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l. INTRODUCTION the problem can also be solved and these are considered
in Sec. 4. The results obtained are similar to those
found for the axisymmetric perturbations in the
absence of an axial magnetic 6eld. For both of these
cases the system is marginally stable if the conductivity
is infinite and the viscosity zero.

For the case of twisted magnetic fields and arbitrary
perturbations, finite electrical conductivity alone is
considered. If the electrical conductivity is low,
solutions of the perturbed equations can be found as
series in ascending powers of the conductivity. If only
the first term in the expansion is kept, a solution of the
problem can be found in the limit as the conductivity
tends towards zero. As the problem has already been
solved for a Quid of infinite conductivity, there is a
hope that the extreme values of the perturbation
growth rate have been found. In the cases that can be
solved completely, the growth rates for in6nite and
zero conductivity are the extreme values. In all cases
considered here it is found that, with a suitable normal-
ization, ' the growth rate for a Quid of low conductivity
is greater than that for a Quid of high conductivity.
In some cases a Quid of low conductivity is unstable
while a Quid of in6nite conductivity is stable.

The reason for the preceding result is not hard to
find. For a compressible Quid both the electrical
conductivity and the viscosity enter the stability
problem in two places. In the equation of motion the
viscous term tends to reduce velocity gradients and to
increase stability, but in the magnetic-6eld diffusion
equation the finite electrical conductivity allows the
Quid to cross field lines. Both the viscosity and con-
ductivity also occur in the energy equation where both
the viscous dissipation and the Ohmic heating might
be expected to damp instabilities. However, for an
incompressible Quid the energy equation is not coupled
with the stability problem and the only role of the
conductivity is to allow the Quid to cross the field lines.
It is therefore not surprising that, while the viscosity
leads to enhanced stability, decreasing the electrical
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HF. stability of uniformly twisted magnetic fields
in an incompressible inviscid Quid of infinite

electrical conductivity has been studied by several
authors. ' ' In addition, the problem has been solved
for a Quid which is in uniform axial motion or uniform
rotation or has a combination of these two motions. ' '
Here it is shown that the stability problem can also
be solved formally if the Quid has a 6nite scalar viscosity
and electrical conductivity. ' The perturbed hydro-
magnetic equations in the conducting Quid can be
reduced to a single 10th-order differential equation and
this can be solved in terms of Bessel functions. The
solution is formal in the sense that, when boundary
conditions are applied, the problem is reduced to the
solution of an extremely complicated transcendental
dispersion relation. In the general case it is clear that
solutions of this dispersion relation can be found only
by elaborate numerical techniques. The perturbation
growth rate is normally complex and the problem is an
eigenvalue problem in which the complex plane must
be searched for the eigenvalue.

If there is no axial magnetic field and only axi-
symmetric perturbations are considered, the problem
can be solved completely. The solution is given in
Sec. 3. If the viscosity is zero, it can be shown that
there is a real instability at all wave numbers and that
overstability does not occur. If viscosity alone is
considered, the system is stable not merely in the sense
that no perturbations grow with time but also that all
except trivial perturbations decay as the growth rates
are real and negative. When finite values of both
viscosity and electrical conductivity are considered,
the system is again unstable at all wave numbers, but
the viscosity causes the growth rates to be very small
at large wave number.

If the magnetic field is twisted and perturbations
other than axisymmetric perturbations are considered,
there are always perturbation helices which exactly
match the magnetic field helix. For such perturbations

conductivity may lead to greater instability.' S. Lundquist, Phys. Rev. 83, 307 (1951).
& J. gl. Dungey and R. F. Loughhead, Australian J. Phys. 7, The results obtained here cannot be aPPlied to a

5 (1954).
3 P. H. Roberts, Astrophys. J. 124, 430 (1956). ' The growth time of an instability is normalized with respect
4 R. J. Tayler, Proc. Phys. Soc. (London) B70, 1049 (1957). to the time it takes a hydromagnetic wave to cross the Quid.
~M. N. Rosenbluth, talk on stability of rotating plasma, 'OItshouldbenotedthatitisnotpossibletosaythatdecreasing

New York, May, 1958. the conductivity always leads to greater instability. If the
S. K. Trehan, Astrophys. J. 127, 446 (1958); conductivity is altered, some of the other physical quantities

7 S. K. Trehan, Astrophys. J. 127, 454 (1958). must also be altered. If the current and dimensions of the system
In the problems considered in detail here, the equilibrium are kept constant, it becomes less stable, but this need not be so

Quid motions are omitted. if some other parameter is kept constant.
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compressible plasma, but they can be applied to a
liquid conductor such as mercury or liquid sodium.
Experiments have been done with both of these liquids
though they do not exactly correspond with the
problem considered here. One of the closest is that
described by Dattner, Lehnert, and Lundquist. " In
their experiment the mercury carrying the current is
also falling under gravity and it is not clear how much
this inQuences the results. However, the theoretical
growth time for axisymmetric perturbations is in quite
good agreement with the observed growth time.

Full details of the derivation and solution of the
basic equations and dispersion relations are not given
here. The work is described more fully in a series of
A.E.R.E. Harwell reports. " '4

2. DESCRIPTION OF PROBLEM AND
BASIC EQUATIONS

An incompressible Quid of density po, viscosity p,
and electrical conductivity 0- forms a cylinder of radius
ro. The Quid has a velocity

vp ——vpg0, vier/rp, v,j
and carries a magnetic field

Equations (4)—(6) can be linearized in terms of the
perturbed variables and, using the particular forms

(1) and (2) of the equilibrium quantities, all the
perturbed quantities but S~ can be eliminated from
these equations. The resulting equation for 8& is

(ap/k') curl curl curl curl curlSz

+ (ap/k') curl curl curlS~

+(ap/k') curl curlS&+(ai/k) curlSi+aoSi=0, (8),

where the u~ —ao are all dimensionless constants and
have the values

a p =zzc'rook'/o Bpz,

E(poc'k'ro+4orlzok rp)/oBo jf~ro+vo(zrrzvi+ k"ovz) j
ap= —2zppvpvzc k rp/oBp, '

a1 (4zl po/Bo )L~ro+vp(z~vl+zkrovz) j
+ (rrzb~+kr pbp)',

ap= —2bz(zzzbz+krpbz) —(8 izrp ovoiv/ B)o

X (corp+ vp (zmvz+zkrpvp) 7.

Equation (8) can be shown to be a 10th-order
differential system. It can be factorized in the form

Sp ——BpLO, b&r/rp, bzj (2) g (curl —X;k)Sr=0,
i=1

The Quid is surrounded by a vacuum containing a
magnetic field

So'= Bo)0, burp/r, b,g,

and the vacuum may or may not be surrounded by a
rigid wall. In the problems considered in detail here,
the wall is omitted.

The hydromagnetic equations, which have to be
solved in the conducting Quid, are

pdv/dt= —gradP+ (curlSXS/4or) —
zz curl curlv, (4)

divv=0,

BS/81+ (c'/4zro) curl curlS = curl (v XS). (6)

In Eqs. (4)—(6) displacement currents and the electric
field force term in the equation of motion have been
neglected. The energy equation is required to determine
the temperature variation, but it is not required for
the stability problem.

Perturbations of the equilibrium are considered in
which any physical variable has the form

g +~ ~i(m8+Icz)+eat

"A. Dattner, B. Lehnert, and S. Lundquist, Proceedings of the
Second United Nations International Conference on the Peaceful
Uses of Atomic Energy (United Nations, New York, 1958), Vol,
31z P. 325.

~R. J. Tayler, Atomic Energy Research Kstabl. (Gt. Brit.)
T/R 2787 (1959).

~'R. J. Tayler, Atomic Energy Research Establ. (Gt, Brit. )
T/R 3100 (1960).

'4 R. J. Tayler, Atomic Energy Research Establ. (Gt. Brit. )
T/R 3229 (1960).

where Xi satisfies

azXP+ap), P+apX'+a~) +ap ——0. (11)

As the operators in Eq. (10) all commute, the 10
independent solutions can be found from the five
second-order differential equations

curlBi =);k81. (12)

Blp — I +1(n kr) — I &(n,kr)
2(X;+1) 2(X;—1)

Bg, I„(n;kr), ——

where n;z= 1—X,z. It can be seen from Eqs. (9) and (11)
that the equation for the arguments of the Bessel
functions involves the required eigenvalue co in a
complicated way. It is easy to see that, for arbitrary
values of the equilibrium quantities and the perturba-
tion wave numbers, the arguments of the Bessel
functions are complex.

Once Eqs. (4)—(6) have been used to obtain expres-
sions for the other perturbed quantities and the
simpler expression for the perturbed magnetic field in
the vacuum has been written down, boundary condi-
tions must be applied on the Quid-vacuum interface,

The solution of Eq. (12), which is regular at the
origin, is

Zni 'to,'i

Bz„= I +, (n,kr—)+ I z(n, kr),
2 (X;+1) 2 (X,—1)
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FIG. 1. Axisymmetric perturbations of an inviscid Quid of
infinite conductivity. The square of the dimensionless growth
rate (Pp~=4n pro'rP/Bpm) is shown as a function of the dimension-
less wave number (Xp =krp) for several values of the axial magnetic
field {Bpb).

and the dispersion relation can be obtained. In the
general case, six boundary conditions are required, the
continuity of the three components of the magnetic
field and of the three components of the stress tensor
containing the normal direction, and the dispersion
relation can be written down as a complicated six by
six determinant, all the elements of which are com-
binations of Bessel functions. Because of its complexity
it is not written down here; instead, only certain
special cases are considered. " For these special cases
the form of the dispersion relation is stated without
proof.

Before considering these special cases it is convenient
to express everything in terms of dimensionless vari-
ables. Thus, 6rst introduce a hydromagnetic velocity

—I.O
0 I.O x0 5.0 4.0

Fxo. 2. m=1 perturbations of an inviscid Quid of infinite
conductivity. The square of the dimensionless growth rate
(F'0'=4npgo'rp'/Bp') is shown as a function of the dimensionless
wave number (Xp=krp) for several values of the axial magnetic
field (Bpb).

where jo is the erst zero of Jo(x). All m= 1 perturbations
are unstable if there is no axial 6eld. When the axial
6eld is nonzero, negative values of b are always less
stable than positive values of b. There is always
instability for small wave numbers, and the perturba-
tion helix which coincides with the equilibrium magnetic
field helix is neutrally stable.

are stable. The behavior of the growth rate for small
wave numbers is given by

Yo'= O'Xo'P(2/bjo) —1j, (16)

and then write

&a'= &o'/4&po

Xp kf 0&

Yo=(dro/c~,

Vo= 4oro pro/&',

Wo= po~irro/p

(14) 3. AXISYMMETRIC PERTURBATIONS IN THE
ABSENCE OF AN AXIAL FIELD

When m= b=0, the arguments of the Bessel functions
become simple and the dispersion relation can be written

Io(Xo) 2Xo Iz'(Xo) YoWo 4Wo
'

0= + 2+ +
Ig(xo) FoWo Ig(xo) . XoP Yo'Vo

As mentioned in the Introduction, this problem has
already been solved for a Quid of in6nite conductivity
and zero viscosity. The results obtained for the m=0
and m=1 modes are shown in Figs. 1 and 2. For
axisymmetric perturbations the system is neutrally
stable if there is no axial 6eld. For small values of the
field the system is unstable at small wave numbers,
but for large enough values of the 6eld all wave numbers

"In what follows the equilibrium Quid velocity is put equal
to zero so that e~ =e~ =0. As the axial current does not vanish, it
is convenient to take b1=1 and b2=b. It is also possible to take
m and k to be positive if both positive and negative signs of b are
considered.

4Wo(Xo'+ Y'oVo) & Io(xo'+ YoVo)'

Fo'VoXo .Ig(xo'+ Fo Vo) &

2Xo' I„'(Xo'+YoVo)'
+

Fo(Wo —Vo) Ig(xo'+ YoVo) &

4Xo(Xo'+ YoWo)' 2Wo

,

1+
YoWo Yoo(Vo —Wo) s

Ii'(Xo'+ FoWo) ~

X . (17)
h(xo'+ YoWo)'*
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I (Xo'+&0Vo)*'
(23)

(Xo +V0V0) I (Xo +VoV0)*

b (Xo'+ YoVo) '
G=i—

2.0

l.5

and

(Xp'+ Vp Vp)
*

I (Xop+FoV0)'
X ~ (24)I '(Xp'+ V0V0)&
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0
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FIG. 5. Axisymmetric perturbations of a viscous Auid of Gnite
conductivity (no axial 6eld). The dimensionless growth rate is
shown as a function of the dimensionless wave number for two
pairs of values of V0 and W0. Also shown are the asymptotic
values of the growth rate at large and small wave numbers.

Blp„——BI~1 (kr)+ SI„1(kr),
&lop= iaI~1(kr)—+0$I 1(kr),

and

Equation (22) has been solved for 011=1 perturba- Equation (30) can be solved simply to give
tions. There is a positive root for I"p for all values of
Vp. Results have been calculated for m= i, b= —1, and
a set of values of Vp, and they are shown in Fig. 7.

5. TWISTED FIELDS: LOW CONDUCTIVITY B„,=o(O;+e)I„(kr), (33)

and

cullSyXBp cullBpX 8]
ppcovl = —grad pl+ +

4n-
' 4

divvy =0,

(26)

(27)

The perturbed Quid equations, which have to be
solved for an inviscid Quid, are and the other equations can then be solved to give

expressions for vip and pip.
When boundary conditions are applied on the

solutions of these equations, a dispersion relation is
obtained which gives a first approximation to the value
of the growth. rate at low conductivity. Thus

C2

0&B1+ curl curlB1= curl(vlXB0).
4~0.

(28) ( 2m') I (Xp) 2xpI '(Xp)
Vp'= —2( rlob+Xo+

) +4+
Xp & I„'(Xo) I (Xo)

curl curlBip= 0,

dlvvyp =0,

(30)

(31)

curlByp XBp cur&Bp XB10
ppMv1 0= —gradp1 0+ + (32)

It is supposed that in the case of small conductivity
the variables can be expanded in the form

Bl Blo+&Bll+ ' ' '
yl

Vl =Vip+0'Vll+ ' (29)

Pl Plo+PP11+

It is easy to see that such an expansion does lead to a
consistent series of equations, and in the problem
which has been solved fully in Sec. 3, the perturbation
expansion does lead to the correct solution for small
values of the conductivity. Here only the erst term in
the expansion (29) is kept; 0 is taken to be vanishingly
small in the perturbed equations, though it must be
6nite in the equilibrium state.

The irst approximation to Eqs. (26)—(28) is

4110' I (Xo) It~'(Xo) I~'(Xo)
(34)

Xo' I~'(Xo) Em(xo) I„(Xo)

Vp' =2 (1—olob). (35)

Thus for negative values of b, instability always occurs
for large Xp, and instability occurs for positive values
of b less than 1/rip.

Figure 6 shows the solution of Eq. (34) for 010=0

Equation (34) has the great advantage of being an
algebraic equation. It can be seen that I'p' is always
real. The axial magnetic field only occurs multiplied
by the azimuthal wave number m, so that for axi-
symmetric perturbations, Eq. (34) is independent of
b. Equation (34) can also be derived from Eq. (18) if
it is expanded for small values of Vp, which is then
allowed to tend towards zero. Thus for small enough
values of the conductivity, the axial ield should not
be expected to affect the stability of axisymmetric
perturbations. For large values of Xp, Eq. (34) becomes
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FIG. 6. Axisymmetric perturbations of a Quid of finite conduc-
tivity containing an axial magnetic field. The square of the
dimensionless growth rate is shown as a function of the dimension-
less wave number for a fluid of very low conductivity. The same
curve applies to all values of the axial field. Also shown is the
curve for a Quid of infinite conductivity for one value of the
axial Geld.

absence of an axial field, it can be seen that for small
wave numbers the results for infinite and zero con-
ductivity are very little different. Eventually the
value of FP given by Eq. (35) is twice that obtained
for infinite conductivity. The results obtained in Sec.
4, for the perturbation which is parallel to the magnetic
field, vary smoothly between the results obtained for
infinite and zero conductivity.

It can be seen from Eq. (35) that the worst
instabilities occur for large values of m. As the conduc-
tivity approaches zero, the penetration time for field
irregularities approaches zero, but only for very large
values of m does the instability growth rate appear to
become correspondingly large. For small values of m

the growth rate is of order c~/ro.

O. DISCUSSION

and also shown is the infinite conductivity solution for
one value of bgb=0 4] Sol.uti.ons of the m= I equation
have been found for b= &1 and 0, and these are shown
in Fig. 7. Also shown in Fig. 7 are the infinite con-
ductivity solutions for the same values of b. In the

4.0

The results given here are still far from being
complete. It is hoped that, the problem for arbitrary
values of the conductivity will shortly be tackled using
an electronic computer. The special results obtained
here may then be used to give an idea of the results
to be expected.

Results have been obtained for infinite and zero
values of the conductivity, and it has been stated that

3.0-

2.0— 0 =.0
cu plane

2
Yo

I.O

b=o

(a)

-I.O—

b=+I N plane

-2.0
0 I.O 2.0 x 3.0 4.0

FIG. 7. 'PPs = 1 perturbations of a fluid of finite conductivity
containing an axial magnetic field. The square of the dimensionless
growth rate is shown as a function of the dimensionless wave
riumber for a Quid of very low conductivity for several values of
the axial magnetic field. Similar curves are shown for a Quid of
infinite conductivity for the same values of the axial field. Also
shown are the growth rates for perturbations which are parallel
to the magnetic field for several finite values of the conductivity.

(b)

FIG. 8. Possible values of the growth rate in the complex co plane.
The growth rates for Quids of infinite and zero conductivity are
known but the intermediate values are not known in general. The
Ggure shows possible plots of these intermediate values in the com-
plex co plane in two cases, (a) when Quids of both infinite and zero
conductivity are unstable, and (b) when the Quid of infinite con-
ductivity is stable though that of zero conductivity is unstable.
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M =Cdo+Ml/0~+ ' ' ' . (36)

the growth rate is normally complex for arbitrary
values of the conductivity. What must be computed
is the path described in the complex m plane as 0.

decreases from inGnity to zero. Figure 8 shows some
of the possibilities. Figure 8(a) refers to a case in
which instability occurs for both of the extreme
values. Three possible types of curves joining the
extreme values are shown. In this case it seems likely
that the system is unstable for all values of the con-
ductivity. When the growth rates for inGnite and zero
conductivity are of the same order of magnitude, an
approximate value of the growth rate is probably
known for all values of the conductivity.

The case in which the system is stable for inGnite
conductivity but unstable for zero conductivity is
more interesting. Several possibilities for this case are
shown in Fig. 8(b). Possibly the most likely case is
curve 1; for this the system is unstable for all Gnite
values of the conductivity although for large enough
values the real part of co is very small. Another possi-
bility is curve 3 on which the real part of co is
negative for large values of cr. It is to decide between
these possibilities that computation is required. In the
case of axisymmetric perturbations, an attempt was
made to expand the solution for large conductivity in
the form

TABLE I. Properties of mercury and liquid sodium.

(a) Mercury 0 =10" Gaussian units
p = 13.6 g/cc
p, =1.2X10 ' poise

Hydromagnetic velocity
10' 10' 104

7.6 76 7.6X 102

Dimensionless conductivity Vo

10
103
104

10 '
10 4

10 '
10 2

1
10 3

10~
10 '

10
10 '
10 '

Dimensionless viscosity parameter 8'0

103
10'
104

10 '
9X102
9X10'
9X 104

1
9X10'
9X104
9X10'

10
9X104
9X105
9X10'

Bo
&a

10'
103
104

10 '
4X10 '
4X1
4X10 '

4X10~
4X10 '

4

10
4X10 '

40

I'b) Liquid sodium 0 =10'7 Gaussian units
p =0.9 g/cc

Hydromagnetic velocity
10' 103 104
30 3X10' 3X10'

Dimensionless conductivity V&

When this was done it, was found that coy/(oo was
always real so that the early part of the curve appeared
to look like curve 2.

The results obtained here cannot be applied directly
to a plasma because of the assumption of incompressi-
bility, but they can be applied to liquid conductors.
The two obvious cases to consider are mercury and
liquid sodium. In Table I the dimensionless con-
ductivity Vo is plotted as a function of the equilibrium
magnetic Geld 80 and the radius of the conductor ro.
It can be seen that, in terms of Vo, mercury and liquid
sodium are both poor conductors. The viscosity
parameter 8'0 is also tabulated for mercury. The
values of TV0 are very large and the results in Sec. 3
suggest that the inQuence of viscosity is not great
except at very short wavelengths. It thus appears that
mercury can be regarded as a poor conductor of low
viscosity.

Experiments have been performed involving both
liquid sodium and mercury though most of them are
not directly comparable with the problem described
here. Dattner et al. have observed the instabilities of a
mercury column which is falling under gravity at the
same time as it is carrying a current. When there is no

axial field, they observe an m=0 instability. Ignoring
for the moment the e8ect of gravity and putting
Dattner's parameters ra=0.2 and 80=300 into the
results obtained previously, the minimum e-folding
time for an m=0 instability is about 7 msec. This
compares well with Dattner's time of 30—50 msec for
the channel to halve its radius. The experimental
results for m= 1 instabilities in the presence of an axial
Geld do not agree so well with the theory; in this case
the gravity forces may be more important. It is hoped
to look more closely at comparisons with experiment
when the problem has been solved for all values of the
conductivity.
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