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FIG. 1. DeQection 8 of
a rod under the inQuence
of an axial compression
force P. stable unstable
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' 'T is well known' that plasma compressed by the
~ ~ pinching action of a magnetic field may be unstable,
depending on the magnitude of the fields present and
the nature of the region it occupies. The question has
on occasion been asked' whether or not there exist
equilibrium states of a pinched plasma with large
(or rather noninfinitesimal) deGections and, if so,
whether or not these states are stableP That such
states may exist is suggested by analogy with the
instability of an elastic structure under the action of
a compressive force. Such an elastic structure buckles
when the critical compression is exceeded and may
assume a stable buckled state with "large" deAections.

There are diferent possibilities, however. While a
thin rod assumes a stable buckled equilibrium when
the axial compressive force I' exceeds a critical value
(see Fig. 1), the situation may be different for other
structures. For example, as von Karman and Tsien
(see references 2, 5, and 7 of Friedrichs)' have observed,
a thin elastic shell subjected to a constant external
pressure possesses an unstable buckled state and in
addition a stable buckled state with a still larger de-
flection, even before the critical pressure is reached (see
Fig. 2). Naturally, one asks whether a pinched plasma
behaves as any of the elastic structures named if an
appropriate quantity —in place of pressure is varied.
It is shown that to a certain degree this is the case.

The primary cause of instability of a pinched plasma—assumed to be cylindrical —is the fact that the
circumferential magnetic field strength Bg in the
vacuum outside of the plasma decreases away from the

plasma. If some of the plasma enters the vacuum
region, it experiences a reduced magnetic pressure
there and hence tends to move further into the vacuum;
in doing so, however, it pushes out the magnetic field
which therefore becomes stronger, causing the magnetic
pressure to rise again. If at the beginning the first
effect dominates the second one, the cylindrical plasma
is unstable. Eventually, though, the second effect may
balance the erst one so that a buckled equilibrium
state may be attained.

The "buckled" states of plasma are exhibited with
a satisfactory degree of approximation. These equilib-
rium states involve a wavy interface whose amplitude
grows if the data of the problem are changed away
from those values at which transition from stability to
instability takes place. It is remarkable that these
buckled states exist for values of the data for which
the unbuckled state is stable. It is a consequence of
this fact that these buckled states are unstable (see Fig. 3).

Qn the other hand, it is indicated that stable buckled
states with larger amplitudes may exist provided the
outer cylinder is near enough to the interface. This
question is not discussed here.

The unbuckled plasma is considered to form a
cylinder r&EO, of length /. It carries an axial Geld 8, ,
and is under a constant pressure. It is furthermore
surrounded by a vacuum which carries a magnetic
Geld with a circumferential component Bg ='ByRO/r and
possibly with an axial component B,r. (In general, we
write simply B& instead of B&")The vacuu. m is bounded

by a cylindrical conductor r=E&.
The buckled plasma states are assumed to have a

"corrugated" surface, r=R(r), where R(r) is a function
of the combination r=ks+m8 involving the axial and
circumferential wave numbers k and ns with integral
m. The buckled 6eld is assumed to be "helical, " i.e.,
its components B„B&, and 8, should depend only

upon the combination r=ks+m8, in addition to r
The buckled plasma is assumed to be at rest and to
be under constant pressure. For simplicity the plasma
is assumed to be incompressible so that it occupies the
same volume, xEPl, as in the unbuckled state. It is

FIG. 2. Contraction 8 of
a thin spherical shell under
the inRuence of a uniform
external pressure p.
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Fio. 3. Amplitude 8 of
the buckled interface as
function of the data in the
case of small wavelength
(kgo )

because of this assumption that the case yg, =o is
excluded.

Most of the results are derived on the basis of a
simplifying assumption, namely, the assumption that
the zoaze length 2zr/k of the corrlgation is relatively small
compared with the perimeter 2mEo of the plasma
cylinder. The simplification is obtained by letting kEO

tend to infinity in the equations, while letting the
prescribed values of the cruxes depend on kEO in a
proper way. Denoting the corresponding mean values
of B, and By by B, and Bg, we keep B, and B, 6xed
and let Bo grow such that Bo(kRo)» remains unchanged.
At the same time the wave number m is allowed to
tend to infinity but such that m/(kRo)» remains finite.

The problem of small wavelength resulting from this
limit process is described by very simple equations.
The solutions of this simpli6ed problem give a good
approximation to the solutions of the original problem
roughly for kRo&3 Provided IBovI (kRo)» is the same
order of magnitude as IB,~I, while IB,"I is relatively
small. This follows from an analysis of the unsimpli6ed
problem, to be presented in a later publication.

The basic quantities entering the simplified problem
are the field components

B,~ and B.v+ (m//kRo)Bov

and the quantities

~= (1/Ro) IBo"I'

k
I
B~

I
z+k I B v+ (m/kR, )B,v

First of all, it depends on these quantities whether
the unbuckled plasma is stable or unstable. In this
context the notion of "stability relative to a mode
(m, k)" must be employed. By this relative stability is
meant stability with respect to deviations for which
the disturbed field components B„, By, B, depend only
on the combination r=kr+m8 (with unchanged k
and m) in addition to r. In this relative sense then,
the zznbztckled state is stable for y&yo and zznstable

for y)yo.
Values of the field data B,~, B,~, Bg~, together with

values of Mo and m, for which the "transition equation"
y=yo is satisfied, are called "transition data. "

Suppose that B,~ is zero or relatively small. Then
the possible transition values of kEO are bounded
below. Speci6cally, as numerical computation shows,
we have

kRo& mz —1 (if B,v=0)

for these values. From the statement made previously
that this simplification is acceptable for about kEO&3,
we conclude that this simplzficatzon is acceptable for
data in the neighborhood of all transition data prooided
m&2. For the simplified transition equation itself,
this statement can be veri6ed by comparison with the
results of earlier workers. ' ' '

Transition data are those data for which buckled
states with an in6nitesimal amplitude exist. Buckled
states with a noninfinitesimal amplitude are shown to
exist in the neighborhood of transition data. This
analysis shows that the amplitude 8 of the wavy
interface of such buckled states is connected with the
data of the problem to second order through the
relation

y = yoL1 —o.k'bog,

where the constant o. depends on the data, but varies
only between the values ~ and 1. It is then seen that
buckled states exist for y&yo and not for y&yo. In
this way we are led to the statement made previously
that bzzckled equilibrium states exist for data near transi-
tion data if and only zf the Nnbztckled state is stable for
these va4es. This statement, derived here only for the
case of small wavelength, is valid also for m= I and
large wavelength, as is shown elsewhere.

In the situation just described the buckled states are
unstable, as is proved later. Thi, s should be expected
by analogy with the instability of an elastic structure
in the analogous situation.

We make a few remarks about the results of this
analysis concerning the shape of the buckled interface.
Evidently, the shape of this interface is approximately
sinusoidal if the deviation from equilibriu. m is small.
This analysis shows that for larger wave amplitudes
the buckled interface flattens out toward the plasma
and steepens toward the 6eld—or the other way
al ound —accordlilg as

I
(m/kRo)Bo"+B*"

I
& IB.'I o» IB.'I.

In case one of these two quantities vanishes, there is
no doubt that the growth of the amplitude is limited;
specifically, it is to be expected that on increasing the
ratio yo/y (to about 1.2'), an extreme situation is
reached in which the crest of the interface has developed
a sharp corner towards the vacuum enclosing an angle
of j,20'. There does not seem to be an equilibrium
state with an amplitude greater than that in this
extreme case.

The facts just stated are easily established simply
because the mathematical description of the buckled
plasma in the case of small wavelength precisely agrees
with the mathematical description of steady meter mares
under the inQuence of grav8y. The prescribed values of

B.~ and B,v+ (m/kRo)Bov

'M. Kruskal and J. L. Tuck, Proc. Roy. Soc. |',London) A245„
222 (I958).

'H. Yamada, Repts. Research Inst. Appl. Mech. 5, No. 18, 37
(~957),
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correspond to the prescribed values of the horizontal
velocity component of the two Quids at whose interface
waves are formed. )If one of these quantities vanishes
the existence of the corresponding nonlinear mathe-
matical problem has been proved rigorously by Levi-
Civita and Struikp (see references therein). ] It may
be supposed that the heavier Quid, the water, takes
the place of the plasma and the lighter Quid, the air,
takes the place of the vacuum, and that. gravity acts
in the direction from air towards water. Letting g be
the acceleration of gravity and p~, p~ be the density of
water and air, we find that the difference of specific
gravities is given by

(pw ~")g =V/~,

where p is the diamagnetic constant in empty space.
To derive this formula one may roughly argue as

follows: If the wavelength of the corrugation is small,
the deviation from the undisturbed state is confined
to a small neighborhood of the interface whose thickness
is comparable with the wavelength. The drop of IB2I
away from the unbuckled interface then produces a
drop of magnetic pressure at the new position Ro+bR
of the interface. Approximately, this drop is given by

Ii 'B, &B—,= (IB,"I'/Iso)8R= (y/12)bR.

The latter expression should therefore be the reduction
in pressure which in a water wave with the elevation
6R is to be balanced by a reduction in Qow speed—
owing to gravity.

The water-wave analogy breaks down if the wave-

length of the corrugation is comparable with the
diameter of the cylinder. For, since Bp=Bp«Rp/«varies
as 1/«, the rate of reduction of magnetic pressure falls
off as the wave crest moves into the vacuum. The
destabilizing effect of the decrease of magnetic pressure
is thus less than for water waves. Therefore, the
stabilizing effect of the presence of the conducting
outer cylinder may become effective and may produce
a stable buckled state.

BUCKLED PINCHED PLASMA CYLINDER

We first formulate the basic equation for the magnetic
fields B=S in plasma and vacuum in general terms.
The differential equation

V' &=0, ~XB=~,
in which V' and X signify divergence and curl, certainly
hold in the vacuum. The buckled plasma not only is
assumed to be at rest but moreover to be "force free, "
so that the same differential equations are satisfied in

it, while the Quid pressure in the plasma remains
constant. At the interface and at the outer cylinder,
the field should be tangential, i.e., the boundary
conditions B„=e8=0 at S and at Si should be
satisfied. Here e=n is the outer normal vector at S

' J. J. Stoker, 8'ater Waves (Interscience Publishers, Inc. , New
York, 1957).

and at S&. These surfaces are assumed to be given by
equations

«=R(8») for g,

r=Ri = const for

The condition of pressure balance at the interface
Sis

L(1/2~) IBI'7'=p,
where p is the Quid pressure in this plasma, while

I
B"

I

and IB«I stand for the magnitude of the magnetic
fields on both sides of the interface. The symbol I Q72 «

stands for the jump
V — V P

at the interface.
At the ends z=0 and z=l of the cylinder, we should'

impose proper conditions to make sure that the buckled
state could have developed from the unbuckled one
by a motion. Instead, we require the field to be periodic,

ps=i gg=o

and prescribe the axial Quxes

p2e )R
@ P I —B «g«g]

I

z const=

o "o

~2z )itt
C,"=

~ B,«d«dBI~' "

in plasma and vacuum.
It is because of this simplification that we are per-

mitted to assume the field to be force free. It is likely
that the conditions of periodicity and force-freeness are
sufEciently well satisfied for the solution of the problem
in which the correct boundary conditions are imposed
at the end plates.

In addition to prescribing the Quxes C, the circum-
ferential Qux in the vacuum must be prescribed:

Ry

B tf«d»
I

2=const

0 B

Finally, since the plasma is assumed to be incompressi-
ble, we prescribe its volume

ptz (sB
rdrd8Cz =mRo2I.

~o ~o ~o

In the unbuckled state we have 8,=0; further,

B,='B, =C, /2«Rp' B2=0 in the plasma,
B PB «z= Czvz/2«(R22 —Rpt), and

«B2=Rp Be =C'e /& log(Ri/Rp) in the vacuum.

The stability or instability of this state can be ascer-
tained after those values of 8, , oB,~, 'Bg~ have been
determined for each mode (k,2N) for which transition

~ This was pointed out to me by H. Grad.
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from relative stability to instability takes place. This We choose p=0 on 8, p=p& on S&, where the constant
has been done by various authors. ' "

y& is given in terms of the Quxes by

HELICAL FIELD

In order to describe buckled states it is assumed that
the field components 8„, Be, 8, depend only on the
combination

With
-+ ( " ")=p g()

g(r) =2mkro ',

and, on the other hand, to the condition

p= const.

We note that o 'p is the component of the magnetic
field 8 in the direction of the screw lines ~=constant.
Also, the quantity pp, can be taken as the component
of a vector potential in this direction.

We assume that the interface S can be described by
an equation

r=R(r)

in terms of a function R(r) having the period 2~. The
outer conductor is given by r=E&=constant, as before.

To express the pressure balance condition

L(&/2~) I
&I'&~'=p

on the interface in terms of the function y and the
constant p one must use the expression

(
2l

(
2 —r—2x( 2+~ 2(x) 2+P2—)

for the magnitude ~Bj of the magnetic field.
The condition that the field 8 is tangential at the

conductor S~ and the interface S can be expressed in a
simple manner in terms of the function x(r, r), namely,
as the condition that y(r, r) =constant on Si and S.

(in addition to r) with the period 2~ in r. It is assumed
that the wavelength 2n/k in the s—direction is an
integral fraction l/n of the length l of the cylinder.
Instead of introducing a potential function to satisfy
the condition V' B=O—as is done in most linearizing
treatments —we prefer to introduce a function y(r, r)
to satisfy the condition V.

' 8=0 by setting

y y, = —rB„xg,=mBe+krB, .

We also introduce the quantity

4=m&, —&r&e,
so that

8,= o. '(krxg, +mp)

Bg——o.—'(mx(„—krp),
where

o 2 k2r2+m2

The condition V&8=0 then leads, on the one hand,
to the diGerential equation

xi ——(m/l)C er+ (n/l)C, v

p27p Bg 2~ Bi
a,dd+

2Ã 0 B 27/ 0 R

The constant p can be determined from the function
y with the aid of the Quxes C„viz.,

BI 2m BI

prm jl t a 2rdrdr+k It t o 2r2g~„drdr=@ r
0 R 0 8

2% R 2x R

pJm f o 'rdrdr+k " o 'r'x—grdr=C, P.
J /

The integral factors of p can be evaluated explicitly
and through integration by parts the other integrals
could be replaced by expressions containing the
function y but not its derivative y~„.

The condition that the plasma volume has the given
value ~EP/ reduces to

2

R'(r)dr =~R, .
2 p

It should be mentioned that the problem thus
formulated is associated with a variational problem,
namely, the problem of making the energy

l 2n BI
Z= —

)t
t' )t ~S~,d,dSd.

2p 0 0

stationary among all fields 8 which are divergence free,
V' B=O, are tangential at interface and conductor,
and yield the prescribed cruxes. For the helical field
the energy E is given by

(2~ pBy

l ~pE= I [r mx( 2+o2—g(„2+o2P2jrdt'dr'
3~0 o

where all functions x(r, r) are admitted which have in
~ the period 2m and satisfy the condition

g=0 on S, g=y& on 8&.

Here $ is the interface r=R(r) with periodic R(r).
Derivatives of the function x(r, r) are permitted to
jump at S. The two constants P are supposed to be
given in terms of the function g and the two Ruxes 4,
through the two relations formulated previously.
LIn fact, it would not even be necessary to require the
p to be' constant for admission; then the functions
P",~(r, r) would have to be placed inside the integral
in the two preceding formulas. ) In a routine manner
one verifies that every solution of the boundary value
problem formulated makes this energy functional
stationary.
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It is necessary to describe the unbuckled state in
terms of functions x(r, ») and constants P, in spite of
the fact that this state does not depend on the choice
of the wave numbers k and ns. In terms of the constants
'8, , 8, , Bq~, connected with the Quxes through the
relations given previously, the constants p are

oP+= moB P oPv =moB v —kRpoBo

In a formal manner it is then concluded that the
limit function x satisfies the differential equation

P(„+$(„„=0 for —oo &x&Xi

and the boundary conditions

/=0 . for x=X(y),
P=Pi=b+Xi for x=Xi,

and the function x(r, ») =zo(r) is given by
where

b+ =B.v+ (m/kRo) Bo
'P(r) =-,'k(r' —R p)'B,~ for 0&r&Ro

= &k(»' Ro')—'B +m log I»IRplRp'Bo

for Ro &r &R~.

BUCKLING WITH SMALL WAVELENGTH

As explained in the Introduction a limiting case is
considered; viz. , the case which arises if we let the num-

ber kRO tend to infinity. Keeping Ro fixed, the limiting
case may be regarded as one in which the wavelength
2o»/k is infinitesimally small. For the sake of description
it is a little more convenient to keep k fixed and to
let Ro tend to infinity. At the same time R& is allowed
to tend to infinity such that the distance R&—Ro is
fixed; eventually R&—Ro may also tend to infinity.

Also the wave number m is allowed to tend to
infinity; specifically, it is required that m'/kRo tend
to a finite limit. If m is kept fixed we would have
m'/kRo —+0 and the effect of the wave number m

would be wiped out in the limit. Actually, the results
of assuming that m2 grows like kRo turn out to be valid
in good approximation for finite m provided m& 2, as
explained in the Introduction.

In this limiting process the cruxes must be allowed
to grow in an appropriate manner with Ro. It is re-
quired that the undisturbed axial fields

B,P =C,p/orRpo B,v =C.v/or(Rip Ro')—

Note that the two terms occurring in this expression
are finite in the limit, according to our assumptions.

The condition that the Aux C,~ assumes the prescribed
value yields, as a simple formal consideration would
show, in the limit the condition that the function P(x,y)
behaves as

P(x,y) b x as x —+ —~,
where

—gP

The quantities P behave in the limit process as

Pp-mB„Pv mB," kR, Bo kR—,B,. —

(In effect this behavior was used in deriving the limit
differential equation. ) Since Pv grows as (kRp)& with

Rp, the contribution from o. 'pv' in the jump condition
L(1/2ii) ~B~'$=p grows like kRp and thus dominates
the other terms, which tend to finite limits. Since the
leading term (kRp) 'Pv' of ~ 'Pvo is constant, it is
balanced by the constant pressure p, which is thus
seen to grow as kRO. The term of next order coming
f

lorn

~—
2P 2 —{k2(R +x)o+m2}—1P 2

which equals —2(Bo)'Ro 'x= —2yx, except for a con-
stant, then balances the other terms in the jump
condition. In the limit this condition thus becomes

remain fixed as Ro —+ ~. Furthermore it is allowed that
the circumferential "mean Aux density" with

', (P~,'+f~„']~v=—yx+const at x=X(y)

y = (Bo)'/Ro.
Bov Bo l'(R, Rp) '4——gv—— —

grows as (Rp)& so that the ratio

v = (Bo)'/Ro
remains fixed.

We introduce
x=R—Ro, y=r/k

as new independent variables to run from —Ro to
Xi Ri Ro and 0 to 2——o»/k=—l/ro, respectively. It is
then postulated, without giving a detailed justification,
that, as Ro tends to infinity, the functions

(kRp) 'x(Rp+x, ky) and R(ky) —Rp

associated with the assumed solution tend to limit
functions

P(x,y) and X(y)

defined for —~ &x&Xi and 0&y&2m/k.

Thus we have' formulated the limit problem that
corresponds to large values of the radius Ro but finite
value of R~—Ro, or, which is equivalent, to large
values of k but finite values of Rp and k(Ri —Rp). If
the value of k(Ri —Rp) is large the domain of x may
be extended to infinity setting X&= ~, or replacing
the boundary condition on S& there by the condition
that P(x,y) behaves as

box at x
Condition

28'

0R'(r)d»= 2o»R o

goes over into the condition

j X(y)d»=0, »=ky
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The problem thus formulated is mathematically
equivalent with the problems of gravity 7oaves in water.
The corresponding water Qow takes place in the xy
plane. There are two fluids covering the regions
—~ &x(X(y) and X(y) &x(Xi. The quantity b+ is
the mean velocity in the y direction in the vacuum,
while b is the velocity in the y direction at x= —~
in the plasma. The quantity p= ~Bej'/Ro corresponds
to the diA'erence

~
p" prig of gravity per unit volume

of the two Quids. Gravity is directed from the thinner
to the denser fluid, irrespective of which is which.

In case one of the two fluids is absent (b+ 0——or
b =0) the shape of water waves of noninfinitesimal

amplitude was described by Stokes and others; their
mathematical existence was proved rigorously by
Levi-Civita and Struik.

Although in case of "wind, "
b+b /0, a rigorous

existence proof has apparently not been given, there is
no doubt that a solution exists which possesses the
series expansion derived from the standard bifurcation
analysis. We determine the terms of lowest order of
this expansion for the limiting case X&= ~.

BIFURCATION ANALYSIS FOR THE CASE OF
SMALL WAVELENGTH

The aim is to obtain a series expansion

f (x,y) = 'iP(x) +biP(x, y) +b'iP(x, y) +
X(y) =5X(y)+b2X(y)+

of tt (x,y) and X(y), in powers of an appropriate
parameter. It is essential that the data of the problem
are not all kept fixed in this expansion. It is convenient
to keep the quantities b+ fixed and to let the quantity p
vary. Specifically, we assume that p is also given as
a series:

y =yo+by+Py+

where the value yp is still to be chosen.
The most convenient expansion parameter is the

first Fourier coeKcient

1 2

bi= —~~ X(y) cosrdr; r= ky
p

of the function X(y) describing the interface. We call

8& the "amplitude" of this interface. The symbol 8 has
thus two diGerent meanings; but there should be no
confusion. The terms qualified by the "variation"

and P are supposed to be proportional to the
"parameters" 6& and 8&', respectively.

On inserting such expansions into the differential

equation, the boundary and jump conditions, one finds

first the terms of order 0: Q=b+x for x&+0, and then

the relations of order 1:d,g =0, and

The last equation stands for two equations, one on
each side of x=0. On using

'lt t, ——b~ for x+&0,

equations J and A may be written as

fbbiPt~] +=yobX+const,

bg+bbX =0 at X=0.

By assumption we have

8X= 8y coskp)

and we assume biWO in the following. (Additional
terms involving multiples of k are not excluded at
this stage; but they would be found to equal zero after
the jump condition J was used. ) On using A and

g —+ 0 as
~
x~ ~ ~, it follows that biP is given by

g(x, y) = bribe
"*—cosky.

Insertion into the jump condition J yields the relation

~ =kL~b2]=k(b ~+b 2)

for the value &p of p. According to the standard theory
of stability, it is this value pp of p at which transition
from stability to instability takes place. In terms of
the original quantities this "bifurcation equation" has
the form

(1/kRo)Be'"=[(m//kRo)Be+B r$~+ (B,P) ~

We discuss this relation by plotting its graph in the
(kRO, B,P) plane for fixed values of miBii and B,r. We
notice that, for given values of the field components
Bz and B,~, the values of kkp for which instability can
occur are bounded below. (The upper bound is sensitive
to changes in B,r; it is infinite for B,r=O. ) In case
mB, r//Be) 0; for example, the value of kRO is restricted
to lie above m', so that m/ Rkp &1. This is consistent
with the requirement that m'/kro be finite.

A closer examination of the bifurcation equation
derived without going to the limit kEp —+ ~ would
show that the results of this limit process is valid in
good approximation for the whole range of data for
which instability may occur provided m&2. For m=1
the bifurcation relation differs essentially from the
one just discussed for small values of kEp., in fact, it
has a solution ~B,~~ for all values of kRO, and these
values of ~B,~~ tend to infinity as kR~ ~ 0. This case
is not described here.

At present the bifurcation analysis is continued in
the limiting case kRO —+ ~. For the quantities Pp, b'X
of order Z: 6&/=0, and

A b'tp+bp bX+'ptj'X=O at x=O

J: LVi~Vi*+4(Wt*)'+2 (Vi.)'+St/kt. AX)
=gob'X+bybX+const.

A:
Pftggt, g +=yobX+ const,

btP+QtAX =0 at x= 0.
LNote that in the expansion of g'(X(y), yj, also
argument x=X(y) must be developed. )
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The choice of b~ as the first Fourier codFicient of
X(r) implies that the first coefficient of b'X vanishes.
From the vanishing of the first Fourier coeKcient of
the combination J+L~kgi+$=0, in obvious nota-
tion, one then derives the relation

Pro. 5. Graph of the
bifurcation equation for
6xed value of m, Bg~, and
B,~ in case M~~. The
shaded area indicates the
values of hap and 8,~ for
which buckled states exist.

stab|it t

From the vanishing of the second Fourier coeScient
of the combination J+L&2og~& j=0 one then derives
the result

with

.=-Lb j/L~b j=(b- -b. )/(b-+b')
From relation 3=0 one then obtains

bolt = —-', (+I+a)kbPb~e '"*cos2ky+ const.

The expression for 62 obtained enables us to describe
the shape of the interface in its dependence on the
amplitude bi. The equation

shows that, relative to a sinusoidal. wave the waveform
is Qattened toward the plasma and steepened toward
the vacuum, provided I

b
I
&

I
b+ I, while it is steepened

toward the plasma and flattened toward the vacuum
« Ib-I&lb+I (see»g 4).

The 6rst case arises, for example, if the 8, component
in the vacuum is absent or at least is dominated by
that in the plasma, while at the same time m is finite
or at least relatively small. The second case arises if
either m or B,~ is relatively small.

Since by=0 was found from the terms of second
order, it is necessary to go to the terms of the third
order to find out how the quantity p changes if b&

varies. Order 3:LB+=0, and

pp+bo1lf JX+g tg'X+ rob«„(SX)'+o«j'X =0,

It'y,.(8g,,+b P&.gX+g t.*b'X+',V&...(~X)')-
+8 t*~'«*+b«os@to+(b«ob4 I-

+g t„bgt„„)bXj=yoboX+boybX

In order to determine Py it is sufficient to consider
tile coefflclent of cost 111 tl1e co111b111atloil J+L+ If'+ j
=0. The result is

N'y= ——,'(&+~') k'bi'yo.

This result, which may be put into the form

y- go LI ——,
' (I+a') k'bio),

is of particular signi6cance since it shows that the
buckled state exist for y&yo. In terms of the original
quantities this relation assumes the form

(I/kRo)Bo'& Dnt/kRo)Bo+Bav]'+ (BI')'

In the ( kR, oB~) plane it corresponds to the shaded side
of the curve shown in Fig. 5.

Now, as is shown in the earlier work quoted
previously, ' ' ' for values y&y() the unbuckled state is
stable relative to the considered mode (nt, k). Thus we
have found that the buckled state exists for values of
the data for which the unbuckled state is stable.

INSTABILITY OF THE BUCKLED PLASMA
WITH SMALL WAVELENGTH

The phenomenon described —that the buckled states
exist for values of the data for which the unbuckled
state is stabl- has its counterpart in the buckling of
a shell. There the buckled states which exist close to
the unbuckled states are unstable. %e show that also
in our case the buckled states of the Plasma described by
the results of our bifurcation analysis an unstable In.
fact, we establish slightly more; namely, the relative
instability of these states. Ke recall that "relative
stability" refers to only those disturbances which
belong to a definite mode (k,m).

e first write down the second variation of the
energy expansion, which is stationary for the solution.
Then we show that this second variation can be made
negative, and hence is not positive definite. Finally,
we show that this fact implies the stated instability.

Instead of the energy E we consider an expression
proportional to E, namely, E*=Etr/kRol, or

~rii XI fl gist

(«*'+«')~~d' —», X'(y)~'Fto. 4. Kaveform
=X(y) of the buckled
interface between plasma
and vacuum in case ~8,v

+(1a/kRg)8o~(&(8. ") for
kRp~ oo .

2 w/h

Its first variation is

XJ

4't.bA.+4to&4I.)~~clr
0 —00

Iii
oil

(I -'(4 '+4 ')3= '"'+vX)&Xdr
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2v

b2= f—X'(y)dr
p

g+fi,bX=O on x=X(y), b$=0 on x=X„

called "admissible. " It vanishes for the solution

g, (g,y),X(y)}. The second variation of &* can be is related to the "amplitude" bi by

shown to equal

taken with functions bP(x, y) and bX(y) which satisfy Now, for our solutions {bp,bX} the quantity
the condition

2n ~1

{(bled. —0i* Vi.*W)'
p —pp

2'

+(bled, —4i. V~.A)'if~dr v~f (b—X)'&r

2~ X1

)f (g(,'+bP(„')dxdr
p —pp

23'

{L-,'Qi, '+Pi„')/ 7*= ' —'r} (bX)'d .

It is annihilated by a solution {bg,bX} of the
variational equations

LMQ=O, ++/+~X=O on x=X(y), bp=O on @=X,,

LV ~A~.+0(.bAw+kQi'+Am')i. bX]* '"'=vbX

Suppose E* were a potential energy in the sense of

Mechanics, so that stability of the equilibrium state
could be characterized by the condition 8'E*)0 for
all admissible {bg bX}=0. Then instability could be

established by exhibiting a particular admissible

{+,bX}WO for which b2E*(0.
Later on we show that the same conclusion can be

drawn for our Quid-magnetic problem. At first, how-

ever, we exhibit such a pair {+,bX} for the buckled

equilibrium states determined by our bifurcation

analysis.
To this end we consider the solutions P(x,y) and

X(y) as functions of the quantity y. We select a value

y&yp for which such solutions are established and set

by =bzaP/aq, bX= b~aX/aq

with arbitrary Sp&0. These functions evidently satisfy
the equations

Ag =0, bP+fi+X=O on g, b$=0 on g, ,

L4's*bA. +PAW'sw]+Lk(fs'+4'(~') (*] vbX=Xb7 on ~—
These equations differ only in the last term from the
"variational equations" mentioned previously. The
first two equations ensure that this pair {bp,bX} is

admissible. Insertion in 8'E~ and integration by parts
yields

2g 2'
Pg+=bq I XbXdr= ,'byb-

0 0

(bX)'&r=
~

{bi cosr+bi cos2r}'dr
7l p p

—
(b 2+b 2) —b 2 (I+1 K2$2b 2)

in second order. From our expression for y in second
order we have

dy/d (bP) = ——,'yo(1+i~') k'(0.
Consequently, dy/db2(0, as long as our second-order
approximation is valid, so that

8'E~&0

for the solution {P,X} and the special pair {g,bX}
selected.

The fact that the second variation can be made
negative would imply instability if the variations

{+,bX} entering it were such that they could be
attained by a motion of the system from the un-
disturbed one under the inQuence of additional forces.
This requirement imposes additional constraints on
the possible variation bB of the magnetic field. Such
constraints were formulated by Bernstein, Frieman,
Kruskal, and Kulsrud. ' The time rate of change B of
the magnetic field is given by B=V'PE or, by virtue
of infinite conductivity, by 8= VXfuXB] where I is
the Qow velocity. For the variations 88 and BN of 8
and I at the undisturbed situation, where N=O, we
have bB=VXPuXB]. Bernstein e& al. introduce a
vector b)=b$(t) such that j=N and then satisfy the
last equation by requiring

»vx Lbgx2l].

The vect«bp at the interface g describes its dis-
placement; also b$=0 at gi. Furthermore, V bg is
required in accordance with V' u=0.

Now the constraint imposed on b8 in the plasma is
that this quantity can be derived by the preceding
formula from a vector bg, as a function of space and
no longer of time, with V (=0, )=0 on Si, and at

describing the displacement of this surface. The
condition that the disturbed field be tangential at the
disturbed interface is then automatically satisfied.
Bernstein et a/. now show that stability is equivalent
with the condition that the second variation of the

' I. Bernstein, E. Frieman, M. Kruskal, and R. Kulsrud,
Project Matterhorn Rept. No. S-25; Proc. Roy. Soc. (London)
A244, 17 (1958); see also papers by J. Berkowitz et al. , H. Grad
and H. Rubin, M. Kruskal, M. Rosenbluth, B. R. Suydam,
R. J. Tayler, and others, in Proceedings of the Second United
lotions International Conference on the Peacefzd Uses of Atomic
Energy (United Nations, New York, 1958), Vol. 31.
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energy integral be positive definite for disturbing
fields 68 which in the plasma obey the constraints as
now described. In the vacuum there are no additional
constraints.

ln our simplified problem of small wavelength we

have 88=( 8$~„—,5$~,}, so that the constraint con-

dition reduces to

8'= &&4 &ebs—= —(0i*b4+Avb4)

At the interface g where f~„=—Pt,Xt„, this condition
reduces to

hP= P~ b—X with 8X=8$, Xtj—i$„

A pair of functions 5$» 8$„, satisfying b$,t,+bf„t„=0
and the constraint conditions, can easily be given. We
introduce the potential function p(x,y) in addition to
the "stream function" P(x,y) for each solution, so that

flu @I» ~w 0'l~ Alw

and consider x and y as functions of P, P, and y. The
derivatives of these functions with respect to the
parameter y, or rather the expressions

bc =~vsclv bkr=bvyl~,

have the desired properties. Evidently, bg, —iaaf„ is an
analytic function of p+iP and hence of sc+iy; there-
fore bg, t,+8(„t„=0 holds. Since the interface 3 is
described by x and y as functions of P with /=0, we
have

Xt y(&,0))=X($,0) and hence 5X+Xt„b)„=b), on S.

From /La(g, f), y(P,P) j=g we finally derive 8&+Pt,bf,
+&ebb=o.

Thus we see that our choice +=by+/by auto-
matically satisfies the constraint to be imposed. QNr

conclusion as to the iestability of the buckled states
therefore is valid

DISCUSSION

Session Reporter: V. NAKAGAwA

S. A. Colgate, Lawrence Radiation Laboratory, University

of California, Livermore, California: In support of this ex-

tremely interesting paper, I would like to comment that we

have observed axially symmetric, helical deformations of the

B, stablized pinch which may correspond to these continu-

ously connected stable solutions. These observed helical de-

formations are reversible, in the sense that the helix minds or
unwinds itself in a continuous fashion depending upon the

external constraints.
R. J. Tayler, Atomic Energy Research Establishment, Har-

well, Berkshire, England: There is one question connected with

comparisons of theory and experiment. If a stable equilibrium

(of the type you have considered) can exist, then it is a stable

perturbed state; however, in many experiments what is ob-

served is not a perturbed equilibrium but steady motions of
a perturbed plasma. You did not consider the possibility of

such an equilibrium state, namely, with steadily moving helical

perturbations.
H. Grad, Institute of Mathematical Sciences, New York

University, New Fork, New York: There is one trivial motion

which can be included in this treatment, that is a translation

along the axis. Then the present study can be regarded as in-

cluding moving helical perturbations.
W. B. Thompson, Atomic Energy Research Establishment,

Irarmell, Berkshire, England: One can look at this problem in

the other limit, as kRp~O. Then, one might believe that in-
ternal motion and changes of cross section of the current chan-
nel are unimportant, and the problem resembles that of a,n
extensible wire. Here one finds a more or less stable helical
configuration with a long wavelength. The apparent stability
probably disappears if disturbances which change the cross
section are considered.

H. Grad: This problem of the longer wavelengths can be
treated by more rigorous mathematical approaches using Sessel
functions, but this has not yet been completed. As indicated

in the paper, the helical equilibria (which are only slightly

perturbed from a cyclinder) are all unstable even for small

kRp.

J. L. Neuringer, Republic Aviation Corporation, Farming-

dale, Long Island, New Fork: Is this treatment a small per-

turbation theory or does the plasma actually become unstable

in a physical sense)

H. Grad: This is a linear stability theory applied to a non-

linear equilibrium theory. There are known examples in which

apparent transition from stability to instability as a parameter

is varied implies only a transfer of stability from a sinple equi-

librium to a more complicated one. Thus the nonlinear equi-

librium study increases the applicability of the linear stability

analysis, but it does not refer to Gnite amplitude stability.


