6nite deformations. The arguments presented
in Secs. 3 and 5 show that finite linear viscoelasticity
furnishes a complete first-order approximation to the
theory of simple materials in the limit in which the
history of the deformation, taken relative to the present
con6guration, is small in norm.

The smoothness considerations presented can be
extended to obtain higher order approximations to the
general constitutive equations of simple materials. In
Sec. 6 we discuss a second-order theory of viscoelasticity
for incompressible simple Quids.

7 D, R. Bland, The Theory of Viscoelasticity (Pergamon Press,
New York, 1960), Chap. 2.

8 W. Moll, Arch. Ratl. Mech. Anal. 2, 197 (1958).
B. D. Coleman and W. Noll, Arch Ratl. Mech. Anal. 6, 356

(~no).

2. KINEMATICS

We present a brief outline of the kinematics required
for a discussion of simple materials. For a more complete
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F(r) =Fg(r)F(t), (2.3)

where the indicated multiplication is the usual com-
position of linear transformations (matrix product).

An immediate consequence of the definition of F&(t)
is that

(2.4)

where I is the unit (or identity) tensor. From Eq. (2.3)
we obtain the relation

F ()=F()F(t)-' (2.5)

Let p(r) give the mass density at X as a function of
~; it follows from a theorem of kinematics that

det Fg (r) =p(t)/p (r) . (2 6)

If F(r) is independent of X, we say that the con-
figuration of S at time 7 and the reference configuration
of-S are related by a homogerteous deforrlatiort. If
F=F(r) is orthogonal, i.e., if

F~F=FF~=I, (2.7)

in which F~ denotes the transpose of F, then this
"homogeneous deformation" represents a rigid rotation
of the body. If F is symmetric positive-definite, then
the body has been subjected to a pure stretch; in this
case the proper vectors of F give the principal direc-

presentation which goes back to first principles, see
Zoll s

Consider a particular material point X of a body .
Suppose that X occupies the position X in Euclidean
space 8 when S is in a reference configuration. Let (
be the position of X in 8 at time 7. For the dependence
of g on X and r, we write

(2 1)

The gradient F(r) of g(X,r) with respect to X,

(2.2)

is called the deformation gradielt at the material point
X at time v. It is a tensor which possesses an inverse
F(r) '. (Here the term "tensor" is used a synonym for
"linear transformation of the three-dimensional Eucli-
dean vector space into itself. ") The value of F(r) at
each point of (9 is affected not only by the configuration
of N at time v but also by our choice of a reference con-
figuration for (8. This reference configuration may be
chosen for convenience and need not necessarily be a
configuration actually occupied by the body during its
motion.

It is often useful to employ the configuration at the
present time t, rather than a fixed configuration, as the
reference. The corresponding deformation gradient is
denoted by F,(r) and called the relative deforrmatiori,

gradient. The deformation gradients enjoy the following
important property, which is a direct consequence of
the chain rule for the differentiation of composite
vector-valued functions:

tions of stretch and the proper numbers of F are the
principal stretch ratios.

A theorem of algebra. , called the polar decomposition
theorem, states that any invertible tensor F can be
written in two ways as the product of a symmetric
positive-definite tensor and an orthogonal tensor:

F=RV,

F= VR.

(2 8)

(2.9)

Furthermore, the orthogonal tensor R and the sym-
metric positive-definite tensors U and V in these decom-
positions are uniquely determined by F and obey the
following relations:

O'= F~F=—C,

V'= FF~—=8,
U= R~VR.

(2.10)

(2.11)

(2.12)

Equations (2.8) and (2.9) have the following significance
in kinematics: Any homogeneous deformation with
deformation gradient F may be regarded as being the
result of a pure stretch U followed by a rigid rotation
R, or a rigid rotation R followed by a pure stretch V.
These interpretations uniquely determine the pairs R,
U and E, V. The rigid rotations entering these two
interpretations are the same; however, the pure stretches
U and V can be different. It follows from Eq. (2.12)
that although these stretches may have different prin-
cipal directions, they must yield the same stretch ratios.
Ke call the tensor R the rotation tensor and the tensors
U and V, respectively, the right and left stretch tenors
The symmetric positive-definite tensors C and 8, defined
by Eqs. (2.10) and (2.11), are called, respectively, the
right and left Cauchy Greem t-ensors; they obviously
contain the same information as the corresponding
stretch tensors, and their components are often easier
to compute.

The rotation tensor, the stretch tensors, and the
Cauchy-Green tensors computed from the relative
deformation gradient F& are denoted by R~, U~, V~, Cg,
and B~. The modifier relative is used to indicate that the
present configuration (time t) is used as the reference.
For example, C&(r), is called the relative right Cauchy
Greel tensor.

The following formulas are consequences of Eq. (2.4):

For simplicity we have emphasized the interpretation
for homogerteous deformatioes of the tensors defined by
Eqs. (2.8)—(2.11). These definitions obviously apply
also to nonhomogeneous deformations, and similar in-
terpretations can be given to them in the nonhomo-
geneous case if one merely first observes that the
deformations considered in continuum mechanics are
suSciently smooth to be approximately homogeneous
in small regions of (B.
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We note that there is no unique way to measure "the
strain" corresponding to an arbitrary finite deformation.

We now establish the connection between the kine-
matics of finite deformations sketched in the foregoing
and the more familiar kinematics of infinitesimal defor
mati orts.

The magnitude
t
A

~

of a tensor A is defined by

~

A ~'= Tr(AAr) (2.14)

where Tr denotes the trace of a tensor. If Cartesian
coordinates are used, then

~

A
~

' is the sum of the
squares of the elements of the 3X3 matrix correspond-
ing to A. We also use the definition (2.14) or magnitude
when 2 is replaced by a linear transformation I' of the
six-dimensional space of symmetric tensors. In this case,
the square of the magnitude

~

I'~ of F is the sum of the
squares of the 6)&6 matrix corresponding to 1.

Let a motion with deformation gradient F=F(r)
be given. We put

(2.15)
and

however, the infinitesimal strain tensor E is devoid of
kinematical significance.

Finally, we note the following relations between the
infinitesimal rotation tensor W, defined by

W= ,'(H -H—r),
and the finite rotation tensor R:

(2.26)

g=IyW+0(. &) =I+0(.),
Itr= g i=I-W+—0(~') =I+0(e) .(2.27)

In order to find an expression for the relative Cauchy-
Green tensor C, (r), we first substitute Eqs. (2.20) and
(2.21) into Eq. (2.5) and obtain

F,(r) =I+H(r) H(t)+—0(e'). (2.28)

Equation (2.10), written for the relative tensors F& and
C„reads

Ci(r) =F,(r) F,(r). (2.29)

Substitution of Eq. (2.28) into Eq. (2.29) and use of
Eq. (2.18) yield

e= supt H(r) (. (2.16) C ( ) =I+2LE( )—E(t)j+0( ')=I+0( ) (2 3o)

E= 2 (H+H') (2.18)

In the following we consider functions of r which are
determined by H(r) and which have the property that
for each v their magnitude is less than Ee", where E
is a number independent of r, the function H(r), and e.

Any such function is denoted by the order symbol
0 (e"); i.e.,

(2.19)

B is the gradient of the displacement vector field, We
say that the deformation corresponding to F(r) is
infinitesimal at all times r if

(2.17)

The infinitesimal strain tensor E=E(r) is defined by

For finite deformations there is no simple relation
between Ci(r), C(r), and C(t).

3. FADING MEMORY

The theory of simple materials is based on the fol-
lowing physical assumption: The present stress is given

by a functional of the past history of the deformation

gradient.
Suppose the deformation gradient F(r) is given (for

all r&t) computed relative to a 6xed reference con-
figuration. The right Cauchy-Green tensor C(t) and
rotation tensor R(t) corresponding to F(t) are deter-
mined by Eqs. (2.8) and (2.10). On using Eqs. (2.5)
and (2.29) we can compute the relative Cauchy-Green
tensors Ci(r) for all r &t We now p. ut

It is easy to show that C, (r) =Rr(t)C, (r)R(t). (3.1)

F=I+H = I+0(e), (2.20)

U —I=E+0(e') =0(e}, (2.22)

V I=E+0(c')=0—(e), (2.23)

C—I= 2E+0(e') =0 (e), (2.24)

B I=2E+0(c') =0(e—). (2.25)

Thus, if terms of order 0(c') can be neglected, the
stretch tensors U, U and Cauchy-Green tensors C, 8
can be expressed in terms of E. For finite deformations,

F '= I H+0(—e') = I—+0(e). (2.21)

Also, it is not dificult to establish the following relations
between the stretch tensors U, V and Cauchy-Green
tensors C, 8, on the one hand, and the infinitesimal

strain tensor E, on the other hand:

If the material has always been at rest, we have, by
Eqs. (2.13) and (3.1),

Ci(r)=I for r&t—(3.2)

The principle of material objectivity, which states that
the properties of a material should appear the same to
all observers, can be used to show that the general con-
stitutive equation for simple materials reduces to the
form

(3.3)

where T(t) is the stress tensor at time t and the symbol

Q denotes a functional. LThis may be compared with

reference 8, Eq. (22.8). Here we use a somewhat more

suggestive notation. ]
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It is useful to put Eq. (3.3) into a slightly different
form by writing the right-hand side as the sum of an
"equilibrium term" fl(C(t)) and a term which vanishes
when the material has always been at rest, i.e., when

Eq. (3.2) holds:

T(t) =fl(C(t))+ 8 (C (t—s)—I; C(t)), (34)
s=0

j (o; c(t))=o.
s=0

For present purposes it is sufficient to regard the con-
stitutive equation (3.4) as the definition of a simple
material.

We now add a new physical assumption: The @sensory
of a simple material fades in time.

There is no unique way to give this statement a
precise meaning. We consider a particular mathe-
matical interpretation of it. For this purpose we first
introduce the concept of an influence function which is
used to characterize the rate at which the memory
fades. (This definition of an influence function is slightly
different and somewhat less technical than the one we

gave in reference 9.) A function h is called an influence
function of order r)0 if it satisfies the following con-
ditions:

(a) h(s) is defined for 0 &s& 00 and has positive real
values: h(s))0.

(b) h(s) decays to zero according to

lim s"h(s) =0
s~QO

(3.6)

monotonically for large s. For example,

h(s) = (s+1)—&

is an influence function of order r if r &p. An exponential

h(s) = e ~', tl) 0

is an inhuence function of any order.
Any function G(s), defined for s) 0 and with values

which are symmetric tensors, is called a history. The
argument function G(s) = C, (t—s) —I of the functional

of Eq. (3.4) is a history. The tensor C(t) in Eq.
(3.4) plays the role of a parameter.

I.et an influence function h(s) be given. We then
define the norm IIG(s) II of a history G(s) by

forms a Hilbert space K. A history G(s) belongs to the
space X if it does not grow too fast as s~ ~.

Consider now an influence function h and a functional

i (G())
s=0

which is defined on a neighborhood of the zero history
in the Hilbert space X corresponding to h and whose
values are symmetric tensors. Assume that the value
of P for the zero history is zero, i.e., that

g (o)=o.
s=0

(3 g)

We say that g is Frechet differen-tiable at the zero
history if there is a continuous linear functional b@
such that

~ (G())=be(G()) =~ (G()), (3 9)
s=0 e=. 0

where the "remainder" % is of order o(IIG(s)ll) in the
sense that

IIG(s)ll ' @ (G(s))=o.
I I 0 (e) I j~o s=0

(3.10)

8 (G(s); C) =~S(G(s); C)+ @ (G(s); C) (3 11)
s=0 s=0 s=0

We now invoke the theorem of the theory of Hilbert
spaces which states that every continuous linear func-
tional may be written as an inner product. It follows
from this theorem that the first variation Q has an
integral representation of the form

The linear functional Q is called the first variation or
Frechet dhgerenfial of @ at the zero history.

We now translate our physical assumption of fading
memory into the following mathematical requirement:

(F) There exists an influence function h(s) of an order
r) 0 such that, for each value of the tensor Parameter C,
the functional @ of the constitutive equation (3.4) is
Frechet digerentiab-le at the zero history in the Hilbert
space K corresponding to h(s).

If we indicate the dependence on the tensor parameter
C, Eq. (3.9) becomes

IIG(s) II'=
I G(s) I'h(s)'ds,

40
(3 7)

bg(G(s); C)=~ I (s; C){G(s))ds.
0

(3.12)

where IG(s)l is the magnitude of the tensor G(s)
defined by Eq. (2.14). The influence function h(s)
determines the influence assigned to the values of G(s)
in computing the norm IIG(s)ll. Since h(s) ~oass~ ~,
the values of G(s) for small s (recent past) have a
greater weight than the values for large s (distant past).

The collection of all histories with finite norm (3.7)
I r(s; C) I'h(s)-&ds& ~,

0

(3.13)

Here 1 (s; C){ ), for each s and each C, is a linear
transformation of the space of symmetric tensors into
itself with the property that
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wl ere
I r(s; C) I

is the magnitude of r(s; C) as de6ned

by Eq. (2.14). The property (3.13) shows that I'(s; C)
must approach zero at a faster rate than the inQuence
function h(s) as s —+ ~. Substitution of Eqs. (3.12) and
(3.11) into Eq. (3.4) yields

which enters the constitutive equation (3.4) of a simple
material:

G(s) =23&(t—s)—&(t)J+O(")=O(~) (4 4)

On substituting Eq. (4.4) into Eq. (3.11) and using
Eq. (3.10) and the linearity and continuity of the 6rst

00

T=fl{C)+ ~ I {s;C){G(s)}ds+%(G(s);C), (3.14)

G{s)= C, (t—s)—I. (3.15)

It is understood that the variables T, C, and G(s)
depend on the present time t.

It seems natural to add to the requirement (F) the
following two assumptions:

(F') The Frechet diferent-iability of P postulated in
(P) is uniforrnin the tensor parameter C.

(D) The tensor function Il(C) of (3.14) is continuously

di fferenti able.
'

By the assumption (F') we mean that the first
variatlon

~S(G(s); C)
a=o

depends continuously on C in the strong sense and that
the convergence in Eq. (3.10) is uniform in C.

4. INFINITESIMAL VISCOELASTICITY

We 6rst remark that any function of order O(e") in

the sense of Eq. (2.19) is also a function of order O(e")
with respect to the Hilbert-space norm (3.7); i.e.,
there is a constant E, independent of e, such that

IIO( ")ll«" (4 1)

In order to prove this inequality we substitute O(c")
for G(s) in the deiinition (3.7) of the norm and usc the
inequality (2.19):

pOQ goo

IIO{ -)II = IO{ -)
I h{)d «~") h{)'d' {4.2)

g (G(s); C) = 2 @(L~'{t s) —Z{s)—; C)+o(e), (4.5)

where the order symbol o(e) is used in the sense that

hm e
—I~o(e)

~

=0 (4 6)

If, ls nof. dificult to prove thaf. the uniforIIllty assllInp-
tion (F') of Sec. 3 implies that Eq. (4.5) remains valid
if, on the right-hand side, the tensor C=I+O(~) is
ieplaced by the Unlf. tensol I:

8(G()'C)=2~8(~(t—)—~() I)+ () (47)

We now substitute the integral representation (3.12),
for C=I, into Eq. (4.'l), and obtain

aO

P (G(s); C) = 2r(s) {E(t—s) }ds

2&(s)ds{~(t)}+o(e) (4 8)

we may rewrite Eq. (4.8) in the form

8 (G(); C)=~(0)«(t)}

+ e(s){E(t—s) }ds+o(e), (4.10)

On de6ning e (s) by

p 0(}

e(s) = —2 I'(o)do, 4 (s) =—e(s) = 21"(s), (4.9)

lim e(s) =0.
g~00

Assumption (D) of Sec. 3 and Eq. (2.24) imply that
the equilibrium term fl(C) of Eq. (3.4) has the form

I~(C(t)) = T,+a{8(t)}+o(~). (4.12)

g=It~ ~ h(s)'ds
~
.( t'"

The requirement (F) of Sec. 3 ensures that the number where
r of Eq. (3.6) ls gl'eatel' tllR11 2. It follows that thc
illtcgl'Rl Jo h (s)ds is flllltc Rild llclicc that thc 1Iicquallty

(4.1) holds with

This remark shows that the order symbols in Eqs.
(2.20)—{230) 111Ry bc interpreted 1I1 tcilrls of tile coI1-

vergence in the Hilbert space of histories dekned in

Sec. 3.This interpretation must be used to justify most
of the subsequent considerations.

By combining Eqs. (3.1), (2.30), and (2.27), we find

the following expression for the history

G(s)= C&(t—s)—I

Here, the linear transformation Q{ } of the space of
symmetric tensors is the gradient of the tensor function

fl(C) at C=I. The tensor

is the res~dial stress, i.e., the stress the material wouM

sustain if it had been held in the reference con6guration
at all times in the past.
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Substitution of Eqs. (4.10) and (4.12) into the con-
stitutive equation (3.4) yields

T(t) = T,+[a+e(0)j{E(t))

+ e(s){E(t s))—ds+o(e). (4.14)

+ e (s){E(t—s))ds+o(e). (4.15)
Jo

When e, given by Eq. (2.16), is small enough, the
remainder term o(c) can be neglected in comparison
with the other terms on the right-hand side of Eq.
(4.15), which are of order 0(e). Thus, the corzstitzztiee

equation of irzfirzitesimal iiiscoelasticity reads

Finally, going back to the definition (3.3) of T and
using Eqs. (2.27), we obtain the following expression
for the stress tensor T(t):

T(t) —T.= W(t)T.—T.W(t)+[&+e'(0)3{E(t))

simple material in the limit

IIG(s)ll ~O, (5.2)

and the error approaches zero faster than ~~G(s)~~. We
call the theory based on Eq. (5.1) fizzzte lirzear disco
e4sti ci ty.

One way of achieving the limit (5.2) is to let e,
defined by Eq. (2.16), go to zero. The discussion of
Sec. 4 shows that, in this case, Eq. (5.1) reduces to the
constitutive equation (4.16) of infinitesimal viscoelas-
ticity.

When we consider, however, the definition (3.7) of
the norm )~G(s)~~, we see that the limit (5.2) may be
achieved even when e does not approach zero. In order
for ~~G(s)~~ to be small, it is not necessary that the
deformation (relative to the configuration at the present
time t) be small at all past times r(t, but only that the
deformation be small in the recent past. In particular,
~(G(s)~~ is small for "slow" motions. To make this
remark precise we consider a history G(s) which has
finite norm and corresponds to a deformation which
makes no jump at the present, so that

T(t) —T„=W(t) T„—T,W(t)+[a++(0)]{E(t))
lim G(s) =0. (5.3)

f
+ e(s){E(t s))ds —(4.16).

When the reference configuration is a natural state,
we have T„=O, and Eq. (4.16) reduces to the classical
equation (1.1). Equation (4.16), with T„WO, applies to
infinitesimal deformations superposed on a large defor-
mation from an unstressed natural state. In this case,
the reference configuration is not the natural state but
the deformed state with equilibrium stress T,. If T„ is
a hydrostatic pressure T„=—pI, the terms involving
W(t) in Eq. (4.16),cancel. The stress relaxation function
e (s) depends not only on the material but also on the
configuration which has been taken as the reference.

We remark that the special case e(s)—=0 of Eq.
(4.16) corresponds to the theory of infinitesimal elastic
deformations superposed on large deformations. The
special case N(s)—=0 and T,=O corresponds to the
classical theory of infinitesimal elasticity.

5. FINITE LINEAR VISCOELASTICITY

Motivation

Let us return to Eq. (3.14), which, under our hypoth-
esis (F), is equivalent to the fundamental constitutive
equation (3.4). It follows from Eq. (3.10) that the
remainder term of Eq. (3.14) is small compared to the
term involving the integral, provided the history
G(s) = C, (t s) I has a sm—all—Hilbert-space norm.
Thus, the equation

G.(s) =G(ns).

It follows from Eq. (3.21) of reference 9 that

G-(s) ll =0,

(5.4)

(5.5)

i.e., that the limit (5.2) may be achieved by retardation
of a given process.

Aside from the fact that the finite theory based on
Eq. (5.1) applies to a much larger class of problems
than the infinitesimal theory, there is a fundamental
difference between the two theories. The infinitesimal
theory is physically meaningless for finite deformations
because it does not have the invariance properties
required by the principle of material objectivity. The
finite linear theory, on the other hand, enjoys the correct
invariance. Thus, it is conceivable that there exists
some material which obeys Eq. (5.1) for arbitrary finite
deformations. The infinitesimal theory cannot possibly
apply to any material when finite deformations are
considered.

Finally, we remark that in the derivation of Eq.
(5.1) no assumption has been made about the mag-
nitude of the tensor parameter C. Hence, the finite
theory based on Eq. (5.1) is applicable when the present
and the reference configuration are related by an
arbitrary large deformation.

s~o

We then construct for each n, 0&n&1, a "retarded"
history

T=fl(C)+ t I'(s; C){G(s))ds (5.1) Isotroyic Materials

approximates the general consti. tutive equation of a
When dealing with isotropic materials it is con-

venient to take the reference configuration to be Nndis-
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T=f)(B)+ r(s; B){J()}d,
0

(5.6)

where B=B(t) is the left Cauchy-Green tensor, defined

by Eq. (2.11), and the history J(s) is given by

J(s)=C&(t s) I—. — (5.7)

Furthermore, the tensor function f) and the linear
functional given by the integral in Eq. (5.6) are isotropi c
in the sense that they obey the identities

torted. (A precise definition of this term is given in
reference 8.) Then the equilibrium stress is hydrostatic.
Furthermore, the results in Sec. 22 of reference 8 show
that the constitutive equation (5.1) reduces to

reference 8. (Coleman and Noll" give a, summary of the
general theory of simple fluids with emphasis on
physical applications. ) Such materials are isotropic, and
hence Eqs. (5.6)—(5.9) apply. Moreover, the functions
f)(B) and I (s;B) in Eq. (5.6) depend on B only
through the determinant of 8 or, equivalently, only
through the present density p= p(1). Thus, for a, fluid,
Eq. (5.6) becomes

T= f) (p) + " I (s; p) {J(s) }ds.
0

(5.12)

ef)(p)e =f(p), (5.13)

The isotropy identities (5.8) and (5.9) may be written
in the form

ef)(B)e'=f)(QBQ'),

Q I (s; B){J(s)}ds Qr

(5 8)
Q[1'(' p) {J(s)}je'

jp —r(s; p){QJ(s)Q }ds=0. (5.14)

40
~(;QBQ ){QJ()e'}d

f) (p) = —p(p)I (5 15)

Since Eq. (5.13) is valid for all orthogonal tensors Q,
it follows that, f)(p) must reduce to a scalar multiple of
the unit tensor:

for all orthogonal tensor's Q. A fundamental theorem of

the theory of isotropic tensor functions (for an elegant

recent proof see reference 10, Sec. 59) states that I) has

a representation

III(B)=hpI+hiB+hpB', (5.10)

where ho, h~, and h2 are scalar invariants of B. Also, it
can be shown that the identity (5.9) implies the follow-

ing representation for r:
I'(s B){J(s)}=fi(sB)J(s)+J(s)fi(s B)

+f, (s; B) Tr[J(s) fs(s; B)]. (5.11)

Here, for each s, the tensor functions f, (s; B) are iso-

tropic in the sense of Eq. (5.8) and hence have repre-

sentations of the form (5.10). The proof of this result

is too technica, l to be included here. Equations (5.10)
a,nd (5.11) and the representations for the f; may be

used to render the constitutive equation (5.6) explicit.

The resulting formula shows that, in the finite theory

of linear viscoelasticity, the behavior of an isotropic

material is determined by 11 independent scalar

material functions; three of these depend on three

variables and the remaining eight on four variables.

The assumption of isotropy alone yields no further

simplification. The special case I =—0 of Eq. (5.6) cor-

responds to the theory of finite (nonlinear) isotropic

elasticity,

Fluids

We call p(p) the equilibrium pressure; it is the pressure
the Quid would be supporting if it had remained at rest
in its present configuration at all times in the past.

Equation (5.14) is valid for all orthogonal Q and for
all possible histories J(s) belonging to the Hilbert space
X. The only element of a Hilbert space which is ortho-
gonal to all elements of the space is the zero element. .
This fact implies that the integrand in Eq. (5.14) must
be identically zero. Hence, the transformation I (s; p) {}
satisfies the identity

Q[1'( '
p) {J}jQ'= I (s; p) {QJQ} (5.16)

for all orthogonal tensors Q and all symmetric tensors J.
&n other words, for each s and p, I (p; s){ }
iso&ropic linear transformation of the space of sym-
metric tensors. The representation theorem for such
isotropic transformations [special case of the theorem
embodied in Eq. (5.10) (see reference 10, Sec. 59)) states
that I'(s; p){J(s)}must be of the form

I'(s; p) {I(s)}=p (s; p)J(s)+X(s; p) (Tr J(s))I, (5.17)

where p(s; p) and X(s; p) are scalar functions of the
time lapse s and the present density p. On substituting
Eqs. (5.15) and (5.17) into Eq. (5.12), we obtain the
following caristitulitie equators of a simP/e fluid irc the

theory of finite tieear niscoelasticity:

Ke now consider materials which not only obey a
constitutive equation of the form (5.1) but which are

also simpie fflids in the sense of the definition given in

'o J. Serrin, "Mathematical principles of classical Quid me-

chanics, " in E'rccyclopedca ofPhysics, edited by S. Fliigge (Springer-

Verlag, Berlin, 1959), Vol. VIII/1.

+ ) (s; p) Tr J(s)ds I. (5.18)
0

"B.D. Coleman and W. Noll, Ann. N. Y. Acad. Sci. 89, 672
(1961).
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In this theory, the mechanical behavior of a Huicl is
determined by the three scalar material functions p(p),
p(s; p), and X(s; p).

If the Quid under consideration is irtcompressible,
certain modifications must be made in this analysis. In
incompressible materials, the motion determines the
stress only up to a hydrostatic pressure. In other words,
the constitutive equation gives only the extra stress

tion which requires that the functional g be not just
once but e times Frechet differentiable at the zero
history. It is then possible to approximate g by a
polynomial functional of degree e with an error that
approaches zero faster than the eth power of the
norm llG(s)ll. For example, when v=2, we find the
following generalization of Eq. (3.14):

T,= T+pI, (5.19) T=fl(C)+ r(s; C)(G(s))«

where p is an indeterminate pressure. In the incom-
pressible case, the two terms in Eq. (5.18) which are
scalar multiples of the unit tensor J may be absorbed
into the indeterminate pressure term pI. From these
remarks we see that in finite linear viscoelasticity the
stress in an incompressible Ruid is given by the remark-
ably simple equation

+6 (G(s); C)+%'(G(s); C). (6.1)

Here, Ct, is a continuous quadratic functional depending
on the tensor parameter C; the remainder sf' is of order
o(llG(s) /l'), i.e.,

Q p

(5.20)
lim llG(s)ll-'R'(G(s); C) =0.

ll &(&) I i~0

Relation (6.1) shows that the equation

(6 2)

where, since the density is constant, p (s) is a function of
only the time lapse s.

The "relaxation function" P (s) determined by
rheologists from measurements of the decay of shearing
tractions for simple (infinitesimal) shear in incom-
pressible fluids is related to the material function ti(s)
as follows:

y($) = —2 ti( )d, pt ($)= '(dl«)4 ($-) (5 21)

(s; p) I'h(s) 'ds( ~,
0

lz(s; p) I'h(s) '«(~.
0

(5.22)

These conditions relate the rate of decay of the infiuence
function to the rate of decay of the material functions
p(s; p) and X(s; p) as s —+ ~ .

6. SECOND-ORDER VISCOELASTICITY

In Sec. 3 we showed, on the basis of our assumption
(F), that the (nonlinear) functional g giving the stress
in a simple material may be approximated by a linear
functional. The error in this approximation approaches
zero faster than the Hilbert-space norm llG(s)ll of the
history (3.15).The analysis of Sec. 3 may be generalized
if the assumption (F) is replaced by a stronger assump-

Thus, the relaxation function $(s) is sufficient to
determine the mechanical behavior of incompressible
fluids in the theory of finite linear viscoelasticity.

For simple fluids, the property (3.13) is equivalent
to the conditions

00

T=f)(C)+ I (s; C)(G(s))«+s„t(G(s); C) (6.3)
8=0

approximates the general. constitutive equation of a
simple material in the limit lG(s)ll —& 0, and the error
approaches zero faster than

l G(s) ll'. We call the theory
based on Eq. (6.3) secold order disco-elasticity.

The quadratic functional C, of Eq. (6.3) may be
expressed in terms of a bounded symmetric operator
on the Hilbert space of histories. It is not possible, in
general, to represent Ct, by integrals. However, an
integral representation does exist if the operator cor-
responding to G, is completely continuous. We consider
only this special case.

Explicit forms of the constitutive equations for iso-
tropic materials and for simple Ruids in second-order
viscoelasticity may be obtained by an analysis similar
to the one given in Sec. 5 in finite linear viscoelasticity.
The resulting formulas are too complicated to be
included here in full. Without giving the details of the
derivation, we state the cortsti tutive equatiort of an iucom
pressibte ftuid iu the secortd order theory of vi-scoetasticity:

T+pI=
~

p, ($)J($)«

+ 5 ($ $ )J($ )J($ )f
p 0

+P(sip2) (Tr J(si)J(sq))«idsq. (6.4)

Here, p is an indeterminate pressure, J(s) is the history
given by Eq. (5.7), and p(s), n(si, s~) and p(si, s~) are
scalar material functions. The function p(s) is the same
as in Eq. (5.23). The functions n and p are symmetric,
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1.e.)

rr (s less) —Q ($2cs 1)C P ($1c$2)—P ($2cs1) ~

0(e') and 0(e'), respectively. Therefore, for small s,
Eqs. (6.9) and (6.10) reduce to

In order to illustrate the behavior predicted by Eq.
(6.4), we consider a class of motions called si222p/e

shearAsg motions. These motions are defined by the
property that the velocity field v(x)= fe„n„,rt, ), in

some Cartesian coordinate system x, y, z, has the com-
ponents

~Sg
Jo

tz(s)X, (s)ds,

T„7„„—= " tz(s)X,2(s)ds.
0

(6.14)

(6.15)

Vz= 0, 'VZ='V(2'ct)c 'VO=0. (6.6)

It follows from Eqs. (5.6), (5.8), and (5.10) of reference
11 that the matrix function corresponding to the history
J(s) defined by Eq. (5.7) has the form

8

X,(s)= i
—e(x, t o)do. —

&. dx
(6.8)

In order to obtain the components T„, T,„, etc., of the
stress tensor T, we substitute Eq. (6.7) into Eq. (6.4).
After a simple calculation, we find

CO CO ~CO

t()&()d+~
~

v(, )
aJ 0 0 0

0 1 0 1 0 0
[J(s)]=X,($) 1 0 0 +Xz(s)2 0 0 0, (6.7)ooo ono

where

Equation (6.14) for the shearing stress T~ is the same
as the corresponding equation in the theory of infini-
tesimal viscoelasticity. The normal stress differences
given by Eqs. (6.15) and (6.11),zero in the infinitesimal
theory, do not vanish in the second-order theory.
Equations (6.11) and (6.15) may be used, for example,
for the interpretation of data on normal stresses ob-
tained in experiments involving shearing vibrations of
small amplitude. It is remarkable that the normal stress
difference (6.15) depends only on the material function
tz(s) or, equivalently, the shear relaxation function p(s)
given by Eq. (5.24).

These results on simple shearing motions can easily
be generalized to motions that have a form similar to
(6.6) in an appropriate curvilinear orthogonal coor-
dinate system. (The method to be employed is a,nalogous
to the one used in Sec. 2 of reference 12.)

'7. FINAL REMARKS

&&X&($1)9,z($2)dsrds2, (6.9)

~$$ T ting tz(s)X '(s)ds+
6o a)0

'y ($1,$2)

/lb, z($1)2hz($2)'ds]d$2, (6.10)

pQQ po0

22JP 7zz
~s ~s

where

Q (S les 2)X t ($1)X1 ($2)ds id $2 c (6.11)

e= sup
i
X,(s) i

(6.13)

is small. Physically, this case corresponds to shearing

motions with the property that the configuration of the
Quid at alt past times differs from the present con-

figuration only by a small deformation. Shearing vibra-
tions of small amplitude have this property. It is clear
from Eqs. (6.13) and (6.7) that the Hilbert, space
norm )~ J(s) ~~

is of order 0(e'). But the terms involving

double integrals in Eqs. (6.9) and (6.10) are of order

'y($1 s2) =cz($],$2)+P(si, so). (6.12)

Equations (6.9)—(6.11), together with Cauchy's

equations of motion, lead to a rather complicated system
of integro-di6erential equations.

We now consider the special case when

In our considerations in Secs. 3—6 we have used the
relative right Cauchy-Green tensor C& as a measure of
strain. As we remarked at the end of Sec. 2, there is no
unique "strain tensor" when finite deformations are
considered. Instead of C~ we could also have used the
relative right stretch tensor Uz

——(Cz) ', the inverse Cz ',
logC&, or any other tensor related to C& by a smooth
one-to-one transformation. To different choices of the
measure of strain correspond difterent theories of finite
linear viscoelasticity. However, the difference of the
stresses computed using two different such theories is
of order o (~~G (s) ~~). Hence, since any finite linear theory
can be expected to be accurate only when terms of
order o(~~G(s)~~) can be neglected, we can say that the
various theories corresponding to the various measures
of strain are equivalent.

To different choices of the measure of strain also
correspond different theories of second-order viscoelas-
ticity. These different theories are equivalent in the
sense that the corresponding stresses differ only by
terms of order o(~~G(s}~~2).

On the basis of a molecular model for certain incom-
pressible Quids, Lodge" has derived a constitutive
equation corresponding to Eq. (5.23) when J(s) is

"3.D. {"Oleman and W. Noll, Arch. Ratl. Mech. Anal. 4, 289
(1959).

"A. S. Lodge, Trans. Faraday Soc. 52, 120 (1956).
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computed using C&
—' rather than C& as a measure of

strain. Our analysis shows that any other molecular
model must give the same or an equivalent result,
provided only that terms of order o((~G(s)l)) may be
neglected.

As we have remarked in Sec. 5, the norm (~G(s)(~ is
small in particular for "slow" motions, and hence the
finite linear theory applies in this case. For slow Qows
in simple Quids, the 6nite linear theory is actually
equivalent to the classical theory of Newtonian fluids,
provided that the inRuence function h satisfies the
relation (6.3) with r) ', T-h.is fact and analogous results
for fluids of higher order are proved in reference 9.

Riv1in and his co-workers'4 in recent years have
developed memory theories involving multiple integrals
similar to the second-order theory proposed in Sec. 6.
The emphasis in their work has been on the represen-
tation theorems following from material objectivity anp
symmetry. In particular, the representations mentioned
here in Secs. 5 and 6 can be derived using their results.
An investigation of higher order theories of viscoelas-
ticity based on the existence and complete continuity
of Frechet differentials of order &2 ~ould make much
more use of such representation theorems.

'4 A. J. M. Spencer and R. S. Rivlin, Arch. Ratl. Mech. Anal. 4,
214 (1960).
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1. INTRODuCTION

'"UNCLEAR magnetic resonance and re]axation
involves the interaction of nuclear spins with

each other, with externally applied magnetic fields, and
with the molecular surroundings of the spins. The
Hamiltonian of the system of spins and their molecular
surroundings can be written in the form

X=ALE(s, t)+P(q)+G(s, q) 1, (1)
where AE(s, t) is the part of the Hamiltonian that
depends only on the spin variables s and the time (for
example, the interaction energy of the nuclear magnetic
moments with the time-dependent externally applied
magnetic Gelds), AF(q) is the energy of the molecular
degrees of freedom g, and AG(s, q) is the energy of inter-
action of the spins and the molecular surroundings.
Since the system represented by this Hamiltonian is in
general quite complicated, consisting of many nuclei
and molecules, it can be appropriately treated by con-
sidering an ensemble of such systems and calculating
the average behavior by the methods of statistical
mechanics.

Bloch' has used the density operator formalism of
quantum statistical mechanics to derive a diGerential
equation for a reduced density operator o (s,t) in terms
of which the ensemble average of the expectation value
of any spin operator Q(s) is given by

(Q)=Trl o (s,t)Q(s)j.
*Supported in part by the National Science Foundation.' F. Bloch, Phys. Rev. 105, 1206 (1957).

G(s, t) =G(s,g(t)). (4)

Since the time dependence of the q(t) is usually deter-
mined by considering the q to be coordinates of a
system whose motion is calculated classically, the
resulting relaxation theory is called semiclassical. The
transition probability method introduced by'Bloem-
bergen, Purcell, and Pound' (BPP) for the calculation
of nuclear magnetic relaxation is in efII'ect a special case
of Red6eld's semiclassical theory, involving only the
diagonal elements of o. between eigenstates of E, these
diagonal elements being proportional to the probable
relative populations of the energy levels of E as a

2 A. G. Red6eld, IBM J. Research Develop. I, 19 (1957).
s K. Tomita, Progr. Theoret. Phys. (Kyoto) 19, 541 (1958).' K. Tomita, Progr. Theoret. Phys. (Kyoto) 20, 743 (1958).
6 N. Bloembergen, E. M. PurceH, and R. V. Pound, Phys. Rev.

73, 679 (1948). Hereafter referred to as BPP.

Redheld' has independently derived a similar theory,
but it is limited to the case in which E does not depend
explicitly on the time. Tomita has developed more
specialized density operator theories of magnetic reso-
nance saturation3 and magnetic double resonance. 4

Red6eld' has also derived an equation for o- by for-
mulating the problem in another manner, considering
an ensemble of systems with Hamiltonians

X=ALE(s)+G(s, t)], (3)

where G(s, t) is a random function of the time. The
random time deperidence of G is usually the result of
the random variation with time of coordinates q upon
6 depends:


