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1. INTRODUCTION

HE equations governing the dynamics of
compressible Quids that are electrically conduc-

tive combine the laws of electromagnetism with the
gas-dynamical requirements for conservation of mass
and energy. The laws of physics apply to finite nonzero
quantities; it is, therefore, natural that the combined
relations should app|.'ar initially in the form of integral
equations. Since the unknown functions can be
differentiated, one may immediately deduce from the
integral forms the partial differential equations govern-
ing continuous Qow. If the electrical conductivity of
the Quid is in6nite, the resultant partial differential
equations take the same form as the equations of
classical fluid mechanics (zero electrical conductivity).
Specifically, if viscosity and thermal conductivity are
neglected, there result from both cases first-order
normal hyperbolic equations; and in both cases shock
waves are able to propagate through the Quid. The
equations for the transition across a shock front were
first derived by de Hoffrnan and Teller' for steady
Qows and by Lust' for the general case.

The object of the present work is the study. of a
particular problem relative to Qows with shocks in
ionized gases. We consider steady Qows about a wedge
in the case where there is an attached shock wave. In
classical Quid mechanics the solution of the problem
is well known; the difFerence between this solution
and the one obtained here takes into account the
inQuence of the magnetic 6eld; the two solutions are
identical when there is no magnetic field. The presence
of a magnetic field involves many difIiculties; the
most simple case is that in which the magnetic field is
parallel to the velocity of the Quid; the electric field
is then zero. This work is a study of this case.

2. EQUATIONS OF SHOCK PHENOMENA

Let us consider a compressible Quid that is electrically
conductive; the electric 6eld and the magnetic field
are indicated by E and 8, respectively, the velocity of
the Quid is indicated by V; the magnetic permeability
p is assumed constant. The functions p, T, and p repre-
sent the pressure, the temperature, and the density; the
adiabatic index y is assumed constant and the Quid is

supposed to obey to the law of perfect gases, p=EpT.
As the electrical conductivity is assumed infinite, the
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We denote by n the unit vector normal to the shock,
by H„=n H and V„=n V the components of the
vectors 8 and V along the normal to the shock. 5' is
the velocity of the displacement of the shock wave.
The results just established permit us to evaluate the
unknowns H, V, p, and p when the values in front of
the shock and the velocity of the displacement 5 are
known. When the magnetic field is zero we again
obtain the classical Quid mechanics equations. From
the shock equations we obtain Eq. (3); in the case of
a stationary shock we 6nd that the electrical field
behind the shock is zero when the electrical field in
front of the shock is zero:
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h=nX(H&(n) is the component of the magnetic field
in a plane tangent to the shock wave. We indicate by
subscript 1 the values before the shock, and by sub-
script 2 (or without subscript in the next section) the
values after the shock.

3. PROBLEM OF THE ATTACHED SHOCK WAVE

Let us consider a uniform steady Qow; the magnetic
6eld, the velocity of the Quid, the pressure, and the
density are constant. Within the Quid there is a plane
stationary shock wave; because of the shock conditions

' H. Cabannes, Recherche aeronaut. (Paris) No. 'It, 3 (1959).

electric field E can be eliminated by the relation
E= —V)(pH, and the shocks equations (Paraday's law,
fundamental dynamic law, principles of mass con-
servation, and. energy conservation) indicate that the
two following vectors and the two following scalar
quantities remain constant across the shock wave':
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Fro. 1. Note. Letters in Ggure with overhead arrows
correspond to boldface letters in the text.
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and the equations of motion, the Qow behind the shock
is still uniform and must be determined.

H the electrical field is zero, a plane parallel to the
velocity of the Quid and normal to the shock wave is a
plane of symmetry for the figure. Let us consider such
a plane (Fig. 1). Let us indicate by p the angle of the
shock wave with the velocity vector in front of the
shock. By introducing the angle 8 as the deviation of
the velocity vector across the shock wave, we can
express all the unknown functions H, V, p, and p after
the shock in terms of p and 8. We obtain further a
relation between the two angles:
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Let us introduce the parameters x and e, non-
dimensional quantities proportional to the velocity of
the Quid and to the magnetic Geld before the shock,
respectively. The shock angle is determined as a
function of 8, the parameters x and ~, and the adiabatic
index v by Eq. (6), obtained from the last of Eqs. (1):
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magnetic Geld (er&1) the curve @{8)has three branches,
I II III, whose ordinates at thc ox'lg1n are respec-
tively, e(1+e'), e, and 1: Fig. 3(a); when the
xnagnetic Geld is zero, the branches I and II go to the
axis x=o and we Gnd again the results of the classical
aerodynamics. For strong magnetic field (e')1) the
curve a(8) has only two branches, I and III LFig. 3(b)j.
The family of curves corresponding to the branches
I is drawn in Fig. 4. The family of curves correspond-
ing to the branches II and III is drawn in Fig. 5; all
the curves have as an asymptote the straight line de-
6ned by the relation y sinai= 1.

a. CALCULATION OF PRESSURE AND
TEMPERATURE

The aerodynamic pressure p is defined by Eqs. {5).
The presence of the magnetic Geld has the CG'ect of
dccx'casing thc pressure: this result ls pax'adoxlcal in
appearance only. The pressure represents in CA'ect only
a part of the action of the Quid on the ~edge; to obtain

F«. '/. Temperature on the wedge for y =7/5:
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the total action, we have to add the electromagnetic
forces. The force F exerted on the wedge by a unit
surface is the vector de6ned by Kq. (8) in which v is
the unit vector normal to the wedge (8):

F=vp+v(irP'/8rr) (@II.H/—4w). (8)

In the actual problem, the magnetic Geld is parallel
to the wedge, hence H„=H v=o; the vector F is
normal to the wedge. The variations of the quantity
p+(iiH'/8e. ), called "total pressure, " as a function of
the velocity are illustrated in Fig. 6. The presence of
the magnetic Geld has the cGect of increasing the
"total. pressure"; wc can also say that the magnetic
Geld has the efkct.of increasing the drag.

Thc tcmpclaturc ls dcGncd by thc law of perfect
gases, p=EpT; its variations as a function of the
velocity are shown in Fig. 7. The presence of the
magnetic GCM has the effect of decreasing the temper-
ature on the wedge.


