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AVE propagation through an ionized gas is of
great interest in many problems such as space

communication and astrophysical phenomena. Previous
analyses of this problem have been carried out either
from a microscopic point of view by means of Boltzmann
equations, ' ' or from a macroscopic point of view by
means of transport equations. ~' Even though the
treatment with the aid of Boltzmann equations is more
fundamental and detailed, its mathematical de.culty
is very great, hence one has to limit onself to rather
simple cases. For instance, it is sometimes proposed to
neglect the motion of the heavy particles in comparison
with that of the electrons, ' or to neglect the collisions
between the particles. 4 In the macroscopic treatment,
most of the analyses are based on a single-Quid theory. ' '
Hence the sects of plasma oscillations have dropped
out at the beginning. In order to find out the interaction
between the sound waves and the plasma oscillations,
one has to use the multiQuid theory in the macroscopic
treatment. Some approximate two-Quid theories for this
problem have been reported, ' ' but these treatments
did not use the complete system of equations for all
Quid dynamic variables. For instance, the pressure and
the temperature of both ions and electrons were not
used as dependent variables. This entailed that no use
was made of the equations of energy and of state in the
analysis and the relations between the pressure gradient
and the density changes are approximated by some
simple expression. Here we intend to use a complete
two-Quid theory to investigate the infinitesimal wave
motion in a fully ionized plasma, so that all the Quid
dynamic variables, i.e., velocity vector, pressure, tem-
perature, and density, for both ions and electrons are
considered as unknowns in this treatment.
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We consider the plasma as a mixture of singly charged
ions and electrons. We assume that originally the plasma
is at rest with a pressure p=2po, temperature To, and
number density 2vo. Hence the original partial pressure
for ions is po and that for electrons is also po. The
original number densities for ions and for electrons are
both vp. We assume that there is no externally applied
electromagnetic 6eld. Hence there is no electric current
nor an excess electric charge in the unperturbed state
of the field. The plasma is perturbed by a small dis-
turbance, so that in the resultant motion we have

ul ul(x)t)) vl o1(x)t)) u'1 wl(x)t))

uo= uo(x, t)y os= oo(xyt)~ roo=soo(x)t)y

pi= po+pi'(x, t), T&= To+ Ts'(x t)& ex= ro+ oi'(x, t),

p, =po+po'(x, t), To= To+To (x,t), uo vo+vo (x,t),
E=R(x,t), H= h(x, t), (&)

where subscript 1 refers to the values for ions and
subscript 2 refer to the values for electrons. I, e, and ze

are the x-, y-, and z-velocity components, respectively;
p' is the perturbed partial pressure; T', the perturbed
partial temperature; v', the perturbed partial number
density; E=iE,+jE„+kE„the perturbed electric 6eld
and h=ih +jh„+kh„ the perturbed magnetic Geld.
(i, j, k are the x-, y , and s-wise-unit vectors, respec-
tively). We assume that all the perturbed quantities are
small, so that second- and higher-order terms in these
quantities are negligible. For simplicity we assume that
all perturbed quantities are functions of one space
coordinate x and the time I, only. Thus we discuss only
wave propagation in the direction of the x axis. It is
a straightforward process to generalize our results to
the three-dimensional case in which the perturbed
quantities are functions of x, y, z, and t.

~12 &12(ul n2) ~21& (2)

II. LINEARIZED FUNDAMENTAL EQUATIONS

We make the following assumptions in one funda-
mental dynamical equation:

(i) Both the ions and the electrons may be considered
as an inviscid and nonheat-conducting gas.

(ii) Perfect gas laws may be applied to both ions and
electrons in the plasma.

(iii) The interaction forces between ions and electrons
are proportional to the difference between their mean
Qow velocities
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(BOE,/Bt)+evo(si s,) =0,— (7)

(BOEP/Bt)+ 8vo(01—02) = —Bk,/Bx, (g)

(BOE,/Bt)+ev 0(wi w2) = Bk—v/Bx, (9)

where p, is the magnetic permeability, e is the inductive
capacity and e is the absolute electric charge (the charge
of an ion is 8 while that of an election is —e).

(b) The equations of state for each species in the
plasma are, respectively,

Pl /Po P1 /V0+ Ti /7 0, (10)

P2'/Po V2/Vp+2'2/T'0 (11)

(c) The equation for the conservation of mass for
each species in the plasma are, respectively,

8pi /Bt+ v pBsi/Bx= 0&

8V2/Bt+ vpBs2 /Bx =0.

(12)

(13)

Here we assume that there is no mass source for ions
or electrons.

When Eq. (7) is differentiated with respect to x,
and use is made of Eqs. (12) and (13), we arrive at

(8/Bt)L(BOE,/Bx) —e(vi' —v2')]='0, (7a)

which is Poisson's equation for the relation between
electric Geld and charge density.

(d) The equations of motion for each species in the
plasma are

mlvoBsl/clt= (Bpl /Bx)+8PQE +1212(sl s2) (14)

mlv0801/Bt 8POE +c212 (01 v2)

mivoBwi/Bt = evoE, +1212(wi —w2),

mpvoBs2/Bt (Bp2 /Bx) 8voE +c212(s2 sl) (17)

mov0802/Bt 8VOE +C212(02 01)

m2POBw2/Bt= 8voE +c212(w2 wl) (19)
' H. Grad, New York University Rept. NYO-6486 (1956).

where +~2 ——0,2i is the friction coefficient. In Grst ap-
proximation the relation between the electrical con-
ductivity 0 and the friction coeflicient Gym is"

~= 8'V02'/~12.

Since we have 18 perturbed quantities, we have also
18 fundamental equations, which consists of six electro-
magnetic 6eld equations, six gas-dynamic equations for
the ions, and six gas-dynamic equations for the electrons.
On neglecting the higher-order terms in the perturbed
quantities, we obtain the following linear equation in
mks units for our problem.

(a) Maxwells' equations for the electromagnetic field:

Bti,h,/Bt =0, (4)

Bti,kv/Bt= BE,/Bx, (5)

Bti,k,/Bt= BE„/Bx, — (6)

where en~ is the mass of an ion, while m2, is the mass of
an electron. We have m~&&m2.

(e) The energy equations for each species in the
plasma are

miv OCP18T1'/Bt = Bpi'/Bt,

m2voC 28T2 /Bt Bpp /Bt

(20)

(21)

where co is a given real frequency, ) is the wave number

which may be complex, i.e., X=X&+9.„Pi= (—1)&].
The velocity of wave propagation is V= co/Xs. On sub-

stituting these variables into the fundamental equations
for the perturbed quantities, we obtain one deter-

minantal equation for each group of variables. The
eigenvalues X of these determinantal equations give the

difterent modes of wave propagation through the plasma.
In analyzing the determinantal equations, the fol-

"J.M. Burgers, Institute for Fluid Dynamics and Applied
Mathematics, University of Maryland, Tech. Note BN-124a, 57
(May, 1958).

where C» ',——(k—/mi), and C» 2(k——/m2). Cv is the
specific heat at constant pressure per unit mass for
each species and k is the Boltzmann constant. Because
of the great difference of masses between ions and
electrons, there are no Grst-order term of energy
exchange between these two species. "

On examining the fundamental equations (4) to (21),
we see that the equations and the variables may be
separated into four independent groups as follows.
~ '(i) The quantity k, is given by Eq. (4) alone, and. is
independent of all other quantities. Furthermore, since
the divergence of h is zero, we conclude that h, =con-
stant, which may be put equal to zero.

(ii) The second group consists of 01, 0„EV, and k„
which are governed by Eqs. (6), (8), (15), and (18).

(iii) The third group consist of wi, w2, E„and k„,
which are governed by Eqs. (5), (9), (16), and (19).

Both the second and the third groups may be
regarded as describing transverse waves, as they deal
with components of the velocity and of the electro-
magnetic Geld perpendicular to the direction of wave

propagation. The determinantal equations for these two

groups of variables are identical. Hence, the modes of
propagation for these transverse waves are identical,
and as far as wave propagation is concerned, there is no

distinction between these two groups.

(iv) The last group consists of si s2 pi p2 Pl P2',

T~', T2', and E which characterize a longitudinal wave.

In the absence of an external magnetic Geld, the longi-

tudinal wave does not involve magnetic force.
We are looking for periodic solutions in which all the

perturbed quantities are proportional to

expi(cot —Xx) =expi (opt l, )%aexxp p.,—x)
=expL —i)112(x—Vt)] exp (X,x), (22)
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(23) X'= (X~+iX;)'=—1— +i-
c'i ~'(1+n *')~ c' (1+n *')

(24)
=K,+iK„say, (30)

&uvz= co, = e[vo/em&)&= ion plasma frequency,

(Ov2 Mg e(vo/em2)' *=electron plasma frequency.

Because m1))ns2, we use the approximations

e[vp/e (m~+ m2) gl =e (vo/em)) l = cv;
where Xz and X; are real numbers. E& may be a positive
number or a negative number but E2 is always a positive
number. From Eq. (30), we have

(23a)
and

e[vo(m&+m2)/emim2$' —e(vo/cm2) * = co. (24a)

lowing two characteristic frequencies play important Equation (25) may be rewritten as follows:
roles:

in evaluating the value X in our determinantal equa-
tions. Hence, we obtain

(31)

cd =cP—a&.'[(1—incog*)/(1+n *')j
where c= (ep,) '=velocity of light;

(25)

n12 n12/m2~v0. (26)

The friction coefhcient n». is closely related to the
electrical conductivity 0 as given in Eq. (3). Hence the
case +12——0 corresponds to infinite conductivity 0-= ~.
For this case, n»*=0, Eq. (25) reduces to

III. TRANSVERSE %AVE

As mentioned before, the determinantal equations
for the second and the third group are identical. They
give the following relation for transverse waves:

and
&a'=-', [Ki+ (KP+K2')'3

Xp= —,'[—Kg+ (Kp+K22)i j. (32)

x, =-,'(K,+IK, I)+,-'(K, /IK, I), -
&''=-'( —K~+ IK~I)+-'(K~'/IK~I).

(33)

The positive sign before the radical is taken because
both ) g2 and X,2 must be a positive number.

When n»~0, K2 —+0, Eq. (32) then gives the
result of Eq. (27). In other words, in the case
K~)0 (a&) &o,), we obtain Xa' ——K~, X,=0; while if
Ki(0(c0,)~), w«nd &a=0, &'2=

I
K1 I.

For large but finite electrical conductivity, E2((E&,
we have

g2 = (N2/c2) [1 (M 2/M2) $ (27) If a&)u, such that K~)0, Eq. (33) gives
ol"

V= &a/X= c/[1 —((o.2/co')jl. (27a) Xgp=Kg, X,2=~(K22/IKgI). (34)

~ [1—(~'/~ ')3'
(29)

For 6nite electrical conductivity, n»WO, the value
of X given by Eq. (25) is complex. Thus we have damped
waves because both Xg and X; are different from zero.

~ L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), Chap. 4.

Equations (27) and (27a) give the weil-known result
of the elementary theory of plasma oscillations. "Dis-
turbances of frequency ~ larger than co, propagate with
the speed V of Eq. (27a). If the frequency ro of the dis-
turbance is smaller than co„X is pure imaginary. Equa-
tion (22) gives

Q exp (ia)t) exp (X;x), (2g)

where Q is any one of the perturbed quantities. Hence
the perturbed quantity Q is an exponential function of
x. From physical consideration, we should take A.; as
a negative quantity. Hence the wave does not propagate
in space but its amplitude decreases as the distance from
the center of disturbance (x=0) increases. The distance
through which the amplitude of the wave will decrease
by a factor 1/e (where e is the base of the natural
logarithms) is

This is a damped transverse wave with a speed of
propagation the same as that of undamped waves
[V=cv/(Kq)'j but with a damping factor X;

+2 ~ e &12
(35)

2 (Kg)' 2 oP cm, vp [1—(co,'/a&')+n~2*']'

The damping factor increases as n12 increases; and
decreases as oP increases.

If co(~„so that K~(0, Eq. (33) gives

Xg'=-', (K2'/I Kg I), Xp=Kg. (36)

Hence, the wave number Xz becomes very small. This
leads to a very large wavelength which may be inter-
preted as a very large speed of propagation, but the
damping factor A.; is also very large, and is about the
same as that of the exponential function for the case
of infinite conductivity. We thus have highly damped
waves.

In conclusion, for finite electrical conductivity we
always have damped transverse waves. It should be
noticed that for very large speeds of propagation
(V=ur/X&) we have very small values of Xa. This
means that the dependence of the sinusoidal part of
the disturbance on x is very small [i.e., expi(cot —Xgx)j.
We may also interpret this situation by saying that
the wave does not propagate in space, as ) g ~ 0.
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IV. LONGITUDINAL %'AVE

The determinantal equation for the longitudinal
wave is as follows;

(ii) If co,/co=i, we have

2 —(~2/g 2) (5$ 1) g 2 — (~2/g 2) (5c~+ 1) (43)

Xco f ( m2) co,

I
1+2~„*—

I
—2—

ap I & "m&

where

co co~

+ (1+ca&2*)——=0,
8 28 2 oP

al (rpo/m&vo)&= ion sound speed,

a2 (rp&&/m2vo)&= electron sound speed,

a„= (zoo/mcvo) & =plasma sound speed= a&v2.

(37)

(38)

The first root ) ~ gives an undamped wave with speed
of propagation av/(5& —1)' which is smaller than the
sound speed of the plasma a„.The second root X2 gives
a damped exponential wave with a damping factor X2,
which is smaller than the corresponding factor for the
case of low frequencies.

(iii) If co,/co)1, one root of X' is always positive,
while the other )' is always negative, i.e.,

co ( co, ) ( cop) gp (co8

i
1—2—I+ I

i —2—I+4—I

—i
I

zap 4 co ) L co 3 gg ( co

=positive quantity, (44a)
In these expressions y =5/3.

A limiting case may be considered first, in which
both the ion plasma frequency co; and the electron
plasma frequency or, are much larger than M. Equation
(37) becomes

co ( co;2) ( co, ) gp (co.
I

1-2—I-
i

1-2—I+4—
I

—1
I

zgP ( co2 ) ( co2 &J gP (co2 )
=negative quantity. (44b)

alld
XP=co'/zaP =co2/av'

~22 (2co.2/gP)

X4+zy(co'/a ') —(co'co '/aPaP) =0

The two roots of X' of Eq. (39) are

(39)

(40a)

(40b)

Hence when co,/co) 1, one mode X& gives an undamped
wave propagated with a finite speed, while the other
mode X2 gives an exponential wave in which the ampli-
tude of the wave decreases exponentially as the distance
from the center of disturbance increases.

(iv) If co,/co=1, Eq. (44) becomes

The first root X~ gives simple sound waves for a plasma
considered as a single Quid. The second root X2 gives an
"exponential wave, " in which the amplitude of the
disturbance decreases from the disturbance center
(x=0) exponentially I i.e., as exp —IX;Ixj. In general
these two modes depend on the relative values of plasma
frequencies co; and ~, and the applied frequency co.

The nature of these two values of X' depends on the
ratios of the two plasma frequencies to the applied
frequency co, i.e., co;/co and co,/co.

(i) If co;/co»1, Eq. (41) may be written as

cop co2 ( co4 m2 co4 ) &

l&.
'=——1+ ai 1+ ———

I
. (42)

gy zcoc ( 4coc m& coc &

As co/co, —+ 0, the two roots of Eq. (42) reduce to those
given by Eq. (40), i.e.,

2 —~2/zg 2~~2/g 2 1 2 — 2~.2/g 2 (40)

V. LONGITUDINAL WAVES IN AN IDEAL PLASMA

For an ideal plasma, the electrical conductivity is
infinite, i.e., 0.~~=0. For this case the two solutions of
X' obtained from Eq. (37) are as follows:

( ~"l ( "*) a& (
I
i-z—'

l~ i
1-2—

I
-4—

I
1-—

I

zgP . ( co2) ( co2) gP ( co2)

(41)

XP= (co'/aP) Li —(co,2/co')],

X2'= 0.

(45a)

(45b)

Now both modes X~ and X2 represent undamped waves
traveling at finite speeds.

(vi) Finally, if co»co„ the limiting values of Eqs.
(46a) and (46b) are, respectively co/co, -o ~

Xp=co'/ap or Vc=co/X& ——a&,

lc2 co /g2 or I 2 co/~2 g2

(47a)

(47b)

The first mode retains a similar behavior as in the case
co./co)1, but the second mode shows motion which is
independent of the space coordinate x. We may interpret
it as a standing oscillation or as an undamped wave
with infinite speed of propagation. This is the transition
case where the second mode changes from a purely
exponential damped wave to an undamped wave
propagated with finite speed.

(v) If co./co(1, both XP and X2' are positive, i.e.,

~2 ( ~2) -( ~2)2 4g2( ~2)-$

2gP ( co 2 ~ co ) a k co ) I

=positive quantity, (46a)

~2 ( ~2) -
( ~2) 2 gp ( ~2)ii —2—

I

—ii —2—
I
—4—ii——

I

I2aP & co'5 k co'3 gP & co')

=positive quantity. (46b)
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The 6rst mode represents a sound wave of the ions as
if they exist alone in the plasma, while the second mode
represents a sound wave of electrons alone.

In conclusion, the behavior of the longitudinal waves
in a plasma of infinite conductivity is as follows

There are two modes of the longitudinal wave. The
first mode is essentially due to ions, while the second
mode is mainly due to electrons. For finite values of the
frequency, there are interactions between the plasma
frequencies and the sound speeds of the ions and
electrons.

The first mode 5,1 is always an undamped wave
propagated with a finite speed. At very low frequencies,
its speed of propagation is equal to the sound speed of
the plasma as a whoIe. As the frequency co increases the
speed of propagation decreases continuously, until it
reaches the limiting value of the ion sound speed, which
is 1/V2 times the plasma sound speed. Figure 1 shows
the variation of the speed of propagation of this first
mode of the longitudinal waves in terms of the ratio
of or/or~.

As long as the applied frequency co is less than the
electron plasma frequency co„ the second mode is a
damped exponential wave. The damping factor P;
decreases as co increases toward ~.. At ~=co„X=O.
Hence the wave is independent of the spatial coordinate
x and we may say that the speed of propagation is
infinite. At co=co„ this mode changes from a damped
exponential wave to an undamped wave in space. When
or/or, )1, the second mode is an undamped wave prop-
agated at a finite speed V2. This speed of propagation
V2 decreases continuously as ~ increases toward a
limiting value of the electron sound speed, as co tends
to in6nity. Figure 2 shows the variation of X;, Xz, and V2

with respect to or/or, for this second mode of longitudinal
wave.

VI. DAMPED LONGITUDINAL WAVES

For finite electrical conductivity, n12/0, the longi-
tudinal wave is always damped. The two roots of X'

l.6

V(

a&

l.2

l.o g

Xi

\

1

or 06

l

l

l

l

l

0.8
I

ole/op

XR
cugo2

0.4

0.2

l.5

l.4
~2
02 o2A R

I.2

R~
0 --- 1.0

I'1G. 2. Wavlength Xg, speed of propagation V2, and damping
factor X; of the second mode (electron) of the longitudinal wave
in an ideal plasma.

of Eq. (37) are

orm ( ( or;2) m2

l
1—2—l+2f »*-

2ar2 4 E or' ) mr.

aP (-4—
l

1—l+'-„* l. «8)
@22 E or' J

If a» =0, Eq. (48) reduces to Eq. (41). In order to show

the first-order eGect due to 6nite conductivity, we

consider the case of large but 6nite electrical con-
ductivity so that 0;»* is a very small quantity. We may
neglect the higher-order terms of or»* in Eq. (48) and
obtain the following equation for X'.

~2 ( ~2) -p, 2)2 g2( ~2) -$

2gr2 4 or'3 . 4 or') uP 4 or' )
m2( or, 1)

+2~»*—
l

1~2——
l

mr L or2 8&)

co m2 f or, 1 $=x,'+i~»*
l

1w2———
l

ur2 m, ( co' 8&)

=Xp'+ 2&Crnr2*, say, (49)

l.o

0.8

0.6—
0

IIG. i. Variation of speed of propagation of the first mode (ion)
of the longitudinal wave in ideal plasma.

where Xp' is the value of A.
' when 0,12~=0, which we have

discussed in Sec. V and

&=L1—2(~'/~') ]'—4(a~'/~2')L1 —(~'/~')3 (5O)

If we write the complex root X as

X ='Xg+iX;, (51)

from Eq. (49), we have

Xg' —),2= Xp', (52)

~i~8 C1&12 (53)
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If u»* ——0, Eq. (52) gives the results of Sec. V. In this
case, if Xo' is positive, we have X;=0, Xg=XO, on the
other hand, if X02 is negative, we have X~ ——0, X,= (—XO2) &

because both Xg and X; are real numbers.
If o,12*/0, we have

y&4 $02y@2 C12O 12+2 0 (54)
We discuss Eq. (54) for the corresponding undamped

and damped waves in an ideal plasma separately.
(i) For undamped waves in an ideal plasma Xo') 0,

Eq. (54) gives

Xz' = —',Xo'(1+L1+ (2Cpn&2*'/XD') j) =ho ~ (55)
For first approximation, the electrical conductivity
does not affect the speed of propagation V= co/Xz.

Ci&n ~u 1 t'

(56)
X~ 2mgvgv Xo E uP B&J

Equation (56) shows that the damping factor
increases with o.12, but decreases with increase of co.

If we substitute the values of Xo from Eqs. (40a),
(43), (44a), (45a), (46), or (47) into Eq. (56), we have
the damping factors for the corresponding waves.

(ii) For damped waves in an ideal plasma, X02(0,
Eq. (54) gives

Xo ( 2CpCEy2 ) 1 p(ly2
1—~1+

~
=, (57)

2 & X04 3 (—Xp')

X,= (—&02)1. (58)

Equation (58) shows that the damping factor is not
aGected by the electrical conductivity for first approxi-
mation. Equation (57) shows that this damped wave
does propagate at a very high speed which is propor-
tional to 1/num*.
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B. Lehnert, Royal Institute of Technology, Stockholm,
Sweden: I quite. agree with you that in general lines, Ohm's
law is not treated the correct way and therefore some very
curious results could be obtained. On the other hand, I do
not see that there is a difference in the treatment where you
use the mass velocity of the ions and electrons or where you
treat the problem in terms of the current density and the
mean motion of the plasma. This seems to be an exactly
equivalent way of expression.

J. M. Burgers, University of Maryland, College Park,
Maryland: I believe that Dr. Lehnert's equations for the one-
fluid theory introduce the inertia connected to the current.
Most people who have worked with the single-fluid theory do
not think about the inertia contribution to the electric current.

B. Lehnert: That is right, if you write down Ohm's law,
then you should do it the correct way and you should include
also inertial forces, pressure gradients, and so on.

S. I. Pai: In the single-Quid theory you have to introduce
the electrical current density as an independent variable.
Therefore, you must introduce certain phenomenological re-
lations. These relations are usually very simple for a generali-
zation. If you can get a complete current equation, then you
can probably get the same result. Two-Quid theory yields
much more information.

B. Lehnert: Is it not, though, more difficult to have the
velocity of ions and electrons in Euler's equations instead of
the difference between these velocities, which enter into Max-
well's equations in the form of the current density. It might
be that what you gain on one side you lose on the other. When
you start writing down your equations, you should have the ion
gas and the electron gas treated separately, then you lump them
together. I still think that the theory where you have current
density and mean motion of the plasma should be considered
as a two-fiuid theory.

S. I. Pai: In the single-Quid theory you use only 16 vari-
ables rather than 18. The 18 variables are: the velocity vector,
two partial pressures, two partial temperatures, the density,

the excess charge, and the vectors of current, electric field, and
magnetic field. In the single-fiuid theory you forget one of the
partial pressures and you assume the temperature to be the
same for both species.

B. Lehnert: I quite agree that limitations are introduced
by making such assumptions; however, they are not necessary;
you might as well introduce dif'ferent pressures and tempera-
tures of the ion and electron gases, and the theory then be-
comes as general as that which you have described.

T. Kihara, University of Tokyo, Tokyo, Japan: I would
like to draw your attention to the fact that the fundamental
equations of the two-Quid theory can be derived from the
theory of thermodynamics of irreversible processes. For ex-
ample, your coefficient 0. is part of the linear phenomenological
coefficients. It is easy to prove that it is always a positive num-
ber. I would like to say that the theory of irreversible theoro-
dynamics is much more general than Boltzmann's equation,
since it is also applicable in the case of liquid plasmas.

S. I. Pai: Actually the two-Quid theory can be derived from
Boltzmann's equation, but the trouble is that it is difficult to
solve this equation even for the case of ordinary gas dynamics.

W. B. Thompson, Atomic Energy Research Estab'lishment,
Parnell, Berkshire, England: I agree that Boltzmann's equa-
tion for most problems is very difficult to solve. For this prob-
lem, however, it happens to be tolerably tractable, and you
can get a solution. How do your results compare with this
solution?

S. I. Pai: In the two-Quid theory, J. J. Thompson in one
of his books ' found that for isothermal conditions v2=(p/p2);.
From Boltzmann's equation, one finds that v2=(3p0/p2)&. My
case was an adiabatic one and I found that v2—(F0/p~)". I
do not see how these differences arise. It could perhaps be
possible under certain conditions to obtain from Boltzmann's
equation the factor y instead of three in the expression for v2,

a J. J. Thompson and G. P. Thompson, Conduct~on of E/ectricity
through Gases (Cambridge University Press, New York, 1933), pp. 353-
358.


