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I. INTRODUCTION

' T has been shown previously' that the stability of a
~ - hydromagnetic Quid in static equilibrium can be
determined by an energy principle formalism. The
purpose of the present investigation is to extend the
methods of Bernstein et al. ,' where possible, to the con-
sideration of the stability of stationary, rather than
static equilibria. As is well known, the presence of a
velocity field in the equilibrium state may lead to the
phenomenon of overstability. The manifestation of this
in the mathematical formalism is the appearance of
non-Hermitian operators. The present considerations
lack the powerful theorems which are available for
systems governed by Hermitian operators, nevertheless,

it has been possible to obtain some general results for
this case.

The plan of the paper is as follows. In Sec. II the
linearized equations of motion and the boundary con-

ditions in a Lagrangian representation are discussed.
In Sec. III some properties of the equations of motion

and a general sufhcient condition for stability are given,

and in Sec. IV a general perturbation theory for small

Bow velocities is presented. Appendix I presents a
reformulation of the equations in Hamiltoni~n form.

Appendix II discusses an application of the theory,

calculated by A. Pytte, to a rotating "stabilized" pinch

con6guration.

II. EQUATIONS OF MOTION

The equations used are those which govern an ideal

hydromagnetic Quid. The conditions under which they

are valid are discussed in reference 1.

Let p be the mass density, v the velocity, 8 the mag-
netic field, p the pressure, j the current density, E the
electric field, and y the ratio of specific heats.

The boundary conditions which we adopt at a fluid-
vacuum interface are

(p+l&') =0,

n X(E)= n v(B),

n. 8=0)

Ilx(B)= K,

(9)

where (X)=X„„—Xi,i,. „n denotes the unit normal
to the plasma surface, and K is the surface current
density.

For the purpose of investigating stability, it is
advantageous to use a Lagrangian representation. We
linearize the equations and introduce the displacement
vector P, which is considered to be a small quantity.
The kinematics of the situation are shown in Fig. I.
The position vector r of a Quid element which at t=0
was at ro is given by

r= r'+ «(r', t), (12)

where r' describes the equilibrium trajectory and $(r', t)
describes the displacement from equilibrium. We choose

g to be a function of r', t rather than a function of ro, t

so that the equilibrium quantities are time independent
and solutions of the form e'"' are permitted.

The perturbed quantities can then be obtained to
6rst order in g from (2)—(7). The results are

p(~+g)= p(")(1-V'6, (13)

p(&+ g) =p(P) (1—~V' g), (14)

p(dv/dt) = —VP+jXB,

(Bp/Bt)+V (pv) =0,

E+vXB=O, (16)

(1) B(P+g)=S(P)—Svo g+S vog. (1s)

(2) The further relations needed to obtain the equations
of motion and boundary conditions are

(3) V=V0—V'g Vo,

(did&) (p/p') =o,

vx B= (aS/a~), —
(4)

(s)

(6)

v(r'+ g) = v(r')+ v' V'(+ (8g/N), (17)

n(ra+a) = n(r')+nn V'g n —Vo( n. (18)

~X=j, In addition, in the vacuum we introduce the first-

V 8=0. order scalar and vector potentials p and A by means of

* Supported by a contract betvreen Princeton University and Ev~= E '—Vg —(8A/8/), (19)
the U. S. Atomic Energy Commission.

t Permanent address: University of Chicago, Chicago, Illinois. S. =S. '+VXA, (20)
~ I.Bernstein, E.A. Frieman, M. D. Kruskal, and R.M. Kulsrud,

Proc. Roy. Soc. I'London) A244, 17 (1958). where the zero denotes a zeroth-order vacuum quantity.

898



HYDROMAGNETIC STABILITY

PERTURBED
TRAJECTORY

t)
EQUILIBRIUM
TRA JECTORY

where

F{$) = V(ypV. g+ (.Vp —B Q)+ B VQ+Q VB
+V (pgv Vv —pvv Vg). (26)

Since the time does not appear explicitly in (21)—(25),
normal mode solutions of the form

5(r', f) = 6(~)'"' (27)

FIG. 1. Definitions of r and fir, t). The vector r, represents
the original position of the Quid elements. Note. In Figs. 1 and 2,
vectors are indicated by a bar beneath the letter.

where
A „.(B o (23)

Q= VX (gX B). (24)

A must satisfy the equation

~XVXA=0

in the vacuum. Henceforth, the only quantities which
appear are those evaluated at r'. Thus we can drop the
superscripts with no confusion.

In terms of the potentials, the boundary conditions
(8)—(10) become

-vPV(+B (Q+& VB)
=B,'(VXA+g VB „'), (22)

can be sought. The equation of motion then becomes

oo—spg+2ioopv V(—F{()=0.

III. SUFFICIENT CONDITION

(28)

A number of formal properties of (25) are now
established: (a) ipv V is a Hermitian operator, (b)
F{O is a self-adjoint operator, and (c) if oo=n is an
eigenvalue, ~= —a, co=n*, and ~= —a* are also eigen-
values. Property (a) follows immediately from an
integration by parts and the use of the equilibrium
equation V pv=0. Property, (b) follows from a large
number of integrations by parts and use of the equi-
librium equations. Property (c) is easily demonstrated
by expanding $ in an arbitrary complete orthonormal
set of functions and examining the linear equations
which determine the expansion

coefficients.

These
properties allow the demonstration of a sufhcient con-
dition for stability. ' Multiplication of (28) by P and
integration over the Quid volume lead to

(25) On solving for ro, we find

The freedom of the choice of gauge for the potentials
has been used in obtaining (23). Finally, the linearized
equation of motion which follows from (1) is

p(d'(l~f')+2pv V(~tl~f) F{4) =0, —
)*.F{(}dr=0. (29)

ip(*. (v V)(dr+
-2

ipse (v V))dr — tpP (dr
al

g* F{Odr

(30)

Note that all the integrals occurring in (30) are real
by virtue of the Hermitian character of the operators.
Therefore co is real and the system stable if

g* F{g}dr(0. (31)

t' t'. , )' ( t'
'ipse v. V(dr

f

—
/

tpg* (dr
fi

If the suKcient condition (31) fails, the less stringent
sufhcient condition

may be used, although it may be more diflicult to apply.
An important result following from (31) is that, if a

static equilibrium state is stable, for sufFiciently small

Row velocities the resulting stationary equilibrium is
also stable. %e use this result in the perturbation theory
in the next section.

It can easily be shown that (30) provides a variational
principle for co, So=0, when co is real, except for those
points at which the square root in (30) vanishes. This
result can be used to estimate the eigenfrequencies of
the system.

A closely related principle can be derived even when
(

X~ g 'F{4} (dr+0 (32) This condition was found independently by I. Bernstein, R,
Kulsrud, and D. Montgomery.
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IV. PERTURBATION THEORY FOR
SMALL VELOCITIES

We now discuss a perturbation procedure for deter-
mining the stability of a dynamic equilibrium. The
procedure consists of expanding the equilibrium equa-
tions and Eq. (28) in powers of a small parameter o. p

represents the ratio o/os or o/Q, ~, where os, vq, and v

represent characteristic sound, Alfven, and flow veloci-
ties, respectively, in the equilibrium state. To lowest
order in e a static equilibrium results and the stability
considerations reduce to the energy principle formalism.
We erst illustrate the theory assuming no degeneracy.

The equation of motion (28) to lowest order in p is

—p1Q'pp(p —Fp{gp}=0, (34)

where the subscripts denote the order in e. There are
then three cases to consider:

(1) p1Q real, &0,
(2) p1Q pure imaginary,
(3) p12=0.

If pop is real, the sufhcient condition (31) and Eq. (34)
immediately show that or remains real for sufficiently
small e. If oro is pure imaginary, the system is unstable
in lowest order, and the small equilibrium velocity
cannot stabilize it although overstability may occur in
higher orders in e. If, however, coo vanishes, it is of
interest to look at co~. The equations for this case are

Fp{go}=0,

Fp{$1}=0,

(35)

(36)

p11 pp)p+22p11ppv1' v(o —Fo((2} F2{(o}=0. (37)

Note that the equilibrium equations do not allow p& and,
therefore, F1 to exist. Note also that gp can be found
variationally from the 6$' formalism. ' Further, for
pop=0, the gp found variationally is actually the normal
mode displacement because the normalization does not
matter.

The solution of (35) can be chosen to be of the form

(38)

po is complex. Note that the equation adjoint to (28) is

—p12pg~ —2ipoov VP —F{P}=0. (33)

By virtue of property (c), (33) possesses the same set of
eigenvalues as (28). Thus the sets of adjoint eigenfunc-
tions and eigenvalues are the same as the sets following
from (28) although the eigenfunction-eigenvalue corre-
spondence is diferent. Therefore, we are guaranteed
that solutions to (33) exist if solutions to (28) exist.

The variational principle which makes both the real
and imaginary parts of pr stationary is just (30) with

P replacing P throughout. This principle suffers from
the same defect as (30) but still may be useful for some
applications. A principle is given in Appendix I which
holds for all co.

where pp' is real and e1 is merely a phase factor. Then,
multiplying (37) by gp* and integrating over the fluid
volume lead to

Thus

~ polo '(o dr — tKQ 'F2{(o }dr=0 (39)

p11'= —
I

ll (o'*.F2(go'}
i

po(o'* 5Q' I, (40)
E~

Jtpogo'* go"dr =0. (41)

Let gp be a linear combination of the two eigenvectors

go =12(o'+Ago" (42)

After substituting (42) into (37) and multiplying by
go'* and (o""', we arrive at two homogeneous equations
for u and P. Setting the determinant of the coe%cients
equal to zero leads to

oo1 + ~ $0 'F2{(p }dr Q11 +J $0 ' F2((o }dr

+ 2ip11JI popo'* v2 V(p"dr J(p'* F2((p—"}dr

X 22p11J! Po(o v1' V(o dr

where

+Jl (p'* Fp(gp"}dr =0, (43)

JtppI &'I dr= J' pol ko"
I
dr= 1

has been assumed. We see immediately that uP need no
longer be real, However, if co~ is real, we can again

from which we see that co&' is real and overstability does
not occur to this order. To settle the question of sta-
bility only the integral in the numerator of (40) need
be calculated. If the numerator in (40) is negative, then
cuj is real and nonzero, and the sufhcient condition can
again be invoked to show that co remains real. If co~ is
imaginary, instability is demonstrated. But if cu&

vanishes, the procedure must be carried to higher order.
Thus the method, in general, allows the determination
of stability or instability in some low order in e and, in
the case of stability, guarantees that co does not become
complex in some high order in ~.

If degeneracy occurs, some of the conclusions reached
in the foregoing no longer stand. For simplicity we
illustrate the procedure in the case of a twofold degen-
eracy. We assume that (35) has the two eigensolutions
gp', gp" which we choose to be orthogonal



HYDROMAGNETI C STABILITY 90i

invoke (30) to prove that &o remains real. The one
exception to this occurs if the square root in (30)
vanishes, in which case these considerations must be
carried to at least one higher order before a decisive
statement can be made.

CONDUCTING NtAI. L.~s "
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APPENDIX I

It is of some interest to recast the preceding theory
into a Hamiltonian form. It is easy to see that the ap-
propriate action S for the system is

I (8(/8t)'
S= d7.df —p

8$ I
p5 (—v V)—+-( F{0 (Il)

83 2

From this expression a Hamiltonian 3'. can be con-
structed in the usual way. We find
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FIG. 2. Pinch eRect equilibrium.

stabilities which have been discussed recently. '4 The
stability of this situation was 6rst considered by
Rosenbluth. ' ' The equilibrium configuration is shown
in Fig. 2. A perfectly conducting plasma of radius ro,
constant density Pp, constant pressure pp, and magnetic
field $&=B(r)e, is rotating with an angular velocity
Q(r). The rotation is caused by the imposition of a radial
electric Geld. The momentum balance in equilibrium
imposes the relation

—V'82= porQ'e„.

In the absence of rotation, the displacements for the
marginally stable state are'

&=(I/2p)L~ —pv VG' —l5 F{0, (I 2) 'e,I '(kr) cos(m8+kz)

where ~ is the canonical momentum

op= p(8$/8t)+pv Vg. (I 3)

The Hamilton equations which follow from (I.2) consist
of a restatement of (I.3) and

8oo/8t=F{0 —Pv Vf(~&p) vVQ. —

Writing $= F'z'"', op= oo'e'"', allows us to put the system
of equations in matrix form

gp'= & epI (kr)m—/kr sin(m8+kz) ~,

.—e.I (kr) sin(m8+kz)

'e,I '(kr) sin(m8+kz)

gp"=» epm/krI„(kr) cos(m8+kz) &,

i e,I (kr) cos(m8+kz)

(II.2)

—pv Vp ' F+pv V'(v V)

P
—1 —v V'

= ipo . (I.5)
pl (I

Equation (I.S) is in the standard eigenvalue equation
form which can then be written in abstract operator
language as

I.f=) f. (I.6)

The adjoint equation is

APPENDIX II

To illustrate the techniques developed heretofore,
the calculation of the stability of a simple model of the
stabilized pinch with a small rotation has been per-
formed by A. Pytte. By assuming that the displacement
g is a continuous function, we disregard the surface in-

The well-known variational principle

X=g* I. f/g* f, 9=0
leads to (I.6) and (I.7) and further makes both the real
and imaginary parts of X stationary.

Let

a]o„ato,—

+e,r 3e„r .—(II.3)

&rgo'* Fo{ko'} ~rKo"* Fo{(o"}
ot

drPo
I
(o"

I

'

3 J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A.
Frieman, Phys. Fluids 1, 281 (1958).

4 M. Rosenbluth, in Proceedings of the Second United Nations
International Conference on the Peacefgl Uses of Atomic I:nergy
(United Nations, New York, 1958), Vol. 31, p. 85.

' M. Rosenbluth, Los Alamos Rept. LA-2030 (1956).' E. Gerjuoy and M. Rosenbluth, Bull. Am. Phys. Soc. Ser. II,
5, 308 (1960).

where I is the usual hyperbolic Bessel function well
behaved at r =0 and I '(kr) =d/d(kr)I (kr). Note that
V go= 0 and that go' and gp" are orthogonal in the sense
of (41). In this case the operator Fo{go} reduces to

8)op 8fp,
F,{go}=ppQ' mo(o+e„—eo

88 88
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and
II

"drpoQ)o".
88

)"d ~oI4'I'

ol to

) drppQ(p"*.
88

drppI (p"
I

g=QmL1 —'R„],
f=Q'{m'I 1—3R„]+2/R },
R =I (krp)/krof„'(krp).

(II.7)

(II 4) to evaluate g and f when Q=constant corresponding t.o
a rigid rotation. The results are

By inspection from (II.2) and (II.3) we see that

Jf(o'* Fo{go"}=0. (II 5)

Equation (43) then reduces to

~~ =~ Lg~ (g'-f)'], (II.6)

which implies instability if g' —f&0. It is an easy task

The frequency shift induced by the rotation is then

co&=&Q{m(1—R )+Lm'(R +R P) —2/R ]'}, (11.8)

which is complex for all m. When Q(r) is an arbitrary
function of r, we cannot calculate co& explicitly. How-
ever, making use of Schwartz's inequality, we can again
show that g' f&0—for all m. Thus we conclude that any
small rotation obeying Eq. (II.1) destabilizes the mar-
ginally stable pinch.

DISCUSSION

Session Reporter: Y. NAxAGAwA

Vf. B. Thompson, Atomic Energy Research Establishment, E. A. Frieman: Yes, by using the distribution function it-
Harmell, Berkshire, England: Can a similar treatment be used self as the variational function; however, the operators are

directly on the collisionless Boltzmann equation? not self-adjoint in general.


