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I. INTRODUCTION

NVESTIGATION of the scattering of alpha particles
was a very active and important field of research in
the early years of this century. In fact, the experiments
on alpha-particle scattering by Geiger and Marsden and
and their interpretation by Rutherford actually con-
stituted the discovery of the nucleus. After about 1935
this subject was essentially dormant, but within the
past few years it has become active again. This article
describes briefly the early work and then discusses in
more detail the modern developments,

The motivation of research in this field has been to
use the scattering of alpha particles as a probe to
measure the strength and spatial extent of the inter-
action potential between the alpha particle and the
nucleus. Quantitative information about the potential
has been obtained by interpreting the recent experi-
mental data in terms of an optical model which expresses
the interaction between the alpha particle and the

* This work supported in part by the U. S. Atomic Energy
Commission.

nucleus as a complex potential with a diffuse edge.
However, an adequate theoretical interpretation came
only after a succession of interesting, but much cruder,
optical models had been considered at various stages
while the data were being accumulated.

Here the modern experimental data are summarized,
descriptions are given of the several optical models
which have been used to interpret the data, the pre-
dictions of these models are compared with the experi-
ments and the models are compared. In order to bring
out the interplay which took place in the experimental
and theoretical developments of this field, these devel-
opments are presented in approximately chronological
order. The theoretical discussion includes both the
elastic scattering and total reaction cross sections,
Although almost no data currently exist on the latter,
the cross sections for both these entrance channel
phenomena can be predicted from the optical model.

II. EARLY EXPERIMENTAL AND
THEORETICAL WORK

Geiger and Marsden were investigating the scattering
of low-energy (4 to 8 Mev) alpha particles, obtained
from radioactive sources, by thin foils of various ele-
ments (17).! They observed multiple small angle scat-
tering, a phenomenon which could be understood on
the basis of the then current theories of atomic
structure (54); however, they also observed an occa-
sional scattering at large angles. In order to explain
this large angle scattering, Rutherford found he had to
assume that all the positive (or negative) charge of the
atom was concentrated in a small region at the center
(47). Providing that the hyperbolic trajectory of the
scattered alpha particle does not pass through the
nuclear region, so that the alpha particle is acted upon
by a Coulomb force at all times, Rutherford showed
that the cross section for the elastic scattering of alpha
particles is

doo/dQ= (Z'Zet/AE)Y1/sin*(6/2)],

where Z'e and Ze are the charge of the incident alpha
particle and the target nucleus, £ is the kinetic energy
of the alpha particle, and 6 is its scattering angle. It is
assumed that the nucleus remains at rest during the

1 References in parentheses are given in numerical order in the
Bibliography.
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collision. This formula describes what is called Coulomb
scattering. It has been experimentally verified for a wide
range of elements, energies, and scattering angles (18).

In applying Rutherford’s model to the scattering of
alpha particles by light nuclei, it is necessary to take
into account the recoil of the nucleus (8). But even
after this correction was made, serious disagreements
were found when the predicted Coulomb cross sections
were compared to the experimental cross sections for the
scattering of alpha particles by hydrogen (48). De-
partures from Coulomb scattering were also found in
the scattering of alpha particles from He (49) and in the
scattering at large angles from Mg and Al (2). These
departures were interpreted as a result of penetration
of the alpha-particle trajectory into the nuclear region,
resulting in a departure from the Coulomb force.
Penetration of the nuclear region becomes significant
only when the scattering of the low-energy alpha par-
ticles used in these experiments takes place from light
elements in which the Coulomb repulsion is weak due
to the small nuclear charge.

By using the formulas appropriate to Coulomb scat-
tering, Rutherford calculated the distance from the
center of the nucleus to the point of nearest approach
to the trajectory under the various experimental con-
ditions. From this he was able to estimate the radius
of the nuclear region. He found that whenever the
Coulomb scattering formula was obeyed, the distance
of nearest approach—called the apsidal distance—was
greater than about 1072 cm (47). For smaller apsidal
distances, departures from Coulomb scattering were
observed. The obvious implication is that the radius of
the nuclear region is about 1072 cm.

An attempt was made by Hardmeier to interpret the
experimental data on the scattering from Mg and Al
(24). He assumed that the alpha particle induces an
electric dipole moment in the nucleus of magnitude:
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F16. 1. Typical early data showing departures from pure
Coulomb scattering. Points give the ratio of the observed cross
section to the Coulomb cross section for the 90° scattering from
Al of alpha particles from several radioactive sources plotted as
a function of apsidal distance. The solid curve shows the result of
the polarization theory of Hardmeier.
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F16. 2. Experimental data for elastic scattering of 27.5-Mev
alpha particles by Au. Dashed lines indicate limits within which
pure Coulomb scattering points would fall based on experimental
uncertainty of #+0.5° in angular measurements.

P=a(Z'¢/r?), where 7 is the distance from the center of
the nucleus to the alpha particle and Z’¢ is the charge
of the alpha particle. The induced dipole moment con-
tributes to the potential acting on the alpha particle an
attractive term proportional to »~% This term dominates
the ! Coulomb repulsion at small distances but is
negligible at large distances. Approximate agreement
between the predictions of this model and the data for
the scattering of relatively low-energy alpha particles
by Mg and Al was achieved when the polarizability a
was given the value a~0.4X 1073 cm?; however, this
model was not able to explain the scattering of higher-
energy alpha particles from Mg and Al, nor could it
explain any of the results observed in the scattering of
alpha particles from H or He. Figure 1 presents some
typical early data showing departures from Coulomb
scattering. The points give the ratio of the observed
cross section to the Coulomb cross section for the 90°
scattering from Al of alpha particles from several radio-
active sources. The data are plotted as a function of the
apsidal distance. The solid curve is the result of the
calculation of Hardmeier,

A summary written by Pollard (42) in 1935 shows
that by that time data existed on the elastic scattering
of alpha particles from most of the light elements
through Al In each case departures from Coulomb
scattering were observed. By making the assumption
that the onset of the departure from Coulomb scattering
takes place when the probability of barrier penetration
for S-wave alpha particles equals 109, Pollard was able
to use these data to make quantitative estimates of the
nuclear radii. He showed that the data can be inter-
preted by this assumption if the radius of the nuclear
potential is given by R=r¢4} where ro=14 to 1.5
X107 c¢m,

It was clearly realized at that time that it would be
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desirable to investigate departures from Coulomb scat-
tering for a range of elements throughout the periodic
table. Such data should be able to provide information
concerning the extent and strength of the potential
acting between the alpha particle and the nucleus.
However, in order to observe departures from Coulomb
scattering in nuclei other than the very lightest, it is
necessary to have more energetic alpha particles than
are produced by radioactive sources. Thus the extension
of this field awaited the development of high-energy
cyclotrons producing external beams of alpha particles.

III. FIRST CYCLOTRON EXPERIMENTS

A considerable amount of experimental work has been
done on the elastic scattering of high-energy alpha
particles by He, and also by lighter nuclei (or the
inverse process); however, such experiments have not
usually been interpreted on the basis of an optical
model. (It might be, however, that interpretations of
this sort will be suggestive.) Since optical models form
the theme of this article, these experiments are not
discussed.

The first of the modern experiments which is of
interest here, in consideration of this limitation, was
performed in 1950 by Gove at the M.LT. cyclotron.
The experiment consisted in measuring the angular dis-
tribution for the elastic scattering of 27.5-Mev alpha
particles from a thin (26 mg/cm?) foil of Au. The
scattered particles were detected by a proportional
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Fr1c. 3. Differential cross section for the elastic scattering of
alpha particles by Ag at an angle of 60° as a function of alpha
particle energy. Dashed curve is a Coulomb scattering curve
corrected for angular variation arising from the fringing field of
the cyclotron.
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F1c. 4. Differential cross section for the elastic scattering of
alpha particles by Ta at 60° as a function of alpha-particle energy.

counter range telescope adjusted to respond only to
elastically scattered alpha particles. The angle of scat-
tering of the alpha particles was measured with an
accuracy of #0.5°. A thin ionization chamber at the
entrance to the evacuated scattering chamber was used
to provide an absolute measurement of the incident
beam intensity to accuracy #=10%,.

Figure 2 shows the experimental results, plotted as
the ratio of the measured cross section to the Coulomb
cross section, for various scattering angles. The two
dotted curves indicate the limits within which data
from a measurement of pure Coulomb scattering would
be found in consideration of the experimental uncer-
tainty of =0.5° in the angular measurements. To within
experimental uncertainty, the measured cross section is
equal to the Coulomb cross section at scattering angles
less than about 50°, At larger angles the measured cross
section drops rapidly below the Coulomb cross section.

Gove’s work was described in unpublished M.L.T.
progress reports dated 1951 and, prior to publication in
1955 (20), was not widely known. In 1953 a set of
experiments on the elastic scattering of high-energy
alpha particles was performed by Farwell and Wegner
at the University of Washington cyclotron (12). This
work was followed by a period of renewed experimental
and theoretical activity in the field.

The experiments of Farwell and Wegner involved
measuring the energy dependence of the cross section
for the elastic scattering of alpha particles from several
heavy elements over the energy range 13 to 43 Mev.
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The energy variation was accomplished by passing the
external cyclotron beam through absorbers of variable
thickness before the beam impinged on the thin scat-
tering target. Elastically scattered alpha particles,
emitted from the target at angles of about 60° or 95°,
were detected in a proportional counter range telescope.
Experimentally the contribution to the counting rate
by inelastically scattered alpha particles, or other par-
ticles, was always less than 59%,. The beam passing
through the scattering target was monitored with a
Faraday cup; however, only relative cross sections were
measured. The entire experimental apparatus was
located in the fringing field of the cyclotron. Conse-
quently the alpha particles followed curved trajectories,
with the curvature depending on their energy. Since the
geometry of the apparatus was fixed, the actual scat-
tering angle was a function of the energy of the alpha
particle. For the “60°” case, the scattering angle ranged
from 62° at 10 Mev to 59° at 40 Mev.

Figures 3-6 show the cross sections for the scattering
from Ag, Ta, Pb, and Th measured at a scattering angle
of about 60°. The dashed curves represent the energy
dependence of pure Coulomb scattering, with a cor-
rection having been made for the variation in scattering
angle which enters into the experiment. The experi-
mental data have been normalized to the corrected
Coulomb curves at small energies. In these data the
measured cross sections agree with the Coulomb cross
sections at low energies; however, above a certain
critical energy, the measured cross sections drop rapidly
below the Coulomb cross sections. Except for the kink
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F1c. 5. Differential cross section for the elastic scattering of alpha
particles by Pb at 60° as a function of the alpha-particle energy.
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F1c. 6. Differential cross section for the elastic scattering of alpha
particles by Th at 60° as a function of the alpha-particle energy.

in the Ag data, the energy dependence of the cross
section in the falling region is given quite accurately by
an exponential. There is a slight increase before the
exponential decrease in the energy dependence of the
cross section for the scattering from Th.

In the following year, additional experimental work
was done by Wall, Rees, and Ford at the Indiana Uni-
versity cyclotron (59). They measured the angular dis-
tribution for the elastic scattering of 22-Mev alpha
particles from Ag, Au, and Pb. A Nal scintillation
counter was used to detect the scattered particles. The
incident beam of alpha particles was monitored by a
Faraday cup, but absolute values for the measured
cross sections were obtained by normalizing to the
Coulomb cross section at small scattering angles. The
energy resolution of the detector was 89, (full width
at half-maximum). The experimental procedure was to
count all pulses larger than 859, of the pulse height of
elastically scattered alpha particles. For the experi-
ments on Au and Pb, this relatively poor energy resolu-
tion was adequate to provide discrimination against the
alpha particles scattered by target contaminents such
as carbon or oxygen. Adequate resolution of con-
taminent scattering was not possible in the experiment
on Ag, so it was stated that the ‘““Ag data represent at
worst an upper limit.”” The question of the contribution
to the measured counting rate from inelastically scat-
tered alpha particles, or other particles, was not thor-
oughly discussed ; however, subsequent work of various
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experimental groups indicates that these effects are not
serious in the experiments of Wall, Rees, and Ford.

Figures 7-9 show the ratio of the measured cross
section to the Coulomb cross section for Ag, Au, and
Pb at an energy of 22 Mev, plotted against scattering
angle. Indicated errors were compounded from the
statistical counting errors and the effect of a 0.5° uncer-
tainty in the angular position of the detector. The
departure of the two smallest angle Au points from the
Coulomb cross section was considered to be purely
experimental. These data are similar to the 27.5-Mev
angular distribution in Fig. 2. At small angles the
measured cross sections are equal to the Coulomb cross
section. As the scattering angle increases, the Au and
Pb data show an increase of about 109, in the ratio
of the measured to Coulomb cross sections and then a
smooth drop of this ratio to values of about 0.3. For
Ag this ratio drops monotonically to values around 0.01.

Work at the Indiana cyclotron has continued. In a
recent publication, Rees and Sampson (45) report
measurements on the elastic scattering of 22-Mev alpha
particles from Ta, Au, Bi, and U. On using a somewhat
improved experimental technique, and with better
statistical accuracy, they observe angular distributions
in good agreement with Wall, Rees, and Ford.

IV. AKHIEZER-POMERANCHUK-BLAIR MODEL

The first modern interpretation of the alpha scatter-
ing data was given by Blair (4) on the basis of a model
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F16. 7. Ratio to the Coulomb cross section of the differential
cross section for the elastic scattering of 22-Mev alpha particles by
Ag as a function of the scattering angle. Indicated errors arise from
statistical counting errors and a 0.5° detector angle uncertainty.
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Au as a function of the scattering angle.

proposed by Akhiezer and Pomeranchuk (1) which was
originally developed to extend the ideas of Bohr,
Peierls, Placzek, and Placzek and Bethe (41) to the
small-angle scattering of charged particles. An essen-
tially classical approximation is made. The justification
is that in most of the applications the deBroglie wave-
length A is approximately an order of magnitude smaller
than the interaction radius R, as shown in Fig. 10. The
nucleus is considered to have a sharp spherical surface,
specified by the radius R4, and the incident alpha
particle is also considered to have a sharp spherical
surface, specified by the radius R,. The sum of the two
radii is equal to the interaction radius R. Since a clas-
sical approximation is being made, the incident particle
is considered to follow a well-defined trajectory which,
because of the nuclear charge and the charge of the
alpha particle, is hyperbolic in the case illustrated in
the figure in which the particle does not have enough
energy to reach the nuclear surface. Also shown is the
apsidal distance of closest approach D which for clas-
sical point Coulomb scattering is given by

D= (ZZ'¢/2E)[14csc(6/2)]. 1)

The orbital angular momentum L is directly expressed
in terms of the scattering angle as

L= (ZZ'¢%/v) cot(6/2). (2)

Here Ze is the nuclear charge, Z’e that of the incident
particle, £ and § are the energy and scattering angle in
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the center of mass system, and v is the relative velocity.
Equation (1) shows that for constant angle the apsidal
distance decreases as the energy increases and for
constant energy the apsidal distance decreases as the
scattering angle is increased. The APB model assumes
that the target nucleus is completely opaque to the
incident particle. This is expressed by saying that if the
apsidal distance D < R, the incoming particle is removed
from the incident beam by the nucleus and is therefore
not elastically scattered. Thus from a strictly classical
point of view we can easily sketch the behavior of the
cross section for elastic scattering and also the absorp-
tion factor entering into the cross section for compound
formation. From Eq. (1) we see that the maximum
scattering angle 6y, which is defined by D= R, is given
as
sin(0r/2)=[(QER/ZZ'¢®)— 1T
={[2E/V(R) -1}~ 3)

Thus from Eq. (3), when E is greater than V (R), there
is a maximum scattering angle which is less than 180°,
When E is less than V(R), the apsidal distance D is
always greater than the interaction radius R so that the
entire scattering is elastic Coulomb scattering. We can
write then

E<V(R): (doe/dQ)(6)= (do./dQ)(6),
(do./dQ)(8), 0<0<06x
0, BM < 0 < .

4)
E>V(R): (dow/d2) (e)={

This result is sketched in Fig. 11 for the case of E> V (R).
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F16. 9. Ratio to the Coulomb cross section of the differential
cross section for the elastic scattering of 22-Mev alpha particles by
Pb as a function of the scattering angle.
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Fic. 10. Alpha-particle scattering showing the impact parameter
b, the interaction radius R, the apsidal distance D, and the scat-
tering angle 4.

We now consider the cross section for the removal of
alpha particles from the incident beam, which is called
the compound formation cross section o.. Figure 10
indicates the impact parameter b. Since the incident
beam is assumed to be uniformly distributed with
respect to impact parameter, it is easiest to formulate
the compound formation cross section by using 4. The
expression one obtains for o, is

o= f " 21— T®)], )

where 7T'(b) is the fractional transmission for the orbit
with impact parameter 4. In principle, 7" can depend

-also on the energy of the incident particle, but we have

not explicitly indicated this dependence here. Equation
(5) can be expressed equivalently in terms of the
angular momentum L of Eq. (2), since L is directly
expressed in terms of the incident momentum p and
the impact parameter &

L= pb. (6)

By combining Egs. (5) and (6) it is a simple matter to
express o, as an integral over angular momentum which
makes the correspondence with the quantum-mechanical
formulas more obvious.

By applying the idea of an opaque nucleus to the
transmission factor in Eq. (5), we can quite easily

do,,/da,

o 8y T
]

Fic. 11. Classical ratio to Coulomb scattering of the differential
elastic scattering cross section for a completely absorbing sharp
surface interaction region as a function of scattering angle. For
Coulomb orbits leading to scattering angles >80y, complete ab-
sorption occurs.
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be written
= ! (doe/d2) (0)=|1(0) % )
= where
L 1
FO)=—— 3 (m—1)(2141) P (cosh), (10)
2tk 1=0
and
o » oo=mA? Eﬂ QI+1)(1—=[m?). (11)

b

F1c. 12. Plot of 1—7'(b) as a function of impact parameter b.
For &> by, the Coulomb orbits miss the nucleus, 7' (b) becomes 1,
and 1—7'(b) becomes zero.

calculate o.. We first need an expression for the trans-
mission factor 7" as a function of the impact parameter
b. When E is less than V(R), T is 1; that is, all incident
particles are elastically scattered. For E greater than
V(R), T is zero (the nucleus is opaque) for those orbits
which hit the nucleus, and T is 1 for those orbits which
do not hit the nucleus. In order to determine the
maximum impact parameter b, which is such that
smaller impact parameters correspond to orbits which
hit the nucleus and larger impact parameters correspond
to orbits which miss, we use Eqgs. (2), (3), and (6).
This gives

by=R[1-V(R)/ET. Q)

Figure 12 shows (1—7) as a function of & for the
assumed opaque nucleus.

On combining these results, using Eqs. (5) and (7),
we obtain (3, p. 346)

e E<V(R) ©
T aR[1-V(R)/E], E>V(R).

Figure 13 shows the compound formation cross section
as a function of the energy. This summarizes the clas-
sical results, and provides the point of departure for the
Akhiezer-Pomeranchuk-Blair model.

The arguments for the quantum-mechanical modi-
fication of the classical model, in an approximate way
so that numerical calculations can be carried out fairly
simply, begin with an examination of the expressions
for the differential cross section for elastic scattering
and the compound formation cross section. These can

E/V(R)

Fic. 13. Compound formation cross section ¢, divided by =R?
as a function of the ratio of the incident energy E to the barrier
height V(R) for Coulomb scattering from a completely absorbing
sharp surface interaction region.

Here k=1/A is the wave number of the incident alpha
particle in the center of mass system, and #; is the coef-
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F16. 14. Comparison of the differential cross section calculated
from the APB model and experimental data for Ag and Ta.
Experimental points were obtained from measurements at 60°.
The broad dashed curve gives the Coulomb cross section and solid
curves represent the experimental data of Farwell and Wegner.
For Ag, two theoretical curves are shown; for the finer, R=9.67
X107 c¢m; and for the coarser, R=8.84 X107 cm. For Ta, the
finer dashed curve gives the theoretical cross section for R=10.54
X108 cm.

ficient of the /th outgoing spherical partial wave when
the coefficient of the ingoing spherical wave is taken to
be unity. The arguments leading to the APB model are
of a quasi-classical type. Classically [from Egs. (2)
and (3)] there is defined an angular momentum
corresponding to 8, that corresponds to a cutoff of the
effects of nuclear opaqueness (trajectories with I>7x
simply miss the nucleus). This is illustrated in Fig. 12
[see also Eq. (6)]. The quantum-mechanical formalism
is thus modified by introducing a classical notion. For
angular momenta larger than /5 the amplitude is set
equal to the amplitude one would obtain for pure
Coulomb scattering, while for / less than or equal to /x
there is no outgoing wave, since everything that comes
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in is absorbed by the target nucleus; therefore, for / less
than or equal to /5, the amplitude of the outgoing wave
must vanish. One thus obtains in some approximation
a one-parameter (/) model for the scattering problem.
[Classically, this Z,s is measured directly by measuring
a.. See Egs. (6)—(8). Quantum mechanically the situ-
ation is not so simple, and 7, is used as a free parameter
in fitting the data.] Thus we write

0, I<lm

; (12)
1>y

= nlCoulomb,
where the transition from the classical angular mo-
mentum L, to the quantum-mechanical partial wave

index /3 has been made via the connection Lz = #ilyy.
From Egs. (6) and (7) we readily find

Lu=kR[1—V (R)/E. (13)

For [ larger than /4, the incident particle has negative
kinetic energy which is not a possible situation for
particles described by classical mechanics.

By imposing the conditions of Eq. (12) on Eq. (10),
one obtains

n
(6) =———— exp[[—1n In sin?(6/2) 4210, |
0= sin2(6/2) pL ’
1 mn
—— > (214-1) exp(2io ) Pi(cosh), (14)
2k]1=0
"}
>
g
-
o
e
le
© |oT
10 |-
I Loy | PSP Y N I
10 a5

15 20 25 30 35 40
ALPHA-PARTICLE ENERGY(MEV)
I'1e. 15. Similar graphs for Au, Pb, and Th. For Au, the finer
theoretical curve corresponds to R=10.58X10"13 c¢cm and the
coarser to R=10.3)X10713 cm. For Pb, the finer curve corresponds
to R=10.87X10"1% cm and the coarser to R=10.42X1018 cm.
For Th, the dashed curve corresponds to R=11.01X10"13 cm.
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¥16. 16. Comparison of the Wall-Rees 22-Mev data for Au with
the APB model.
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where n=22'¢?/hv, and exp(2is;)=n;° with
o=arg I'(I4+1+1in). (15)

The model also makes a prediction for the compound
formation cross section which can be obtained from
Egs. (11) and (12) and reads

374
g.=7A Y (2l+1)
1=0

= 71'7\2 (ZM+ 1)2

~rR[1-V(R)/E], E>V(R). (16)
This is essentially the same as the classical result of
Eq. (8).

The cross section for elastic scattering, doe/dQ
=|f(0)|% is evaluated by numerical computation from
Egs. (14) and (10). The result can be expressed as

doel/dQ= (doe/dQ) (Z,E Ly ,0).

In applying this model to the data of Farwell and
Wegner, Z and 6 are fixed by the conditions of the ex-
periment. The value of /; is found by trial which gives
the best fit to the measured energy dependence. From
this /x the interaction radius R is calculated from Eq.
(13). Figures 14 and 15 show a comparison of experi-
ment and theory for the cross sections of five nuclei
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from Ag to Th at a scattering angle of 60°. In several
cases two theoretical curves are shown, corresponding
to two different values of /5. The interaction radii are
obviously not determined unambiguously; however,
they are in approximate agreement with the formula

R=(1.54%4-2.0)X10~ cm.

The constant term is presumably related to the size of
the alpha particle.

Curves of the cross section versus energy calculated
from Eq. (14) actually show small amplitude oscilla-
tions, The theoretical curves shown in Figs, 14 and 15
have been averaged over these oscillations. This was
justified by attributing the presence of the oscillations
to the sharp boundary condition. Blair assumed that a
more realistic and less sharp boundary condition would
predict that these oscillations are damped.

Figures 16 and 17 show cross sections calculated from
the APB model fitted to the experimental angular dis-
tributions of Wall, Rees, and Ford. The theoretical
curves are those which come directly from the APB
formulas. No averaging over the oscillations has been
done.

The interaction radii which are calculated from the
values of I producing the best fit to the angular dis-
tribution data are in approximate agreement with the
values deduced from fitting the energy dependence data.

The APB model is thus quite successful in explaining
the departure of the cross section from Coulomb scat-
tering and also the drop from the Coulomb scattering
cross section down to about 0.10 of the Coulomb scat-
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F16. 17. Comparison of the Wall-Rees 22-Mev data for Ag with
the APB model.
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F1c. 18. Ratio of the differential cross section to the Coulomb
cross section versus the ratio I/l of the cutoff angular momentum
I’ to the classical angular momentum ;=% cot (6/2) at a scattering
angle of 90° for different values of the Coulomb parameter .
The curves intersect at a ratio value of about %, —:—:—- ,
n=20; ——, n=10; —— —, n="7.

tering cross section. The inherent approximations begin
to cause difficulty below this level and toward backward
scattering angles; also, the theoretical cross sections
have an oscillatory nature which appears to be difficult
to remove, but which is not found experimentally.

In addition to proposing the APB model to explain
angular distributions of elastically scattered alpha
particles, Blair also suggested a criterion for determining
radii from the data that differs from the simple adjust-
ment of the interaction radius R. This method is called
the “one-quarter-point recipe.” The physical argument
for this runs as follows. When the interaction radius is
equal to the apsidal distance of the classical orbit, the
quantum-mechanical Coulomb wave packet, which is
centered about the classical trajectory, is considered to
be half inside and half outside of the opaque region of
the target nucleus-alpha particle interaction. Therefore,
since the amplitude is reduced by one-half, the intensity
drops by one-quarter, and the ratio of actual elastic
scattering to pure Coulomb scattering is one-quarter.
This effect is shown in Fig. 18 in which the ratio of the
cross section to Coulomb cross section is plotted against
the maximum [, I’ (=1ly) divided by the / obtained
classically for scattering at 90° for particular values
of the Coulomb parameter n. The curves intersect
approximately at the point where the ratio to Coulomb
is one-quarter. In order to obtain the interaction radius
from the one-quarter-point recipe, use is made of (1),
inserting the angle and energy for which the measured
ratio to Coulomb is %. This apsidal distance is then
called the one-quarter-point radius.

Kerlee, Blair, and Farwell (34) have used a slight
modification of the one-quarter-point recipe which is
called the “crossover-point recipe.” This modification
was necessitated by slight deviations from the idea
behind the one-quarter-point recipe. The changed
recipe is somewhat more empirical than the quarter-
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point recipe in that the idea behind it arises from
graphical results noticed in the course of numerical
computations.

V. APSIDAL DISTANCE

After the experimental work of Wall, Rees, and Ford,
data existed on the cross section as a function of energy
at fixed angle and on the cross section as a function of
angle at fixed energy. It was natural to try to make a
direct comparison of these data by plotting the data
as a function of some parameter common to both ex-
periments. In doing this Wegner discovered an inter-
esting fact (61, p. 56). He plotted doe/do., the ratio of
the observed cross section to the Coulomb cross section,
as a function of the apsidal distance of the classical
trajectory. From the energy and scattering angle the
apsidal distance was calculated using the relation
between these quantities for the case of pure Coulomb
scattering. This comparison is shown in Fig. 19. At
apsidal distances large compared to the nuclear radius,
all the data coincide because doe/do. must approach 1;
however, the behavior of the data at small apsidal
distances was surprising. The apsidal distance was cal-
culated by assuming the formulas for Coulomb scat-
tering, yet the data continue to coincide approximately
when the Coulomb scattering formulas are not valid

T T T 1T T 1T T T T T T T 1
0 0 & oAb -
| - ) ¢ 0“ =
C Va N
B 4 i
Va
bD i~ —
] . N
é; v
°
-l
10 |- o =
L v -
- ° .
- v -
I(-),2 | N HNUURN NN WSRO (NN RS NN SN NS SN AU SO |
20 8 16 14 12 10 8 6

APSIDAL DISTANCE (16'3cm)

F16. 19. Wegner plot of the experimental ratio of the differential
cross section to the Coulomb cross section for the scattering of
alpha particles by Au as a function of apsidal distance. Both
angular data at fixed energy and energy data at fixed angle are
shown, These data coincide for at least (doe1/do.) >0.1 suggesting
that the major variation of the ratio for heavy nuclei enters
pnmarlly through the apsidal distance. A, @ ’s on Au, 22 Mev,
20°-60°; @, ’s on Au, 13-44 Mev, 60°; ¥, o’s on Au, 13-44 Mcv,
95°,
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F16. 20. Ratios of the experimental differential cross sections to
the Coulomb cross section as a function of scattering angle for
40-Mev alpha partlcles on Ta, —-—-; Ay, ——; Pb, - ;
and Th, — — —

0.001

since do/do,<1. This qualitative dependence of
doa/do. on the apsidal distance alone was not easy to
understand on the basis of the APB model.

VI. MEASUREMENTS ON HEAVY ELEMENTS AT
HIGHER ENERGIES

The next development consisted of an extension to
higher bombarding energies of the angular distributions
for elastic scattering from heavy elements. This was
studied to see whether doe/do. would continue to
decrease with increasing angle at higher energies, or
whether it would eventually level off, as predicted by
the APB model. It was also of interest to see whether
over a wider range of parameters, do./do, was still
approximately only a function of the apsidal distance.

These experiments were performed by Wegner,
Eisberg, and Igo using a 40-Mev alpha particle beam
from the Brookhaven cyclotron (62). Particles scattered
in the angular range 20° to 160° were detected by a
Nal scintillation counter. Elastically scattered alpha
particles were separated from inelastic alphas and other
particles by a technique combining pulse-height analysis
and differential energy loss in thin absorbers. The beam
was monitored by a second scintillation counter which
detected alpha particles elastically scattered from the
target at a fixed angle of 26°. As in earlier experiments,
absolute cross sections were obtained by normalizing
to the Coulomb cross section at small scattering angles;
however, at 40 Mev the minimum angle of observation
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of 20° was not quite small enough to allow a very con-
vincing normalization to be made,

Figure 20 shows the results of measurements made
on Ta, Pb, Au, and Th. The ratio do/do. is plotted as
a function of scattering angle. In the region 20° to 30°
smooth curves represent the experimental results; data
points have been omitted for the sake of clarity. After
an initial rise, similar to that observed in the earlier
experiments, the ratio doei/do. drops rapidly with in-
creasing scattering angle to values approaching 1073 at
100°. Beyond this angle the cross section could not be
measured since the elastically scattered alpha particles
were not resolvable. However, an upper limit to the
cross section could be obtained. For Au, do.i/do, is less
than 310~ at scattering angles of 130° and 155°.

Figure 21 shows the Ta data and the cross section
calculated for Ta by the APB model, using three dif-
ferent values of the parameter /',

Comparison of the APB model with the 40-Mev data
shows again that it can give a good fit in the region
doe/do,>0.1; however, the experimental data are in
complete disagreement with the predictions of the
model when the ratio of the experimental cross section
to the Coulomb cross section is less than about 0.1.
The APB model predicts much too large a cross section
at large angles. Subsequently Ellis and Schecter tried
fitting similar data with an APB model in which the
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F16. 21. Ta data at 40 Mev, with theoretical predictions of the
APB model for three values of the cutofl angular momentum #’
as indicated. —-—-—, I/'=7; ———, I'=17, - ,'=27; e,
experiment.
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transition from complete absorption to no absorption
was tapered over three or four partial waves (11). This
does not appear to decrease the discrepancy between
the APB model and the more stringent test presented
by the higher-energy angular distribution. However, as
discussed in the next section, there is some question
regarding the numerical correctness of these compu-
tations.

VII. SMOOTHED AKHIEZER-POMERANCHUK-BLAIR
MODEL

Although the calculations by Blair are successful in
fitting the experimental alpha-particle data in the
region of the departure from pure Coulomb scattering
down to a level of about 109, of Coulomb scattering,
they clearly begin to lose their meaning at backward
angles, where the differential cross section drops many
orders of magnitude below the Coulomb scattering
level. In order to try to improve the Blair calculations,
Wall, Rees, and Ford (59) suggested a modification in
which the sharp cutoff of the scattering amplitude is
smoothed out. Cheston and Glassgold (6), showed by
plotting ¢.(/7X2(2l4+1) against /, that the amplitude
should be expected to fall off gradually in magnitude
over a few I values.

It has been pointed out recently (11) that the
numerical work associated with these and similar
smoothed calculations is probably in error and that
such an approach is more successful than had been
thought originally. The smoothing procedure of
McIntyre, Wang, and Becker (37), consists of intro-
ducing a semiempirical variation of both the mag-
nitude and phase of the scattering amplitude 4;. The
magnitude | 4;| of 4;is varied by (arbitrarily) writing

| 42| = {1+exp[— (I—1a")/ AL I}, (17

in which the transition of |4,| from 0 to 1 occurs over
an interval of width Als in the neighborhood of Z4'.
Thus two parameters are introduced in Eq. (17).

In addition a real nuclear phase shift §; is introduced
with a similar (arbitrary) formula

di=0{14exp[ (I—1")/Als ]}, (18)

in which the three parameters /s, Al;, and 6 are intro-
duced. The first two of these have significance analogous
to the parameters in Eq. (17), while 6 determines the
magnitude of the nuclear phase shift.

The ratio to Coulomb scattering is determined from
Egs. (17) and (18) from the standard formula

doe

do,

= | —i exp[—# In sin%(6/2) ]

2(0/2) w
sin2(6/2) 2; Q14+1) (1= | 4] )

n

Xe‘z '/J(MV*UUJPI(C()SH) ’ (19)
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I'16. 22. Ratio of the experimental 22-Mev data for Ag to the Coulomb cross section, with a number of theo-
retical curves for the smoothed APB model.

in which n=2Z¢?/%v, and o; is the usual Coulomb phase
shift. Clearly, from Eq. (19) and the generality of Egs.
(17) and (18), this model constitutes an optical model
in which the parameters enter directly into the ampli-
tude according to Egs. (17) and (18) rather than
appearing as the parameters directly relevant to the
form of a complex potential.

Figure 22 shows a series of curves labeled 1-5 with
successive values of the parameters entering into
| 4:| chosen to approach a good fit to the 22-Mev Ag
data and to illustrate the improvement over the sharp
cutoff model (Al4=0). In this figure the smoothing is
achieved completely through the imaginary part of the
phase shift (or |4,|), the real part of the phase shift
being set equal to zero. Similar results occur in the
optical model fitting of N-N elastic scattering for which
the real part of the phase shift could be set equal to
zero without appreciably altering the goodness of fit
(44, see Fig. 10). Comparable results for alpha particles
are discussed in the section on the optical model fits.

In order to fit the 40-Mev Ag data shown in Fig. 23,
MclIntyre et al. (37) find it necessary to include a non-
zero value for the real part of the nuclear phase shift.
Under the conditions I4'=1;" but not Al,=Al;, satis-
factory adjustment to the data can be obtained.

Perhaps the most significant feature of these results

is the attempt to circumvent the known (32) elasticities
in the features of the optical model potentials deter-
mined by detailed data fitting. Whether parametriza-
tions of the form of Eqgs. (17) and (18) will turn out to
be related more easily than the optical model param-
eters to the fundamental features of the many-body
problem remains to be seen. Some recent work (21) on
high-energy neutron scattering approaches the problem
from a similar point of view.

VIII. FORD-WHEELER MODEL

Ford and Wheeler (13) have developed a fairly
complete analysis of the semiclassical description of
scattering. Although most of this analysis is designed
to be applicable to nonabsorptive scattering, they have
modified their methods in some cases to try to take
into account the major consequences of absorption. The
major emphasis of the semiclassical analysis is to point
out situations in which the semiclassical limit of the
quantum-mechanical cross section does wof approach
uniformly the corresponding classical cross section, no
matter how short is the wavelength of the incident
particle. These nonuniform features are expected to be
the rule rather than the exception for most potentials,
although there are potentials (e.g., for the Coulomb
potential, the quantum, semiclassical, and classical



202 R. M. EISBERG

cross sections are identical) for which these nonuni-
formities do not arise.
The quantum-mechanical differential scattering cross

section doq,/dQ is expressed in terms of the quantum-
mechanical scattering amplitude fq.(6) as

quu/dQ= lfqu (‘9) !2- (20)

The amplitude fqu() is traditionally expressed as a
sum of the amplitudes for the different partial waves:

A o
fqu(f)):; 2 (20+1)(e#m—1) P (cosb),

1 =0

(21)

where 7; is the phase shift for the /th partial wave.

In order to obtain the semiclassical limit of Egs. (20)
and (21), the phase shift #; is replaced by its JWKB
approximation (40, p. 1102)

m= [ U=+
= [ te- ey, @2

in which 7o [the turning point in the presence of a
potential U (r)] and 7, are determined by the equations

AND C. E. PORTER

B U )= (1) rd =0,
k= (143)2/r2=0.

The integral in Eq. (22) not involving U(r) can be
evaluated to give

(23)

™ lﬂ'

n=—+——rkrg
4 2

+ f ([B—U ()~ (+)Y/rl—kydr. (24)

This is independent of 1. (The equivalent result for
scattering in two dimensions is obtained by the replace-
ment of /43 by m.)

For 6 not too near O or 7 (i.e., sin # > 1/1), the Legendre
function in Eq. (21) can be replaced by (28, p. 297)

P (cost)~sin[ (I+1)0+m/4]/[(141)(x/2) sind 2. (25)

Under the circumstance that many partial waves con-
tribute to the scattering and that »; is given to a good
approximation by Eq. (24) and P; by Eq. (25), it is
possible to replace the summation over partial waves
in (21) by an integration. Combination of Egs. (21),
(24), and (25) under these conditions give the semi-
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F1c. 23. Ratio of the experimental 40-Mev Ag data to the Coulomb cross section along with a number of theoretical curves
for the smoothed APB model. Here it has been necessary to introduce a real part to the phase shift with the corresponding cutoff

angular momentum /;’ and transition width Al;.
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classical form of Eq. (21):

Jse(0)= -——-—x_——— fwdl(l'l'%)%[eiw‘" e ], (26)
(27r sinB)* 0

where
or=2m=+ (-+1)6+t7/4.

Since we are concerned with nonforward angles in Eq.
(26), the delta-function contribution in Eq. (21) has
been dropped, i.e.,

@7

3" (214+1) P1(cost) = 26 (1 —cosh),
1=

(28)
=0, 650

The usual next step (39, p. 123) is to evaluate the
integral in Eq. (26) by an approximate method, such as
the method of stationary phase. An uncritical use of
this method leads at once to dos/dQ=doe/dQ, i.e.,
equality between the semiclassical and classical results.
We seek a value /; of I such that ¢, are stationary:

(de/dl)(ls)=0. (29)

It is then assumed that contributions to the integral in
Eq. (26) come mainly from the region /i~y and that
an expansion of ¢, to second order in (I—1I) is suf-
ficient to approximate the integral. From Egs. (24)
and (27),

d¢i " d 1V\2 /2715
d_z=’“+2f,0 —([E=U0) = (+3rD k}drii.s S

The classical equation connecting the angular and radial
positions along a scattering orbit is (19, p. 73)

T Ldr’
+Xo,  (31)

X(") = T
ro ¥ [2m(E—V)— L[2/r'?]t

which can be written
" d
X(r) = — f LI V)= L/ e (52
r0

In Egs. (31) and (32), V is the potential and L is the
total angular momentum (nof in units of #). If we write
L=#(+3%), then Eq. (32) becomes

rd
xo=- [ —TE=U )= (DY +o. (39)
]

If 7, is the classical turning point, as defined in the
first of Egs. (23), the classical scattering angle @) is
(see Fig. 24)

W—Z(Xw—xo), Xw‘—X()<7T/2

CINE { (34)

Z(Xw_xf))"ﬂ', Xw—X()>'lr/2.

OF ALPHA PARTICLES
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Fic. 24. Scattering geometry for (a) an attractive and (b) a
repulsive potential. The classical turning point radius 7o and angle
Xo are shown along with the final asymptote angle X., and the
deflection angle ® (/).

From Egs. (33) and (34) we find

g o 4
w2 [ —Le-U0)- 01T,
]

Xw—'x < 2
O@)=- .y o<m/ (35)
—2f —[R-U0)- (+) T,
L ° Xoo""Xo>1l'/2.

Comparison of Egs. (30) and (35), with reference to
Fig. 24, leads to the conclusion that in the semiclassical
limit for a repulsive potential, ¢_ is stationary for
some value /s of /, and in the case of an attractive
potential, ¢, is stationary for some value /5 of I. Both
phases cannot be stationary simultaneously, so it is
natural to assume that the contributions from the term
containing the nonstationary phase is negligible. To see
how the argument proceeds, we work out the case of a
repulsive potential (¢_ stationary). This gives for the
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semiclassical scattering amplitude

FuulO) f A+

(27 sing)?

ol 04

which can be written

(36)

sl

l0+ 2 i
fscw)zx( : 0) explie-(i)]

T SIN

Xf dl exp[

If /s is large, then

I
Q[E_'_?(Zﬂr [ :w d& exp[ig*(e-"/ | "' |)],

] (37)

0

. [_1 P
€x
P 2 dpi

]zvr* espliGe/8) (e | 0] (39)

[ 2
e
Thus

Lo+ ¥
@A —————
f (sin() | o (10) |

Xexp{iL ¢_(lo)+ (x/4)(e-"/| " DT}, (39)
so that
(doso/dQ) (O)~=R*(ls+3)/sin8| 0" (l)|,  (40)

in which /7y is a function of the observation angle
determined by Egs. (29) and (30). From Eq. (27) we

have that
(Po-/dl?) (le)=2(d*n1/dI*) (Is), (41)
@)
Gr """"""""" H
e

F1G. 25. The classical deflection function ©(/) vs angular mo-
mentum / for a typical two-branch case. At the scattering angle 6,
contributions to the scattering arise from both /s and I, leading to
interference effects in the semiclassical cross section. When /; and
I coalesce to the value /,, the phenomenon of rainbow scattering
arises at the rainbow angle 6,.
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which can be written, from Egs. (24) and (35),

(Po-/dP)(ls)= (dO/dl) (l) = (dO/d]) | e—s. (42)
This gives for Eq. (40),
(doge/d2) (0)>R2(lo+%)/sin0 | dO/dl| ©—p, (43)

expressed in terms of the classical deflection function ©
and the angle of observation 6. The same formal result
is obtained for an attractive potential, although ® is
negative in that case (see Fig. 24).

The classical formula for the differential scattering
cross section is (19, p. 82)

doe/d2=b/sin®|dO/db|, (44)

in which b is the impact parameter and © is the classical
deflection function (which is identical to the angle of
observation). On making the correspondence

b= (ls+3)X,

we see that the semiclassical result of Eq. (43) is
identical to the classical result of Eq. (44).

The conclusion of the equality of the semiclassical
and classical cross sections requires a monotonic varia-
tion of () with / from === (plus for repulsion, minus
for attraction) to zero in order that there be only one
point of stationary phase. As already remarked, this is
a very special behavior which generally does not occur.
We turn now to a discussion of the more common cir-
cumstance for which the approach is nonuniform, i.e.,
in a sense there is no approach at all. The various non-
uniform features can be grouped into four categories:
inleference, rainbow scattering, the glory effect, and
orbiting (or spiral scattering).

If the classical deflection function ®(Z) is not mono-
tonic (it usually is not), then more than one / value
may contribute to the scattering at a given angle. We
illustrate this in Fig. 25, following Ford and Wheeler,
for two angular momenta /; and /, contributing to the
scattering at one observation angle §. The classical
treatment of such a nonmonotonic deflection function
is carried out by splitting ®(J) into branches (in the
case illustrated in Fig. 25, two branches) and adding up
the contributions to the cross section from the separate
branches:

da'cx/d9= Z i(da'c]/dﬂ) iy
= (1/sin0)3 :(b/|d©/db| 3),

in which the subscript ¢ means the ith branch and we
have used the form of Eq. (44).

To obtain the semiclassical scattering amplitude in
the case of more than one branch in the deflection
function, the results of stationary phase calculations of
the sort leading to Eq. (39) for each branch can be
added together to give the total amplitude, providing
the angular momenta at which the phase is stationary
are well enough separated. (When they are not well

(45)
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enough separated, we are led to the so-called rainbow
scattering which we discuss shortly.)

It is easiest to discuss the interference phenomena by
writing the amplitude, Eq. (39), and the analogous
result for an attractive potential (¢_ is replaced by ¢4
and there is an additional over-all minus sign) in polar
form:

lot+3 b
fsc(f))z:l:X[ ]

sinb| o (i) |

Xexp{i[ <pi(la)+— (lo)] } (46)

g
This can be simplified considerably by introducing the
explicit expression (27) for ¢.. The distinction between
the two types of stationary phase points is conveniently
made in terms of dny/dl=7" since this is positive (equal
to 8/2) for repulsive scattering and negative (equal to

—0/2) for attractive scattering. Thus we write from
Eq. (27)

@s(l)=[20=2(+3)0"— (w/D)n'/ |n'| Tr=t0.  (47)

In addition, the other distinguishing phase factors in
Eq. (46) can be written

Fl= eXpl:—i(vr/Z) A=/ 7" | )=1],

TR L)
(o)l ).k

On combining Egs. (46)-(48) we can write

Yo
o 2 sinf | 1" |

~(doe/dQ)te,

(49)

where

" 7

_IZT[_]:_I)W]lﬂp' 0)

The expression Eq. (49) for the semiclassical scatter-
ing amplitude is valid for a stationary phase approxi-
mation for one branch of the classical deflection function.
In the case of many branches for which the stationary
phase points are well separated, the semiclassical am-
plitude is then in the stationary phase approximation a
sum of amplitudes from the contributing branches

sczzj(dacl/dﬂ)jeiﬁi. (5 1)

This expression yields the result of Eq. (45) only in
the case that no more than one branch (one term in the
summation) is present. Under the circumstance that
only two branches are involved, the semiclassical cross
section becomes

do‘sc/d9= ! (do'cl/dﬂ)ﬁ—l“ (ddcl/dﬂ)z%ei(ﬂz—ﬁl) |2.

5=[2n—2(l+%)77'—(

(52)
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F16. 26. Classical and semiclassical differential cross sections vs
scattering angle 6 near the rainbow angle ;. The bright and dark
regions are clearly delineated by the classical cross section. y
classical; — — —, semiclassical.

This implies an oscillation of the semiclassical cross
section, as a function of angle, between the envelopes

(do o/ D) max=[(doc1/dRQ) 3+ (doer/dR)3 R, (53)

and
(da'sc/dﬂ)min = I:(dtrcl/dﬂ)ﬁ— (dad/dﬂ)z%y.

The angular variation required to go through a full
oscillation (maximum to minimum and back to maxi-
mum) is seen from Eq. (50) to be (since 29'=6")

59=27r/]l2——11] 3

(54)

(55)

with /; and J; the points of stationary phase. This
assumes that |lo—I;|>>27, which is essentially an
expression of the original assumption that the stationary
phase points in the two branches are well separated.

This analysis shows that it is possible in principle to
extract, from experimental cross section data, infor-
mation regarding the separate branches of the deflection
function, and to combine this information to construct
the classical deflection function @ (/). From this de-
flection function, it is then possible to determine the
interaction potential according to unpublished work of
J. A. Wheeler. The analysis so far, however, does not
allow for absorption.

The phenomenon known as rainbow scattering occurs
under the circumstance that there are at least two
branches of the classical deflection function ®() (e.g.,
as in Fig. 25), and ©(J) is not singular. This means O (?)
has at least one smooth maximum or minimum at which
d0/dl vanishes. The value of © at the zero-slope point
is known as the rainbow angle 6, (e.g., as shown in Fig.
25). In a sense the semiclassical treatment of rainbow
scattering represents an interference between two
branches which are not well separated. Near the rainbow
angle, it is possible to express © as

O (1) = =0,+q(1—1,)

(the =40, allows for both repulsive and attractive scat-

(56)
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tering), assuming ¢>40. This leads to
d®/dl=2q(1—1,)
=2q[(©F0,)/¢]" (57)

Thus we write for the classical differential cross section
on the bright side of the rainbow angle [ (see Eq. (44)]

(dow/d2) (6) = (L, +1)%/sing,2] g(0—0,)| L. (58)

On the dark side of the rainbow angle, the classical dif-
ferential cross section vanishes—the rainbow angle
represents a limiting angle for classical scattering. A
qualitative sketch of this behavior is given in Fig. 26
for a repulsive potential. (The sketch indicates a drop
to zero intensity on the dark side, but this is not realistic
since other contributions are usually present.)

In order to carry out a semiclassical calculation of
rainbow scattering, we use Eq. (56) and the connections
(41) and (42) between the phase shift n; and the classical
deflection function:

dny/dl=30(0)
=50+ (¢/2) I=1)". (59)
Integration yields
m=n,2%30,1—1,)+ (¢/6) (I—1.)" (60)

For repulsive scattering, we choose the plus sign in Eq.
(60), and note also that it is the phase ¢_ which is
stationary in Eq. (26). This yields for the semiclassical
scattering amplitude from Eq. (26)

AN
e i~ ], 1
! 7&(211- sin0) j; ‘ l (©1)
but we have from Egs. (27) and (60)
o-()=2m— (+3)0—7/4,
=2, 4+0,(1— 1)+ (¢/3) (I—1.)°
—(+30—=/4. (62)
On combining Eqs. (61) and (62),
L+3\?
fsc(g)zx( ) exp{itz'ﬂr"’ (lr‘l‘%)ﬂr
 sind
+o0
G/ +CADO~0T [ a0-1)
Xexp{i[ (0,—0) (I—1)+(g/3)1—1*T}, (63)

in which the lower limit of the indicated integration has
been set equal to —o on the assumption that I, is
large. Equation (63) can be expressed in terms of the
Airy integral

1 oo
Ai(x)= 2— f expl (xwu+3u®) Jdu,

T Y

(64)

where x is defined as
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We have
FeoO)=A[ 27 (1,~4%)/sind | exp{i[ 2n,— (/,+3)0,
+(+3) 6:—60) ]} (1/¢*) Ai(x). (66)

This yields for the semiclassical angular distribution
near the rainbow angle

(do"so/dﬂ) (0)27\2 (lr+-1§) (27r/5i1’10 1 q

N AR@). (67)

In order to learn the qualitative behavior of the semi-
classical cross section, it is convenient to express the
Airy integral in terms of Bessel functions and to use
well-known properties of them:

(1/3%67) 52 K3 (248/3), x>0

AI@) =1 (1/3%) (=) {T{[2(—x)¥/3]
+I[2(—2)Y/3]), *<0.

For large and small |x|, the proper limiting formulas
for Ai(x) are ,
rg r®

MO 2 om0
cos[ 3 (—w)i—mn/4]

(68)

% vy

Ail) — ) (69)
e ab (=)t
exp(—2x%/3)
Ai() — 2
Sany 2yt

The dashed curve in Fig. 26, indicates the behavior of
the semiclassical approximation. On the dark side of
the rainbow angle, there is an exponential decrease in
the cross section following Eq. (69) for & — -+, while
on the bright side, the semiclassical expression oscillates
about the classical value. In fact, since the average
value of cosine squared is one-half, we have from Eq.

(65)
(A()) — [1/20%(—2)'F, (70)
so that on the bright side of the rainbow angle
<d¢rsc( )> (Ut ) 2 1
0) Y~R*(l+3 ’
e *sin0|q| 4x| (6—6,)/q}|2
L3R
(3 o

" sing2|q(6—6,)|¥

in agreement with Eq. (58). [It is important to note
that g, which first enters in Eq. (56), may be negative
so that the phases in the argument of the Airy function
come out properly.] The behavior here is reminiscent of
the diffraction of light by a half-space. Both the rapid
decrease on the dark side and the oscillation about the
classical result on the bright side are characteristic
features.
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The contribution to the total elastic cross section
arising from rainbow scattering is finite both classically
and semiclassically since the scattering angle is at most
w. The maximum classical contribution from the
rainbow effect is

oo™ =4mk,?| g0, |},

(72)
< 47"7\7‘2 | 'k [ %1

and the maximum semiclassical contribution does not
differ from this very markedly.

The glory effec? is intimately associated with the
dimensionality of the scattering and does not occur in
two-dimensional scattering. This effect arises from the
possibility that sin®, coming from the three-dimen-
sional solid angle, which enters in Eq. (44), vanishes.
This can occur for forward (=0, =2, etc.) or back-
ward (@@=, +3r, etc.) scattering: Following Ford
and Wheeler, we consider for definiteness a backward
glory (©=m). In the neighborhood of =, we write for ©

O)=r+a(l—1), (73)

where [, is the glory angular momentum. Contributions
to the classical cross section arise from values of ® on
both sides of =, i.e., since

|d®/di|1=1,=|a], (74)
and
sin@~r— O, (75)
as 0 — w—e,
(doa/dQ) (0)=2[ X,/ | a| (w—06)]. (76)

To obtain the semiclassical expression for the back-
ward glory, we first determine the phase shift as a
function of angular momentum / for / near /, by inte-
grating Eq. (73). This gives

1) =n,+(7/2) (I=1)+(a/4) (=1 (T7)

Since we are now dealing with angles near , it is no
longer appropriate to use the approximation (25) for
the Legendre function. Instead we use (58, p. 157)

Py(cosf)~2(cos) o (143671 (78)

On omitting the forward delta function, the semi-
classical scattering amplitude, Eq. (21), is expressed as

X 00
Ful0 - expliC2n—iy)] f dL(20+1)

Xexp[ig (l—l,,)z].] o sing), (79)

in which we have replaced § by sinf in the Bessel
function. The major contribution to the integral in Eq.

* Note added in_proof. The proper description of glory scattering
is still a matter of debate (S. I. Rubinow, private communication).
Although we have followed the Ford- Wheeler treatment because
of its ready availability, we do not wish to mislead the reader
in this respect,
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(79) comes from /~I,. We change variables to

g=(la|/2)}-1)

so that

f i dl(2141) exp[i%(l—-l,ﬁ]] o(/ sinf)

(Tt Yoo
ool (2o o

For large I,(|a|/2)}, this becomes approximately

fw dl(21+1) exp[z—(l 10)2]J0(l sinf)

N( ) (2L, +1)T o, sin(?)jj:o dq eXp(iq2‘lZ—])7

z([z;) (@2,+1)7 o, sind)r? exp(z— —-) (81)

in which the sign @/ |a| of @ is explicitly indicated. This
gives finally for the semiclassical scattering amplitude

i)

X (2r/|a])} (g +3)To(, sind).

From this approximation to the amplitude, the resulting
semiclassical cross section is

S exp[i ( 2mp—

(82)

doge 2
— (ORI +3)—J *(l, sind),
aQ |a]

> x(, +1)|--I

Thus the classical singularity is replaced by a finite
peak. In addition, since asymptotically

(Jo*(2))=1/m3,

(83)

(84)
we find

(85)

|a| T—0

which is identical to the classical result, Eq. (76). A
qualitative sketch is given in Fig. 27.

The maximum contribution of the glory effect to the
total elastic cross section is most easily estimated from
Eq. (76). We have

ly T sinfd
o.elmax247r7\2___
la| Joy m—0

) (86)
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da'e'/dQ,

F16. 27. Classical and semiclassical differential cross sections
vs scattering angle 0 near == for a backward glory. ———, clas-
sical; — — —, semiclassical.

where 6, is the angle beginning at which the differential
cross section is primarily the result of the backward
glory. [A natural choice for 6; might be the first zero of
Jo(l, sinf) so that 6; depends upon Z,.] We find from

Eq. (86
% (0 Ly ™01 siny
UL
la] o v (87)

A4k (l/ | a]) (7—01).

We have assumed here that 6, is close to .

So far we have considered only nonsingular classical
deflection functions ©(!). Spiral scaitering or orbiting
involves a singularity of ® (). Recalling from Eq. (31)
that the coordinate angle x and radial position 7 of a
particle are related via

4 ldr’ %8
X - X0= 3
(7) jr; 1"2[]62— Ueff (T’,l)]% ( )
where
k2=2mE/h*
Ut (r,))=[2mV (r)/ B2 ]+ (I&/7%), (89)
=U(r)+ (B/r?).

In Egs. (88) and (89), although the replacement of L
by /% has been made, the expressions are purely clas-
sical. If Uest(r,l) is such that for some value 7, of # and
some value /; of /

(dUeff/dT) (Vl,ll) = 0, Ueff (7’1,l1) = k2, (90)

then the phenomenon of orbiting appears. It is clear
that special care is needed under these conditions.
Following the sketches in Fig. 24, we can also sketch x
as a function of 7, as in Tig. 28. The deflection function
©(2) is obtained according to Eq. (35).

We consider a potential such that Ueg(7,0) has the
qualitative structure indicated in Fig. 29. The classical
turning points (coordinate 7o) are indicated as black
spots in Fig. 29 and satisfy

R. M. EISBERG AND C. E. PORTER

Ueff (To,l) = k2, (91)

so that 7o depends on /. For /~I,;, the phenomenon of
spiral scattering occurs and is associated with the
appearance of two turning points. To obtain the de-
flection function from Eq. (35), we need

® ldy’
Xw j— X() = f .
ro@ 72[R—Uese (' 1)

(92)

At an ordinary classical turning point, the integrand is
singular, but the singularity is integrable; however,
when a turning point falls into the category of Eq. (90),
then even the integral is singular. For this reason, we
argue that the behavior of Eq. (92) for I near I, can be
determined by picking up the singular contributions.
We expand the integrand about the turning point #o(Z),
examining carefully the behavior of 7¢(/) to see how to

make the desired expansions. From Eq. (91),
kz—U(f’o)—lz/fo =0, (93)

If we consider the inverse function I(r,) instead of 74(?),
we have

U(ro)=rk2—U(ro) ] (94)
Differentiating this function gives
ﬂ=k2*‘U(70)—%1’0U,(1’0) (95)
(Zi’o [kZ_ U(ro)]%
But from Eq. (90),
U'(r))— (2L/r)=0, B—=U(r)— (#/r?)=0, (96)
or
B—U(r)—3rU’(r))=0. 97)
Hence from Egs. (95) and (97),
(dl/d?’()) (7‘0=7’1):0. (98)

At ro=r,, there is not a similar special type of behavior.
We are thus led to sketch 7¢(f) as in Fig. 30. We can
therefore expand about ro=r1 for I>1; and about 7o=7,
for 1<y, but the discontinuous region is ruled out.

On considering first I>1;, we have

X(r) -Xo

Xeo-Xo [==---- 7—>7
0

XoXw

F1c. 28. Coordinate angle x(r)—Xo as a function of radial
position 7 along the orbit as indicated in Fig. 24.
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Uets(r, )

K2+

F16. 29. Effective potential Ue(r,l) as a function of radius
for various values of the angular momentum /. The angular
momentum /; characteristic of spiral scattering is indicated along
with the correspondlng turning points 7; and 7., Other turning
points for “‘energy”” k2 are indicated by solid dots.

dl ai (ro—71)?
l(70)=l1+—(71) (70—71)+—(71) +
dry dro®
—_ 2
—zl+z“<r1)( ) (99)
Therefore, if we reverse this expansion,
ro)=ri+[20—=1)/ [V (r)| I+ - - (100)

The branch point is important; it gives the infinite slope.
To see that there is nothing additionally peculiar, we
can calculate /'’ (r) from Eq. (95):

Vi(r)=—3[rU' () PR3V (r))+rU" (+")].

Most likely this is not zero or infinity. From Figs. 29
and 30, we see that for / — I;—, we have to integrate in
Eq. (92) from 7, to infinity; in this case because of the
corner at the point (ry,;) in Fig. 30, the major contri-
bution to the singular part of the integral does not
come from r~~r, but rather from r~r,. In this case,
contributions arise for »<r; and »>r;. We therefore
must consider two cases separately, that for which
I—I;* and the singular contribution arises near the
turning point #; and only for #>ry, and that for which
I—I;~ and the singular contribution does not arise
near the turning point 7, but near the point r; (which
is in the “middle” of the region of integration) and
for which both the regions » <#; and #>7; contribute.

In the case /—/;¥, we expand near the singular
region (r=2;) in the integrand:

Useti(r1,]) — Uegs’ (r1,) (r—11)
— Ui (ri,D)3(r—r1)2+- - -,
=~ — Ueff”(rl,h)%(?’——rl)z-f- cee

1-h*

(101)

- Ueff(r,l) =f2—
(102)

where we have used Eq. (90). From Eq. (92) we find
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S Idr'
Xp— X2 )
ro 7" Uets” (r1,l0)§ (r—r1)* ]}
!
—3Ueti” (r1,l) JH
°° a’ 1
% f — . (103)
A=y et v v —ry
On letting y=+"/r1, we have
!
X — X
— 571" Ut (r1,l) ]
® d
N * . (109)
1020 =1 /ra2” (r) | Tt V2 (y— 1)
This becomes
1 [ -1 3
Kop— X log ]’ (105)
—%714Ueff’/(71;l1):|§|- 1+E 1+£
with
=[20—1)/r2|V (ry) | ] (106)
For I — I;*(§—0), we find
I logt]
Xo—Xo — -1 ng ’
Yo —'77‘14Ueff"(1’1,11)]
I
N
bl [ 3714 U o5 (r1,00) P
|14 e ] aon
Tt o]
2 |1 (ry) | "2 -0

The deflection function © (J) is from the first of Egs. (34)
(the potential is repulsive for />1;):

OU)=r—2(Xs—Xy), fvd —0,—b logl_l_lll, (108)
(1)
0 B "“"?:gr? r?ggnon
fp pr======--== {—— CORNER
0 " ;

F16. 30. The classical turning point as a function of
angular momentum J.
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with

2[12 i 1’12 |l1” (7‘1) I
0= —~7r+[ - « ] [log 2],
"714Ueff"(7’1,l1) ly

b=[20u(r)/—r2Ue" (r,l) T,

and Ui (ry)=102/r is the centripetal potential. From
Eq. (108) we see clearly the logarithmic singularity.

In the case I — I;~, we proceed similarly, but must
now integrate over both sides of ;. We have

2= Ui (r,]) = B2—Uess (r1,01) — Uere’ (r1,0) (r—11)
— Ut (ri,0)3 (r—r1)*+---. (110)

We need the dependence of the coefficients on / for
I — Iy~ Since

(109)
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we have
OU o5¢ 21
—2 ) = —,
=1y 712
QU o’ 41,
(riy)) — ——, (112)

-l 1’13

AU’ 121,
(7171) —> +_—'

- 714

Hence we find

2l 41
B—U i (r, )~ ——(1— 1) +—(1@—1) (r—r1)
72 7:®

B=Uest(r,l)=k—U (r) —P/r?, (111) — Ut (r,l)3(r—r1)24---.  (113)
This result holds for / on either side of /5. Inserting this expression into X,—X, yields
® ldr’
Xp—Xo= f
70 7’2[k2—Ueff(7",l)]%
® 2l 41, 3
~[ 1w / m[—-—;(z—zl>+~;(z—zl> ('—r)— Ueﬁ"(n,zg%(w_mz] . (114)
2 7y 71
If we introduce the variable y=7'/r,, then
! @ dy 4ll(l"‘ll) 8l (l —l) —4
Xopm X S —— f ~ [ — (- 1>+(y—1>2] L)
[—%714Ueff (7’1,11)]“ ralry Y2 7’14Ucff"(7'1,l1) 7'14Ueff"(7’1,l1)
If we let or the deflection function is
1=4L(Lh—0)/[=r'Ue” (r1,l) ], !
then ' ' Ol - 0—,—2b log———~1 , (119)
! -~ l_l
Xoo_x(),—\—f .
— 10U o (r, 1) P with
b={2Un(r)/[—r2Ue" (r,}) 1}, (120)

© dy 1
X — . (116
‘lr‘z/rl ¥ [(y—1)=29(y—1D)+n 1o

We need, therefore,

f‘” dy 1
rain ? [¥2—=2(14n)y+1+39 ¢
1 1+

log
143y (1+3n)*

[1_(1+3:)%] 1

plus nonsingular terms in ¢ and ro/71. As 9—0 (I—017),
this becomes

“ dy 1 7
f - — —log—+const,
i D=2yttt T2

as in (109), and O, dependent upon #5/7; (the potential
inside of the barrier) as indicated in Eq. (117).

We have therefore exhibited the nature of the singu-
larity in the classical deflection function in the case of
orbiting. This behavior is sketched in Fig. 31, for a
potential such that @(0)=m, i.e., a net repulsion. The
phase shift n; near /;, has infinite slope and undergoes a
discontinuity of less than = at I=1I;. The presence of
the barrier means that the possibility of virtual levels
exists, so that n; may have discontinuities of = at other
Is corresponding to passing through such levels (or
resonances).

To obtain the classical cross section arising from
orbiting, it is necessary to note that it consists of a
number of contributions arising from the intervals @=0
to —m, @=—x to —2m, etc. These contributions
become progressively smaller so we shall be content
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e
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Fic. 31. Classical deflection function © (!) as a function of angular
momentum ! for a repulsive potential. The rainbow angular
momentum /., the orbiting angular momentum /;, and the glory
angular momentum J, are indicated.

with only the first interval. Here we find

ae I—Zb/(ll—l), <l
a4/~  I>h,
/ (I—11) 1 (12
{ —(2b/1y) exp[— (040y)/2b], 1<,
(6/1,) exp[— (©40y)/8], I1>1,.
For the angle of observation in this case,
®=“0, ®1= —01, ®2= —02, (122)
so that
do'cl
— =Rty
aQ b sinf
% { [ (0+01)]+1 [ (0+«92)”
exp| — 3 exp| —
p b 2 €Xp %
+terms from @= —x to —2m, etc. (123)

There is no simple general semiclassical discussion of
spiral scattering analogous to the preceding discussions.
Under certain special cases, some additional comments
can be made (13).

Following their paper concerning the general semi-
classical analysis of scattering, Ford and Wheeler make
application of these results to a number of problems
(13).

The point of view taken by them is that, despite the
large alpha-particle absorption indicated for orbits
which pass through any appreciable thickness of nuclear
matter, for orbits in the weakly absorbing surface of
the nucleus, which are assumed to be most directly
associated with the rapid departure from Coulomb
scattering, the semiclassical no-absorption rainbow
scattering analysis represents a valid starting point.

Ford and Wheeler represent the target nucleus by a
real potential indicated qualitatively in Fig. 32. This
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potential is assumed to have a Coulomb tail 2Z¢%/r and
an attractive central region. The classical deflection
function for such a potential is also indicated in Fig. 32.
The classical behavior of ® (/) may be described by
saying that as the collision becomes closer (! — /) the
rainbow phenomenon appears and for even closer
collisions (! — I;%), spiral scattering occurs until finally
for head-on collisions ({— 0), there is no deflection at
all. Since spiral scattering occurs near the surface of
the strictly nuclear potential, it is clear that the rainbow
orbit only grazes the edge of the nucleus since it is
further out (!,>/;). Thus it seems reasonable to say
that absorption may begin to be important only for
those orbits IS/, since they pass through a large
thickness of nuclear matter.

The treatment of the rainbow scattering is identical
to that following Eq. (56). The deflection function is
written in parabolic approximation near /, as

O=0,—q(I—1,) (124)

The explicit minus sign in front of ¢ is helpful here.
Near the rainbow angle, we have from Eq. (67)

doge 27 1 0—0,
—(O) >R (43— — Ai2( ) (125)
dQ . 2 %

sinf ¢* q
Ford and Wheeler next make what may be a question-
able argument. The small angle scattering arises from
head-on collisions (! — 0), from large impact parameter
collisions (/— ), and also from the glory scattering
(lh<ly<l)). They argue that most of the small angle
scattering arises from the /=0 orbits and that since
these orbits are strongly absorbed in actuality [absorp-

V(r)

)

e@u
Gf ----------- i
0 X /1,, % x| @

F16. 32. (a) An attractive potential V() containing a barrier
and (b) the corresponding classical deflection function; © (). This
is the type of real potential used by Ford and Wheeler for alpha-
particle scattering.
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. WALL-REES DATA
22-MEV ALPHAS
ON SILVER

0.5—

RAINBOW ANGLE
THEORY /
8c=70°=1.22
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~ q3=0.70
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Fic. 33. Ratio of the elastic scattering cross section to the
Coulomb cross section as a function of scattering angle. Points
show experimental data for 22-Mev alpha particles incident on Ag.
Solid curve is the prediction of the rainbow angle theory for a
rainbow angle 6, of 70° and a surface thickness parameter ¢ such
that ¢¢=0.70.

tion is neglected in Eq. (125)] it is natural to conclude
that Eq. (125) is more valid for large angles (6>6,) than
for small angles (6<6,). Thus they do not expect the
oscillating behavior on the bright side of the rainbow
angle to match with Eq. (125) since it is expected to
be strongly damped. The net result is to avoid the
standard procedure of normalizing the average intensity
on the bright side of the rainbow angle. This seems to
be open to question.

In order to obtain the ratio to the Coulomb cross
section, we divide Eq. (125) by the standard formula
for point Coulomb scattering of alpha particles. From
the relation between the impact parameter b~(l43)A
and the angle for Coulomb scattering (19, p. 84):

(IH+3) A~ (2Z*/mv?) cot(6/2), (126)

or
(,+3%) tan(8,/2)~n, (127)

with #=2Ze*/fiv. Thus the ratio to Coulomb near the
rainbow angle is ;

L+i4 sm"(@,/ 2) 27r (0 0,

sind,
0—46.
T Aiz( ) .
q%

do sc

do,

_ 2 sin2(6,/2)2 (128)

ngt
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E,Mev Element 6, deg A q AR(1071B cm)
22 wAg 70 9.0 0.34 0.93
40 sla 43 18.5 0.0425 1.5
40 90 Th 53 179 0.0494 1.6

On the dark side of the rainbow angle, this ratio falls off
exponentially. From Eq. (69), we have

sin®(8,/2) exp[— (4/3¢%) (6—0,)}
0—6t

doge

(129)

do.me. . ngh
This yields a simple formula appropriate to the loga-
rithmic plot for (6—6,)/¢*>1:

a’o[log(d,,c ]~_;(9 6,)— 2( qor)%. (130)

The Ford-Wheeler model for alpha scattering thus
contains two parameters, the rainbow angle 4, and the
curvature ¢g. The parameter ¢ is interpreted by them as
a measure of the thickness AR of the surface transition
region via the arbitrary connection

g="0./ (A0,
= 0¢ (X/AR)Q.

(131)

A typical reconciliation of the rainbow angle theory
and experimental data is shown in Fig. 33 for 22-Mev
alpha particles incident on Ag (59). The rainbow angle
in this case turns out to be 70° (1.22 rad) and the
curvature parameter is such that ¢*=0.70. From (131),
this implies a transition width in / units of Al~2. This
figure is an example of the emphasis on fitting the dark
(dos/do.<0.1) rather than the bright side of the
rainbow angle. If the theoretical curve were adjusted
to match the cross section in the region (dog/do;)~1,
then the falloff at the rainbow angle would be nearly
vertical. Ford and Wheeler prefer to write off this dif-
ficulty on the bright side as arising from the absorption
of small angle scattering, which is admittedly omitted
from the zeroth-order rainbow model. Similar fits to
other elements yield results given in Table I reproduced
from the Ford-Wheeler paper.

The authors are careful to point out that these
parameters are intended to be interpreted only quali-
tatively, since the theoretical curves tend to drop a
little more rapidly than the data in some cases.

In order to provide a more severe test of the rainbow
approximation, Ford and Wheeler consider the scatter-
ing of 48-Mev alpha particles by Pb (11). They take
for the potential at the edge of the nucleus four times
the nucleon-nucleus potential (38). Thus they chose

160
Vir)= Mev,
1+4-exp[(r—R)/d]

(132)
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with R=1.334%X10" cm and d=0.5X10"* cm. The
classical deflection function for this potential plus the
Coulomb potential is shown in Fig. 34. Only deflections
for I>1, are included in keeping with the no-absorption
features of the potential. The rainbow angle is 30° and
occurs at [,=25.5 The angular momentum /;, charac-
teristic of the orbiting phenomenon is /;=22.5. The
orbiting region is very narrow and, because of the flat
character of the deflection function near the rainbow
angle, a parabolic fit to the curve is not very good.

In Fig. 35 the classical cross section corresponding to
the deflection function of Fig. 34 is shown along with
several other curves. Among these curves is the para-
bolic rainbow approximation based on the parameters
associated with the deflection function of Fig. 34:
1,=25.5, 8,=30.6°, and ¢=0.00680. The rapid failure
of this approximation as ! deviates from I/, is at best
partly responsible for the poor fit to the experimental
data in Fig. 35. A modification of the rainbow approxi-
mation based on a better empirical curve fit to the
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F1c. 34. Classical deflection function © against angular mo-
mentum / for angular momenta greater than the orbiting angular
momentum ;. The curve corresponds to the Saxon potential plus
the Coulomb potential as used by Ford and Wheeler to obtain
the classical angular distribution shown in Fig. 35.

deflection function of Fig. 34 is also shown in Fig. 35.
The sharp angular momentum cutoff at /~I, leads to
too high a predicted cross section at backward angles
much like the (expected)failure of the Blair calculations.

In addition, two curves labeled “gradual absorption”
are also presented in Fig. 35. These curves arise from an
empirical introduction of damping into the phase shift
n; and are seen to improve qualitatively the agreement
with experiment.

Ford and Wheeler conclude with reference to 48-Mev
alpha-particle scattering by Pb that the rainbow angle
is about 30° the absorption is very strong for small
impact parameters, and from the empirical adjustment
of the gradual absorption curve in Fig. 35 that the
transition from small to large absorption occurs over a
range of angular momenta Al~3.

IX. CLASSICAL STRONG ABSORPTION MODEL

When the results of the 40-Mev angular distribution
experiments were included in the apsidal distance plots
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F1c. 35. Ratio of differential elastic scattering cross section to
the Coulomb cross section, showing both the 48-Mev Pb experi-
mental data and a number of theoretical curves. The classical
curve based on the deflection function of Fig. 34 is shown. The
simple quadratic approximation to the maximum in the curve of
T'ig. 34 leads to the rainbow curve while a better empirical fit to
the curve of Fig. 34 leads to the modified rainbow curve. Two
other curves obtained by introducing an empirical gradual absorp-
tion are also shown.

discussed in Sec. V, doei/do. was found to depend ap-
proximately only on the classical apsidal distance D
for all apsidal distances investigated. This is shown in
Fig. 38. The data points in this figure were obtained
from four separate experiments on the elastic scattering
of alpha particles from Au: the energy dependence in
the range 13 to 44 Mev of the cross section for scattering
at 60° (12), the same for a scattering angle of 95° (12),
the angular dependence in the range 20° to 60° of the
cross section for scattering at 22 Mev (59), and the
angular dependence in the range 21° to 100° of the cross
section for scattering at 40 Mev (62). Plots of the
various data for elastic alpha-particle scattering from
Th, Pb, and Ta also show that doe/do. depends ap-
proximately only upon the classical apsidal distance
over the range investigated.

These results could not be easily understood on the
basis of either the APB model or the Ford-Wheeler
model. This situation motivated the proposal of a third

/TN

F1c. 36. Orbit geometry for a straight line orbit indicating the
spherical interaction region of radius R, the apsidal distance D,
and the orbit coordinates x and 7,
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Fic. 37. The function %(%,8) as a function of &
for various values of 8.

model (43), in which it is assumed that absorption is
the main feature that lowers the cross section from the
Coulomb rule. This is expressed by writing the cross
section as equal to the Coulomb cross section times a
transmission factor T':

doe/dQ= (do./dQ)T, (133)

where T gives the fraction of the incident beam that
emerges from the nucleus. 7" has the form

= ep( fl(x))

in which # is the coordinate of the alpha particle along
its classical path and /(x) is the mean free path as a
function of position. A sketch of the path geometry is
given in Fig. 36 in which a straightline path has been
assumed. For this oversimplified straight-line-path
model, it is rather easy to determine the exponent in

Eq. (134):
fl(x) f dr l(r (133)

where 7 is the radial coordinate of the orbit as shown in
Fig. 36. An integration by parts yields

dx ) °°d d /-1
f i(—x')'— L 790(1’)5(2@),
x=0 forr=D,
(1/)) >0 forr— oo,

(134)

(136)

since

137)

Now () is proportional to the reciprocal of the particle
density p. Assuming the widely used form

p(r)=pok{1—tanh[ (r—R)/d]}, (138)

where d is a measure of the thickness of the diffuse edge
and R is the interaction radius, we have

I7t=(l) {1 —tanh[ (r— R)/d ]}, (139)

in which /o is the mean-free path near the center of the

M. EISBERG AND C. E. PORTER

nucleus. I'or a sharp-edged interaction region,

(l(r)) o), Sr=R),

which supplies the motivation for the partial integration
performed on (135).
For straight line paths (see Fig. 36),

(140)

x(r)=(r—DY} (141)
so that (136) becomes (46)
_— (72— £2)} 2
= loaf do(v2— £2) sech( )
=(R/ld)h(£,0), (142)
in which
¢=D/R, v=r/R, 6=d/R. (143)

Here d is twice the value of the density fall-off distance,

ie., 2o—B)
y—
].

p(r);;exp[— (144)

Plots of the function %(%,6) are shown in Fig. 37.
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Fic. 38. Comparison of the classical strong absorption model
calculations to the experimental data for Au. The ratio of the
differential elastic scatterlng cross section to the Coulomb dif-
ferential cross section is plotted against apsidal distance D. A
number of theoretical curves are shown for various values of R/o.
Experiment : 7Aul¥’— @, 40 Mev (21°-100°), Brookhaven; A, 22
Mev (20°-160°), Indiana University; 0, 13-44 Mev (60°), Uni-
versity of Washington; [J, of 13-44 Mev (95°), University of
Washington. Theory: R=Ray+R.=10X10"1 cm; d=2X10"1
cm.
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T16. 39. Ratio of the differential scattering cross section to the
Coulomb differential cross section for 19-Mev alpha particles
incident on Al and Cu against sin(f/2). This shows the almost
equ(al/s;)aacing of the maxima in the Al data when plotted against
sin(6/2).

In Fig. 38 we reproduce a comparison of the theory
to the experimental data on Au. The best-fit value of
R/lyis roughly R/li~2. This, together with the not-too-
small diffuseness distance d>~2X10~" cm (the density
fall-off distance is ~1X 10~ c¢m), does not makean
appealing set of parameters when compared to exact
optical model results. Similar problems have arisen in
heavy ion work in which, despite detailed numerical
discrepancies, exact optical model phase shift compari-
son to path integrals similar to (142) indicates a quali-
tative correctness to the simple picture presented by
this model (44). We explore this a little more fully in
connection with the discussion of the exact optical
model calculations for alpha particles. Until the semi-
classical formulation of the optical model with absorp-
tion has been analyzed with a completeness comparable
to the Ford-Wheeler discussion for a real potential, it
will be difficult to assess the approximations inherent in
(133).

X. SCATTERING FROM LIGHT ELEMENTS

The extension of these experiments to light elements
was initiated by Bleuler and Tendam, at Purdue, who
scattered 19-Mev alphas from Al and Cu; and also by
Eisberg, Igo, and Wegner at Brookhaven, who inves-
tigated the scattering from Al to 40 Mev. The angular
distributions for the scattering of alpha particles from
light elements were found to show strong diffraction
oscillations, in contrast to the essentially monotonic
behavior of the heavy element angular distributions.
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Tigure 39 shows the data of Bleuler and Tendam (5).
These data were measured using a Nal detector with an
average angular resolution of #43° The authors state
that the indicated depth of the minima are probably
more than their true values because of the poor angular
resolution. The Al angular distribution of Eisberg, Igo,
and Wegner (19), which was measured with an angular
resolution of £1°, shows a more pronounced variation
between maxima and minima (the measurements are
not directly comparable since the energies are different).
The 40-Mev Al angular distribution is presented in the
composite plot of Fig. 43.

The angular distribution for the elastic scattering of
48-Mev alpha particles from Ag is also of an oscillatory
nature. This was observed by Ellis and Schecter (11)
at the Berkeley 60-in. cyclotron. They also found
smooth angular distributions for the elastic scattering
of alphas of the same energy from Au and Pb. In Fig.
40 the Ag data are presented.? Recently Yntema,
Zeidman, and Raz (65) have measured angular dis-
tributions for the scattering of 43-Mev alpha particles
scattered from Zn, Ag, Rh, and Au, and find oscillatory
angular distributions in all cases except that of Au.

An intensive investigation of the scattering from
light elements was performed at Brookhaven by Igo,
Wegner, and Eisberg (30) who scattered 40-Mev alpha
particles from C, Al, Ti, Cu, Nb, Mo, and Ag. Their
experimental technique was similar to that used in the
Brookhaven work on heavy elements, except for certain
improvements. The detector used in the light element
experiment consisted of a counter telescope which
measured both the specific ionization and the energy of
the detected particle. This provided a unique separation
of alpha particles from other particles and also displayed
the entire energy distribution of the detected alphas in
one run. The detector had an energy resolution which
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F1G. 40. Ratio of the differential scattering cross section to the
Coulomb differential cross section for 48-Mev alpha particles
incident on Ag. The oscillatory character is evident.

3 Although it is not completely clear from the article by Ellis
and Schecter, there is some question concerning the validity of
their experimental technique for scattering angles in the backward
hemisphere where the cross section is very small. The error, if
present, would yield too large a cross section at large angles.
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Fic. 41. Ratio of the differential scattering cross section to the
Coulomb cross section for 40-Mev alpha particles incident on C.
C(ay@)C.

was adequate to reject all inelastically scattered alpha
particles, with the possible exception of a fraction of
those inelastically scattered from the first excited state
of Mo or Ag. Absolute cross sections were quoted to an
accuracy of 4-109,.* Measurements were made with an
angular resolution of #1.0°.

Some typical data are shown in Figs. 41 and 42, which
give the angular distributions for the scattering of
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F16. 42. Ratio of the differential scattering cross section to the
Coulomb cross section for 40-Mev alpha particles incident on Ag.
Ag(o,@)Ag.

4 Checks made in the recent experiments of Yntema, Zeidman,
and Raz indicate that the absolute values of doei/do. measured
by Igo, Wegner, and Eisberg might be low by as much as 20%, (65).
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40-Mev alpha particles from C and Ag. Figure 43 shows
a composite plot of the 40-Mev data for the seven light
elements investigated. Also included is the angular dis-
tribution for Ta which is typical of the heavy elements.
The ordinate has been broken in order to display all the
curves without overlapping.

Several features should be noted: (a) The oscillatory
nature of the angular distributions slowly dies out in
going from the light elements to the heavier elements;
(b) the location of the strongest oscillations shifts from
the small angles to the large angles; (c) the average

T T
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1

F16. 43. Composite
plot of the 40-Mev
data on light ele-
ments along with
those for one heavy
element, Ta. The dis-
appearance, as well
as the increasing fre-
quency of the oscilla-
tions in the differ-
ential cross section,
along with the change
from a positive mean
slope to a negative
mean slope as atomic
number is increased,
are easily noted.
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slope of the angular distributions (i.e., of the ratio of the
observed cross section to the Coulomb cross section)
changes from positive to negative with increasing
atomic weight; (d) the spacing of adjacent maxima
gradually decreases with increasing atomic weight.

In connection with item (a), a similar effect occurs
for a constant atomic weight on considering successively
smaller alpha-particle energies. Figure 44 shows angular
distributions for Ag measured at alpha-particle energies
of 22, 40, and 48 Mev.

A large amount of data on elastic scattering of alpha
particles from light elements now exists. Vaughn (55),
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at the Berkeley 60-in. cyclotron, has measured angular
distributions for the scattering of 48-Mev alpha particles
from C and Mg. At the same laboratory, the angular
distribution for elastic scattering of 48-Mev alpha
particles from Be has been measured by Summers-Gill
(52). At the University of Washington, Gugelot and
Rickey (22) have investigated the angular distribution
for the scattering from Mg of 42-Mev alphas. At M.I.T.
angular distributions for the scattering of 31-Mev alpha
particles have been measured by Watters (60) for Li,
C, and Mg, and by Swenson, Schindewolf, and Wall
(53) for Ni, Cu, and Au. All of these data are consistent
with the general features described in the last para-
graph. Kerlee, Blair, and Farwell (34) at the University
of Washington have continued the measurements of
the cross sections for elastic scattering at fixed angle
as a function of the energy of the alpha particles. For
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F1c. 44. Demonstration of features similar to those of Fig. 43 as
the incident energy is decreased from 48 to 18 Mev for alpha
particles incident on Ag.

the light elements, they find that (doe1/d)(E) begins
to exhibit oscillations. Figure 45 shows the cross section
for the scattering of alpha particles at 60° from Al for
energies between 15 and 40 Mev. In this case, which is
the lightest element they investigated, the oscillations
are very pronounced. Yavin and Farwell (63) measured
the angular distributions for the scattering of 40-Mev
alpha particles from C, N, O, and Ar. Also at Wash-
ington, Shook (51) has measured angular distributions
for 43-Mev alpha particles scattered from C, Mg, and
Ca. Angular distributions recently measured at Purdue
are particularly interesting because the data extend to
almost 180°. Seidlitz, Bleuler, and Tendam (50), using
nuclear emulsions to detect the alpha particles, inves-
tigated the scattering of 18-Mev alphas from Ne and Ar;
using the same technique, Corelli, Bleuler, and Tendam
(7) studied the scattering at this energy of alpha par-
ticles from C, Mg, and Ca; using counters, Gailar,
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F16. 45. Relative experimental differential cross section for Al at
an angle of 60° as a function of alpha-particle energy.

Bleuler, and Tendam (16) have measured angular
distributions for the scattering of 18.7-Mev alphas from
Al, Cu, and Ag. Figures 46 and 47 show data for Ne and
Cu at 18 and 18.7 Mev. At Saclay, Beurtey, Catillon,
Chaminode, Fraggi, Papineau, and Thirion (66) have
made measurements on the scattering of 44-Mev alpha
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I'1c. 46. Differential cross section against scattering angle for 18-
Mev alpha particles incident on Ne.
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particles from Zn. Fulbright, Lassen, and Poulsen (15)
at Copenhagen have used an ionization chamber to
measure with quite good energy resolution the scat-
tering angular distributions for 20-Mev alphas incident
on C, O, Mg, Al, Ni, Cu, Zn, Ag, In, Au, Pb, and Bi.
At Tokyo, Hu, Kato, Oda, and Takeda (29) made
measurements of the scattering of 22-Mev alpha’ par-
ticles from C, Mg, and Si. And finally (as of August,
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F16. 47. Ratio of the differential cross section to the Coulomb
cross section for 18.7-Mev alpha particles incident on Cu.

L
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1960) Van Heerden and Prowse at Birmingham have
measured the angular distribution for the scattering of
38-Mev alpha particles from C and from I (57).

XI. “SIMPLE” DIFFRACTION ANALYSIS

The first attempt to analyze the light element elastic
scattering involved fitting the spacings between ad-
jacent maxima in the oscillatory distributions using a
formula

2kRA[sin(6/2) ]=m, (145)

in which % is the wave number as usual, R is the “wiggle”
radius, and A[sin(8/2)] is the difference in sin(6/2)
between the values corresponding to adjacent maxima
of the diffraction pattern.

In the measurementsof thescattering of 19-Mev alpha
particles from Al (5) and 40-Mev alpha particles from
Al (19, p. 1606), it was found that to within experi-
mental error, A[sin(6/2)] is in fact constant for a large
number of adjacent sets of maxima in the cross section
for a particular energy and element. In these measure-
ments, the values obtained were, for Al, R~2.04¥X 10~
cm for 19-Mev alpha particles and 1.84#X107% cm for
40-Mev alpha particles. The rather large numerical
values can be reduced somewhat by considering the
finite size of the alpha particle arising from both
“Intrinsic” size and the de Broglie wavelength. These
values for R have reasonable magnitudes and exhibit
a reasonable energy dependence.

Equation (145) can be developed by considering
scattering of waves from a black disk. The scattering
amplitude is

R. M. EISBERG AND C. E. PORTER

A
F0)=— 2 (21+1) (e2in—1) Py(cosh).

o = (146)

The “black disk” approximation (neglecting Coulomb
scattering) is obtained by arguing that €% is zero in
the shadow region behind the disk (!<%kR) and 1 in
the bright region. Thus (146) can be written

A kR
f(G)'_\:—-Zj > (2l41) Py (cosh). (147)
7 1=0

To obtain an approximation for small angles, P;(cosf)
is replaced by the small-angle Bessel function approxi-
mation. This gives for f(6)

x kR
s [ aEsLeH (4
219

This becomes

iX pGREDS g
(6)~— f dz—{2J1(2)],
sors [ ae Tene)]

) (149)
S ROV L]
For large R/A, this is
f(®)=~iR[J,(kR9)/6]. (150)
This yields for the differential cross section
(doer/dQ) (0)~R2[J 2(kR0)/6%]. (151)

The standard uncertainty in treatment of diffraction
theory approximations leads alternatively to (151) with
0 replaced by 2sin(6/2), i.e., we could have derived
(151) in a “reasonable” way (taking

Py(cost)~J o[ (2141) sin(6/2)]
instead of Jo[ (I4+%)0]) to yield
do o)/ Q=R J 2[2kR sin(6/2)]/4 sin?(6/2)}.

The spacing between adjacent peaks is approximately
7 so that from (152) the result of (145) is obtained
directly.

This general approach was taken one step further by
Gugelot and Rickey (22) who fitted 42-Mev Mg data
with the Born approximation for a real, attractive
square well. The significance of this is not clear in the
light of what has been learned since that time by
optical model computations.

(152)

XII. OPTICAL MODEL ANALYSIS

Exact numerical fitting of the parameters of a
complex potential model to the alpha-particle elastic
scattering data has been carried out in some detail at
Los Alamos Scientific Laboratory (31-33). The specific
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form of the model involves an electrical potential
arising from the charge distribution of the target
nucleus assuming the alpha particle to be a point charge
(however, recent computations for heavy ion scattering
have indicated that introducing the finite size of the
charge distribution of both incident and target particles
into the model can make an appreciable change in the
numerical results) (23), and in addition a complex
nuclear potential. The electrical potential is derived
from a charge distribution which has been used in
fitting electron scattering data (27) and is expressed as
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in which x=r/r¢ with r, interpreted as the radius of the
charge distribution and 7¢/%# as the distance in which
the charge distribution drops off at the nuclear surface.
The parameters are chosen to be 7¢=1.304%X 10~ cm
for the heavy elements and 7o=1.224%X10~8cm for
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Fic. 48. Experimental differentialljcrosssection/ffor 40.2-Mev
alpha particles incident on Th (points) along with a solid curve
computed using an optical model, V=50 Mev; W=17.5 Mev.
This is an example of the typical fit that can be obtained for a
heavy element using an optical model.
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F16. 49. Experimental differential cross section for 40.2-Mev
alpha particles incident on Cu (points) along with a solid curve
computed using an optical model. V=49.5 Mev; W=11 Mev.
This is an example of a typical fit for a relatively light element.

the light elements. These are somewhat larger than
the electron scattering results (64) with the view that
such a choice may compensate partly for the finite size
of the alpha particle. The computations are insensitive
to the choice of #; however, the explicit value used by
Tgo and Thaler is not given in their paper (31).

The nuclear potential used in the fitting is taken to be

V4w
1+exp[(r—R)/d:|’

in which R is the nuclear potential radius and d is the
familiar diffuseness distance.

With these potentials, a numerical integration of the
radial Schrédinger equation was carried out for as
many as 30 partial waves, yielding the relevant scat-
tering amplitude which is squared to give the differential
cross section:

(154)

nue =

dm: o —n exp{in log[sin2(6/2) ]}
aQ sin?(6/2)
1 = 2
+5; E)(Zl-l—l)e“(‘”‘“) (e@m—1)Py(cosh) |, (155)
where as usual
n=_271Z:¢*/hv, o=argl (+1+in). (156)

Although there is no total cross section for charged
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particles, the compound formation cross section is given
in terms of the phase shifts as

R go(zz+1)(1— |e2in]2). (157)

Typical of the results achieved in fitting heavy ele-
ment data are the 40.2-Mev Th data, shown in Fig. 48,
This fit is the result of an incomplete exploration of the
space of the four nuclear parameters R, d, V, and W.
[Details of the exploration are given by Igo and Thaler
(31).] The parameters R and d were not varied widely.
The resulting parameters are

R=9.6X10"8 cm= (1.3543+1.3) X 10~ cm,
d=0.5X10"% cm,

V=350 Mev,

W=1.5 Mev.

(158)

A typical result of similar fitting for light element
data (Cu) is shown in Fig. 49 for Cu at 40.2 Mev. The
resulting parameters are

R=6.7X10"8 cm= (1.354341.3) X 10~ cm,
d=0.5X1071 cm,

V=49.5 Mev,
W =11 Mev.

(159)

After similarly fitting the entire set of 40-Mev data
(the elements Cu, Nb, Mo, Ag, Ta, Au, Pb, and Th),
Igo and Thaler conclude that the best values of the
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Ti1c. 50. Experimental differential cross section for 18-Mev
alpha particles incident on Ar (points) along with a curve com-
puted as a result of a detailed optical model analysis: R= (1.1743%
4+1.36)X 10738 cm; d=0.6X 10718 cm; V=100 Mev; W=15 Mev.
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Fi1e. 51. Experimental differential cross section for 40-Mev
alpha particles incident on Cu (points) along with a curve com-
puted as a result of a detailed optical model analysis: R=(1.144%
+2.24) X108 cm; d=0.5X 10718 cm; V'=49.3 Mev; W=11 Mev.

parameters are
R=(1.3541.3) X107 cm,
d=0.5X10"1 cm,
V=45_;% Mev,
W= 10_.3,5'”‘5 Meyv.

The three lightest elements studied (C, Al, and Ti)
required V=30 Mev. Igo and Thaler suggest that the
explanation of this discrepancy may be the known
charge shape function (14), at least for C which has a
Gaussian rather than an exponential tail [the latter

arises from (154)7]. It may also be that V is energy
dependent enough that the center-of-mass correction is

(160)

TasiE I1.

E, Mev Element V, Mev W, Mev
40.2 C 30 10
40.2 Al 30 12
40.2 Ti 30 14
40.2 Cu 46.8 13
40.2 Nb 45 13.5
40.2 Mo 42 9.5
40.2 Ag 37 10
40.2 Ta 51 9
40.2 Au 44 10
40.2 Pb 43 7.6
40.2 Th 50 7.5
20 Ag 35 7.5
20 Au 30 9.5
20 Pb 30 16
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0 50 100 50 170
Bem (degrees)

Fic. 52. Ratio of the experimental differential cross section to

the Coulomb cross section for 48-Mev alpha particles incident on

Pb (points) along with a curve computed as a result of a detailed

optical model analysis: R=(1.134142.00)X10~%¥cm; d=0.6
X1078 cm; V=25 Mev; W=15 Mev.

significant for light nuclei. The results (Table II) of
fitting the 20-Mev data give some basis for this state-
ment, since V is consistently lower at that energy.

In Table I, the detailed listing of the best parameters
(V and W) for each element is given to indicate the
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F16. 53. The real parts of the best-fit optical model potentials
for Ar at 18 Mev as a function of 7 as indicated in the figure. A
tail-only potential is plotted where the fitting is unambiguous.
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F16. 54. The real parts of the best-fit optical model potentials
for Cu at 40 Mev as a function of 7 as indicated in the figure. A
tail-only potential is plotted where the fitting is unambiguous.

extent to which the values spread from the over-all
conclusion of (160).

After completing the search for best-fit values of V
and W with only minor variations in R and d, Igo made

.
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F1c. 55. The real parts of the best-fit optical model potentials
for Pb at 48 Mev as a function of 7. A tail-only potential is plotted
where the fitting is unambiguous.
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F1e. 56. The imaginary parts of the best-fit optical model
potentials for Ar at 18 Mev as a function of 7. A tail-only potential
is plotted where the fitting is unambiguous.

more careful and complete studies of a few selected
elements (33). These studies were motivated, at least
in part, by the view that the best-fit parameter values
resulting from extensive variation of R and d as well as
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Fic. 57. The imaginary parts of the best-fit optical model
potentials for Cu at 40 Mev as a function of 7. A tail-only potential
is plotted where the fitting is unambiguous.
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V and W would lead to a nonuniqueness of fit (6). Not
only was this conjecture confirmed, but Igo was able
to show that, essentially because of the strong absorp-
tion occurring for orbits in the nuclear interior, the
alpha particle, to use a Wheelerism, can only “taste”
the features of the nuclear surface and not explore in
any detail the interior region beyond indicating a very
strong interaction.

Igo’s detailed studies were confined to the elements
elements Ar, Cu, and Pb. The best fits for these data
[argon: (50); copper: (30); lead: (11)] are shown in
Figs. 50-52. Figures 53-55 show the real parts Of
equivalent best fit potentials along with part of the
curve

1100 exp[— (r—1.174%)/0.574 ] Mev,

which is found to represent the common features of
these equivalent fits out in the tail region. Thus the
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Fic. 58. The imaginary parts of the best-fit optical model
potentials for Pb at 48 Mev as a function of 7. A tail-only potential
is plotted where the fitting is unambiguous.

conclusion drawn from this analysis is that only the
tail region is of consequence in determining the scat-
tering under conditions of strong absorption.

It is natural to ask whether the imaginary part of
the optical potential can be similarly determined only
in the tail. The empirical answer to this is yes, as
indicated in Figs. 56-58. In addition to the equivalent
best-fit potentials, part of the curve

45.7 exp[— (r—1.404%)/0.578 ] Mev

is plotted in the figures. The Cu fits (both the real and
the imaginary part of theoretical potential) show more
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exception than either Ar or Pb. This can be attributed
to the poorer character of the angular distribution fits
to Cu in general, so that it is not necessary to weight
the Cu results as heavily as those for Ar and Pb. Igo
thus concludes that the effective complex nuclear
potential for alpha particles in the region where the

..
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F16. 59. Compound formation cross section o, (or equivalently
the reaction cross section o, since compound elastic scattering is
presumably negligible over most of the energy range shown) as
a function of the energy of the incident alpha particle in the
center-of-mass system, divided by the barrier energy as obtained
according to Fig. 60 for various values of nuclear charge Z.
0,2=10; A,Z=20; M, Z=30; v, Z=50; @, Z=70; O, Z=90.

magnitude of the real part is less than 10 Mev is given
by '
—1100 exp[— (r—1.174%)/0.574]

—145.7 exp—[(r—1.404%)/0.578 ] Mev
with 7 in units of 10~ cm. Poor fits to the experimental
data show marked deviation from this form in the tail,

thus indicating a certain sensitivity of the measure-
ments.
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F16. 60. Barrier height B as a function of nuclear charge Z.

Using this potential (actually one of the equivalent
potentials is used), it is possible to compute the cross
section for compound formation, o,. Results of such a
calculation are shown in Fig. 59, plotted against the
ratio of the center of mass kinetic energy E..n. to the
barrier height B for various values of the atomic

- number Z of the target nucleus. A plot of the barrier

height B against Z is shown in Fig. 60. These calcu-
lations of o, can be checked against measured excitation
functions. Figure 61 shows such a comparison for a

O (mb)

1 . |
25 3 35 : 4 44

E (MEV)

F1c. 61. Comparison of the (a,n) reaction cross section of Mg
with the appropriate computed curve for o, from Fig. 59. Igo
argues that the (a,n) reaction makes up most of o, in this energy
range. The potential resulting from fitting the elastic scattering
data leads also to good agreement for the reaction data.
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light element, Mg?®, using data (25) from the (a,n)
reaction. Typical heavy element results are shown in
Fig. 62. The data are shown for the

(@) (ein) + i)
excitation function on U, the
(@ )+ Cain) + @)+ ap20)
excitation function on U%%, and the
(e, f) +gi(a, pin)+ (a,0m)

excitation function on U8 (56). The fits are clearly
very adequate.

O (mb)

E (MEV)

F1e. 62. Comparison of U excitation function data with the
computed curve for o, from Fig. 59, providing an example of a
typical fit for a heavy element, using a potential derived from
analysis of elastic scattering data. O, U*?; @, U?; X, U8,

In order to make contact with work on o decay, Igo
uses the plots shown in Fig. 63. Curves a and b are the
form factor for the charge distribution of uranium as
measured by electron scattering (the vertical scale of
curve b is expanded) (26). Curve c is the Coulomb

R. M. EISBERG AND C. E.

PORTER
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F16. 63. Nuclear charge density (curves a and b—the latter
expanded) of U obtained in electron scattering experiments along
with the Coulomb potential curve (curve c) and the nuclear
potential tail (curve d) as well as the nuclear plus Coulomb
potential (curve e) in the tail region.

potential for Z=92, and curves d and e (expanded
scale) are the real part of the alpha-particle nuclear
potential. Igo’s analysis indicates that elastically scat-
tered alpha particles do not probe the potentials sig-
nificantly beyond the distance corresponding to the
nuclear potential equal in magnitude to 10 Mev. The
part of the charge distribution outside of this distance
is shaded in Fig. 63. If the neutron distribution is
roughly similar to the proton distribution, then this
shaded region is an indication of the extent of the
surface region which is significant in the alpha particle

T16. 64. Perspective spatial plot of the alpha particle current
vector j (the arrow-lengths are proportional to log|j|) and its
divergence ¥ -j in one azimuthal plane (all azimuthal planes are
equivalent since there is no spin-orbit coupling) for 18-Mev alpha
particles incident on Ar. Parameters correspond to a best fit of
Figs. 53 and 56 (the dashed curve). The two semicircular curves
indicate the 909, and 109, strength positions for the real part
of the potential. A spherical lens effect is indicated in the large
peak in ¥ -j near the focal point.
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Fi16. 65. Ratio of the differential scattering cross section to the
point charge Coulomb scattering cross section in the absence of a
nuclear potential. V=W =0.

elastic scattering interaction. The probability of finding
two neutrons and two protons in this region is about
0.02%,. Igo argues that alpha clusters formed very far
inside of this region would dissolve before emerging
from the Coulomb barrier.

Although only the surface region is effective in
returning alpha particles to the elastic channel, this
does not mean that they do not penetrate into the
interior. In Fig. 64, a perspective plot of the alpha-
particle current j and its divergence V - j is shown in one
azimuthal plane (the plots are the same for all azimuthal
angles since the scattering is cylindrically symmetric)
[(35, p. 24) ; for similar calculations for protons see (10)
and (36)]. The parameters correspond to 18-Mev alpha
particles on argon with R=6.05X10"% cm, d=0.5
X107 cm, V=40 Mev, and W=8 Mev.

The arrows showing the current vector j are on a
logarithmic scale, and two semicircles indicating the
909, and 109, nuclear potential levels are also shown

2.0 :

20

Fic. 66. Real part of the ‘‘nuclear” (total minus point Coulomb)
phase shift as a function of angular momentum for the potential
used in Fig. 65. V=W =0.
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F16. 67. A typical angular distribution (ratio to Coulomb) for a
potential with a large imaginary part. The back scattering drops
only two orders of magnitude, indicating that the imaginary part
causes considerable back reflection. V=0; W=200 Mev; d=0.5
X107 cm.

(i.e., the surface region for the potential). The beam is
incident from the left leading to a focal region (large
V-7) on the right. Perhaps the most important point
here is that there is a significant fraction (probably
around 509,) of the divergence of the current within
the 909, semicircle. Thus, in the empirical view, the
alpha particles do get into the internal region although

-0+ -

Fi1c. 68. Real and imaginary parts of the nuclear phase shift &;
as a function of angular momentum !/ for the potential used in
Fig. 67. The large negative value of Re §; indicates the repulsive
behavior introduced by the absorption. V=0; W=200 Mev;
d=0.5X1071 cm.
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F1c. 69. Comparison of an angular distribution computed with
Red;=0 to an exact computation for a rather sharp surface
(d=0.25X10"8 cm). The ‘‘approximate” (Red=0) calculation
lies below the exact calculation in contrast to the back scattering
features in the APB model. V=60 Mev; W=15 Mev; ———,
exact; — — —, Re §=0.

F16. 70. Real and imaginary parts of the phase shift as a function
of angular momentum corresponding to the exact calculation of
Fig. 69. V=60 Mev; W=15 Mev; d=0.25X107% cm.

R. M. EISBERG AND C. E. PORTER

the strong absorption apparently rules out their elastic
emission. Perhaps the proper phrasing is to say that the
observed elastically scattered particles only ‘“‘taste” the
surface, but that a large fraction of the incident beam
gets into the interior and is absorbed there, leading to
other channels.

In order to explore more completely some of the
qualitative features in the optical model computations,
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F1c. 71. Plots analogous to those in TFig. 79 for a ‘realistic”
surface (d=0.5X10"38 cm). V=60 Mev; W=15 Mev; d=0.5
X 10718 cm; A, exact; @, Reds=0.

we present a number of selected graphs. Most of them
are nominally for alpha-particle scattering from Pb
at an energy of 48 Mev. The parameters are a radius of
1.1254%X 10~ cm and a surface diffuseness parameter
n=09. The radius of the nuclear potential distribution
is specified as (1.125434-2.63) X107 cm.

The effect of the finite size of the charge distribution
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is shown in Fig. 65, where the differential cross section
divided by the point charge Coulomb cross section for
zero nuclear potential (V=W =0) is plotted. The effcct
of the finite size alone is sufficient to depress the back
scattering by an order of magnitude. In Fig. 66, the
real part of the “nuclear” phase shift (total phase shift
minus point charge Coulomb phase shift) is shown
under the same conditions. With no nuclear potential,
the monotonic character of the phase shift (and hence
of the classical deflection function) leads to a uniform
approach of the quantum mechanical differential cross
section to the corresponding classical differential cross
section.

The effect of a large imaginary part for the nuclear
potential is shown in Figs. 67 and 68 which present
curves analogous to those of Figs. 65 and 66 for V=0,
W =200 Mev, and d=0.5X10" cm. The main feature
here is the strong “repulsion” introduced by a large .
This is evident both in the not-too-small back scattering
and in the negative values for the real part of the
nuclear phase shift at small angular momenta.

A sequence of pairs of figures shows the result of
setting the real part of the nuclear phase shift equal
to zero. The first pair, Figs. 69 and 70, is based on the
parameter choice V=60 Mev, W=15 Mev, and
d=0.25X10"% cm. Here Re §;=0 is not a good ap-
proximation below a tenth of the point charge Coulomb
cross section. In heavy ion scattering (44), for which
Re 6;=0 was found to be a relatively good approxi-
mation, the ratio-to-Mott-scattering does not drop
below 1097,

3 T T T T T T T T T T T T T T

2+

o 10 20 30

F16. 72. Real and imaginary parts of the nuclear phase shift
as a function of angular momentum, corresponding to the exact
calculation of Fig. 71. V=60 Mev; W =15 Mev; d=0.5X 10" cm.
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FigG. 73. Plots analogous to those in Figs. 69 and 71 for a diffuse
surface (d=0.75X 10718 cm) ; the tuning effect of surface thickness
has here thrown the exact calculations below the approximate ones.
V=60 Mev; W=15 Mev; A, exact; @, Re§=0,

Figures 71 and 72 show results analogous to those of
Figs. 69 and 70, but with d=0.5X10"3 cm. In this
case Re 8;=0is a much better approximation, indicating
that the surface diffuseness parameter d has a tuning
effect on Re §;.

Figures 73 and 74 contain similar results for d=0.75
X107 cm. The points for Re §,=0 still drop almost
four orders of magnitude, indicating that if the nuclear
potential surface is not too sharp, setting the real part
of the nuclear phase shift equal to zero is a fairly good
approximation. This lends support to the extreme
concept of a classical strong absorption model as
opposed to the extreme nonabsorptive rainbow scat-
tering analysis.
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F16. 74. Real and imaginary parts of the nuclear phase shift
as a function of angular momentum, corresponding to exact
calculation of Fig. 73. Computed points are indicated explicitly
to show the larger fluctuation encountered. There may be some
uncertainty in the plot of Re & since the machine computations
gave phase shifts only in the range (—m, m) and the proper addi-
tion of multiples of = was made by educated guessing. V=60 Mev;
W=15 Mev; d=0.75X10718 cm.

To underline a little the tuning effect of the diffuse-
ness distance d even on Im §;, Figs. 75 and 76 show Im &,
as a function of d for first two low angular momenta
and secondly two high angular momenta. The non-
monotonic variation for low angular momenta em-
phasizes this tuning feature.

To further clarify this point, Figs. 77 and 78 show
curves for Im §; calculated classically for a straight line
path (43) (Fig. 77) with parameters adjusted for Pb
at 48 Mev and also for a Coulomb orbit intersecting
the same density distribution (44) (Fig. 78). The mean
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Fic. 75. Imaginary part Im &; of the nuclear phase shift as a
function of surface diffuseness distance d for two small angular
momenta. V=60 Mev; W=15 Mev; A, /=0; e,/=1.
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free path at the center of the target nucleus is taken
to be lp=1X10"" cm for both figures, and curves for
d=0 and 0.5X 107 cm are shown. The distance d as
stated here is one-half the corresponding distance used
in the references (43, 44) so that the density for these
two figures falls off as exp[— (r—R)/d] similar to the
nuclear potentials used for Pb at 48 Mev. There is very
little variation of Im é; as a function of & for small
angular momenta indicating that this variation in the
quantum-mechanical calculations is probably not a
classical effect.
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F16. 76. Plot analogous to Fig. 75 for two large angular momenta.
V=60 Mev; W=15 Mev; e,1=28; A, [=29.

XIII. CONCLUSIONS

Probably the major conclusion from the work on
alpha-particle scattering has been the realization that
entrance channel alpha-particle measurements pri-
marily give information about the interaction near the
nuclear surface, and the qualitative fact that the alpha
particle absorption in the nuclear interior must be
strong.

The inability to learn about the nuclear interior for
alpha particle scattering may seem at first to be disap-
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pointing ; however, the existence of strong absorption
in the interior tends to minimize the role of the interior
in processes involving alpha particles in entrance
channel phenomena. It may be, however, that exit
channel processes will provide more information about
the interior.

With respect to information concerning the presently
available models for the scattering process, the most
salient feature is the relevance of the optical model.
This is closely related to the success of the smoothed
APB model although the latter model does not para-
metrize in terms of potentials. Because of the great
importance of absorption, the semiclassical no-absorp-
tion approximation is not pertinent to the alpha-
particle scattering problem without absorption modi-
fication. Although the classical strong absorption
viewpoint leads to parameters which seem somewhat
unrealistic, the qualitative correctness of the approxi-
mation has been born out by further analysis.

There is a marked similarity between alpha particle
and heavy ion scattering.

There is room for further experimental work in alpha
particle-nucleus interactions. Very little data exist on
total reaction cross sections, although these are very
helpful in optical model analyses, for example. There is
little information available at present concerning
energy dependence of the interaction parameters. For
this reason any attempt to link high-energy alpha-
particle scattering parameters and low-energy alpha
decay is still somewhat premature. '

On the theoretical side, semiclassical approximation
in the presence of strong absorption has so far been
understood only roughly; much more work remains to
be done here. There is also room for further clarification
of the connection between alpha-particle and heavy ion
scattering.
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