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1. INTRODUCTION

HE equations governing the dynamics of

compressible fluids that are electrically conduc-
tive combine the laws of electromagnetism with the
gas-dynamical requirements for conservation of mass
and energy. The laws of physics apply to finite nonzero
quantities; it is, therefore, natural that the combined
relations should appear initially in the form of integral
equations. Since the unknown functions can be
differentiated, one may immediately deduce from the
integral forms the partial differential equations govern-
ing continuous flow. If the electrical conductivity of
the fluid is infinite, the resultant partial differential
equations take the same form as the equations of
classical fluid mechanics (zero electrical conductivity).
Specifically, if viscosity and thermal conductivity are
neglected, there result from both cases first-order
normal hyperbolic equations; and in both cases shock
waves are able to propagate through the fluid. The
equations for the transition across a shock front were
first derived by de Hoffman and Teller! for steady
flows and by Liist? for the general case.

The object of the present work is the study of a
particular problem relative to flows with shocks in
ionized gases. We consider steady flows about a wedge
in the case where there is an attached shock wave. In
classical fluid mechanics the solution of the problem
is well known; the difference between this solution
and the one obtained here takes into account the
influence of the magnetic field; the two solutions are
identical when there is no magnetic field. The presence
of a magnetic field involves many difficulties; the
most simple case is that in which the magnetic field is
parallel to the velocity of the fluid; the electric field
is then zero. This work is a study of this case.

2. EQUATIONS OF SHOCK PHENOMENA

Let us consider a compressible fluid that is electrically
conductive; the electric field and the magnetic field
are indicated by E and H, respectively, the velocity of
the fluid is indicated by V; the magnetic permeability
u is assumed constant. The functions p, T, and p repre-
sent the pressure, the temperature, and the density; the
adiabatic index v is assumed constant and the fluid is
supposed to obey to the law of perfect gases, p=RpT.
As the electrical conductivity is assumed infinite, the
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electric field E can be eliminated by the relation
E=—VXuH, and the shocks equations (Faraday’s law,
fundamental dynamic ‘law, principles of mass con-
servation, and energy conservation) indicate that the
two following vectors and the two following scalar
quantities remain constant across the shock wave?:

(V.—W)H—-H,V
(Va=W)pV+=
(V=W (1)

V:oop  uH?
(V.—W) (P—+——+——) +=-V
2 y—1 8r
with
w=np-+n(uH?/8r)— (uH H/4r). (2

We denote by n the unit vector normal to the shock,
by H.,=n-H and V,=n-V the components of the
vectors H and V along the normal to the shock. W is
the velocity of the displacement of the shock wave.
The results just established permit us to evaluate the
unknowns H, V, p, and p when the values in front of
the shock and the velocity of the displacement W are
known. When the magnetic field is zero we again
obtain the classical fluid mechanics equations. From
the shock equations we obtain Eq. (3); in the case of
a stationary shock we find that the eléctrical field
behind the shock is zero when the electrical field in
front of the shock is zero:

hy,—hy
Ez—E1=—l:—{nEn1—nWXMH1}, (3)
1
with
hz— }11 ~p1 (an'— W)2_ (,uH,,2/47r)

hi  po(Vne—W)2— (uH 2/4r)

4)

h=nX (HXn) is the component of the magnetic field
in a plane tangent to the shock wave. We indicate by
subscript 1 the values before the shock, and by sub-
script 2 (or without subscript in the next section) the
values after the shock.

3. PROBLEM OF THE ATTACHED SHOCK WAVE

Let us consider a uniform steady flow; the magnetic
field, the velocity of the fluid, the pressure, and the
density are constant. Within the fluid there is a plane
stationary shock wave; because of the shock conditions
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and the equations of motion, the flow behind the shock I
is still uniform and must be determined. 150° e
If the electrical field is zero, a plane parallel to the 1 7-Z
velocity of the fluid and normal to the shock wave is a 1200 f——=—
plane of symmetry for the figure. Let us consider such -
a plane (Fig. 1). Let us indicate by 8 the angle of the 90° -
shock wave with the velocity vector in front of the (
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the velocity vector across the shock wave, we can | S~
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(a) €=0.1; (b) €=1; (c) €=10.
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Equation (6) is a fifth-degree equation in tang and
of the third degree in tanf. When the magnetic field is
zero, the degree is decreased by two in each case. This
equation is investigated by giving particular values
to certain variables.

Let us suppose that the adiabatic index has a con-
stant value y=1.4, and let us consider for a given
wedge [0 is 20° in Figs. 2(a)-2(c)] the variation of
shock angle B as a function of the parameter «, the
parameter e being constant. Three cases are shown:
in Fig. 2(a), €=0.1 (weak magnetic field) : in Fig. 2(b),
e=1; in Fig. 2(c), €=10 (strong magnetic field). For
the parts of the curves drawn with solid lines, the
entropy variation across the shock is positive; for the

20° 60°

9

20°

40°
() -

Fic. 3. (a) Weak magnetic field; (b) strong magnetic field.
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curves with broken lines, the entropy variation is
negative, so that the second principle of thermo-
dynamics is not fulfilled; the corresponding shocks
therefore cannot have any physical reality and must
be eliminated. While many shocks are possible, we are
led to consider that the shock which occurs is that
which corresponds to the smallest entropy increase;
it happens that this shock corresponds to the smallest
value of the angle 8. [In Fig. 2(c) we have indicated
the ratios of the specific entropy variation to the
specific heat at a constant volume. ]

For a given wedge and a given magnetic field, we
find there is no attached shock wave when Eq. (6) has
no real root, corresponding to a positive variation of
the entropy. To obtain in the #-x plane the boundary
curve of the regions in which the shock waves are
attached (unshaded regions in Fig. 3) we have to
eliminate B from (6) and the equation which Tesults
by differentiating (6) with respect to 8. For a weak
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F16. 6. Total pressure on the wedge for y=7/5:
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magnetic field (< 1) the curve () has three branches,
1, II, IIT, whose ordinates at the origin, are, respec-
tively, e(1+€)% ¢ and 1: Fig. 3(a); when the
magnetic field is zero, the branches I and II go to the
axis =0 and we find again the results of the classical
aerodynamics. For strong magnetic field (e2>1) the
curve x(6) has only two branches, I and III [Fig. 3(b)].
The family of curves corresponding to the branches
I is drawn in Fig. 4. The family of curves correspond-
ing to the branches IT and III is drawn in Fig. 5; all
the curves have as an asymptote the straight line de-
fined by the relation vy sinf=1.

4. CALCULATION OF PRESSURE AND
TEMPERATURE

The aerodynamic pressure p is defined by Egs. (5).
The presence of the magnetic field has the effect of
decreasing the pressure: this result is paradoxical in
appearance only. The pressure represents in effect only
a part of the action of the fluid on the wedge; to obtain
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the total action, we have to add the electromagnetic
forces. The force F exerted on the wedge by a unit
surface is the vector defined by Eq. (8) in which v is
the unit vector normal to the wedge (8):

F=vprtv(u/$r) — (L H/4r). ®)

In the actual problem, the magnetic field is parallel
to the wedge, hence H,=H-v=0; the vector F is
normal to the wedge. The variations of the quantity
p+ (uH?/8x), called “total pressure,” as a function of
the velocity are illustrated in Fig. 6. The presence of
the magnetic field has the effect of increasing the
“‘total pressure’”; we can also say that the magnetic
field has the effect of increasing the drag.

The temperature is defined by the law of perfect
gases, p=RpT; its variations as a function of the
velocity are shown in Fig. 7. The presence of the
magnetic field has the effect of decreasing the temper-
ature on the wedge.



