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INTRODUCTION

HE conclusion of Einstein, Podolsky, and Rosen!
(EPR) that a “wave function does not provide
a complete description of physical reality’”” has been
discussed for many years. The limitation that the
existence of a finite quantum of action % imposes on
simultaneous measurement of certain pairs of dynamical
variables is successfully taken into account in quantum
theory and is the very basis of its triumphant difference
from classical mechanics. It is clear that the measure-
ment of the position of a single particle influences the
particle and the knowledge of its momentum. The view
of EPR is that the possibility of evaluating a dynamical
variable exactly under some circumstances establishes
it as an element of reality which entitles it to have a
counterpart (they imply a numerical counterpart) in
the theory under all circumstances. They provide a
striking example by considering two systems corre-
lated by past interaction in such a way that measure-
ment on the first gives information about the second,
apparently without disturbing the latter.

Bohr? convincingly pointed out that in the measure-
ment on the first system there is “an influence on the
very conditions which define the possible types of
prediction regarding the future behavior of the system”
and that these conditions constitute a part of “physical
reality.” To avoid the difficulties of making clean
measurements of continuous variables, Bohm?® has
suggested the conceptually simple consideration of the
spin coordinates of two previously interacting particles.

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
(1;\%.) Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

2 N. Bohr, Phys. Rev. 48, 696 (1935).

8 D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1951), Chap. XXII; D. Bohm and Y.
Aharonov, Phys. Rev. 108, 1070 (1957).
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Furry* has even questioned whether a fundamental
conservation law such as the conservation of angular
momentum applies to a situation in which it has not
been tested; e.g., to the total spin of two particles
whose wave packets do not overlap. Such drastic
renunciation seems unnecessary, but Bohm has dis-
cussed the possibility of some hidden interaction by
which a measurement on the second particle affects
the first, and finds reason for doubt in the fact that the
measurement on the first can be outside of the light
cone from the second. The fact that theta particles
exist as two kinds (two kinds characterized by their
interactions, transforming into two kinds characterized
by their lifetimes) can be described in terms of a
formalism analogous to the quantum-mechanical treat-
ment of spin. Lee and Yang® have suggested an experi-
ment involving thetas that is related to the EPR
question. The possibility of investigating in more detail
the properties of such a formalism adds current interest
to this question. It is our purpose here to present the
problem in terms of an analogy based on a descriptive
treatment of Bohm’s two-spin model.

The properties of the spin of a particle may be
associated with the behavior of the particle in a mag-
netic field. The standard way to measure a component
of the spin is by means of the Stern-Gerlach experiment.
The particle moving along the y axis first enters a
fairly homogeneous field, such as the fringing field of
the magnet, and then proceeds to a region where there
is a strong gradient of the field between the poles,
0H ./ 9z, and is deflected “up” or “down” by an amount
depending upon the component of its magnetic moment.
In a homogeneous magnetic field H, a torque is applied

*W. H. Furry, Phys. Rev. 49, 393, 476 (1936).

8 T. D. Lee and C. N. Yang (unpublished); Professor Lee
(personal communication by letter and at a meeting of the “ZGS
Users Group” at Argonne, May 28, 1960).
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F1c. 1. Two particles with total spin
zero flying apart to enter magnetic
fields. The rectangles indicate the
plane boundaries between free space
and homogeneous-field regions.

(a)

to the particle but the torque is at right angles to H.
This means that the classical angular momentum
vector precesses in a cone having the field direction as
its axis. If H is in the z direction, the z component of
angular momentum remains constant while the x and
y components vary rapidly. In quantum mechanics
this rapid variation is associated with the nondiagonal
nature of their matrix elements in the representation
in which s, is diagonal. The component of s in the xy
plane is a vector whose length is definite but whose
orientation in the plane is completely indeterminate,
so the vector s may be thought of as uniformly dis-
tributed over the cone of the classical precession. In
quantum mechanics this xy component of s is never
zero and the length of the spin vector is greater than
the maximum value of s, in keeping with s?— s(s-+1).
This uncertainty of direction of s is a familiar example®
of the uncertainty principle. A later measurement by
means of a magnetic field in the x direction may alter
the situation so that s, becomes definite but the orien-
tation in a cone about the x axis is indefinite.

CLASSICAL AND QUANTUM DESCRIPTION
OF TWO-SPIN SYSTEM
Consider a compound system C having total angular
momentum S=0 that breaks apart into two particles,
a and b, one having spin s, and the other s;. While this
remains a thought experiment, they are preferably
neutral particles such as two similar 25 atoms from the
breakup of an excited molecular S state, since the

¢ Compare E. U. Condon, Science 69, 573 (1929).

(b)

Stern-Gerlach observation of spin projection is carried
out on neutral atoms. In Fig. 1(a), we see s, flying
away and entering a vertical magnetic field H, which
exists behind the plane of the rectangle in the distance.
Its precession in the field is indicated by a cone. The
measurement of s,, in this field makes it possible to
predict the result of a measurement of s, in the fore-
ground : If there we apply a field H, also in the vertical
direction, s, precesses in a cone similar to that of s,
but inverted, with its base downward. If instead H, is
horizontal in the x direction, s, would precess around
some cone with a horizontal axis, but we would have
no prediction of sp.. Classically, the measurement of
Sqz left it uncertain whether s, was a vector upward to
the right, as indicated by a solid line, or upward to the
left, as indicated by a broken line, for example. Corre-
spondingly, s; might precess on the cone to the left or to
the right in the foreground of Fig. 2(a), or anywhere
between.

In classical mechanics, which would apply for very
large values of s, it is possible with this experiment to
eliminate this uncertainty as suggested in Fig. 1(b).
Out of many repetitions of the experiment, one might
select a case in which s,. is equal to s, so that the spin
vector is in the z direction. One would then know that
Sz is equal to O and the field in the x direction in the
foreground would produce a circular precession in a
plane rather than a cone, as indicated in the sketch.
This is of course not possible with finite s in quantum
mechanics.

The fact that S=0 as the two particles fly apart
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Fic. 2. Change of relative
phase of the components of
two spin vectors in the xy plane
when one precesses twice as
fast as the other about the z
axis.

gives three equations:

Sazt5b2=0 (1a)
say_'_sby:o (1b)
Sazt58.=0. (1¢)

In quantum mechanics we can select a representation
such that the quantities in one of these equations are
represented by a diagonal matrix, those in the other
two by nondiagonal matrices. This means, for example,
that we select spin wave functions that would be
appropriate if we should apply H in a vertical direction,
and make a measurement to find out whether s,, is
+1 or —3. If we do this, Eq. (1c) tells us without
further measurement that s;, is either —% or +3, the
opposite of sq.. We could just as well have decided to
put H in the x direction, measure s,,, and infer s,;, from
Eq. (1a). But we could not do both. If we decide to
measure $,., for example, we apply to particle a a field
in the z direction. Since the magnetic moment u,=gs,
is not parallel to the z direction, we thereby apply a
torque w,XH to the combined system and it is no
longer true that the total angular momentum remains
zero. However, the torque is normal to the z axis
(classically giving rise to a precession about that axis),
so only Egs. (1a) and (1b) are rendered invalid; Eq.
(1c) remains valid and permits us to transfer the result
of the measurement to the second particle. We could
have left Eq. (1a) valid instead. Thus the determination
of either sy, or s3; by a measurement on s, destroys
the possibility of determining the other in that way.
It invalidates a conservation law which is a part of
physical reality concerning the second particle. This
is a graphic illustration of the words quoted from Bohr
in the Introduction.

EPR claim that the observation on s, in no way
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affects s;. It does, however, affect the information
which can be extracted by means of the operators s
and s;,. The wave function which stores the information
about the past interaction of the two particles is a wave
function for the system, namely,

¥(a,0)=[us(e)u—(b) —u_(a)us.(6) J/V2, )

where %, corresponds to s,==3. This wave function
with its rotational properties implies the conservation
laws (1). The operators s, and sp, operating on it give
information that is correlated with information given
by a similar use of the operators s,, and s,.. A measure-
ment that s,,=-3%, for example, by invalidating Egs.
(1) also invalidates Eq. (2) and selects its first term as
the wave function of the system. This is separable and
it is possible then, but not before, to say that the wave
function of particle b is #_(b). This tells us how it will
react to the second measuring apparatus. We have
prepared the system with particle b in a pure state
appropriate to a field in the z direction.

The time-independent wave function (2) implies that
we have factored out a factor depending on some local
time, for example, the time near the measurement of
particle b. If the measurement on a¢ is made at some
remote place and perhaps outside the light cone, the
local wave function of particle & becomes #_(b) only
after arrival of a signal giving the result of the first
measurement, that is, when the first measurement is
in the past.

The system consisting of two particles, each ex-
periencing a measurement, is to be compared with the
system of one particle undergoing two successive Stern-
Gerlach measurements. Before it enters the first meas-
uring apparatus, the particle has a wave function

¥ (0)=cyu; (b)+c_u_(b) 3)
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with arbitrary coefficients ¢;. The first measurement
selects the term %_(b), for example, and the particle
is thus prepared in this pure state, just as it was by
measurement on the other particle in the two-particle
system. The uncertainty principle applies to the
particle in this pure state in which s, is determined
and sp is just as likely to be +3% as —3. This is a more
stringent uncertainty than that represented by the
arbitrariness of the ¢; in Eq. (3). The former is based on
knowledge, the latter merely reflects ignorance of the
past history of the system.

When the particle is made part of a two-particle
system, ignorance of the past history can be replaced
by partial knowledge of the past history in the form of
correlations with the other particle [such as is repre-
sented by the minus sign in Eq. (2)]. So far as the
quantum-mechanical formalism is concerned, we have
seen that this partial knowledge merely provides us
with an alternative means for, in effect, determining
the ¢; from experiment.

QUESTION OF COMPLETENESS

So much for the formalism itself. EPR raise the
question whether the theory embodying this formalism
is complete in some physical sense. Their query focuses
attention on the meaning of separating a system into
two parts. They seem to be in agreement with the
quantum-mechanical purists’ point of view on the role
of measurement when they say' ‘“The elements of
physical reality cannot be determined by a priori
philosophical considerations but must be found by an
appeal to the results of experiments and measurements.”
Strictly on those grounds, their criticism seems invalid,
as has been shown by Bohr. In particular, the a prior:
philosophical concept that a part of a composite system
(particle b) has some physical reality as an independent
system is tacitly introduced when they state their
criterion for reality: “If, without in any way disturbing
a system (meaning particle b), we can predict with
certainty the value of a physical quantity (ss. or ss.),
then there exists an element of physical reality corre-
sponding to this physical quantity.” By the criterion
of an appeal to any experiment which has been pro-
posed, the physical quantity associated with particle &
of which use is being made is its spin correlation with
particle e. This correlation is disturbed by the measure-
ment on which the prediction is based, as we have seen.

The lingering doubt which has sometimes been
dubbed the “EPR paradox” exists outside the ground
rules laid down by EPR. Many physicists are inclined
on the basis of “physical intuition” or a desire for
simple concepts to accept as evident the philosophical
concept that the physical properties of particle b are
somehow inherent in particle 4, even when it is part
(particularly a remote part) of a composite system
and even if we have not yet thought of an experimental
way to give meaning to this concept.
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In full awareness that we may be going beyond the
realm of the experimentally meaningful as specified by
EPR, let us consider the consequence of the assumption
that the predetermined behavior of a system of two
particles may be separated into individually predeter-
mined behavior of the separate particles after they are
out of range of interaction with each other. The two
particles flying apart with their spins correlated in
keeping with Egs. (1) and ¢/(a,b) of Eq. (2) are thereby
predestined to have equal and opposite values of s, or
of 5., whichever we choose to measure. According to the
assumption of separate predetermination, it must be
predetermined how each will behave when it enters
either a vertical or a horizontal field. This implies more
information than can be made explicit in an equation
of the form of (3), since any specification of the ¢’s
defines a pure single-particle state suitable for only one
orientation of H. In a popular vernacular, we may be
inclined to assume that ‘“the particle knows” how it
will behave, even though principles of quantum
mechanics do not permit s to know how it will behave.
To encompass this we would need a theory more com-
prehensive than quantum mechanics, perhaps one
containing “hidden variables.” EPR are inclined to
the belief that “such a theory exists” and indeed the
quest cannot be considered closed; although quantum
mechanics is so broadly successful and convincing that
the quest does not seem hopeful. The dual predeter-
mination cannot be verified experimentally in any
straightforward manner we know of, for the measure-
ment of one component of s; establishes a pure state
and erases the predetermination of the other. As
already noted, we know how to verify experimentally
no more than the correlation with the other particle
implied by Eq. (2) (and even this has apparently not
been done for separated particles).

In looking for something more than the correlated
behavior implied by the two-body wave function, we
are seeking something in the two-particle system that
from the quantum-mechanical point of view is similar
to insisting on giving conceptual meaning to the co-
ordinates of a single particle when we know that its
position is governed by a wave. Or, again in a two-
particle system, we may make comparison with the
familiar and well-accepted situation governed by a
wave function antisymmetric in the space coordinates
of two particles that have no interaction (or only a
very short-range interaction). There is a correlation
between the two particles: If particle a is at x, particle
b is unlikely to be near x (or near an integral number of
wavelengths from x). This is a wave property—a
consequence of the symmetry of the two-particle wave
function—and the spin correlation that we have
discussed, with a view to transcending it, is similarly
a wave property.

Since the question raised by EPR is one of groping
for concepts, let us further describe some relevant
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classical concepts whose validity is limited by quantum
mechanics. Let a particle having a classical spin vector
with a definite orientation be about to enter the fringing
field of a Stern-Gerlach apparatus. For any arbitrary
choice of field direction, we know in advance the angle
of the cone about which the spin vector will start to
precess. Let the field be H, and the spin not parallel
to the z axis. The measurement, if made with ordinary
care, would not include a completely accurate mapping
of the deflecting and fringing fields, though this would
in principle be possible. The spin would undergo an
indefinite number of Larmor precessions during the
passage, and emerge with s, unaltered and measured,
but with s, bearing no simple relation to its previous
value. We knew s, before, but the measurement has
destroyed this knowledge. The fact that we could in
principle do better classically is clearly dependent on
an exact knowledge of the trajectory in an inhomo-
geneous field. In quantum theory we cannot know the
trajectory exactly and this discussion provides a model
for the loss of knowledge of a phase of s, because of the
measurement of s,. In the two-particle system repre-
sented by Fig. 1(a), with H,=H;, and appropriate
inhomogeneous fields beyond and with complete sym-
metry on the two sides, any phase relationship that
might exist between s, and s, as they enter the ap-
paratus is lost when they leave it. (Classically, with the
possibility of identical orbits, the phase relationship
could in principle survive the measurement.) One
expects such an initial phase relationship to exist
because of the validity of Eqs. (1) until the particles
enter the fields. It is perhaps because such a conceptual
model is thus far satisfactory that one is tempted to
push the concepts a little further, and to ask whether
there can be not only a phase relationship between s,z
and s, but also some meaning to the individual phases
beyond what is allowed by the quantum description
and of a nature to help predetermine the behavior of
an individual spin in a field of arbitrary orientation.

DESCRIPTION OF TRANSVERSE
SPIN COMPONENT

While it may not help answer that question, it is
instructive to remind ourselves how far we may go
with the quantum description of the behavior of s, if,
and only if, we relinquish knowledge of s,. The spin
wave functions v, with reference to the x direction are
given in terms of uy, which refer to the z direction, by
the following specification of the ¢’s of Eq. (3):

ve=(uptu)/V2, up= (v412)/V2,

= (uy—u_)/V2, wu_= (v,—v_)/V2.
Thus, for example, when s,=% and thus #_=0, »,, and
v_ are equal and s,=7 and —3} are equally likely.

If the particle is in a vertical field H, we have the
wave equation

1h(3/08) (cyus+c_u_)=2us,(cus+c_u_),

4)

©)

THETA PARTICLES 5
where the ¢’s are functions of time. On equating ap-
propriate coefficients, we have

cr(B)=cy(to)eiet—0
c_()=c_(4p)ett—t0),

é+= —iwc+,
(6)
Here w=uH/h=eH/2mc is the angular frequency of
the Larmor precession. In particular, if we start with
sz=—3%, that is, with ¢ ({y))=1_, the subsequent evolu-
tion of the wave function is given by

V()= (npeiott—t __u_eimu—to))/\/f

= [v_ cosw(t—to) —v44 sinw (i —1o) .

C_=1wc_,

()

Here we see that, if we give up knowledge of s, and let
the two states %, and u_ interfere, we can write a wave
function to display the x component of the Larmor
precession explicitly, but in terms of oscillating proba-
bility amplitudes rather than classical vector component
amplitudes.

We have considered two particles flying through
free space until they enter magnetic fields. For the sake
of the later discussion of theta particles, let us here
consider the similar situation of a combined system with
S=0 in a homogeneous magnetic field disintegrating
into two particles (atoms) ¢ and b flying apart in the
field until they emerge from it into free space at times
¢, and ¢,, respectively, with #,>#,. They subsequently
enter further fields for the sake of spin measurements.

We treat the same problem in two ways. The first
treatment considers the combined two-particle system
until #,, and the one-particle system of particle b there-
after. Select a case in which the measurement on a
shows that s,,=4%. Since there was no net torque on
the two-particle system until ¢, and Egs. (1) and (2)
were valid until then, we have ¢ (b,t,)=v_ and from
Eq. (7) we see that the wave function for particle &
when it emerges from the field contains a term
244 sinw(fs—%,). Thus the probability that both particles
are observed to have s,=3% is

Pv+,v+(ta,tb) = % sin%w (tb— tu),

(8)

where the factor 3 comes from the probability of
observing s..=-3 in the first place. This result is
nicely visualizable in terms of the Larmor precession.

In that treatment it does not matter whether the
measurement of s,, is made at ¢, or later. In the second
treatment we assume that both measurements are
made after ¢, and consider the system as a two-particle
system until #,. In the interval from ¢, to ¢, the wave
equation is

oY/ 0t=2u(Se-H o+ sy Ho )Y, )
with H,=0 and with
Y= fc¥ct+ fo¥p
Ye=u(Qu-0)=uu_, Yp=u_(a)u,(b)=u_u,. (10)

In this case f¢ and fp obey Eq. (6) just as do ¢, and
¢, and the time-dependent wave function that reduces
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to Eq. (2) so as to satisfy S=0 at ¢, is

V(@b art) = (a0 — sy o=ie=t0)) V]
=[(v_v4—v40_) cosw(i—1,)

+ (v_v_—vy0, )i sinw(§—£4) |/V2. (11)

The coefficient of v, again gives the result stated in
Eq. (8). Here we see the triplet components »_v_ and
vy, symmetrical in exchange of ¢ and b, appearing
and disappearing at the rate at which the Larmor
precession classically brings the xy components of the
spin vectors into parallelism and antiparallelism by
the rotation of one of them. The singlet term,
(v—v4—1v49_), which is antisymmetric in ¢ and b, is of
course the only term at ¢=1,, in keeping with the initial
condition, and remains just out of phase with the triplet.

As a slight generalization which is not needed in the
following section but which ties in more closely with
the discussion in Bohm’s book? of the role of inequalities
of the fields (due to nonidentical paths in the inhomo-
geneous fields), we consider the case in which particles
a and b are in different homogeneous fields H, and H,
in the z direction, either ab initio or after a flight in
free space until ¢#=0. Equation (9) is written to include
this case, and the coefficients f of Eq. (10) satisfy

fe=i(ws—wa)fo, fp=1(wa—ws)fp.

Thus, starting with a singlet at {=0, we obtain in place
of Eq. (11)

Y(a,b,t)= (uyu_e' @ e t—y_y, g=i@wat) /2
=[(v_v4—v40_) cos(wp—wa)?

4+ (v_v_—vy0,) sin(wp—w,)t ]/V2. (13)

Thus the triplet term appears and disappears with a
frequency given by the difference of the two Larmor
frequencies. This is easily understandable classically in
terms of one vector catching up with the other in phase,
as is portrayed in Fig. 2. This figure pictures the particle
with the fast precession having its spin up (s positive).
This has meaning only classically, but the precession
would be the same and nothing would be altered about
the phases if the picture were drawn as a mirror image
with this spin down instead. If we wish to use such a
picture as an aid to intuition in quantum mechanics,
we should think of the picture and its image in some
way superposed to correspond to terms in #.u_ and
u_uy in Eq. (13). Each of these terms contains the
differences (w,—w,) emphasized by the picture, yet the
superposition of both terms is required to display the
alternation in singlet and triplet amplitudes (no matter
how far apart the particles may be).

(12)

CORRELATIONS BETWEEN TWO THETA
PARTICLES FROM P+P — 6046

Lee and Yang® have pointed out the interesting
expectation that a theta and an antitheta resulting
from proton-antiproton annihilation are correlated in
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their time evolution and that the correlation depends
on the fact that the charge parity (C=—1) of the
original pair of fermions (arising in field theory from
the anticommutation of their creation operators) is
carried over to the pair of bosons by the charge inde-
pendence of the strong interactions involved in the
annihilation. They find the striking result if one of the
thetas is observed to be an antitheta (6° which we write
simply ), the other cannot also be a § at the same time.
This is a further example of the specification of the
state of one particle by means of a measurement on a
distant particle, and the discussion of spins in the
preceding section provides a model that may be helpful
in contemplating the behavior of the thetas.
The wave function for the thetas at =0 is

¢¢=0= (0102—9201)/\/2‘—— (09—50)/\/2—, (2,)
antisymmetric under charge conjugation in keeping
with C'=—1. These expressions are analogous to Eq.
(2) and to Eq. (11) at ¢=0, the two representations for
the theta being related by’

0:=(0+6)/V2, 6= (6:16)/V2
0= (6—0)/V2, 6= (6:—6,)/V2. #)

The exact analogy with Eq. (4) defines the analogous
quantities involved. In particular, the 6, and 6, are
analogous to #; and #_ in that both sets carry time
dependence in ¢, the #’s an imaginary exponential
e+t through the coupling to the magnetic field and
the 6, and 6, a real exponential arising from a coupling
causing a decay process. On an appropriate time scale,
6. may be considered constant (it decays relatively
slowly) while the decay of 6, is specified by

0,(0) =020, ©)
(We ignore another time-dependent factor et by
which 6, differs from 6,, arising from a small mass
difference m.) The 6 evolves in such a way as to become
partly a 6 because of the difference of decay rates of
the 6; and 6, in a manner analogous to the way o,
evolves into 2_ because of the difference in the imaginary
exponentials associated with the Larmor precession.

The problem is to find the probability Pj,5(¢s,!5) that
both particles will be observed to be antithetas, particle
a at time {, after the PP annihilation and b at time #.
We find an analog in this discussion of two atoms with
§=0 leaving a homogeneous magnetic field at ¢, and
#s, respectively, and here again there are two ways to
treat the problem. Equation (2’) indicates that either
particle ¢ or b is an antitheta, but not both, and as
long as there is no observation this remains true, with
C= —1, in the subsequent evolution of the two-particle
wave function

L6170, —65(8:67*9)]/V2Z= (08— 80)e>/v2. (14)

? M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955); A.
Pais and O. Piccioni, sbid. 100, 1487 (1955).
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The probability that we have 8(a) and 6(d) at ¢, is
1¢2Ma the square of the coefficient of the last term. If
we now start afresh with the one-body problem with
the initial condition ¥ (b,t,)=60(b), we have from Egs.
(4") and (6")

Y (b,8)= (616N~ 40,) /NI =[0(e =2 +1)
(et —1)]/2. (7')

The last term gives us a factor in the combined proba-
bility for observing both particles to be antithetas:

P53 (babp) = e Mo (e MOt —1)2, (8)

In the second treatment we use only a two-body
wave function. In the preceding analog we could turn
off an interaction by letting particle @ emerge from the
field at ¢, and leave a two-body wave equation valid
later. Here instead one may formally introduce a
separate time coordinate for each particle (on a par
with the space coordinates) and thus write?

Y=[01(a):2(b)e2a—0,(a)8:(b)e>»]/V2
— [(60—80) (- o—e>0)

— (66— 66) (e Mo+4-e ) ]/2V2.  (11)

The square of the coefficient of 66 again gives Lee and
Yang’s result, Eq. (8).

No matter which way we derive it, the most striking
aspect of the result is the simple conclusion that we
cannot observe both a and & to be 8 at the same time,
and this comes directly from the validity of Eq. (14)
up to the time of the observation. The mechanism for
this is that the decay attenuates both the terms 6,0,
and 649, at the same rate, since they each contain a
factor 6;, and leaves their ratio unchanged.® This is
analogous to the way the Larmor precession in a
homogeneous field keeps the spin vectors 180° out of
phase [which follows from the constant ratio of the two
terms in the first line of Eq. (13) with w,=ws].

8 This attenuation of a real exponential is analogous to a varying
phase in that it converts 6 into 648, though not periodically, and
there can also be an actual phase variation between the two terms
if we take into account the small mass difference 7 between the
6, and 6;, replacing A by A—im.

THETA PARTICLES 7

RELATION OF THE THETA EXPERIMENT TO
THE EPR QUESTION

The experimental verification of this simple con-
clusion would be very interesting as a further test of
the validity of the Pais-Gell-Mann scheme, Eq. (4),
as a basis for the quantum-mechanical description of
the behavior of theta particles.” However, this would
not alone constitute a test of the EPR question in all
its profundity. There is only one variable, the charge-
conjugation operator, involved in the proposed ob-
servation, whereas a choice between observing either
one of two noncommuting variables is the heart of
the EPR question.

In the two-spin analog, the EPR question is properly
put in terms of the two atoms flying apart in free space,
so that neither orientation of the measurement is
preferred and a free choice of measuring either s, or
sq. could provide corresponding information about
particle d. One concludes that either (a) the assumption
of separate predetermination for the two particles
separated in space is not tenable, or (b) the theory
(quantum mechanics based on conservation of angular
momentum) predicting the spin correlation does not
apply to the separated particles, for which it has not
been tested, or (c) the result of the theory is correct
but the theory is incomplete. For those who resist (a),
conclusion (b) would provide a way out of the difficulty
if one could observe that s,, and s,, were not appro-
priately correlated. Such observation would be im-
mediately applicable to s, and s..

The observation that § and § are not appropriately
correlated would likewise provide a way out. However,
if this correlation should be experimentally established,
as expected, a further experiment to establish a similar
correlation between 6, and 6, would be called for before
one could experimentally eliminate conclusion (b) as
applied to thetas.
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¢ There would be a different correlation if we had C=1, rather

than — 1, or if we had some mixture of the two corresponding to
PP annihilation not predominantly in the S state (footnote 5).



