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IRST, the general three-dimensional Qow of a
compressible, inviscid, perfectly conducting Quid

in the presence of uniform magnetic Geld is considered
when the undisturbed Qow and magnetic Geld are
parallel. It is shown that the Qow is essentially similar
to the ordinary Qow of a hypothetical nonconducting
gas with an appropriate pressure-density relation.
Thus, approximate methods of treating such magneto-
hydrodynamic Qows can be developed along a line
similar to the von Karman-Tsien approximation for
plane gas Qows. As an example, Resler's equation for
small-perturbation compressible plane Qows can be
derived as a special case.

Second, general considerations are given to the small-
perturbation theory of magnetohydrodynamic Qows at
large or small magnetic Reynolds numbers. In particu-
lar, using the Stokes-type approximation, the general
expressions are obtained for the velocity and magnetic
Geld as well as for the force and moment acting on a
body placed in the Qow at small magnetic and ordinary
Reynolds numbers. As an example of application, the
force and moment experienced by a sphere moving in
an arbitrary manner (translating and rotating) in a
uniform magnetic Geld are explicitly calculated,

I. STEADY THREE-DIMENSIONAL MOTION OF
A COMPRESSIBLE, INVISCID, PERFECTLY

CONDUCTING FLUID WITH PARALLEL
VELOCITY AND MAGNETIC FIELD

The small-perturbation theory of magnetohydro-
dynamics has recently been developed by Resler' ' for
the case of steady plane motion of an inviscid, perfectly
conducting, compressible Quid. He has established the
basic equation in a very elegant form, which bears a
remarkable resemblance to Praridtl-Glauert's equation.
Taniuti' has independently found the basic equation
for plane Qows, without making the assumption of
small perturbation.

Here, Resler and TaniuI;i's equation is extended to
the general case of three-dimensional Qow.

Reduction of Magnetohydrodynamics to
Conventional Gas Dynamics

The rationalized mks system of units is used. The
steady magnetohydrodynamic Qow of an inviscid,
perfectly conducting, compressible Quid is governed by

1E. L. Resler and J. E. McCune, in The Magnetodynamics of
Conduct&sg F/uids, Daniel Bershader, Editor {Stanford University
Press, Stanford, California, 1959), p. 120.

~ W. R. Sears, Proc. 8th Japan Natl. Congr. Appl. Mech. 1958,
1 (1959),

3 T. Taniuti, Progr. Theoret. Phys. (Kyoto) 19, 749 (1958).
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the following system of equations:

(1)

(2)

(3)

(4)

divpv=0

grad(-', q'+P+0) =v&(~—p '8)&j
curl(vXS) =0

dlvS =Oq

where
(5)

(6)

m =curlv

j=p, ' curlS

p'

Equations (1)—(3) are, respectively, the equations of
continuity, of motion, and of induction. v is the
velocity vector, q is its magnitude, 8 is the magnetic
induction, p is the magnetic permeability, and 0 is the
potential of the external force such as gravity. Here it
is assumed that the density p is a certain deGnite
function of the pressure p. u and j are the vorticity
and the electric-current density, respectively.

As a particular solution of Eq. (3), let us consider
the case of parallel Gelds: vt&B=O. Then we may write

pV= AS~ (g)
I

where ) is a certain position function.
Substituting Eq. (8) in Eq. (1) and using Eq. (4),

we have
BB)/Bs=0,

where 8/Bs denotes differentiation along a streamline.
Hence

'A= const along each streamline. (10)

Let us assume that the conditions at inGnity up-
stream are

8 —+ B„e, v-+ Ue, p~ p„, (11)

the subscript ~ indicating the condition at inGnity.
Then Eq. (8) gives

X=p„U/B„.
Thus ) is constant throughout the Qow Geld.

Now, Eq. (2) can be written as

g»d(2q'+P+&) = (&/p) X (&~—j).
Multiplying this scalarly by 8, we have

B(ct/cts) ('q'+P+0) =0. - (14)
Hence

-', q'+P+0 =const along each streamline. (15)
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In view of the uniform Bow conditions at ininity
upstream, the constant must be an absolute constant.
Therefore, Eq. (13) leads to

Basic Equation

For ordinary gas dynamics, Bernoulli s equation is
written in the diGerential form as

g.ry —j=aB, (16)

~ being a certain position function. From Eq. (16) we
have

0=div~B= a divB+B grad~= BBz/Bs.

qdq+dp/p =0,

and the sound velocity c is given by

c'= dp/dp= pqdq—/dp.

(25)

(26)

Thus, the same reasoning as before gives

a= const=0,

Therefore, for our hypothetical gas, the wave velocity
a, which might be called the pseudosound velocity, is
given by

so that

(17)

Substituting Eqs. (5) and (6) into Eq. (17), we have

curl{I 1—(uX'/p) )B)=0. (18)

Let us de6ne the local Alfven velocity V and the local
Alfven number A as

g'= Ob(d—b/d. o) = —-,'(db'/dA') (d logo/dA') '.

Now, by Eq. (20), we have

By use of Eqs. (22) and (28) and the relations

d logo/dA'= —A ' dq'/dA'= 2c'/A'

we obtain

(27)

(28)

g' = L (A'+M' —1)/A'M' jb'

M =q/c,

(29)

(30)
respectively, where Eq. (9) has been used. Then we
can introduce a vector b by the relations M being the local Mach number. By analogy, we may

define the pseudo-Mach number m as
v/V=I (1—A„')/(1—A ')]b

B/&„=I (1—A ')/(1 —A') jb.

Thus Eqs. (4) and (18) can be expressed as

pe —b2/g2 —A2M2/(A2+M2 1) (31)(20)

The equation of motion can be expressed in terms
of the pseudovelocity potential @, pseudovelocity b,
and pseudosound velocity u in the form

l".=&/(up)', A'= q'P"=&'u/p= A-'p-/p, (19) where

where

div~b=0, curlb=0,

0 = (1—A„')/(1—A').

(21)
B'4 B'4

(g2 b 2) — +(g2 b 2) +(g2 b 2)

(22) Bx' By' Bs'

Let us consider, for simplicity, the case of no external
force: Q=O. Then we have the Bernoulli theorem in
the form

-'q'+P= const.

Therefore,

where
b= (b„b„,b,) =grad&. (33)

g2p ()A Q2Q—2b„b, —2b,b, 2b,b„=—0, (32)
BQBZ BZBS BXBP

so that

q=f~P') =f2(p) =f~(A')
b= IbI =qf4(A')-f~(A')

For the case of plane Rows, Eq. (32) reduces to what
Taniuti has obtained by quite a diferent method.

For small perturbations,

0 =fg (A') = fy(b), (24)
b„=:0, b,=:0,

where f, denotes a certain definite function.
Equations (21) and (24) imply that b is essentially

equivalent to the velocity vector of some irrotational
Qow of an ordinary nonconducting Quid whose density
0. varies with the velocity b in accordance with the
relation (24). Thus, the magnetohydrodynamics in
this case is completely reduced to the conventional
gas dynamics of a hypothetical gas. For example, the
basic equation for the magnetohydrodynamic Qows
can be readily obtained by employing the well-known
procedures of conventional gas dynamics.

we have, from Eq. (29),
g'=' (A '+M '—1)/A 'M '=1/m '.

Hence Eq. (32) becomes

(1 ~ 2)B2$/B+2+B2$/By2+B2p/Bs2 —0
Since

(34)

1—m '=(1—M ')(A '—1)/(A '+M '—1) (35)

Eq. (34) is nothing but Resler's equation (originally
given in the two-dimensional form).

It is seen from Eq. (31) that the level curves of yP
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Suggested Methods of Calculation

If the pressure-density relation p=f(p) of the gas
is given, we can find the relation o.=f(b), so that the
calculation of Qow quantities proceeds in quite the
same manner as for ordinary gas dynamics. In fact,
the boundary condition is also the same:

BP/Bn=0 on the body surface.

In general, the relation o=f(b) can be found only by
numerical means. But we can develop approximate
methods similar in principle to von Karman-Tsien's
approximation.

(i) Flow at free strea-m Mach rtQtmber M„artd Alfvert
elmber A„.The free-stream pseudo-Mach number m„
is given by Eq. (31) as

2 —A 2M 2/(A 2+M 2 1) (39)

in the (M', A') plane are hyperbolas. There are five
regions to be distinguished (Fig. 1):

IU:
V:

A'&1, 3P&1
A2&1, M2&1

A2&1, M2&1

A'+M') 1, A'(1, M'(1
A'+M'(1

0&m'&1

tn'&0.

For the regions I and II the flow is of elliptic type, the
regions III and IV are hyperbolic and the region V is
again elliptic. However, it should be noted that the
wave velocity for the region V is imaginary, since
m'&0 there.

In the small-perturbation theory, the values of A'
and JItP vary from point to point in the Qow Geld,
following a certain curve in the (M', A') plane, which
is fixed by the free-stream conditions (M„',A„').For
example, for an ideal gas,

M'=q'/c'= (q'/«')(1 —L(V —1)/2j(q'/«') } ', (36)

A'=AQ'( Q/t)
=AQ (1 P(y —1)/2j(q/«Q)}

where the subscript 0 denotes the stagnation condition.
On eliminating q', we obtain

Calculate the pseudovelocity b of the hypothetical
gas, treating it as if it were a real gas at free-stream
Mach number m„.Then the velocity v is found by
means of Eqs. (20) and (37).

(ii) Small pertgrbat-ion theory. On putting

v= (U+v, ', v„',v, '), v'=0(Q)

b= (1+b,', b„',b.'), b'=O(e),

substituting in Eq. (28), and neglecting second-order
small quantities, we readily have

v '/U= (1—-'LM 'A '/(1 —A ')j} 'bg'. (40)

Here b,' can be obtained by the conventional small-
perturbation theory such as that of Prandtl and
Glauert.

(iii) M' expalsi-oe method For thic.k bodies at low
Mach number, we can employ the M'-expansion
method for the calculation of 1-Geld. Thus, we can
easily Gnd

v/U= bQ+LM„'/(1—A„')]
XLb/ —Q'A„'(bQ'—1)bQ], (41)

where bo and b~ are the incompressible-flow solution
and the Grst-order correction in the M'-expansion
method, respectively. In fact, for M„(&1,we have

m '=A 'M '/(A '—1)=M '/(1 —A ') (42)

A'= A o' f 1+P(y —1)/2 jM'}'«~—'&. b= bQ+m„'bg. (43)

Thus A' is a monotonically increasing function of 3P.
It is seen that if Ao'&1, m' increases monotonically
with 3P, but if Ao &1, m varies in a complicated
manner; that is, it Grst decreases to —~, then jumps
up to +~, and then continues to decrease down to a
minimum, which is less than 1, and then increases
monotonically to +Qo.

Substituting Eqs. (42) and (43) into Eq. (20) gives
Eq. (41).

It should be emphasized that the foregoing pro-
cedures are applicable to the three-dimensional problem,
whereas the hodograph method well known in con-
ventional gas dynamics is only applicable to two-
dimensional problems.
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II. CONSIDERATIONS ON SMALL-PERTURBATION
METHODS

The study of magnetohydrodynamic Qows of an
electrically conducting Quid was initiated by Chester, '
who treated the case of slow motion of a sphere in the
direction parallel to a uniform magnetic field. His
treatment is of the Stokes-type approximation. Later,
Yosinobu and Kakutani' applied -Chester's method of
analysis to the two-dimensional Qow past a circular
cylinder, the imposed magnetic field being either
parallel or perpendicular to the undisturbed-Qow
direction. Also, the Oseen-type approximation has
been introduced for the study of Qows at small magnetic
Reynolds number; the Qow past a circular cylinder
was dealt with by Yosinobu' and the Qow past a sphere
by Gotoh, ' both for the case of parallel 6elds. Quite
recently Gotoh' has extended Chester's analysis to
cover the case of general three-dimensional Qow, and,
in particular, treated the Qow past a sphere per-
pendicular to the magnetic 6eld. Here the electric
field induced by the conducting Quid across the magnetic
field plays an essential part, in contrast to the fact
that in the two-dimensional or axisymmetric case such
an induced electric 6eld does not make its appearance.

Considerable developments in the 6eld of linearized
magnetoaerodynamics have recently been made by
Sears and his group, ' ' ' "for inviscid Quids.

In the following, some general considerations are
given to the small-perturbation treatment of an in-
compressible Quid with finite viscosity and electrical
conductivity, and basic equations suitable for the
treatment of some representative limiting cases are
derived.

The equations of motion and of induction are,
respectively, written in the form

while the induction equation (45) reduces to

( 1 8 Uap Uav
/b'= ——

v at v as) v ax
(49)

where v = 1/o p, and 8/as—=e' grad= differentiation
along e'. The form of Eq. (49) suggests putting

b*=R b, R =UI./v, (50)

I being the characteristic length (taken I=1, for
simplicity). Thus Eqs. (47) and (49) become, in non-
dimensional forms,

f6 R(a/a—t+8/as) }v= II'ab/a—x+gradl) (51)

R„(a/a—t+8/as) }b = —av/app, (52)

where

R= UI./v, Rv, ,= UI/v =otsUI
(53)

IIP=gPgIP/pv=~/QP, g= U/P' = (U/Il)(ppt)&.

R, R, H, and A are the Reynolds number, magnetic
Reynolds number, Hartmann number, and Alfven
number, respectively.

Since
divv= 0, divb =0,

we have, from Eq. (51)
„

b*,v=O(p). On neglecting O(p'), Eq. (44) becomes

( 18 Ua) 8' ab*
fv= — +grady, (47)

v at v as) pvpU ax

p=LP+(&'/p)b *j/p U

BV
p—= —p(V grad)V+ —(B grad)B

Bt p

(55)hp=0.

(56)
and where

88 1——curl(V&&B) ——curl curlB,
Bt O'P

(45) vp= gz(a/at+8/as) grad&, bp ——(8/ax) grad& (57)

7-=(aPBP/ax' —RR„(a/at+8/as)'}y (58)

Ay=0. (59)
where v is the kinematic viscosity and 0. is the electrical
conductivity; p, v, and a are assumed to be constant.

Let us write Thus, we anally have a system of equations

R(8/at+8/as) }v—g II'aha/ax—— —

(6—R (8/at+8/as) }by———ave/ax

divvy= 0) divbg=0.

(46)B=8(e+b*), V= U(e'+v), (60)

(61)

(62)

where e= (1,0,0), e' is an arbitrary unit vector, and

4 W. Chester, J. Fluid Mech. 3, 304 (1957).
5 H. Yosinobu and T. Kakutani, J. Phys. Soc. Japan 14, 1433

(1959).' H. Yosinobu, J. Phys. Soc. Japan 15, 175 (1960).
7 K. Gotoh, J. Phys. Soc. Japan 15, 189 (1960).

K. Gotoh, J. Phys. Soc. Japan 15, 696 (1960).' J. E. McCune, J. Fluid Mech. 7, 449 (1960).
"W. R. Sears and E. I,. Resler, J. Fluid Mech. 5, 257 (1959).

Syecial Cases

(i) Small-pertgrbatiorp theory of inpiscid porn at small
magmetic Reylolds nlmbers ['Rv pp, R =O(1)j. In

Now p can be eliminated from Eqs. (51) and (52) by( +2$
-grad~ p+—~+pvAV (44)

2p& v= vp+vi, b= bp+by,
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this case Eqs. (60) and (61) become, respectively,

(8/Bt+8/Bs)vg (1——/A')Bb&*/Bx, (63)

{4—R (8/Bt+8/Bs}}by*———R Bvg/Bx, (64)

while Eqs. (5'7)—(59) become

vo ——(8/Bt+8/Bs) grady*, bo*——(8/Bx) grad@~ (65)

p =R{(1/A') 8'/Bx' —8/Bt+8/Bs') y* (66)

6&*=0. (67)
Finally, we have

V= U(e'+v), v= vo+vs (68)

B=B(e+b*), b*=bo*+by* (69) flow, we have only to replace 6 by 6—RB/Bt
in Eqs. (78).

(ov) I'arallel fields at inf»noty (e=e'). In this case we
Can put

p= fop —(&'/ )b.*.

(to') Smal/ pertlrba-tion theory of znvoscod jhow at large
magnetic Reynolds numbers (R —+ oo, R ))1). In this
case, it is convenient to rewrite Eqs. (63) and (64) in
the form u, =vg+X.,bg (o=1,2),

(d —R;8/Bx) u;= 0,

R, ,,=-, (R+R„)~L-, (R-R„)+H j»

) g, o
———,'(R—R„)WL-,'(R—R )'+H'j'.

(82)

(83)
(oo'o) R=R; hence H=R/A=R /A. For simplicity,

let us 6rst consider the steady Qow. If we dehne ul
aQd N2 by It is obvious that E~&~0 as A'&~1, whereas E2&0. This

implies that the wake TVg is situated always around
the positive x axis, while the wake 8"I appears around
the negative or positive x axis, as A' is smaller or
greater than 1.

In particular, when R—+0, R ~0 (H being kept
finite)

uy=vy+Hby, uo=vy —Hby,

vg=-', (up+no), bg ——(1/2H) (ug —uo), (74}

then Eqs. (60) and {61)lead to

(6 RB/Bs+H—B/Bx) ug 0——

we ha
Bv,/Bx= (8/Bt+8/Bs)by~ (1/R —)c&&~, P1)

(8/Bt+8 /Bs)vg (1/A')B—b—&*/Bx. {72)

(d RB/Bs HB/Bx—)uo 0. — ——{76)

Sy orthogonal transformations,

(g,y) -+ (x',y') and (x,y) -+ (x",y"),

tanB'=A sinn/(A cosa —1);

t8tltt =A Blntt/(A cDB +l),J
{77}

O'= Zxgx', 8"=ZaOa", (0~8',8"& ), Eqs. P5) and

(76) reduce, respectively, to

(6 H'8/Bx') ug 0, (6——H"8/Bx") u——o ——0, (78)

v= o (us+no)

b= (8/Bx) grado»+ (1/2H) (u~ —uo)

p =H'8'y/Bx'

p/pr U= p EPb, = (H/2) (No.——Ng ),

(84)

(85)

(86)

(87)

This case colrcspoQds to thc Stokes apploxiDlatlon.
(v) Stokes approxomatoon (R-+0, R -+0). This case

can be obtained as a special case of either (iii) or (iv).
Thus we have

H'= H(1+A' —2A cosa)»

H"=H(1+A'+2A cosn)»
P9)

Herc 0. is the angle between c and c', i.e., the angle
between the undisturbed Bow and magnetic 6eld
(Fig. 2). By analogy to the Oseen approximation,
Eqs. (78) imply that two wake regions Wq, Wo develop
along the x' and x" axes, whose widths are proportional
to (H') ' and (H") ', respectively. For the unsteady

(6+EZB/Bx)ug 0, (5 HB/Bx)u——o 0— ——

hp= 0.

IIL GENERAL SGLUTIGNS GF THE
STOKES APPROXIMATION

(88)

(89)

In the pl cccd1ng sectlonq thc Stokes"type approxi-
mation for the magnetohydrodynamie Rows at smaH

magnetic and ordinary Reynolds numbers have been
formulated in the form given by Eqs. (84)—(89). At
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Grst sight, it might appear that this formulation would
be more complicated than Chester's, which deals only
with the velocity Geld and considers the magnetic
Geld to be unaffected by the slow motion of the Quid.
However, as is seen in the following, the governing
equations are essentially the same as for Chester's
formulation. Rather, in Chester s formulation it is
somewhat embarrassing that the number of boundary
conditions is too small in comparison with the order
of the governing differential equations, whereas in our
formulation in terms of v and 1, the boundary conditions
for v and b just suKce to determine the solution
uniquely. As a matter of fact, Gotoh' has extended
Chester's analysis to the three-dimensional Qows, and
shown that it is necessary in the general case to take
the induced electric Geld potential as a further unknown
variable besides the Qow velocity v. At any rate, it
seems to the author that the formulation in terms of
v and b is most convenient, since it leads to the general
expressions for magnetohydrodynamic Qows as well as
for the force and moment acting on a submerged body
in a very natural and straightforward manner.

Let us consider the expression

Bro+fs B
I,(„+—Q D„„«)—E[k(r+x)]+——

H BQ~Bs" Bp H B$

B B—(D„„&')(E[k(r+g)]—log (r+x) )
H Bp Bs"Bg D„&'—)/r)+()„+Hb„, (96)

where E($) is a function defined by

E(~)=~'

1)llew
=7+logk+ Z

o'sI

y=0.5772. ~ being Euler's constant. E[k(r+x)] is a
particular solution of

(6+2kB/Bx)ug ——0; H=2k. (98)

The lhs of Eq. (96) satisfies Eq. (98), and moreover it
is one-valued and regular [as seen from the rhs of
Eq. (96)]. Hence it must be expressible in the form
similar to Eq. (92). Thus

General Exyressions for the Velocity
and Magnetic Field.

From Eqs. (84) and (85), we have

u&
——v+H[b —(8/Bx) grady].

BNl+ll ( 8 q s (l(r+x)-
(90) +&(I—Z ~

~~~ +~~ll
By B2;" I Bx) r

Hence, by Eq. (86)

I& ='v +Hb Hp. —(91)

B B——D„„(0)—E[k(r+x)] ———. (99)
2k By 2k By

This is regular and one-valued in the Qow Geld. Since
I(, satisfies Eq. (88) and vanishes at infinity, it must
be of the form

and N2 can be obtained in a similar manner. Thus,
finally we have, by Eqs. (84)-(86),

s-))(r s)-

+~ &' ~"'+&'""
Bx) r

Since p is a one-valued harmonic function, we can write

Bnl+nr, B ~
s-))(t+e)

v=-'Z ~~&-")+&-")—
I..= Z I

~..()+~..()—
~ ( (. (92)

'
8,-8,. i

"" ""
B*i

Bx& By"Bs"( r

89$ ~ ( 8 ) Blll+ll f1)~ID ()+D ()
Bg' m,~ g Bs) By Bs" &rJ

whence, on integration we obtain

D &') log (r+x)+D
r

+f(y,s), (94)

f(y,s) being an arbitrary harmonic function

8'f/By'+8'f/Bsm= 0.

Now, from Eq. (90), we have

Iz„=()„+H[b„82$/BxBy]. —

—D„„(o)~0, —,—(g, (1oo)
1 ( 8 8$

( 'By'Bs) 'I

Blll+ll (
- ( 8 ) s-&(&*)

(
C (0)+C

4k By"Bs"I . ( Bx)

8 q
s-k(r e)- . 1

(0)+&'~.")—
I

+-( 0 ——
I

Bg) r k ( By Bs)

&( (
D„'„(0)go+D„„(')-i+ e ~ (101)

8$
r) Bss

Bmy Blll+ll

g-=4k =P
~

D «)+D. «)—~-,
Bg' By"Bs"&

Blair'
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Here constants with a negative subscript should be
taken to be zero. For example,

Dao(o) —0

A 00( )=—2k' 00( )

+00( ) —g 00(o) — Dlo(o)

Coo(o) —C~oo(o) — f70~(o) . . .

(110)

where

(105)

(106)

Eqs. (100) and (101) can also be written in the form

v=. . .{[((;„(0)+("„'(0))f

+(("~~")+("'~."))Bf./Bx

+(f {03 $1 (0))f

+ (Q (0—$1 (())Bfo/Bg] . . .} (107)

h —.. .{[(g (0)—g~ (0))f

+((.""'+C' ('))Bfo/Bx]+ }; (108)

g.=-,'{E[k(r+x)]+E[k(r—x)]—log(y'+s') } (103)

go=-', {E[k(r—x)]—E[k(r+s)]
log[(" &)/(~+*)]} (104)

On putting

Bwa+n

)
0

)
PD„„(0)

By Bs) 4k By"Bs"
log(y'+s'), (»1)

which represents a uniform distribution of various
kinds of multiplets on the x axis.

General Formulas for the Force and Moment
Acting on a Body Placed in an Electrically

Conducting Fluid Flow in the Presence
of Uniform Magnetic Field

By considering the conservation of momentum, the
force F acting on a body 8 can be calculated by

From expression (100), it is obvious that the v 6eld
consists of two wake regions and outer region„namely,
the terms containing exp[—k(r+x)] or E[k(r+x)]
represent a paraboloidal wake extending in the negative
x direction, while those containing exp[—k(r —x)] or
E[k(r—x)], the wake extending in the positive x
direction. The outer region is that influenced by the
D „(o)terms, and has a character of two-dimensional
irrotational Inotlon slncc thc Row thclc ls glvcn by

f, and g, are even and fo and go are odd with respect to x.
The expressions (107) and (108) are convenient for the
treatment of symmetrical bodies such as a sphere.

Because of the relations divv=0 and divb=0, the

8' „('),C' „(')),are not entirely independent, but are
subjected to the conditions

F =)l J (p{, pV VI,)eI,dS—(112)

where S is an arbitrary closed surface enclosing the
body 8, and n its outward normal (Fig. 3). p;g is the
stress tensor given by

PQ = PBQ+p&sQ+ 7 i&x

D „(o)
= —2k(A ")—2k' o)+B„),„(')+C„,) (')) (109)

=~'~2 o)+&'~ ~s")—~'~-i ~(0)—C'm ~((0)

e;a=B ;V/xBp +VBp/Bg;

2'~=u '(~A —-'&'&),)

(114)

(115)

T;I, being the Maxwell stress in the magnetohydro-
dynamic approximation. Since

D „(0) V= U(e'+v), 8=8„(e+Eh), (116)

we have, on neglecting second-order small quantities,

(2E ) '+k,
b~

b,

(117)

(118)
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In the Stokes approximation, pV;Vp can be neglected in Eq. (112), so that

where

f f'
F;= I P,pepdS

p;p &'0 2f. kv= e@ HP —o@+EP bv 0 0
pvU Bx' b, 0 0

(119)

(120)

Similarly, the moment M acting on the body is given by .this situation with the Kutta-Joukowski theorem in
conventional aerodynamics.

cV;= (x,Pp( —xpP, i)evES,
J

(121) Arbitrary Motion of a Sphere

Itk' l (122)

(Fig. 4). On Sp, the terms containing exp[—k(r&x)]
or E[k(r+x)] are negligible, and the normal vector
has the components

n= (0, ev, e,),
while on the bases Sj. and S2,

n= (&1,0, 0).

Thus the evaluation of the integrals (119) and (121)
are considerably simplified.

On employing the expressions for v and b as given
by Eqs. (100) and (101), it is found that the viscous
stress pre;g, contributes nothing to I' and M. The Gnal
result is

F~= —4o pvU(Aoo&'&+A'op&'&+Doo "&)

F„=krpvUDgp(0'

F,=4n.pv UDpy

(123)

M,= 2vrpvU(C&p~ '+C yp~ ~ —Bpy~ ~ —Bpy ~ ~)

M v= 2prpvU(Dpi &'&+2 (A pi ~'&+A ~pi "&)) (124)

M, =—2mpvU(Dio '+2(Aio +A'io )j.
Thus F and M depend only on the first few terms of
the expressions for v. It may be interesting to compare

FIG 4. 2h

(oj,k) being even permutation of the numbers 1, 2, 3.
On remembering the wake property of the v and b

Gelds, it is convenient to adopt as the control surface
S a very large circular cylinder with its axis coinciding
with the x axis. Its cylindrical surface S3 is to be taken
so large as to be completely away from the magnetic
wakes. Then the diameter 2h and the length 21 of the
cylinder can be taken to be in such a relation

As an example of application of our formulation, the
magnetohydrodynamic Qow due to an arbitrary slow
motion of a sphere in a conducting Quid in the presence
of a uniform magnetic Geld has been investigated.
Because of the linearity of the Stokes approximation,
we have only to consider the four special cases, (i)
translation parallel to the x axis, (ii) translation
parallel to the y axis, (iii) rotation about the x axis,
and (iv) rotation about the y axis. Obviously the
translation parallel and rotation about the s axis can
be immediately found from (ii) and (iv), respectively,
in view of the symmetry of the geometry.

Boundary conditions are as follows: (1) the velocity
v is given on the body surface, and (2) the magnetic
Geld b must be continuously joined to that in the
body, which is given by b~'&=gradx, where EX=0, for
an insulator.

For small values of the Hartmann number B or k,
we can use the method of expansion in powers of k;
the calculation is straightforward. Here, for brevity,
only the results concerning the force and moment are
given:

(i)

(ii)

(iii)

(iv)

F,=6s (1+4ok)pvUa

F„=6pr[1+ (9/8) k]pv Ua

M =—8n.[1+(4/15)k'jpvOa'

Mv= —8or[1+ (4/45) k'jP vQao.

All the other force and moment components vanish.
Here a is the radius of the sphere, U and 0 are the
magnitude of linear and angular velocity, respectively.
The results (i) and (ii) are in agreement with Chester's
and. Gotoh's results, respectively. The results (iii) and
(iv) are believed to be new.

The resisting force and moment have different
magnitude depending on the direction of translation
and rotation. Therefore, if the sphere is left free in the
Quid with some initial translational and angular
velocities, it moves on a curved path with its axis of
rotation changing continuously, in such a manner that
it tends to move in the direction parallel to the magnetic
Geld, rotating about an axis perpendicular to the Geld,
until at last it comes to a standstill.


