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1. INTRODUCTION

HE following considerations have been developed

to throw some light on the problem of whether a

shock can appear in a completely ionized plasma sub-

jected to a magnetic field, if the density and temperature

are such that the randomizing effect of collisions can
be omitted in the domain of transition.

We assume that the field, when described with
reference to a coordinate system in which the shock is
at rest, is independent of the time, and is a function of
the coordinate x (or x1) only. It is supposed that there
is a uniform state of flow with constant velocity U,
(in the direction of x;) for both positive ions and elec-
-trons in the domain x<0. In this domain the number
density of the ions (supposed to be singly charged), as
well as the number density of the electrons, has the
constant value Ny; the temperatures of the ions and of
the electrons have the same constant value T; and
their partial pressures are equal to po=N kT, without
any deviatoric pressure components. It is further
supposed that in this domain there is a constant mag-
netic field directed along the x3; axis of strength B,
and that there is an electric field E,=U,Bo/c in the
direction of the x, axis. This electric field compensates
the Lorentz force on the charged particles insofar as it
depends upon the mean flow velocity U,. The situation
corresponds to the case where a shock wave or some
other wave pattern would advance with the velocity U,
in the negative x; direction into a gas at rest; the gas at
rest would then be subjected to the magnetic field By
in the x; direction, but it would not experience an

electric field E,.
With m,;=ion mass and m.=electron mass, the

* The work reported here was supported by the U. S. Air Force
through the Air Force Office of Scientific Research, ARDC.

It is related to a brief discussion given in Secs. 5-10, 5-11,
and 5-12 on “Flow without collisions in a magnetic field,” etc.,
of the chapter on statistical plasma mechanics in Plasma Dy-
namics, F. H. Clauser, Editor- (Proceedings of the International
Symposium on Plasma Dynamics, June, 1958) (Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1960), pp. 140-148.
In particular it can be considered as an investigation of some prob-
lems suggested by Eq. (5-61), p. 146.

Some problems connected with the motion of a single charged
particle across a magnetic field, in the presence of an electric
force, were discussed in Secs. 6 and 7 of a paper on ‘‘Magnetogas-
dynamic problems from the point of view of particle dynamics,”
presented at the Durand Centennial Conference, August, 1959,
to be published in the Proceedings of the Symposium (Pergamon
Press). In that treatment only the constant component E; of the
electric field was introduced; the component E;, which in the
present case appears as a result of the net space charge density in
the field, was left aside.

density of the gas in the domain x<0 is po=Nom;. It
is supposed that the velocity U, is so large that
poUo*> po; how much larger is considered later. It is
further supposed that the “magnetic pressure” Bg®/8w
is of the same order as po; it may be larger or smaller.
The velocity U, is assumed to be so far below the
velocity of light ¢ that relativity corrections need not
be taken into account.

It is supposed that to the right from x=0 the field
ceases to be uniform and becomes a function of x. We
intend to investigate the relations between change of
motion and changes of pressure, magnetic and electric
fields, including the appearance of a component E;. It
is necessary to give attention to the deviatoric pressure
components, although these are not related to velocity
gradients by mean of a viscosity coefficient. The treat-
ment is based upon the flow equations that can be
derived from a Boltzmann equation, in which the right-
hand side, which ordinarily represents the effect of
collisions, has been replaced by zero. As is well known,
the equations derived from the Boltzmann equation by
integration contain the moments of the distribution
function, and the equation starting with the derivatives
of a moment of order # also involve derivatives of
certain moments of the next higher order. Hence, in
order to arrive at a closed system of equations, an
auxiliary assumption must be introduced, for instance,
that certain moments can be neglected, or that they
can be replaced by a convenient approximation.

Since the motion of the positive ions and the motion
of the electrons are coupled only by the electric and
magnetic fields, the equations of motion can be ex-
pressed most conveniently with the aid of the separate
mean flow velocities of the two types of particles. Thus,
for each species (a) of particles we introduce the mean
value u, of the velocities &, and we call u, the mean
flow velocity for the species . We then write

Co=&— U, 1

and call ¢, the random velocity of a particle of lype a
with reference to the mean flow of the particles of type a.
With this definition the mean value of ¢, vanishes:

<ca>av=0~ (1&)

Writing #, for the number density per unit volume
of the particles of type ¢ and m, for the mass of a
particle a, we introduce mean values of higher order
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defined by
(Pa)hlc = numa<5ah0 ak)av, (2)

(Pﬂ)hki = numa<5ah5ak5ai>av, etc. (3)

The (pa)us may be called the components of the partial
pressure tensor for the particles e, but it should be
observed that when the u, are unequal, these partial
pressures cannot be summed with respect to ¢ in order
to obtain the total pressure. To find the latter, one
should introduce a different set of random velocities,
defined with respect to the mean flow velocity of the
gas as a whole, and then define pressure components
based on those random velocities. A similar observation
holds with respect to the temperatures of the various
components, which in our present system are defined by

the equation
' = 3ma((Can)*)av, 4)

Paz %(Pa)hh= nakTq. (48.)

The components of the heat flow carried by the
particles of type a with regard to the mean flow of these
particles are obtained from the third-order moments
(pa)iri by contraction:

$kTa
so that

(9a)i= 3% (Pa)ni. (3a)
2. EQUATIONS OF MOTION
We write
D,/Dt=09/0t+u,:(9/0x;). 5)

In the system of description indicated, the equations
for the various mean values (equation of continuity,
equations of motion, etc.) obtain the following forms':

(Darta/ D)+ 14 (0%t4:/ 92;) =0, (6)
Da a a)hi
NaMy (““”)+ ;P )h =naea{Eh+8hiﬂ/‘aiBj/6}y2 (7)
X5

Da(pa)nr Othgi Oan gk

1 . - J—

Dt T (Pa)hk ax,. T (Pa)lu ax‘ T (Pa)hl axz

0 (Pa)nii

e (Mu=0, ()

8x,~

! Equations (6)-(9) have been obtained in the following way.
The collisionless Boltzmann equation is multiplied by the factors

1; makan; Mafanfar; Makanfarkas, respectively. The equation is then:

lntegrated over the full domain of values of &1, £42, £as. Call the
results obtained (in the same order) [07, In, [T, I1Im;. Then
Eq. (6) corresponds to [0]; Eq. (7) corresponds to ;,—maua;,[Oj,
Eq. (8) corresponds to T Fon—tho T — g+ Mattartrar[ 0]; and Eq.
(9) corresponds to

IT I~ (tand Ti~+ttard Ti~+ttaid Inn) + (Uantbard i+ thanttail k+thartbailn)
— (1/p) (pued i - priTn+pril n) — mathanttarttai 0]
+ (ma/p) (ttas pract-ttarprs+tanprs [0,
2 The components of the third-order tensor &u; have the fol-
lowing values: 8p;;=-+1 when the numbers 4, %, 7 form an even
permutation of 1, 2, 3; 8x;;= —1 when these numbers form an odd
permutation of 1, 2, 3; 84;;=0 when two or more of the numbers
k, 1, § are equal.
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a(Pa)hlcz_l— ( ) + ( ) + ( ) Uah
D Pa 1 — a Pa hkj a Pa kiy axj
(j’a) 4 (Pa) ij
+ (Pa)hi; L7 l:_i
w;  0x; Pa 0%
(Pa)hz 9 (Pa)kf (pa)k: 4 (Pa)hf

] Ma)ui=0.  (9)
Pa dx; Pa 0x;
The series of equations can be continued in this way.
As mentioned before, each equation starting with the
derivatives of a moment of order # involves derivatives -
of moments of the next higher order.

The tensors (M a)ue, (M), €tc., are dependent upon
the components B; of the magnetic field. They are
defined by the formulas?

(M )= (€a/MaC){Ons; (Pa)eiBi+kij(Pa)niBj}, (10)
(M a)hki = (ea/ mac) {5hmn (Pa)kimB n
+6kmn (Pa)himBn""aimn (Pa)hkmBn}- (11)

In the problem under consideration we have taken
the magnetic field in the direction of the z axis, so that
B;=B;=0, and we write By=B. The tensor (Ma)n
then reduces to

(M o) 11="204(pa)12,
(Ma) 20= — Zwa(Pa) 12y

(M 4)33=0,

10
(Ma)12= (Mo)n=—wa[ (pa) 11— (pa)22], (102)
(M) 3= (Ma)s1=wa(Pa)2s,
(M 2)as= (M o)s2=—wa(pa)13,
where
wo=e,B/m (w, has a negative sign). (12)

Corresponding expressions for some of the components
of (M) appear in Egs. (56).

Instead of the subscripts @, we often use subscripts ¢
and e when we wish to distinguish between ions and
electrons. We also write %, 94, w, instead of #41, %42, %as.

Since the field is assumed to be a function of the
coordinate x ‘only and is independent of the time,
derivatives with respect to x,, &3, and ¢ drop out. We
further assume that the electric field has two com-
ponents, E; and E,, while the component E; (parallel

3 The following observation may be of interest with regard to
the effect of the Larmor motion upon the behavior of the com-
ponents of the pressure tensor and of the third-order tensor:
In a uniform field which would be independent of all coordinates
but dependent upon the time, Egs. (8) and (9) reduce to systems
of homogeneous simultaneous linear differential equations for
the (pa)u or the (pa)us, respectively, with constant coefficients,
which can be solved in the usual way with the aid of gonio-

metric functions.
The sets of equations thus obtained moreover satisfy the

conditions
(a/ at)ﬁa = 0,
(8/3t)C (pa)me =0,
(8/9t) (P )i P=0
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to the magnetic field) is supposed to be zero. The com-
ponent E; cannot be a function of x when the magnetic
field is independent of the time; hence E; is not a
variable, but a constant. As mentioned before,

Ey= UoBo/G. (13)
The component E; is related to the charge density
by the equation

dE,
—=A4r 3 neea=4me(n;—n,).

dx a

(14)

The magnetic field strength B is related to the current
density in the y direction by

4me
= (00— M0,).
dx a ¢ c

dB HaCala

(15)

3. FIRST APPROXIMATION

Equation (8), determining the change of the (pu)u
with time, contains the third-order moments (po)ni.
Equation (9) for the latter quantities involves fourth-
order moments. Similarly, equations for the fourth-
order moments involve fifth-order terms, etc. As
mentioned before, an additional hypothesis must be
introduced in order to arrive at a closed system of
equations.

As a first approximation we replace all third-order
" moments by zero. This entails that heat transfer by con-
duction is neglected.

A second approximation, in which certain third-order
moments are taken into account, is considered in
Secs. 10-14.

With this simplification, and in consequence of the
assumption that all variable quantities are functions of
x only, the system of equations (6)—(8) reduces to

(d/dx) (namasta) =0, (16)
HatMatha(Qtha/ d26)+[d (pa) 11/ d ]=naea Er+ (vaB/c) ],

17
NaMatta(dva/d%) [ d(pa) 12/ do )= naa Er— (u.B/c)],
(18)
o[ d(pa) 11/ dx ] 3 (pa)11(Atha/ d%) = 200 (Pa) 12, (19)
o[ d(Pa)os/dx 1+ (Pa)22(dua/dx)

+2(pa)12(dve/dx) = — 2wa(pa) 12, (20)

- o[ A(Pa)ss/dx ]+ (Pa)ss(dua/dx) =0, (21)
o[ d(Pa) 12/ dx 1+ 2 (Pa)12(dtha/ dx)+ (pa)11(dva/ dx)

= ‘*’a[ (Pa) 1~ (Pa)22]- (22)

We have omitted equations for we, (pa)1s, and (pa)ss,
since these quantities can be supposed to be zero.
Hence, we have a system with 16 unknowns: #,, %,
Vay (Pa)11, (Pa)22, (Pa)as, (Pa)r2, Ex, and B, with @ standing
either for ions or for electrons. There are also 16 equa-
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tions if we consider the set just given together with
Egs. (14) and (15).

In consequence of our neglect of collisions, there are
no formulas that define the tensor components (p,)u
in terms of the derivatives of the flow velocities and a
viscosity coefficient. The tensor components (pa)ux
appear to grow in time when we follow the flow, a fact
which is expressed by their dependence upon the coor-
dinate x in the equations. There is no randomizing
effect of collisions which tends to bring the pressure
back to isotropy.

4. FIRST STEPS IN THE CONSTRUCTION
OF A SOLUTION

Some of the equations can be integrated immediately.
By making use of the values assumed in the domain
<0, the continuity equation (16) gives

neu,,:NoUo.

This result has the consequence that the electric current
strength in the x direction is everywhere zero.

In the domain <0 the ions and the electrons have
the same isotropic gas pressure: (o)1= (pa)22= (Pa)ss
=NokT o= po; while (pa)12=0. Hence Eq. (21) gives

ta(Pa)ss= Uopo=UolN okT o, (24)

holding both for ions and for electrons.

It is evident from Egs. (19), (20), and (22) that there
are two scales of length, determined by the so-called
Larmor radius #,/w,, for the ions and for the electrons.
As there is no reason to expect that the order of mag-
nitude of the velocities #,, or that of the magnetic field
strength B, greatly changes when we follow the flow,
it is convenient to use the values of U and By in order
to define these scales of length and we write

L; (or LY=m;Uw/eBo; L.=mUqo/eBo.

Since L; is large compared with L., the question presents
itself as to which of these two quantities is charac-
teristic for the scale of the field. Let us first assume
that the scale is determined by the smaller one of the
two quantities, that is, by L..

From Eq. (15) it then follows that the order of mag-
nitude of v, (which presumably is the larger one of the
two transverse velocities) is determined by

c Bo Boz Ve BO2
Vg~ —= , so that —~————,
47rN 4 Le 4’7TN omeU 0 U 0 4:11'N omeU 02

nai=NoUy; (23)

(25)

Now Be*/4r was expected to be of the order Nom;U 2.
Hence we must conclude that v, becomes much larger
than Uy, unless the magnetic field would be very weak

and uninteresting.
We now consider Eq. (18) for the electrons. The first

term is of the order
NomgUo'Ue/Le'\’ (302/47r) (eBo/merc).
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This requires that d(p.)i2/dx, or Nee(E:—u.B/c), or
both, be of the same order of magnitude. The second
possibility would make

Eg— (ueB/C)N (Bo2/41rN0’mer2) (UoB()/G).

In view of Eq. (13) this looks highly improbable
and it would be much more natural to suppose that
d(pe)12/dx is approximately equal to ngmse(dv./dx).
Under these circumstances we cannot conclude that
Es;—u.B/c is nearly zero, so that there is no reason to
assume that #.B remains approximately constant.

We now find that (p.)12 must be of the order Bg?/4r.
In itself this does not look impossible. We must, how-
ever, consider it in connection with Eq. (20). Since we
have found that v >U,, it follows that the term
2(pe)12(dve/dx) in this equation exceeds all other terms,
so that it is not possible to satisfy this equation. Thus
we arrive at the conclusion that the assumption that
the scale of the field should be determined by L., leads
to unacceptable results. We can see this in a slightly
different way when we observe that the kinetic energy
per unit volume gained by the electrons would be of the
order '

%Nomev,}fv%(302/41rNom¢Ug2) (mi/me) (302/47r),

which is far in excess of the other energies in the field.
We turn, therefore, to the alternative assumption
that the scale of the field is determined by L,.

5. SIMPLIFICATIONS OBTAINED IN THE EQUATIONS
OF MOTION WHEN IT IS ASSUMED THAT THE
SCALE OF THE FIELD IS DETERMINED
BY THE ION LARMOR RADIUS L;

When this assumption is applied to Egs. (19), (20),
and (22) for the electrons, the coefficient w, appearing
on the right-hand sides is of a much larger order of
magnitude than the operators #(d/dx) occurring in the
left-hand sides. We therefore must conclude that the
terms multiplied by w, are small. This means that

(p)1z and  (Ppo)az— (Peoun

must be small compared with (p.)11, or with ()22 or

(Pe)ss.
By making use of this result, we can combine Egs.
(19) and (20) for the electrons by addition into

uL d(pe)u1/dx ]42(pe)11(due/dx) =0,
while the same equation holds for (p)ze. Hence,
Ul (pe)u=1ud(pe)22=Upo.
By subtraction we can derive
2(pe)11(due/dx) =4we(pe)1a= —4(eB/mec) (pe)12, (262)

from which the value of (p.):2 can be obtained. Equa-
tion (22) can then be used to calculate the small
difference between (p.)11 and (p.)se (results are given
in Sec. 9).

(26)
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In this way we have disposed of seven of the
unknowns, viz., #;, e, (p)3s, (Pe)i1, (Pe)az, (Pe)ss, (Pe)a.

We now introduce the evident assumption that E;
is not of a larger order of magnitude than E, [which was
given by (13)]. With the assumption that the scale of
the field is determined by L;, the derivative dE;/dx is,
at most, of the order UyBy/cL; that is, of order
eBi/mic®. Referring to Eq. (14), we conclude that
(ni—ns)/No can be at most of the order Be¥/4wN gmict.
In view of the assumption UK, it follows that

(ni—ne)/N oK1, (27)

Consequently, also #; and #, can differ only by a
small quantity. In those expressions where the dif-
ference between #; and 7. does not appear explicitly,
we may use the letter # for both of them, and similarly
use a single letter # for the velocities of both types of
particles in the x direction, with

nu=NoU ,. (23a)

We return to Eq. (18) applied to the electrons. We
have found that (p.):2 is a small quantity in com-
parison with (p.)11, and in view of the small electron
mass we can neglect the first term on the left-hand side.
There remains

0= —ne(E;—uB/c),

from which we obtain
B=6E2/u= BoUo/M, (28)

so that now B is expressed in terms of # and follows
the same rule as the number density. This result is
commonly expressed by saying that the magnetic lines
of force are frozen in the gas. It is often deduced from
the assumption that the electric conductivity is infinite.
On neglecting the small difference between »; and 7.,
in comparison with the probably much more marked
difference between v, and v;, we can write Eq. (15)

— (dB/dx)= (4wne/c) (vi—2,);
substituting (28) we find
9;— 0= (cUoBo/4mne) (1/u?) (du/dx). (29)

We then turn to Eq. (17) applied to the electrons. Also
here we neglect the first term in view of the smallness
of the electron mass and we substitute the value of
(pe)11 obtained from (26). Elimination of v, with the
aid of (29) leads to the following expression for

(E1+v:B/c):
1 Bgz U02 du
E+ =—(2Po+—— _—
dr ] wd® dx

v,B

(30)
c me
The treatment of the electron equations given here,
which started from the assumption of the existence of
a rigorously steady state, evidently ‘omits the question
of whether oscillations connected with the electron
inertia (so-called plasma oscillations) might become of
some importance.
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6. EQUATIONS OBTAINED FOR THE IONS

The result (30) can be substituted into Eq. (17)
applied to the ions; actually, this means that the
gradient of the electron pressure component ()1 exerts
a certain influence upon the motion of the ions in con-
sequence of the electromagnetic coupling which is
present in the field.

With po=Ngmn; as before, Egs. (17)-(22), applied to
the ions, can now be written

du d(?z)u B\ U¢® du
poUo— = (2P0+_" R (31)
dx dx 47/ uw® dx
dv; d(p;
poUo ’ +__(? )12=0, (32)
dx dx
( D)
! 11+ 3(ps )11 =2wi(p)12, (33)
d(pi)ae
“— + <P1)22—+2 (Pz) 12——— —2wi(pi)1z, (34)
d(p; d
" (P )33+ (Pi):ia—jf: O’ (35)
dx dx
(Ih)
1)12—~‘|' (Pz)u"“—* —wil (p) 11— (p)ee]-
(36)

To simplify the writing, we omit the subscript 7 when
it is evident that the equations refer to ions.

From this set, an equation of energy can be deduced
by adding together Eq. (31), multiplied by #; Eq. (32),
multiplied by »; and one-half of the sum of Egs. (33)-
(35). The result is

Ud(u2+v2)+d|u( - )}
Po de 5 712 PuT PoTPss

Uldu

’"(“Pu‘f-vzﬁm) (2po+———— —?___0

u? dx

(37)

Equations (31), (32), (35), and (37) can be integrated
immediately and give

U
poUon+p1i+ (2P0+““ ——=const
2u?
By?
=poUd+2po+—, (31a)
8r
polU v+ p12=const=0, (32a)
upss=Ugpo [already given earlier as (24)7], (35a)
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M2+7)2
poUg

u
+5(P11+P22+P33)+%P11+‘UP12

+ (2p0+—— ——=const

9 UoB?

——poUo2+ Uspot+ (37a)
2 2 4r

Our system of equations now contains the following
variables: %, v, p11, pas, Pss, p12 (all referring to the ions).
For these six variables we have four integrated equa-
tions: (31a), (32a), (35a), (37a); and two differential
equations: (33), (36). Equation (34) has become re-
dundant. There are further Egs. (23a) for #» and Eq.
(28) for B.

It is evident from Eq. (31a) that the calculations are
applicable only when the original value of p;; in the
undisturbed flow (i.e., po) is high enough to prevent py;
from becoming negative. The equations are not valid
for a gas of zero temperature.

7. SEARCH FOR A SECOND UNIFORM
STATE OF FLOW

We started from a uniform state of flow in the
domain x<0. All equations are satisfied by this state,
in which the derivatives with respect to x vanish. The
question presents itself as to whether the equations can
also be satisfied by another uniform state. To abbreviate
writing it is convenient to introduce nondimensional
parameters and variables. We write

ZPQ 2ﬁ0+302/41r .
=a; =1, with 14+3a-+3y=8; (38a)
;OoUo2 IJ'OUO2
u ? pu j 2 P12
—=3z; —=2% =9; =% =n
U U poU¢? polUo? poU¢?

(38b)

(as before, v, p11, pas, P12 refer to the ions). The quan-
tities @, v, and G defined by (38a) are constants.

It follows from Egs. (33) and (34) that p;;=01in a
uniform state; further, from (32a), v=0; from (36),
P11=72s0.

We substitute the notations (38a) and (38b) into the
equation of momentum (31a) and obtain

z+y+ (v/22) =1+30+3v=8.

This equation holds everywhere in the field, whether
the field is uniform or not.

We also make the substitution in the equation of
energy (37a), applying it to a uniform state; we then
arrive at

(39)

2yt (/D) =3+aty=28—%  (40)

{not valid for a nonuniform state).
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In a certain sense Egs. (39) and (40) can be con-
sidered as nondimensional Hugoniot conditions for a
shock wave in a magnetic field, when it is observed that
use has already been made of Eq. (23a) for the density
and of Eq. (28) for the magnetic field. While Eq. (39)
is of the form used by most authors, with y standing
for the dimensionless pressure component (p.)u [or
($:)s In a notation used sometimes], the occurrence of
the term 2zy in Eq. (40) is peculiar to the theory de-
veloped here for the behavior of the electrons and the
ions, as expressed by Eqgs. (24) and (26), together with
the result (ps)11=(p:)22 in a uniform state of motion.
When other assumptions are introduced, for instance,
that the pressure would be isotropic, the form of this
term changes; it also changes when there would be
exchange of energy between ions and electrons through
collisions.

The value 2 for the numerical coefficient of this term
brings the consequence that elimination of y between
Egs. (39) and (40) leads to a quadratic equation for z.
Since this equation must be satisfied by the original
state for which z=1, it can be divided by (z— 1), leaving
a linear equation for the determination of the remaining
root. The latter is found to be

Z0=4%6—1=1(1420+2y). (41)
The value 2, is smaller than one when
o+vy<1. (41a)

8. CAN THE SYSTEM OF EQUATIONS (31a), (32a),
(35a), (37a), (33), (36) DESCRIBE A CONTINU-
OUS TRANSITION FROM THE STATE
CORRESPONDING TO z=1
TOWARDS THE STATE

z2=2,0
We obtain from (39)
y=B—z—v/24,
and from (32a)
gF=—q.

Next from (33) (using a prime to denote derivatives
with respect to x),

n=3L(2%y'+3yz3") = — 3 L[422— 303+ (v/22) ]2
From Eq. (36) we then find
y¥*=y+ L (% —yan'+ 2nz4’).

The results are substituted into the equation of energy
(37a); after a number of intermediate calculations we
arrive at the following differential equation for s:

e1(d%/da?)+ ¢2(dz/dx)+[(z— 1) 0o/ L¥]=0, (42)

where

o1=2"[22— B+ (v/22%) ][ 22— 3B+ (v/42)) ],

p2=162"— 16833+ (15/4)8%*+3yz— (5/4)By
—(v*/162%), (43)

po=3(z—$§6+1).
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A formal solution of the differential equation can be
constructed when z is used as independent variable
and dz/dx as the dependent variable. Before considering
this solution, it is useful to give attention to a linearized
form of Eq. (42), which is obtained by setting z=1-+¢,
neglecting (d{/dx)? and taking =0 in the expressions
for ¢1, 2, @o. At the same time we adjust the scale for
x in such a way that L can be replaced by unity. We
then obtain

@1(d%/da?)+ oot =0, (44)
with
e1=3(1—-30)(1-§6—7);
po=2(1—a—7).

We observe that the same equation can be obtained by
making use of linearized forms of Egs. (31)-(36).
When we replace (41a) by the stronger condition

fot+v<1, (45)

the coefficients ¢; and ¢ in (44) are positive and the
equation admits oscillating solutions for { and for the
quantities depending on it. The wavelength of the
oscillations, expressed with L as unit of length, depends
upon the ratio of ¢; to ¢o.

It may be added that condition (45) entails @+v<1,
so that 8<% in consequence of (38a). When expressed
in terms of velocities and pressures, condition (45)
becomes

Uo>[(S5p0/po)+ (Be/4mpo) I, (45a)

which can be considered as a condition defining
“supersonic” flow. It should be kept in mind that the
original pressure of the gas is 2p,, since both ions and
electrons contribute the value po.

We return to Eq. (42) and write it in the form

o1(@%/da?)+ o2 (ds/dx)*+ oof =0, (42a)

with @1, s, @o as given in (43), z being expressed with
the aid of {. We then write

dg/dx= St (46)
Equation (42a) changes into
e1(dS/dg)+2¢2S=—2¢cf.
We introduce an auxiliary variable y defined by
& 2‘92
v=| &—.
0 @1
The solution of the equation for .S can be written
e
S=e‘W[C-—2 f d;—"ew], (@7)
0 b1

where C is an integration constant which must be
positive. The integral between the square brackets [ ]
assumes positive values both for {>0 and for { <0. In
the domain {>0, both ¢ and ¢; are positive; the
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integral increases with {, and we can always find a
value {77 for which it reaches the value of the constant
C, so that S=0 for {={1;. When we go to the domain
<0, we find that ¢, becomes zero if {=z,—1=%8—2
(which is <0, since 3<%). It can be proved that ¢; <0
for this value of ¢, so that ¢; becomes zero earlier than
0. When ¢, approaches zero, the integral diverges
logarithmically and consequently reaches the value of
C for a value {r> ¢o.

The domain of admissible values of { is defined by
{r<¢<trr, with S=0 at both end points.

The integration of Eq. (46a), which can be written

s

rx=

now leads to an oscillatory dependence of { on x
(a “libration”) of periodic nature, but not of simple
harmonic type. There is no progressive advance either
in the positive or in the negative direction for {; the
libration is always around {=0, and it never reaches the
point {=¢o.

Thus, the equations do not describe a continuous
transition from the state z=1 to a state z=2z,.

9. SUMMARY OF RESULTS

In the following lines we collect a number of results
obtained from the nonlinearized equations. We use the
nondimensional variables defined by Egs. (38a) and
(38b) and take L(=L;) as unit of length, so that it
can be omitted as a factor in the formulas.

Results for the Positive Ions

(from 39); (49a)

p1/poUd=y=8—2—7/25

2

9 3
L (423—6ﬁ22+—62z+7——[ﬁ+l— &)
pol]()2 4 4z 1623
43—3
+2z— 36+ ——  (from 36); (49b)
pas/poUo?=0/2z (from 35a) (49¢)

(expressions for vp/ poU¢ and for p/pU¢? can be deduced
from these formulas);

pu (z '_14 +7) ' (from 33);  (49d)
=p=—( 222—38z+— )z rom 33);
poU¢? : 4z

v Y

—=—g= ( 2z2—-%[3z+—)z’ (from 32a).  (49e)
U, 4z

Results for the Electrons
(pe)11/poU *= /222, (50a)
(pe)2s/polU = /222, (50b)

M. BURGERS

[from (26), with neglect of terms of the relative order
me/m;; compare with Eq. (51), for the difference
between the two components |;

(pe)ss/poUo?=&/2z (from 24); . (50c)

(Pe) 12/ poU = — (m./m;) (&/42)2’  (from 26a);  (50d)
e , 3 4o—3y ,

;]—D— ( 2% ——Z-,Bz—i— - )z (from 29). (50e)

We can make use of (22), applied to the electrons,
in order to obtain an expression for (p.)2a— (pe)11. The
only term of importance on the left-hand side is
(pe)11(dve/dx), since the other terms are of order m./m;
in comparison with it. Thus we find

3 46—3y
()]

4z

ms; 22 dx

poUd?
(S1)

Equation (18), applied to the electrons, can be used
to find how far the product #B deviates from the value

UoBy given in (28). After some calculations the follow-
ing result is obtained:

uB me & 3 30—3y
= 1+—z—{ (2z2——,82+ )z’ } (52)
UOBO m; dx 2 4z

+terms of order (m./m;)%.

Hence the deviations are of the order m./m;.
Finally we can use Eq. (30) to obtain the value of E;.
The result is
poU¢? 3 3y
Ey=——of 25— —— 2.
Noe 2 4z

(53)

Since we have made L=mUs/eBo=1, the factor

before the parentheses ( ) expression can also be written

U,By/c, so that E; is of the same order as E,.
Equation (14) finally gives

dE,
N 0 47N 0€ dx

Hi— N 1

49rNoec dx

UiBy d 3 3y
{(22——5-——)2'}. (54)
2 4z

Again by making use of the relation m;Uoc/eBo=1 in
order to eliminate e, the factor before d/dx becomes

B 02/ (47rN om,-c“’) )
which is of the order U¢?/¢? and hence small compared
with unity, as had been stated in Eq. (27).
10. SECOND APPROXIMATION

The negative result obtained with the first approxi-
mation makes it desirable to investigate what can be
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obtained when the third-order moments (p4)m: are not
neglected. It is necessary to make use of Eq. (9), but
we must introduce a hypothesis about the values to be
given to the fourth-order moments (p,)ni;. The simplest
assumption seems to be that they have the values which
would hold for a Maxwellian velocity distribution, as
given by

(Pa)neii= (Onedij+Onidui+dndni) (k2T 2/ ma),  (55)

where the temperature T, is determined by (4a).
At the same time we introduce a further approxi-
mation by replacing

(P bY  Omipa

in the terms between the square brackets [ J]of Eq. (9),
which terms are of the second degree in the pressure
components. These terms then reduce to

— (00 i+ 0nidk;+01,00:) (Pa/ Pa) (Opa/ 9%5),

and the combination of the derivative of (pa)ms; and
the [ ] terms gives

(Onab4j+01ibki+0nidki) pa(8/ 0%;) (Pa/ Pa)-

The next problem is how many of the third-order
moments are needed. As before, we assume that the
velocity in the x; direction is zero, and also that (p.)1s
and (p,)2s are zero. From the basic equations (8) it
follows that Egs. (19)-(22) for (pa)i1, (Pa)2z, (Pa)ss,
(pa)12, respectively, must be completed on the left-hand
side with terms

d(pa)111/dx, d(pa)ezs/dw, d(pa)ssr/dx, d(pa)iz/du.

We note that (pa)121= (pa)112- It appears that we also
need (po)222 and (Po)sse. The equations then form a
closed system.

We must investigate which part of the conclusions of
Secs. 4 and 5 can be retained. We keep to the assump-
tion that E; is of the same order of magnitude as E,,
and that the scale of the field is determined by L=L,,
as given in the first formula of (25). We can then
retain Eq. (27), so that we may take n;=#n,=#» and
u;=u.=u in all those cases where the difference #;—#,
or u;—u, does not occur explicitly.

Looking at Eq. (9), applied to the electrons, it should
be noted that the components of the tensor (M )
contain terms of the type w,(pe)mi, which have the
electron mass in the denominator. The same holds for
the terms derived from the expression (55a). The other
terms have the order of magnitude

(Uo/L) (P Ji=wi(Ppe)nkiy

and thus are much smaller. Consequently Eq. (9) for
the six components of (p.)nes mentioned earlier, with the

(55a)
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(M )wes components written explicitly, reduces to

3p.(d/dx) (pe/pe) =3wo(Ppe) 112,
pe(@/d%) (Pe/pe) =we[ (Pe)2se—2(Pe)112],
2:(8/dx)(po/pe) =we(Pe)ss2,

0=°~’6["‘ (Pe)111+2(Pe)221:]» (56)
0= —3w.(pe)221,
0=—w,(pe)ss1.
Thus we find
(po)11= (pe)2z1= (p<)351=0,
(P 1= (Po)ssa= (Po/we) (d/dx) (po/po), (57

(Pe)2ze= (3pe/w.) (d/dx) (pe/pe).

Since the order of magnitude of p, is that of p,, that
is, the order of poU ¢?, we easily find—in connection with
(25)—that the order of magnitude of the nonzero com-
ponents of the tensor (pe)m: is that of poU?.

The derivatives of these third-order moments occur
in Eq. (8) for the electrons, along with derivatives of
terms which are of the order of magnitude of p.u, that
is, again of the order poU¢*. Hence the introduction of
the third-order moments does not upset the order of
magnitude of the left-hand sides of these equations.
Consequently, when Egs. (19)-(22) for the electrons
are completed with the third-order terms, we still can
conclude that

(pe)12 and  (Ppe)1i— (Pe)2e

are small compared with (p¢)11 or (pe)se.

Equation (19) for the electrons must be completed
on the right-hand side with the term d(p.)ui/dx;
however, as we have seen, this term is zero. Similarly,
there is no change in Eq. (20) or in Eq. (21) for the
electrons. Hence Eqs. (26) and (24) can be retained.
We can also retain Eq. (26a).

Equation (22) for the electrons must be completed
on the left-hand side with the term d(p.)12/dx, which
is not zero, according to (57). However, this equation
is of interest only when we wish to calculate the dif-
ference (po)11— (pe)22, which is not of great importance.

Thus, apart from the last point, the conclusions of
Secs. 4 and 5 remain valid, so that again we can make
use of (28), of (29), and of (30) [which was based upon
the result (26) for (pe)11]-

Consequently, also in the present case the unknowns
of the problem refer to the ion gas, viz., %, v;, ()1,
(P)ag, (Pdss, (Pid1a, (P)ins, (Poass, (Po)sss, (Pi)urs,
(p:)2s2, (Pi)ssz. As before, we omit the subscript ¢ when
no ambiguity is to be expected.

11. DISCUSSION OF THE SYSTEM OF EQUATIONS

For the 12 unknowns mentioned, we have the fol-
lowing set of 12 equations:
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(a) The integrated equations (31a) and (32a), which
do not change, in consequence of the results obtained
for (?e)ll and (ﬁe)m.

(b) The following system of equations for the
second-order moments, replacing (33)—(36), respec-
tively:

d du d
il—l+3ﬂuﬁ+ 1’111___2%.?12; (58)
dx dx x
d
P221_ (59)
dpss du  dpss
Nl — =0; 60
“ dx pssdx dx (©0)
dp12 du dv  dpus
u—+21>12——+ pu—+ =—wpu—p2] (61)

As before, Eq. (60) can be integrated and gives

upss+ pssi=Uopo. (60a)

Moreover, by taking one-half the sum of (58)-(60), to
which we add the sum of Eq. (31), multiplied by #%, and
Eq. (32), multiplied by », we obtain the new equation
of energy

w17
pOUO_ )+"" (?11‘*‘?22—}—?33)}
+pont
+— (uPn-*—vpm)-}._(w)
e

which can be integrated and then takes the form

W+ u
poUyg +5(?11+P22+P33)+uﬁu+7}ﬁ12
Ut
3 (pruatpoort-pas)+ (Zﬁo‘f‘—— e
u
9 UoB¢?
= %POU03+§U0P0+ (62a)
T

Hence this group contains two integrated equations
(60a) and (62a), and two remaining differential equa-
tions (58) and (61).

(c) A set of six equations for the third-order moments:

d
W § 281 )

L (2)=s

BURGERS

dpear )
u
=W paee—2p112]; (64)
Psal

+2P331—"+?‘“( ) =wiPs3s; (65)

;bm dv
+3P112‘—+P111‘*-w [—p11t2pa]; (66)

dpzzg d d‘ll
+P222*+3P221*= —3wipaot, (67)

dx dx

d]’agz d d?)

= —w;Ps31. (68)

The complete system contains eight differential
equations and four integrated equations.

12. INTRODUCTION OF THE HEAT
FLOW COMPONENTS

The system of equations obtained in the preceding
section appears to be considerably more difficult than
that which was used in the first approximation, where
we had only two differential equations. It may therefore
be attempted to develop an “intermediate approxi-
mation,” in which not all six third-order moments are
treated as unknowns, but where we admit only two
unknowns, viz., the components of the heat flow defined

by

=3 (Pt pentpss); =3%Puetpaset-pssa). (69)
We then assume the following relations:
pr1=(6/5)q1; poar=pss1= (2/5)q1; (70)

p222=(6/5)q2; puz=pasa= (2/5)qa.

These values are substituted into Egs. (63)-(68); we
add together Egs. (63)— (65), and also Egs. (66)~(68),
and use the resulting equations only, which have the
forms

dgp 16 du 2 dv 5 d
t—t—gr—t—gr—+—p—

?
=wq2; 71
dedededx) @ ()

dgs 7T du T dv
E“"ngg;"f‘gql;—-_— —wiqr. (72)
At the same time we replace (60a) by
upss+2q1=Upo, (60b)

while in (62a) the term
5 (1t poartpssy) is replaced by g..

[It should be noted that for the electrons (pe)111= (pe)221
= (pe)sa1=0, so that also (¢,)1=0. This makes Eq.
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(24) still hold for the electrons.] We now have a sys-
tem with eight unknowns:

u, U, P11, Poa, P33, P12, 91, G2,

for which we have four integrated equations: (31a),
(32a), (60b), (62a); and four differential equations:
(58), (61), (71), and (72). We can eliminate pz; from
(62a) and omit Eq. (60b); we can also eliminate » and
express it through pis by means of (32a). On the other
hand, it may be convenient to introduce p as a separate
variable given by the relation

=3[putpart (Uopo/u)— (2q1/5u) ].

We remember that

(73)

p= poUo/u y W= UoZ/LiM.

13. LINEAR APPROXIMATION

In view of the complicated nature of the system, we
investigate a linear approximation. For this purpose we
need not use Egs. (69) and (70), but can start directly
from the set (63)~(68).

We use dimensionless variables, so that pu stands
for pui/polo*; we take L;= L=1; write » for the differ-
ential operator d/dx, and

-(1)%)

i)
PoUo4 dx Po2U05 dx
Equations (63)-(68) reduce to

vp1int3a=3p11s,
vpasita= Pase—2P112,
vpisita= Pass,
vp11e= — Pt 2pa,
vpasa= —3paai,
vPsza= — Pss1.

The solutions of these equations are

pu=—[3v/(*+1) e,
Poo1=pss1=—[v/ (¥*+1) o,
pue=pa=[1/(»+1) Jo,
pre=[3/(»+1)]a,
which results automatically satisfy Egs. (69) and (70).

When they are substituted into Egs. (31a), (58), and
(61), neglecting all terms of higher degree, we obtain

(74)

(75)

(76)

dy=— (1—v)¢ (as before), (77a)
n=—31—=3o—7)»—[3*/2(*+1)]e; (77b)
dy*=0y—3(1—%0)(1—3o—7)»’
v
1—3(1—3}0)v*}a. (77
et s D LR
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When account is taken of Eq. (60a), the energy
equation (62a) appears to reduce to

$+30y+30y*+as—[2v/ (1) Ja— ¢ =0.  (78)
After substitution for 8y, §y* this gives
~ (1= 3= 11~ 32) 1~ Fa—)o¥f
— {1+3(1—30)»*}a=0. (79)

2(241)

It remains to find the value of a. For this purpose we
calculate the value of §p with the aid of Egs. (58), (59),
and (61), which can be summed to give dp/dx. We
omit the details of the calculation and give only the
result

a=—[r(A+1)a/6{(1—50/6)*+1}J¢.  (80)

When this is introduced into (79) the final equation
(after some rearrangement) becomes

(P4 P+ Pyt =0, 1)
with
Pi=(1-38) (1~ §8) (1~ §a-)~ 4 (1~ 1)@
P=(1-3%a)(1—30—7)
+a-fa) (1-o-m—a, &
Py=4(1—d—7).

When condition (45) is satisfied, P;, P2, and P; are
usually positive if @ is not too large. A special case is
that where o is almost zero; Eq. (81) then reduces to
[after division by (1—v)]

(A5 4) = (5*4+1) (2+4) =0,

with the roots

v=c1; v=22i,
The first root, however, is spurious, since Eq. (80)
shows that =0 in this case, which reduces Eq. (79) to

— (=7 {+ %} =0.

After division by the factor { (which would give the
root {=0, corresponding to the original state), this
equation is the same as the former Eq. (44), when here
too, we make the substitution &@=0.

Although this result is not conclusive, it does not
give much ground for the expectation that the non-
linearized equations present a solution describing a
transition from the original state to the second uniform
state.

14. REDUCTION OF THE SYSTEM OF EQUATIONS
CONSIDERED IN SEC. 12

We have not succeeded in obtaining a solution of the
system of nonlinear equations which was obtained in
Sec. 12. In the following lines a few steps are presented
which can be used in its reduction to a more compact
form.
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Again we use the dimensionless variables defined in
(38a)'and (38b), to which we add

pas/palU o= y**;

As before, we have [from (31a) and (32a)]

y=B—z—7/22;

When L; again is taken as unit of length, Eq. (58) leads

to

91/poUo =01, l]z/poUo =02

7F=—.

n=—2[2z— 3§+ (v/42*) Js'+ 3201 (82)

Introduction of this result into (61) gives

©
yr=y— g — ( 1255 — 1082+ 38%+ 2y
b4

By v
—--—~—) ()42 22(22 ﬁH-——-)ol
2z 8%

+323 (42——6—}—%)2’01’—}— Zz04'.  (83)
2

From (60b) we derive
gy =146—20,.
The results for y, ¥* y** 2z* must be substituted into
the equation of energy (62a), which leads to the fol-
lowing result:
Y
e12"+ 02(2')*+ po(z— 1) — %23(22—3+-—2)01"
12
—3—22(22 ,B—f——)z o+ (9/25)z2(a1')?

- (8/5)0’1— %220'2120. (84)
This equation takes the place of our former Eq. (42).

It must be supplemented by equations for ¢; and o3 to
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be deduced from (71) and (72). Writing

a=(Li/p??U ") pu(d/dx) (pu)=2(p/po)a  (85)

(with L;=1), we arrive at
2oy’ (16/5)25'a1— (2/5)zn'c2+ (5/2)a= 7, (86a)
220s'+(7/5)25'02— (1/5)zn’'c1=—01. (86b)

We still need an expression for p, which occurs in Eq.
(85) for a. The following result is obtained [use has
been made of (84) in order to simplify the final ex-

pression |:
pu o okz—1) 2 (z—v)(—1)?
~014

poUo 2 3 3 3z

1 3By v
+—(4z4 682+ ﬁ2z2+7z——-+———) (2")?
3 1622

22 % 3
-———(42— 3,8—}————) o)/ +—22(a))2  (87)
5 252 25

The problem now is condensed in Eq. (84), which is
an extension of our former Eq. (42). The additional
terms, depending upon o and ¢» must be obtained from
Eqgs. (86a) and (86b), with @ expressed in terms of
the other variables by means of (85) and (87).

A slight simplification can be obtained by assuming
@=0. In that case it is found that (pu)/(poU®) is of
the second order with respect to dz/dx and ¢, while the
quantities @, a1, and o5 become of the fourth order with
respect to dz/dx and {. In principle this does not mean
very much, since in our system of units dz/dx and {
are of order unity. Nevertheless, it may perhaps give
some hint for a treatment of the system of the equations
in which one would start with small deviations from the
original state with z=1.

DISCUSSION

Session Reporter: P. S. Lykoubis

R. Liist, Max-Planck-Institut fiir Physik und Astrophysik,
Munich, Germany: We attacked a problem quite similar to
the one treated by Professor Burgers. We tried to solve all
the state equations, but found it highly difficult to solve the
equations including those for the electrons. Professor Burgers
assumed that the mass ratio of the electrons and the ions is
very small, but in the expression for the current one cannot
directly neglect the coupling between the electrons and the
ions. I .would have some doubt concerning the validity of the
approximations made in Burgers’ treatment.

J. M. Burgers (reply added after the conclusion of the
Symposium) : There is actually no contradiction between the
method applied in my paper and the method followed by Dr.
Liist, but they refer to two different types of solution. When
Dr. Liist presented the paper on “Hydromagnetic waves of
finite amplitude in a plasma with isotropic and nonisotropic

pressure perpendicular to a magnetic field,” during this Sym-
posium,® it appeared that in the treatment with nonisotropic
pressure he uses a scale of length based upon the geometric
mean of the Larmor radius for the ions and that for the elec-
trons. Looking into the matter, I have found that this assump-
ton can also be introduced into Egs. (16)-(22) of my paper,
as an alternative to the assumption of a length scale based upon
the ion Larmor radius. When the new assumption is applied, a
factor (m./m.)t appears at various places and since this still
is a small quantity, some terms carrying this factor can be
neglected. This leads to an approximation different from that
which was obtained in my paper. The interesting point is that
the new approximation leads to the equations givem by Dr.

Liist.

a K, Hain, R. Liist, and A. Schliiter, Revs. Modern Phys. 32, 967
(1960), this issue.
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It may be of interest to present the relevant calculations. We
start from Eqs. (16)—(22), applied both to the ions and to
the electrons, together with Eqgs. (14) and (15), and Eq. (13)
determining the value of E.. We again make use of the results
n—ne&ni, and uy—u.<Ku: (obtained in Sec. 4), so that we
can write #» and %, respectively, for these quantities whenever
their difference is not of importance. As before, Eq. (23) holds:
nu=NoU,. We make use of dimensionless variables as defined
in Eq. (38b), adding subscripts or superscripts 7 and e to dis-
tinguish between quantities referring to ions or to electrons
where this is necessary. We also make use of the quantities
defined in (38a) and observe that B/ (4mpUe?)=y—w. It is
convenient to write b=B/B,. Finally we introduce a coordinate
¢ defined by

x=[(mime)tUoc/eBolt,

and we write A= (m,/m;)}.

Some reductions are possible before we introduce the new
variables. Equation (17), when divided by m, and applied to ions
and well as to electrons, yields two equations which can be added.
On the right-hand side the variable E; disappears, and the differ-
ence v; —v, can be expressed in terms of dB/dx with the aid of (15).
The resulting equation can be integrated and gives the total
momentum equation for the flow. Equation (18) when divided by
mq and applied to ions as well as to electrons, yields two equations
of which the second one can be subtracted from the first one. We
obtain an equation containing d(»;—v.)/dx, which can be trans-
formed into a second derivative of B.

After introduction of the new variables the equations can be
written in such a form that the derivative with respect to £ always
is combined with a factor z. We therefore write

z(d/d§)=d/ds.

Since s is a dimensionless time, derivatives with respect to s
correspond to the time derivatives in Liist’s equations. By omit-
ting further details the results can be given as follows:

momentum equation for the total flow:

s+yityoti(y—w)ht=1+3(v+ @) =6; oD
equation for the magnetic field:
@b _dns 1dne
— N —=2zb—-1 2
tr w)ds2 ds +)\ i ’ ©2)
equations derived from (18):
1dz* 1ldn:
- ——=—(zb—1); 93,
xdz+>\ds> (=b—1); (93a)
dzs*  1dn,e
——=(gb—1); 93b
7 VR (z0—1); (93b)
equations derived from (19):
dy; 2/
B b (94a)
ds 2 ds
dye . ¥.dz 2bn,
— 3= —=— ; 94h
ds+ 3 ds A (94D)
equations derived from (20):
dy;*  w*dz | 2 da*
— —— ——=—2\bn;; 95
ds 2z ds 2z ds 7 (952)
dye* ya* dz 2775 dze* Zb"h
—_—————=—; 95b
ds =z ds 2z ds A (95b)
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equations derived from (22):

=— i—9%); 6
ds z ds z ds D Gi=2i®) (96a)
dne Mmeds  yedz* 20(y.—y.¥)
—t— e — = 96b
ds z ds 3z ds A (96b)
equations derived from (21):
2(p:)ss=2(pe)ss= po. 97)

The only approximation introduced so far is that the electron
mass has been neglected where it is added to the ion mass, and
the electron density where it is added to the ion density.

With some differences in notation the system of equations (91),
(92), (94a), (94b), (95a), (95b), (96a), and (96b) has the same
structure as the system given by Liist.

Equations (97) do not play an important part.

Equations (93a) and (93b) can be added; the result can be
integrated and gives (after multiplication by X\)

2% 4Nz * +n;+n.=const =0. (98a)

We can make use of the fact that 1/\ is a relatively large number
in comparison with unity. It is evident from (91), in which no
quantity can be negative, that z, ¥;, ¥, and b must remain of the
order unity. We then see from (93a) that d(z;*-+:)/ds=order X,
so that

2:*+1:=0, neglecting amounts of order \. (98b)

We can assume that z;* and »; are at most of order unity, since
otherwise the transverse velocity of the ions would become much
larger than the velocity in the x direction, which is highly im-
probable. From (94b) we see that 7. is of order A, so that there is
no contradiction between (98a) and (98b).

In Eqgs. (94a), (952), and (96a) the right-hand sides are of order
\. By neglecting these right-hand sides, we obtain, from (94a),

yigd=const=w/2;
from (95a), after substituting z;*= —;,

2y*—n2=const=w/2;

dm( yi)
g 2

ds 2 +
After substitution of the value of y; just obtained, this equation
can be integrated and gives

from (96a),
nids_

0.
z ds

7: (22— w)t=const.

Since 7;=0 for the uniform state, the constant must.be zero
and #; must be zero in the whole field. This entails z*=0 and
2y *=w/2.

In this way we have disposed of four of the unknowns (y:; ¥:*;
7:; 2%). There remain 2, b; ¥e, ¥¢*; 7, and z.*.

We have already seen [from (94b)] that », is of order X. From
(95b) we then see that z.* can be of order 1/A. This makes the
speed v, of the electron transverse velocity large compared with
u and large compared with »;. Hence the electric current is almost
completely due to the electrons. The kinetic energy per unit
volume associated with the transverse motion of the electrons is
of the order poU 2, which is not excessive. It is convenient to write

28 =0/N; Me=T7A.
We then obtain the following equations: from (93b),

(do/ds)+ (dr/ds)=2zb—1; (99)
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from (94b),
dy. 3y.dz
== —==2b 100
d:+ z ds n (100)
from (95b),
L *
Byl yldz 2rde o1
ds 2 ds 3z ds

from (96b), in which the first two terms on the left-hand side can
be neglected,

(¥e/2) (do/ds) =2b(ye—."). (102)

In Eq. (92) we can omit the term with d»;/ds, which is zero; by
expressing 7, with the aid of = and making use of (99) we can
transform this equation into an expression which can be integrated

once, with the result

o= (y—w)db/ds. (103)

Finally we have the following integrated equation which follows
from (91):
s+ w/ (28 +y i (r—w)b=1+3(v+ ).

Thus we have six equations [(99)-(104)] for the six unknowns.
Tt is possible, however, to derive one integrable expression from
these equations; this is obtained by adding together

$z times Eq. (100),

1z times Eq. (101),

o times Eq. (99),
z times the derivative of (104).

(104)

and
After integration we arrive at

3 +a?)+ Bw/a) + 3ayi syt o+ (y—w)b

=const=%4+y+3w. (105)

This makes it possible to leave aside one of the differential
equations, so that the final system is of the fourth order. It
can be reduced to a system of the third order by eliminating
ds, using z as the independent variable. Apparently the sys-
tem is too complicated to permit direct integration, as could
be done in the case where the length scale was determined by
the ion Larmor radius; hence it is understandable that Dr.
Liist and his co-workers have used machine integration.

The interesting result of this discussion is that the system
of equations admits two special solutions, one with the ion
Larmor radius as length scale, the other one with the geo-
metric mean Larmor radius as its scale, while no acceptable
solution can be constructed with the electron Larmor radius
as scale factor.

BURGERS

M. Lunc, Polska Akademia Nauk, Warsaw, Poland: In
your work you considered the ratio of the excess charge di-
vided by the number of particles; for high number of par-
ticles this ratio is very small. Nevertheless, the excess charge
could be by itself rather high and in this case one cannot
neglect the electrostatic force when compared with the purely
ponderomotive force.

J. M. Burgers: This is true, and the charge separation in
the direction of motion creates an electrostatic force which
is not negligible compared to the JXB force. I did not calcu-
late the charge separation directly but obtained it from E.
Then I used this result to show that the difference between
u; and #. is negligible.

A. R. Kantrowitz, Avco-Everett Research Laboratory, Ev-
erett, Massachusetts: It would be surprising if you had transi-
tion from one state to a different final state without any ir-
reversible mechanism being present in the physical picture.
This kind of picture must give you no transition.

H. Grad, Institute of Mathematical Sciences, New York
University, New York, New York: It is not correct to say
that there is no irreversible mechanism. Collisions are not the
only irreversible mechanism that exists. The fact that no shock
was found is not surprising, but simply means that the irre-
versible mechanism, which is very subtle, has been omitted.”

L. J. F. Broer, Laboratorium wvoor Aero- en Hydro-
dynamica, Technische Hogeschool, Delft, Netherlands: You
started from the Boltzmann equation without the collision
term. In that case there is no dissipation and therefore there
is no shock solution. Now in the further treatment a certain
randomization was introduced by means of assumptions about
the moments. Has it been ascertained that these assumptions
mean a true randomization? The question is, do they really
entail an increase of entropy for all distribution functions in-
volved? If there would exist distributions with negative dis-
sipation the oscillatory behavior of the solutions would per-
haps be more clear.

J. M. Burgers: I introduced my assumptions concerning
the third- or fourth-order moments as a simplifying mathemati-
cal assumption. I do not introduce a definite form for the dis-
tribution function and consequently there is no definite value
of the entropy. It would be necessary to make additional as-
sumptions (not needed for the mathematical treatment given
in my paper) before anything could be said about the entropy.

b For a discussion of this point see C. S. Gardner, H. Goertzel, H.
Grad, C. Morawetz, M. H. Rose, and H. Rubin, ‘“Hydromagnetic shock
waves in high-temperature plasmas” in Proceedings of the Second United

Nations International Conference on the Peaceful Uses of Atomic Energ
(United Nations, New York, 1958), Vol. 31, p. 230. -



