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KCENTLY a theory of hydromagnetic equili-
brium, based on a variational principle has been

developed, ' in which the invariants of the hydro-
magnetic equations have an important role. It has
been found that in a hydromagnetic system (single-
Quid theory) that is surrounded by a rigid perfectly
conducting wall, on which the boundary condition
8 n=0 holds, the following integrals are constant
during the evolution of the system:

and

I,=JfA Hdr

I2=)~H vd7'. (2)

The integrals are taken over the whole volume of the
configuration. The medium is assumed to be a non-
viscous perfect conductor with a I'= f(p)-type equation
of state. In these equations I is the magnetic held,
A a single-valued vector potential, and v the macro-
scopic Quid velocity. Apart from these integrals the
mass and angular momentum of the system are also
conserved.

If we make the additional assumption of axial
symmetry, four infinite sets of integrals emerge, "
which imply that the quantities A I, H v, the angular
momentum, and the mass taken over a volume bounded
between a pair of magnetic surfaces are constant during
the evolution of the system. It can also be shown that
no other independent invariants exist.

It has further been shown that in this case the states
of hydromagnetic equilibrium may be dered by a
variational principle which states that the equilibrium
configurations are configurations of extremal energy,
when the extrema are determined subject to the
condition that the invariants have definite values.
The invariants thus serve as the constraints in the
variational principle. For static equilibria the system is
stable in the usual sense if the extremum is a minimum.
In a number of cases with motions it can be shown that
the same statement holds.

Here we wish to investigate the limits of the applic-
ability of this variational approach, both with respect
to a generalization of the geometry and a generalization
of the equations which describe the dynamical behavior
of the plasma.
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As to the first point, an obvious generalization of the
axisymmetric case is the case in which the lines of
force form nested toroidal surfaces of arbitrary shape.
For this case Kruskal and Kulsrud4 have demonstrated
the existence of certain invariants which correspond
to the invariance of the integrals of A H and the mass
between any two of these surfaces. It is easily shown
that the same is the case for the integrals of I v, but
no such integrals exist for the angular momentum.
Thus, the assumption of axial symmetry seems to be
essential to an approach where all constraints appear in
integral form. For even more general geometries than
the toroidal ones, the integrals (I) and (2), the total
angular momentum, and the mass seem to be the only
integral invariants, since the concept of a magnetic
surface loses much of its meaning.

We next investigate whether the integrals (I) and (2)
which were derived on the basis of the single-Quid
equations remain applicable when more general plasmas
are considered. We start from the two-Quid equations
for a gas consisting of protons and electrons. If we
restrict ourselves for a moment to cases with a scalar
pressure, we have

Bv;
m; +(VXv;) Xv~+2Vv, '

1
=e(E+v~X 8)——VI';—m;V4+ —II,. (3)

and the same equation with the suffix i replaced by e
and +e by —e for electrons. Here C represents a
nonelectromagnetic potential, and II;, and II.; are
the momentum transfer from the electrons to the
protons and vice versa. We introduce the electro-
magnetic potentials with the gauge chosen in such a
way that the scalar potential vanishes. Thus

E= —(aA/at), H= VX A. (4)

At the boundary we impose the conditions

EXn=0, H n=0, v n=0. (5)

We now multiply Eq. (3) with H and integrate over the
configuration to obtain
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where the terms which can be written as divergences
have disappeared in view of the boundary conditions
and where y;=m, /e. On integrating by parts and
making use of Maxwell's equation VXE= BH—/Bt,
we obtain

BA t aA t aA
2J VX A. d =

I VX A —dr+ I
A'VX dr

8t ~ Bt

unit mass multiplied by p+/L. Thus the lowest-order
pressure term is usually of the first order in p; in the
equation for ions and in p, for the electrons. This
result depends not very much on the pressure being a
scalar. Thus, we have to the erst order in p,; or p, .

pH II;,
II A Hdr= —

II dr 21—rtH jdr. (10)

In view of the boundary condition 8 n=o at the
surface, this result is gauge independent. If we drop
the boundary condition on 8 but retain the gauge of
A (scalar potential=0), we have

EXA dS=— A. Hdr,

where the surface integral vanishes because of
boundary conditions, and

J A. Hdr= —2 ~~gH jdr+ (AXE dS, (11)
dt-

Jj VXv,"v;XHdr

v, VX(v;XH)dr

BH Bv,.
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Bt Bt

d
H (p,"v;+tj„v,)dr

dt~On inserting this in Eq. (6), we have

a result which shows a remarkable resemblance to
Poyntings theorem; it can also be written in a gauge
invariant form.

On returning to Eq. (9) we note that the erst
d7- pressure term which is of order p vanishes if (H. VP/n)

=H Vf(n), i.e., if the medium behaves polytropically
along the lines of force. On subtracting the equations
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where {p,&} denotes the terms which are multiplied by
p,~. Since p,; is small, these terms are usually negligible.

Let us consider the terms which involve the pressure.
If the pressure is a function of the density only, the
integrals over the pressure terms disappear. If this is
not the case, the order of magnitude of the (1/e)
X (8/e;) Vp; term is p;P(kT;/Lm;), where L repre-
sents a characteristic length which is about tJ,;H/L
times the thermal energy per unit mass in the medium.
The term y,dH v;/dt is of the order tj;Bsj/L, which
is of the order of the kinetic energy of the medium per

~r H vdr~J gv VX)dr,
dt ~

(13)

which vanishes for a perfect conductor (rt=0). It thus
appears that. the hydromagnetic integral A 8 is
generally constant for a perfectly conducting plasma to
the erst order in p, . If the plasma is also everywhere
neutral and in addition the electrons and protons have
a polytropic equation of state along the lines of force,
the H v integral is also approximately constant during
the evolution of the system.


