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INTRODUCTION

HERE are two points of view in shock-wave
theory. According to the 6rst one, shock waves

are discontinuities in a perfect-Quid Qow. The shock-
wave relations and the equation of state allow one to
establish, using for instance the method of Weyl, ' the
fundamental properties of shocks. In the second, which
may be referred to as "shock-layer theory, '" the Quid
is not assumed to be perfect, but some dissipative
mechanisms are allowed, each one being characterized
by a dissipation coefIicient which usually is assumed to
be small. The shock layer is then the region in which
the Qow appeared as a result of a balance between
nonlinear effects (arising from the inertia terms) and
dissipative e6'ects (which become important when
gradients are themselves important).

This paper is devoted to the study of these two types
of questions when the Quid is electrically conducting
and subjected to a magnetic field. The following
assumptions are made: the Qow is plane and stationary;
the magnetic field is also plane (in the same plane, say,
xy); all the physical quantities depend on the coordinate
x only and are uniformly bounded in x for all x (—eo

&x&+ eo). The equation of state is subjected only to
Weyl's conditions. ' The dissipative ef'fects are the
viscosity (two coeKcients), the thermal conductibility
(one coeScient), and the inverse of the electrical
conductivity (one coeKcient). No assumption is re-
quired as far as the behavior of these coefBcients with
respect to the thermodynamical or physical quantities
(for instance, temperature or magnetic field) is con-
cerned. When writing the equations governing the
problem, one gets a system of four differential equations
with four unknowns (Sec. 1). However, this system
may be written in a compact form (Sec. 2) by using
the dissipation energy and a generalized thermody-
namical potential which is independent of the dissi-
pation sects.

Shock waves in a perfect-Quid Qow theory depend
only on a system of four ordinary algebraic equations
when the constants of the Qow, such as mass Qux,
momentum Qux, and energy Qux are Axed. It can be
shown (Sec. 3) that there are at most four solutions
Si, S2, S3, S4, each of these solutions being characterized
by the value of the normal speed component relative
to the three small-perturbation (or characteristic)

' H. Weyl, Communs. Pure Appl. Math. 2, 103 (1949).' D. Gilbarg, Am. J. Math. 78, 256 (1951).

speeds. The value of the index of a solution S is chosen
so that the specific entropy is an increasing function
of this index. Thus, according to this theory, a shock
from a state S; to a state S; may exist if i&j.

Now the question arises: Is such a Qow the limit of a
Qow with dissipation sects, when the dissipation
coefficients become vanishingly small) To discuss this
problem, the shock layer must be considered. The
previous states S correspond to the singular points of
the differential system; the eigenvalues of the linear
system which give the local behavior of the solutions
near such a singular point are easily f'ound (Sec. 4).
The fast shock so-lution —transition from St to Ss—is
shown to be stable (Sec. 5). That means that there is
one and only one integral curve from Sr to Ss (in a
convenient four-dimensional space) and that, if the
upper bound n of the dissipation coeKcients tends
towards zero, the flow in the physical plane tends (if
conveniently normalized) to the corresponding perfect-
Quid shock flow. For an intermediate-shot, .k—transition
from S~ or S2 to Sa or S4—such a result is not valid
(Sec. 6). Moreover, it can be proved that an inter-
mediate shock is eever stable. Finally, no general
conclusion can be stated for the slow-shock transition
from Ss to S4—such a Qow may be stable, but a counter-
example may be constructed (Sec. 7).

Several papers are devoted to the shock-layer theory
in magneto-Quid dynamics, for instance, those of
Marshall, ' Burgers, 4 and Ludford. ' However, in these
papers at least two of the four dissipation coeKcients
have been assumed to be zero and no discussion has
been given of the stability of the Qow. On the other
hand, the problem of stability is considered by Akhiezer,
Liubarskii, and Polovin, but these authors discuss the
question in the framework of the perfect-Quid Qow

theory. Their general conclusions generally agree with
those of the present paper except for the slow shock,

where they state that the slow shock is always stable.
Such a difference is not surprising, for the definition of
stability is not the same. Details of the proofs can be
found elsewhere. '

' W. Marshall, Proc. Roy. Soc. (London) A2M, 367 (1955).
4 J. Burgers, in 3/Iugwetohydrodynumics, R. K. M. LandshoG,

Editor (Stanford University Press, Stanford, California, 1957).
5 G. S. S. Ludford, J. Fluid Mech. 5, 67 (1959).

A. I. Akhiezer, G. I. Liubarskii, and R. V. Polovin, J. Exptl.
Theoret. Phys. 35, 731 (1958) /English translation: Soviet
Phys. JETP, 587 (1959)g.

7 P. Germain, O. N. E. R. A. Publication No. 97 (1959).
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I. GERMAIN

l. BASIC EQUATIONS the basic system to be discussed has the following form'.

On using normalized units (mksq), Ohm's law and
Maxwell's equations, when electrostatic forces and
displacement currents are dropped, reduce to

J=p (E+VX8) div8=0
pt8/Bt+v X E=O v X8=t4J.

(ot4') 'dB/dx= MDBr/t4) B—p*p+F*7

m pds/dx M=(s B—p*B)

m,M'dr/dx=M&p+M'r+ (B'/2p) P7-
kd T/Cx =M Le

i MP—rP i pP —(BPr—/2t4)

E+B+ —BpPBn+ Pr —C7,

(6)

V is the velocity vector, B magnetic induction, E
electrical field, J current density, p, magnetic inductive
capacity of free space. When writing the momentum
and energy equations, one must take account of the
electromagnetic momentum source JXB and of the
electromagnetic energy source E J. On the other hand,
for convenience, viscous stresses are written (with
obvious notations)

r;,= (mi —2mp) V4, pS;,+ mp( V;,, +V;,;) (2)

introducing the coefficients m2, which is the usual
viscosity coeKcient and m&, instead of the bulk vis-
cosity. As usual, the heat Qux is written

Q= kvT. —

t, is the specific internal energy.

2. INTERPRETATION OF THE SYSTEM

The dissipation mechanisms give rise to some
dissipated energy: 0 'J'= (ot4') '(dB/dx)' (dissipation
by Joule effect), m, (CN/dx)'+mp(dp/dx)' (dissipation
by viscous forces), kT '(dT/dx)' (dissipation by thermal
conductivity). Let us define

1 1 t dB~' )dr~'
I+m, M

I
—

I

T ~t4( d )xEdx)
(ds~' k (dT~'

ym.
(

—[+—
] (, (V)

Edx& T E dx)

Finally, the equation of state is taken as

p=G(r, s),

with p pressure, r specific volume, s speciac entropy.
The function G is assumed to check the classical Weyl
conditions

G,(0, G„&0, G,&0. (5)

Let us recall that c'= —r'G„where c is the sound speed.
Now, according to the assumptions which have been

stated in the Introduction, we may denote by u, v, 0
the components of V, and by 80, 8, 0 those of B.Thus
t4Jt is the vector (0,0,dB/dx) and E has only one
component —the third one, E—which is not zero.
Equations (1) show that Bp aed E are constartt and that

dB/dx= 0t4(NB »p+E)—
The continuity equation shows that N=Mv, where M,
a positive constant, is the mass flux (M= pl). Conser-
vation of momentum and energy give

pyp44'+(2p) 'B'=m, (d44/dx)yP-

pgv t4 'BpB=mp(dp/dx—)+-Pp

pNLk+k(1'+ tp)7 —(EB/p)
=m,st(dg/dx)+ m, s(ds/dx)+ k (dT/dx)+ MC.

P, I'2, C are, as are M, J30, E, integration constants;
h is the specific enthalpy, T the temperature. Without
loss of generality, I'2 may be taken to be zero. Thus,
if we introduce the new constants E* and 80*,

E=3fpE*, J30=MAMBO*,

a quantity proportional to this dissipated energy, which
is shown later —see (11)—the entropy source in the
Quid. Now, the following generalized potential is
introduced:

2M 8'7 M'v' v'
+ +—f(r,T)—

2 2T 2p

+EPB Bp*Bp Pr+—C, (—8)

where f is the Helmholtz free energy per unit mass,
i (I'+e') = ip ( Mr'+ )cthe kinetic energy, 'and (2t4p)

—'B'
the magnetic energy. As

then
df = sdT pdr, — —

2Ms=OR+ THOR/BT.

(10)aX)/8q;= ptOR/ttq,

It is easily shown that

Mds/dx+ (d/dx) L
—(k/T) (dT/Cx) 7= n (11)

and that
&2

OR(xp) —OR(xi) =2 ndx,
&I

(12)

Thus 5K is a nondecreasing function of x. The precise
question may be stated as follows: In the space (h)
defined by the q;, find an integral arc curve (L) of

To be more systematic, the variables, 8, v, r, T are,
respectively, denoted by qi, q&, qp, q4, and dq;/Cx by q;.
Then, the system (6) may be written in the more
compact form
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(10)—say, S,, S,—along which x increases from —pp

to + u . When the point q, of (I) tends towards S; or
S;, S must tend towards zero, because 5K remains
finite. Then j, and an/aj, tend towards zero, and
consequently:

Theorem I. The points S of (8) which muy be end

Points of arcs (I) are Points which make OR stationary.
These points will be denoted by S&, S2, . As a

result of (12) OR(+~)&OR( —u ) and according to
(9), it may be stated:

Theorem Z. If S, and S, are end points of un arc (I.)
sech that these points correspond, respectively, to x= —pp

and x=+ pp, then s(S~) &~s(S.).
The first question to be answered is the following:

Find the points S;which make 5R stationary and choose
the index in such a way that the entropy s is a non-
decreasing function of the index. This question is
precisely the one which has to be considered in the
theory of shocks as discontinuities arising in a perfect-
fluid flow when writing the shock relations (conser-
vation of mass, momentum, and energy) and the shock
inequality arising from the second principle of thermo-
dynamics.

On such a manifold

(2M) 'TdOR=Tds=BdE*+dC rdP-
BvdBp~+ (r'/2)dM—P (14)

Two points of ('U) are images of states connected
through a shock if their coordinates M, 80*, E*, P, C
are the same. Now, according to (13), if the new
constant Tg= p80*' is introduced,

v=Bp*B, B(r rp)+pE*=O—

and if E*/0,

(15)

pE
p+M'r+ =P,

2(r r,)'—.

tiE,P(2r —r,)h+-'M'7'+ =C
2(r—r~)'

(a) Bp*, I, E*, P Fixed, C is Variable

3. SHOCK WAVES WITHOUT DISSTPATH)N

In classical gas dynamics general results may be
obtained by variation of constants of integration In.
order to generalize these results let us consider the
manifold ('U) defined in a space B, v, r, T, M, Bp*, E*,
P, C, by

aOR/aB= D'OR/av= D'OR/Br= BOR/BT=0. (13)

if we set
n'=B'r/ti u '=B 'r/ti=M'r r
R(e) =e' —c'—Ln'e'/(e' —n„')$.

(18)

u and n„are Alfven speeds competed with the tangential
and normal components of the magnetic field At a.point
of (9') which is a relative maximum of s, e equals
either A or a, (A) a), A and a being the characteristic
speeds or speed of propagation of small perterbances
R(a) =R(A) =0. From this result, one easily deduces:

Theorem 3. For given vulees of constants of integration,
there exist at most four points S: Si, Sp, Sp, S4. Each
of the corresponding states is characterised by the relative
valee of the normal component e with respect of the

propagation speeds A, n, a:

Sg. u&A S3. u~&N~&n„

S2. o. ~&I~&A S4. I&~a.

In the limiting case E*=O, Sp, and Sp (if they exist)
have the same image in the (r,p) plane —values of v

and 8 are opposite —and correspond to I=0,„. This
special case corresponds in particular to the switch-oG
and switch-on shocks.

(b) Hugoniot Curve

Now E* and 80* are kept fixed, M, P, C varying in
such a way that in the (r,p) plane, the curves (9') and
(8) defined by (16) pass by a given point (rp, pp). The
image in (r,P) of the curve defined on ('U) by these
requirements is a generalization of the so-called
Hggowiot curve. Then

dP = ~~dM', dC = -'7.AM'

and consequently (15):

But taking account of (5), it may be shown that along
a connected subarc of (9") s can have only one sta-
tionary point —in fact one maximum. Thus (17) allows
one to prove that there are at most four points S.
More precisely, along (1')

G,ds/dr= M' G,+—[pE—'/(r —rp, )P]=—r 'R(e)

2Tds= (r rb)'dM'—The corresponding points of ('U) define a curve whose
image (9") in the (r,p) plane is given by the first of
E (16) Al, h k h d

. F. 1 By an obvious generalization of the classical argument
of Weyl, it can easily be shown that s(Si) ~&s(Sp) and

Tds= dC. (17) s(Sp) &~ s(S4). Moreover, for a very weak shock (e~A
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or u a), the entropy jump is found to be proportional If r1, rg, r4, r4 are used to denote B, 8, r, T, respectively,
to thc third powcl' of thc spcc16c-voluInc )ump. the linearized system to be considered is

(22)(c) 80*, M, P, i."Fixed, E' Variable a&I/ar'; = aOlrs/arr.

These conditions define on ('U) s curve whose image It 18 IlllpoI'tarit to I'eIIlal'k that ORs nlay be expressed

in the (r,p) plane is given by Rs R sum of squalcs

E(r,p) =h+ ', (3Pr)-C (—2r ——rg) (p+3Pr P) =—0,

along which, according to (14) and (15),

(rg r)ds =—t4E*dE*.

With such a result, it may be shown that s(Ss) ~& s(S4).
In fact, this last result ls obtalr ed, when assuming not
only (5) to be valid but also that ah/ap —2r) 0. Thus
it is possible to state:

Theorem, 4. The sPecific entroPy for the states SI, S,,
Si, S4, is a nondecreasing function of the index i of
these points S;.

In conclusion, within the framework of a perfect-Quid
Qow theory, it may be expected that a shock transition
is possible with a state S; in front of the shock and a
state S; behind it, provided ~&j.

Let us denote with the subscript i every physical
quantity whose value is considered at a point S;. In
order to build the linearized system associated with

(6) which gives the behavior of the integral curves near
the singular point S;, we introduce nondimensional
val lablcs by

B=B,(1+B), r = r;(1+r),
(19)

e=e,+u;o, T=T;(1+T).
In this section and in the next one 80~ and 8; arc
assumed to be positive. Obviously, the results still
remain valid in the other cases.

The quadratic terms in the expansion of X) and W
in the neighborhood of 8; may be written

M
BRi=—(I;8+rc4; 4';—8)'

T'

e,mn;f'
+(u —n.P)I o+

uP —an4 i
(as ) "

$ as $ t'as)
+ 1

I I I, /T;r+I —I.,'-
EaT), . LaT); jar);

+ff(u;)r' . (23)

Now there exist four eigensolutions of (22) which may
be written r;=r;*exp(Xx), where the X are the eigen-
values of thc system. Thc following 1csult, ls cRslly
proved, thanks to (23) and theorem 3:

Theoreni 5. At a Point SI, 0&~XI~&Xs~&X4&~X4, at Si or
at S3, Xg~&0~&hm~&XS~&X4, at S4, XI~&X2~&0~&X3~&)4.

On using known results pertaining to linear systems
of differential equations, used in particular in vibration
theory, a more precise result may quite generally bc
derived for the eigensolution corresponding to the
smRllcst clgcnvRluc Xy. Without going into thc dctRlls
it can be stated:

Theorem 6. The components of the eigeneector (B*, o",
r~, T*), Iohich corresponds to the smallest eigeneatue XI,
satisfy either

8~0, v~+0, ~&0, P~& Q

or the opposite inequalities

S. EXISTENCE, UNIQUENESS, AND STttMI, ITy
OF THE FAST SHOCK

1
I
B,sydBI'

I+m,u,
I

—
I

T; 'o(Id' &

aOR//aB) 0, a5K/av) 0& aOR/ar &0, aOR/aT) 0 (24)

As wRs mentioned pI'cvlously, the fast shock ls a
transition from $1 to S~. First it must be noted that
there exists in (h) an open connected domain (D) in

f d&)t
' t'dT) which

+m,u,sI —I+hT;I I, (20}' '
(dg) '(dx)

M
alt, =—n44 {28r+B')+uP (o'+ r')

r'
(ap't-2-.-.'B + I

—I.""
&ar);

t as'
~2I —I.;T.-T+I

&ar),
'

t.aT);

such that the points SI and Si belong to its closure (D)
and no other singular point lies in (D). Then, by
theorem 6, it is clear that one of the eigenvectors at S1
and at S2, .coiresponding to the smallest eigenvalue A.l,
points inwards toward (D). The third preliminary
remark states that every integral curve of (6), orien-
tRtcd ln such R wRy thRt g 18 lncrcaslngq when CI'osslng
the boundary of (D) in a point difFerent from SI 'or, Si
must go out of (D). This can easily be proved with the
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following identities:

d ( BOK~ dB dv Bd—
I

T I=2M — —80*—+——
dg( BB) ti dg dg ti dg

d '( BOK) dv dB—
i

T i=2M ——80*
dx L Bv ) dx dx

d t' BOR) Bs dr Bs dT—
I
r )=2M ——+

dg 4 BT): Br dx BT dx

1 8$ dT+-
TOT &x

d5K

Zx

d ( BOK) tB dB ( Bp)dr—
i T i=2M — +I M'+ —I—

dx( Br ) ti dx 0 Br) dx
(25)

with center Si and S2 and length 2e. Inside (D,),

r (BoKq' t BoK)' 1 t BoK)' &BoR1'1

2 &BB) E Bv) M'&Br ) &BT)

e' being strictly positive and well determined when e is
known. Choose Qi and Qm inside (D,), but with x(Qi)
&0, x(Q2))0. Let n be an upper bound of mi, mm, k,
(op,') '. Along QiQ2, S*)e'/a, and according to (26),

x(Q2) —x(Qi) & (n/e') LOK(S2) —OK(Si)].

From this, it is easy to deduce:
Theorem 8. If n tends towards zero, the corresponding

flows tend towards the state defined by S& for x(0, the
state defined by Sz for x) ~, the convergence being
uni form outside every open interval including x=0.

Thus, it can be said that the last shock is stable.

6. INSTABILITY OF AN INTERMEDIATE SHOCK

Now, the unique integral curve which arrives at S2,
inside (D), along the eigenvector which corresponds to
X&, must necessarily start at the node S&, and x increases
from —~ to +~ when following this arc from Si to
S2. On the other hand, it is easy to show that it is the
only integral curve having this property. Finally, it is
clear that 8, e, w, T, are monotonic functions of x. On
using (5) and some classical identities of thermo-
dynamics, it can be shown that the same result is also
valid for the pressure p. Thus we have the following:

Theorem 7. When every dissipation coegcient is not
zero, there exists one, and only one, continuous flow (up
to an obvious translation along the x axis), which allows
one to pass from the state Sq (for x= —~) to the state
Sg (for x=+ ~). In thisflow, 8, v, r, T, p are monotonic
functions of x.

Just in order to fix this translation, the origin of the
x axis will be chosen at a point where 2r= r~+rm.

Now, it remains to consider the behavior of such a
Qow as function of the dissipation coeKcients, especially
when these coeKcients tend towards zero. The following
relations are found useful. From (7) and (10) we obtain

dOR r ~BORq 1 t BOR~ 2

I'+—
I

dx 2 EBB) m2& Bv )

1 /BOK) 2 T /BOK't ~

+ I I+—
ImM2( B.) h &Br)

By definition, the state in front of the shock is either
S~ or S2, the state behind the shock either S3 or S4. In
this section, E* is assumed to be nonzero. We want to
know if such a perfect-Quid shock Qow is the limit of a
set of Qows with dissipation, whatever be the dissipation
coeKcients with n as upper bound, when n tends
towards zero, all the physical quantities remaining
bounded. It is proved that the answer is no. For, let
Bsr, Tss be uniform upper bounds for

~

8 ~, ~

T
~

As

BM 85K 2M 8
+80* = (r r„)+E—*,—

88 85 T p

if 8 is defined by
28scb = ti t,E*~,

it may be stated that in r+ —b &~ r~& r++5,

(T/2) {(BOR/BB)'+ (BOK/Bv)'} )K/T~,

where E depends on the integration constants only.
Let x~ and x2 be two values of x such that

r(xg) = r~+b r(xm) = r~ b—
and

rg —b &&r(x) &~rg+b for xi&~x &&x2.

It can be shown from (26), by a previous argument, that

x2—gi(Ki maxL(oti') —',m2].

But there exists a constant C~ independent of the
and consecluently, if Qi and Q2 are two points of the dissipation coefficients, such that for every x between
integral curve (I), xy and x2,

p &(Qa)

OK(S ) OR(S ))OR(Q ) OK(Q )= J~
&(Qi)

~
dr/dx

~
&Cg/min(mi).

K)*d . (26)
2b/CiEi(maxt'(oti') ',ms7/min(mi). (27)

Let e, arbitrarily small, be given, and consider (D,) The first member is independent of the dissipation
the subdomain of (D) which does not contain cubes coefficients. Thus, whatever be n, values of these
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B
)

(r.
S~

t~

(a)

S
1

tf

saddle points, S4 a node with negative eigenvalues. To
be more specific, let us assume the fluid to be a perfect
gas, i.e. e=ypr, P(y 1)=—1].Thus in a (r,B) plane,
the isocline dB=O is the hyperbola (I'e):

B(r rg)+—gE*=0

and the isocline dr=0 is the cubic (I',):
(29)

M'(2+t3) r'+ (B'/2t )L~(1+0) re]—
P(1+—P)r+C+E*B=0.

Assume that P and C are such that (I',) cuts the
positive r axis in two points r=t&, r=t4 (tf)t4)0).
With X a positive constant, the equation of (I',) may
be written

B'I r(1+P)—r~]+E(r—t,)(r—t4)+2pE*B=O. (30)

To begin with, one assumes 8*=0 and one uses a
(r,B') plane. The singular points B=O, r=tq and
8=0, r= t4 are precisely S& and S4. Then, let us assume
ty& vg(t4.

In order to discuss various possibilities for slow
shocks, three cases are considered (Fig. 2):

(i) r, ((1+P)t 4

(ii) r )(1+P)t (t r )(r t) Pt t (0
(iii) r )(1+P)t, (t —r )(r —t)—Pt t )0.

S,
t

1

(c)

FIG. 2. (a) Case (i); (b) case (ii); (c) case (iii).

coefFicients may be found which do not satisfy this
inequality (27). That proves that ae intermediate shock
~s not stable, in the precise sense that is used in this
paper. This is illustrated by a particular example in
the following section.

The difference between the first case and the others
lies in the relative position of the asymptote of the
hyperbola (I'„), r(i+/) = r+, with respect to S& and S4.
In case (ii), the ordinate of S~ is less than that of I,
I being the point of intersection of the 8' axis with
(I',); in case (iii), one has the opposite situation: the
former is greater than the latter. In case (i), there
exists one and only one integral curve (1.) joining Ss

82
m)M' —=M p+M'r+ P——

dS 2p
(28)

'7. SPECIAL EXAMPLE

This example is, in fact, a slight generalization of the
case originally considered by Ludford. The coeScients
m2 and k are supposed to be zero. It is easy to eliminate
v and then to obtain the system

1 dB rB(r r,)—
=3k +8*

Op ds

I
I

I
I

I

I
I
I

I

I
1

I
I
I

\

I

l
1
I
l
I
I
I
I
I
I

I t'
I
I

,
'
Sf

f
I
I
I
I

I
I

~2~2 8 sl:282 82~
e— — + —— — —A*8+I'7- —C =- 0.

2 2 2p

Sy using the method of Sec. 4, one can show that S~
is a node with positive eigenvalues, S2 and Sg are Fr@. B.
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to S4, whatever be 0 and m~. Moreover, it is seen that,
when (o) ' and m~ tend toward zero, the corresponding
Rows tend toward the state S3 in front of the shock
and the state S4 behind the shock. Then, in this case,
the slow shock is stable, In case (ii), the arc (L) still
exists and is unique whatever be 0 and mj. But, it
must be noted that this arc (1.) does not remain in a
domain bounded by (P&) and. (P,). Consequently, it
is clear that the argument used in Sec. 5 for the fast
shock, which allows one to prove that the integral curve
lies a priori in a certain domain, cannot be extended to
the case of the slow shock. Finally, in case (iii), it is
seen that the arc (L), if m~o is small enough, cuts the
8' axis before the curve (p,). Then, in such a case,
which may happen for arbitrarily small 0,, no slow
shock is possible. This discussion shows that the sloe
shock may or may not be stable.

It is. interesting to consider what happens —for
instance, in case (i)—if one assumes E*)0 but small.
Figure 3 shows a typical possible case where two
intermediate shocks S~SS and S2S4 (as well as one
infinity of S&S4 shocks) may exist for suitable values of
o and mq. But, for the same ealges of the constants of
integration, if 0 ' is assumed. to be very small with

respect to m&, it is easily understood, by looking at the
shape of the integral curves sketched in Fig. 4, why
only fast (S&S&) and slow (SRS4) shocks may be stable.

8. PARTICULAR CASES

Great simplifications arise in this general theory if
80*=0, i.e., if the normal component of the magnetic
field is zero. It is easily seen that m=0. Consequently,
the value of m2 is irrelevant. Then v+=0 and, as in

Fn. 5.

classical gas dynamics, only S& and S2 may exist.
Shocks are necessarily fast shocks and thus are always
stable,

In the special cases where some of the dissipation
coefFicients are assumed to be zero, one can expect
singularities of the type arising in singular-perturbation
problems. In particular, the profile of any quantity as
function of x may have some discontinuity. Let us
assume for instance that the system (6), written in
the form (n=4),

F;(q,)=0, 1&i&r; dq/dx=F, (q;) r&i~&n, (31)
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admits a solution with a discontinuity for x=O. A
singular perturbation of (31) may be written

edq, /dx=F;(q;) 1&~i&n; dq;/dx=F, (q,) r&i&~n, (32)

with e a small positive parameter. The convergence of
the convenient solution of (32) towards the corre-

sponding solution of (31) is not uniform in the neighbor-

hood of x=0. In order to study this discontinuity, let
x= e$ and set e=0 in the result; one obtains

dq/dg=F, (q;) 1&i&r; q, =const, r&i&~n (33).
For the given values of q; (r(i&n), the solution of
the differential system (33)—r equations —must satisfy

F,(q;"')=F;(q;"') 1&i& r. (34)

q;(" and q, "& denote the values of the q; on both sides
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FIG. 6. (a) Case (i);

(b) case (ii). (b)

of the discontinuity x=0. The variations of the q;
(1~&i~&r) inside the discontinuity are given by the
solution of (33), for —~ ~& P&~+ ~.

Without discussing any further the general case,
some special ones are mentioned. Assume cr to be the
only nonzero dissipation coefficient. First, if 80*=0,
the Qow is continuous if the velocity in 52 is supersonic
(cm &~u2 ~& A2), but discontinuous, (Fig. 5), if N2 ~& c2.

Other possibilities arise as limiting cases of slow shocks

considered in the previous section —cases (i) and (ii);
in such cases (Fig. 6) the continuously varying part of
the Sow is located behind the shock.

When considering conditions (34), it can be veri&ed
that when m2=k=0, o='/0, ns2/0, no discontinuity
may arise in the solution. This provides a justification
of the special example which has been considered in
Sec. 7.

DISCUSSION

Session Reporter: J. E. McCUNE

N. H. Kemp, Avco-Everett Research Laboratory, Ezerett
Massachusetts: I have two things I would like to ask about.
First, according to my interpretation of your "intermediate

shocks, " these are the ones that cotate the magnetic field only,
is that correct? Is your classification the same as that given in

the Russian papers to which you refer?
P. Germain: No, my "intermediate shock" is a shock for

which the tangential magnetic field changes its sign. The shock
that rotates the magnetic Geld only is a special intermediate

shock for which E*=O. My general argument is given here

for E~HO.
N. H. Kemp: Then I take it this is not what they call an

intermediate shock. The Russians have a corner in your dia-

gram where the shock is stable.
P. Germain: Yes, only the corner —they have just this spe-

cial case. And my statement that the intermediate shock is not
stable is not necessarily valid in that special case. I do not
believe I can simply extend my results to the special ease E+=0
without looking at that problem more carefully.

N. H. Kemp: The other point I wanted to ask about is
this. You s'ay that all the fast shocks:are stable. But there is
a limiting case of fast shocks called the "switch-on shock. "
Do you conclude that these are also stable?

P. Germain: Yes, I think so. As you say, that is a limiting

case which must be investigated carefully, but my Grst impres-
sion is that it would be stable.

N. H. Kemp: Well, I believe there is a paper in the recent
Russian literature which draws the conclusion that "smitch-on"
shocks are unstable —unstable to Alfven waves.

H. Grad, Institute of 3fathematical Sciences, ¹m York
University, New York, New York: The conclusion of an in-
formal discussion which I had yesterday with Dr. Germain
was that probably "switch-on" shocks are stable, but you
can't study them in this way —they are isolated from the gen-
eral approach. I would like to add a comment, however: the
"switch-on" shocks must turn out to be stable or the whole

structure of magnetohydrodynamic shock theory is worthless.
One must have "switch-on" shocks to solve problems. For ex-

ample, with the piston problem, one must have one to satisfy
the boundary conditions.

¹ H. Kemp: But cannot there be a different solution —one

we have not looked at so far?
H. Grad: No, I do not believe one can solve the piston

problem without a "switch-on" shock.
P. Germain: Let me emphasize again that I have not tried

to study the "switch-on" shock in my general approach. The
"switch-on" shock occurs for E*=O, and the question of the
stability of that special case I cannot e,nswer for sure.


