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HIDKNORI HASIMOTO*

The Johns 'Hopkins University, Baltimore, Maryland

1. INTRODUCTION Joukowski, Filon, " and Goldstein" for the total force
exerted on the disturbance have been extended to
these magnetohydrodynamic cases.

Case (I) is considered at some length. It is found
that the upstream wake appearing for U&a is dominant
in the total mass flux and the total magnetic Qux along
the wake compared. with the downstream wake, except
for the case of a/U))X+&, in which both wakes have
equal strength. As an illustrating example, the drag
and the lift for an insulating circular cylinder are
determined.

A TYPICAL feature of magneto-Quid dynamics is
the appearance of Alfven waves' ' which propagate

along the magnetic 6eld. In the presence of viscosity
and 6nite conductivity of the Quid, however, these
waves are so dispersive that it may be difIicult to
observe them.

The steady two-dimensional Qow of an incompressible
Quid with finite electric conductivity is the subject of
this paper. It is assumed that both the magnetic 6eM
and velocity vector are in the plane of the Qow and
each reaches a constant value at in6nity.

A disturbance is placed at the origin and the small-

perturbation technique is used to find the disturbance
velocity and magnetic field.

Explicit formulas are obtained in three special cases:

2. FUNDAMENTAL EQUATIONS

tA'e use mks units for the electromagnetic quantities
and conventional notation. Then the magnetohydro-
dynamic equations for a steady incompressible Quid are

(I) The undisturbed velocity and magnetic 6eld are
parallel.

(2) The magnetic Prandtl number, X= v/e, is unity,
where v is the kinematic viscosity, and x is the magnetic
viscosity of the Quid.

(3) The Stokes flow in which the undisturbed
velocity U is very small compared to the Alfven-wave

propagation speed a.

p
(V v)V= —VP+.v V+-(H v)H,

P

E=P+—H'+-E' (I)
2 2

(2)

(3)

(4)

(5)

v V=o,

(V V)H=zV'H+(H v)V e=(po)—'

The most striking novel feature is the formation of

two wakes instead of one, and in general these point
in two diIIferent directions. These wakes have been

introduced by many authors' " implicitly in their

studies of boundary-value problems. As far as this

author is aware, the general nature of these wakes has

been left to further studies.
The well-known integral formulas of Kutta,

v H=o,

E= —pV&H+j/o, j= V&&H.

We must also note that (I) is derived from the
continuity of the total stress tensor T:
V'.T=o, 7= —pVV+pv defV —Pl+pHH+eEE, (6)

neglecting free charge. The induction equation (3) is
derived from (5) and

v@m=0,

3. BEHAVIOR OF THE FIELDS FAR
FROM THE OBSTACLE

%e consider a cylindrical obstacle whose generator
is perpendicular to the xy plane of the Qow and magnetic
fields. The electric current j and the vorticity ~=TQH
are both parallel to e, (the unit vector parallel to the
s axis) (Fig. 1). Then, E is also parallel to e, and is
found to be uniform from (7):

E=——pUHC, &e = —IJ.UH sino. e„
"L.
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MAGNETOH YDRODYNAMIC WAKES

where 0. denotes the angle of the imposed magnetic
field He„with respect to the undisturbed Qow Ue
parallel to the x axis. We may note that E=—0, if we

adopt the coordinate system in which the Row is rest
at infinity and the obstacle is moving with the velocity
—Ue, [see Eq. (5)].

At a great distance from the obstacle, we may adopt
the Oseen-type approximation which becomes better
and better as we proceed far away from the obstacle:

V= Ue, +v(U»v), 8=He„+h(H»k). (8)

On introducing (8) into (1) and (3) and neglecting
quadratic terms of v and h, we obtain

U(e, V)v= —(1/p)VE+rV'v+ (p/p)H(e V)h (9)

U(e, V)h=KV2h+H(e„V)v. (10)

TABLE I.

k~ V+

1) e =e~ k+e~= x, (U/v}{1+ANN)e, z{pU/~)(1 —&~N
(2) X=1 (2v) '(Ue, Wee ) %{p/p, )&

(3) Stokes Sow %-', (m) 4e W() p/p, )&

wl ere N= I (1—X)~+4P'&j& P=/U.

i.e.)

~=&a++~, Lp[csg] =0, (15)

where k+ and k are given in Table I, and are parallel
to the directions of the two wakes [see Eq. (25)].

After some manipulations of (9)—(15), taking into
account two-dimensionality of the fields and the
boundary conditions at inanity, we find

The curl operator applied to (9) and (10) yields, for
co=cue, and j=je„

where
v= vo+v, h=ho+h„, (16)

vo= UV(84/Bx), ho= HV(e V)4, (17)

( UB) pH
i

V' ———
I

= — (e- V)j
~ axi pr

governed by the same harmonic function C related to
the total pressure I', i.e.,

On eliminating j or ~, we obtain

(12)
and

V'C =0, P= [pU—(e, vo) pH—(e„ho)]

pU'8—'4/Bx'+ pH'(e~ V)'C

v„=v~+ v, h„=h++h, h~ ——y~v~,

(18)

f1 1) rj
v4 —

i
-y- iU—v

Ev .) ax

8
+—U' —a'(e V)' a)j =0. (13)

PK Bx

/
/

I
I
I

Ue„
1

U e„+I&He.

In the several cases mentioned in the Introduction,
this fourth-order operator can be factorized into two
commutable Oseen-type operators L+ and L, each of
which describes one wake:

L~L [aa]=0, Lp= V' —2(kg V),

and
c =2[f(t)+f(f)], k=*+6, (22)

'?op= vp —ivor= Uf rip= ko $7Epr=Hr f (23).
Equations (16)—(23) constitute the formal solutions of
our problem. More concrete expressions for v are
found from the discussions on the Oseen equation""
[see Eq. (58)] or on the asymptotic behaviors of the
solutions of the Navier-Stokes equations, ""

(see Table I) governed by

L~[v~]=0, V v~=0, V&(v+ ——~~. (20)

v~ and h+ are the rotational fields induced in the k+
wake; vo and ho represent the induced irrotational
fields dominant outside of the two wakes.

We can also And a simple formula

~=~e,= (U/r)[e, Xv„—(pH/pU)e„)&h ] (21)

from (11).
If we make use of the complex-variable notation,

(17) can be rewritten as

He Hsino = const with

—q~ik~il(2 r)—
&e

—+&&v (24)

Ue„

Fio. 1. Fields in the xy plane () =1). Note. Vectors indicated
in the Qgure by bars underneath the letters are symbolized by
boldface letters in the text.

g+ ——
i i+ i r[1—cos(8—n+)]= 2

i ke ir sin'~~(8 —o+), (25)

"H. I.amb, IIydrodynumics (Cambridge University Press, New
York 1932), 6th ed."I.Imai, Proc. Roy. Soc. (London) A224, 141 (1954)."I. Imai, Proc. Roy. Soc. (London) A208, 487 (1951).
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where (r,H) are the cylindrical coordinates from (2) and (21), after some vector calculus. Also,

= —pU Jt (e, ds)v+pH jl (e ds)h (34)
8

x=r cos8, y=r sin8, (26)
il (—pvv+pHH+eEE) .ds

and 8=a+ is the direction of the k+ wake. We must
note that p+=constant yields a family of parabolas
with an axis parallel to 1LL, along which v+, h+, w+, and

j+ are dominant. We should also note that g+ denotes
aild

the total inQow along the k+ wake:

q+= —lim re++8
s'~00

0

(27)
—

Jl P 1d =pU Jf (e vo)ds IiH J—l (e ho)ds (35)
S 8 8

from (2), (4), and (18).
Equations (27) and (19) determine the total magnetic

O
.

d
'

(33) (35) (32)
inQux along the k+ wake:

F=pU(qe, +I Xe,) pH—(q„e„+r„Xe„), (36)
(28)

with

vo„inoii= (2vrr) —'(q+iI')+o(r '),

ho„ikon= (2i—rr) '(q +ii' )+o(r '),
(29)

q„+iI'„=(H/U)e (q+ii") (30)

from (23), where I' and I' denote, respectively, the
usual and the magnetic circulations. q and q are the
total outward Quxes of the irrotational 6eld, which
should compensate q+ and q + according to (2) and (4),
i.e, ,

q =q++ q—
~ qm

= qm++ qm =V+q++'Y—q——. (31)

The irrotational fields dominant outside of the wakes
where

I =~t vpXds=l'e. , r„=) hpXds=I'„e, . (37)

The first two terms of (36) are the same as the results
of the Kutta-Joukowski and Filon theorem" expressing
the lift by p UI' and the drag by p Uq. The second two
terms express a characteristic feature of our 6elds. We
may note its negative sign. This is explained by the
fact that the magnetic stress pHH is rather tensile in
contrast to the inertial stress —pVV, and that the
force acting on the current j in the magnetic Qeld I is

pj &8 in contrast to the force —p~&V acting on the
vorticity ~ in the Qow field V.

On introducing (30) into (36), we find
4. EXTENSION OF THE KUTTA-JOUKOWSKI-

FILON THEOREM D+iL= pU(q+iI') (1—P e ) (38)

The total force F acting on the obstacle is given by
integrating the total stress T.ds over the surface
element ds of an arbitrary closed surface s around the
obstacle:

(32)

Let us take as s a large circle on which (24)—(31) are
valid, and let its radius be in6nitely large. The contribu-
tions from the constant terms (e.g. , U'e„e„EE) and

the quadratic terms of v and h in (6) are found to be
zero (Fig. 1).

Then

pi f def v ds=pi Jf ieXds
S 8

=pU Jl I (e. ds)v —(v„ds)e.j

pH t L(e ds)h„—(h ds—)e„f (33)

for the drag D and the lift I., for the cylinder.
This is the final formula; the force on the obstacle

is expressed by only two quantities q and I', i.e., the
total inward Qow along the wakes and the circulation
around the cylinder at in6nity.

A corresponding formula, referred to the direction
of the imposed magnetic fieM, is found to be

D +iL = (D+iL)e
H(p 'e " 1)(q„+ir„). (—39)

S. CASE OF ALIGNED FIELDS AT INFINITY

We find from Table I that k+) 0 and k+)
~

k ~, i.e.,
k wake is wider than k+ wake Lsee Kq. (25)j. Also,
k &)0 according as 1)&P; we have k wake in front of
the body if a&U.

Let us consider the strength of two wakes, char-
acterized by q~ or q„+. On letting n=0 in (30) and (38),
we obtain

q-= (H/U)q,
I' = (H/U)1',

D+iL= (1 P')p»(q+iI')—
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Then, (31) can be solved with respect to q~/q:

qdq= lL1~(2P' —1+i )/&j,

q~/q-= kP '(1—~~&)(q~/q)

(41)

TABLE II.

4 v~ q+/q q +/q ~q+ —
j q~

+ — + sgn (1—X)
+ + + + sgn(P —1)

o =0

h

==& qm+
t'

U

q,
l

, q

Equations (40) and (41) determine D from the total
Qux of Quid or the total magnetic Qux along only one
wake for p&1.

Equation (40) also shows that

q, q &&0 according as p&&1, (42)

as long as D&0. Because q /q&0 for P&1 (Table II),
(42) implies that the fluid is pushed forward along the
upstream wake as if a jet (q (0) in contrast to the
downstream wake along which we have positive inward
Qow. On the other hand, we have positive outward
magnetic flux along both wakes for p&1, in contrast
to the case P(1;we have outward flux along the inner

sgn(1 —~)

enough ()&)p'), we obtain

4/& -~/(1 —p'),

q+/q--P'(1 —P')i '«1 q~/q=(1 —P')~ '«1,
(45)

q+
q

i.e., the k+ wake is negligible compared with the k
wake as regards to the fluxes (Fig. 3).

For the perfectly conducting Quid, it is found that
(1)—(5) have a solution derived from

H= (p/~)~p. V (V v)p. =o, v V=o,
(46)

1(1 p. )(V v—)V= vt'+(p.—)v'V.

p* is constant along each streamline and is determined
to be equal to p in our case, except in the region
bounded by the obstacle and the separated streamline

H q+ qm+

FIG. 2. Fields for n=O, X&1; for X&1 only the relative strength
of pq+' with respect to pq ~' is changed (see Table II).

k+ wake and the inward Qux along the outer k wake
(H&0) (Fig. 2).

The signs of g+ and q suggest that the upstream wake
is more dominant than the downstream wake, with
regard to the total Qux. In fact, we have

(q+/q )'(1 for ~ &P'&-', (1—X),

~X( X m

)=o

(q~/q-)'(1 «r "&p'&o.

In a limiting case of the strong magnetic 6eld, we
obtain

lim q+/q = —1(p'»X), lim q~/q =1(p'&)X+'). (44)
0 ~(

(b)

This is related to the case discussed by Stewartson' for
v='0. He has shown that the forward and the rear
regions bounded by the applied magnetic lines of force
through the body are at rest with the body as if solid.

On the other hand, if we fix p and let X be large
FIG. 3. Relative strengths of the mass and magnetic

Quxes along two wakes for n=O.
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(if it exists) from the surface of the body. Letting
p~ =p everywhere, (this is one possibility and is
allowable, at least when one looks at the problem in
the large), (46) is reduced to the usual Navier-Stokes
equations in which the density of the fluid is p(1—p').
For p)1 we have only to solve the problem for the
fluid of density p~1 —P'~ with reversed flow direction
at in6nity and then reverse the Row and P.' In this
manner we have an upstream wake for V(a. Equation
(45) supports this conclusion.

For P) 1, the blocking effect of the obstacle can be

propagated upstream as shear waves in which vorticity
and current can be shed away. If the inertia of the
oncoming Qow is negligible, this shedding is made in
the equal manner in the upstream and the downstream.
Under the inQuence of the oncoming Qow, the vorticity
and current pile up in front of the body and form a
larger upstream wake, involving larger amounts of
magnetic lines of force. This may explain the fact
expressed in (43). Especially for X))1, the inner k+
wake (zh+ U/~) is confined near the surface of the

body and the disturbance in the outside region is

shed mainly into the upstream viscous wake (zh
~U(1—p')/v). This feature is enforced for p&1, as
shown in (45).

We may note the other special cases:

q+/q= p (1~p), q-+/q-= ~p (1~p)p ' (47)

1—P' —'A(1 —P')
, , q-+/q=, (48)

For X=1, q+/q, and —q~/q„are equal to h+/h
= (U—a)/(U+a). Equation (48) is related to Lary's
result" in the thin-wing theory showing an upstream
wake for v= 0,

~
h t

~
&&1 Lt is the thickness of the body,

and zh+ U/v, zh U(1—P')/~7.
Another interesting quantity is the increase of the

total radial stress in the wakes compared with that in

the outside region, sgn(h~)8r~. On making use of (6),
(40), and (41), we obtain

br~= 2(pUq~ tpHq~) = t1&p—sgn(1 —X)7D,
(49)

than into the direction of the uniform flow; if u/0.
We also And the equipartition of the induced flow

energy and the induced magnetic energy in each wake:

4= ~(t/t )'v+ i e ptv+'= pt 4' (51)

It is interesting to note that v+ and h+ are the exact
solutions of (1)—(4) for ) = 1 and P= constant. ' For the
negative value of q~ they also represent a jet in the
uniform magnetic field (we may put U=O in this case).

(h /H)' Xp-'«1 (if p'))X). (54)

Equations (52) and (54) are in accordance with the
results of Chester in the study on the Qow past a
nonmagnetic body at very small Reynolds numbers,
with a=0.

8. AKISYMMETRIC CASE

Let e be parallel to the axis of symmetry (x axis) of
the axisymmetric body, and e, be perpendicular to the
meridian plane. Then every discussion and formula in
the previous section is valid with the following slight
modi6cations, denoted by the prime applied to the
corresponding equations. It is obvious that we should
put o.=0, F=0 and replace a circle by a sphere.

v+„———(zprr)
—'

I 4 I q+e '+ (24')

—
q+

——lim zpr ~t r' sinev++8
0

(27')

O'. CASE OF STOKES FLOW

In this case k+ and k are, respectively, parallel and
antiparallel to c, and both wakes have equal widths.

From (20) and Table I we obtain (taking x axis
parallel to e )

P"W (M/L)8/ptp:7v~=0, M= aJ (vK) ' (52)
and

h~= W (pvo) &v~, i.e., —',tih~' ——X-', pv~', (53)

where L is the typical length and M denotes the
Hartmann number. We may consider e+ to be of the
same order as (or smaller than) U. Then,

p=g1+4P9, (1—'A) '7 &, vp„q(4rr') ', hp ——(H/U)vp (29')

which yields D=t Uq(1 P') =t &(P ' 1)q—,
—(38')

9. DRAG AND LIFT FOR AN INSULATING CIRCULAR
CYLINDER AT SMALL REYNOLDS AND

HARTMANN NUMBERS

Let us consider an insulating circular cylinder of
radius l with its center at the origin. We assumeO. CASE A=i

br++br =2D, hr &&Sr+ for X&)'1, (50)

i e thema neticprandtlnumberypla sanim ortant which is an extension of Goldstein's theorem. "
role in the partition of the drag into two wakes. We
must note that P contributes —De, in (35).

Table II shows the signs of the main quantities in

this section.

According to Table I, the main vorticity and current
are shed into the direction parallel to Ue ~ue rather

(i) The magnetic permeability of the cylinder is the
same as that of the Quid.
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L
pvU

Flo. 4. Drag for an
insulating circular cylin-
der for R=R =0.1.

FiG. 5. Lift for an
insulating circular cylin-
der for R=R =O.i.

0
0

I

iW z

0

g~450

(ii) The Reynolds number R and the magnetic
Reynolds number R are small, i.e.,

E= Ul/v«1, 8„=Ul/~&&1.

bI = (m„)~p«1,

which yields, along with (ii),

ik~ ii&&1

(55)

(56)

Then, Eqs. (9)—(23) are considered to be uniformly
valid in the whole domain outside of the cylinder, and
v+ is given by"

m= y+w++—y w +H~f"=g'= QC„i—",
sM

(61)

where g' is an analytic function of f for it I
&l and

actually expresses the harmonic magnetic Geld in the
insulating cylinder, which is continuous to m from (i).

It is found that

A ~ = OL(kgl) "], A ~=Ay+0(kgl). (62)

of the cylinder+=P:'

w= w++w—+Uf"= —U, f"=Q b |" (60)
n=l

w~= (v.—i')~= —e~e~ +i"- "LAo~lto(ik~ir)

+P (A„~e"'"+A„,,~~-""+)It.(I k+I v)]
n=l

e=e' e =e'~ 8 =8—o.

q+=(~I4I) ' 2 (A.+A-)+,

(58)

Letting k+l —+ 0 and comparing the coefficients of t ',
in (60) and (61) we obtain for A+, b~, and &0

Ub, =A,/Ik, I+A /ik i, (63)

U= v+[A+T++ ,'A~]+e [A T-+,'A ], -(64)

Ileb, =p~,/Ik, I+pm /Ik I, (65)

Co ———7+~+LA+T++kA+] —7 ~
I

A T +2A ], (66)

where
T = —y —log(gk il),where E„denotes the modified Bessel function of

or er m, and f" of (23) is an analytic function of t' for
I f I

)l The unknow. n coefficients A„and f" should be
determined by the boundary conditions on the surface On solving for b&, we obtain

(67)

t'ÃI (X+1—X) (T++&)+(X—1+X)(T +-,')] ':a=0
D+iL (1 P's') Ubr —LTO~ —(1—P') (1—P' cos2n)]+iP'(1 P') sin2—n

(68)

8mpvU T2O~ —(1—Pm)2

I 2T~—cos2n] —i sin2n

4T~' —1
P'»1

(69)

(70)

where

T= —2y —2 log(R/4) ——,
' logO,

0= 1—2P' cos2n+P4,

T~= —y —log (M/4).

Equation (68) is in accordance with the result obtained
by Yosinobu" independently. Equation (70) is found
to be derived from (69) by letting p~~ and is in
accordance with Yosinobu and Kakutani's results' for
a= 0 and a= m/2, to the order so far obtained.
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We may remark that:

(1) D 0 for P=1, n=0, since 2' log~1 —P'~. This
is also related to the vanishing of k, and is also found

in the other examples" of two-dimensional Qow.

(2) L=O for P=O, P=1(X=1), i.e., the inversion of
the lift at P=1 from its positive value (0(a&v/2)
for P(1 to the negative value for P) 1.

Figures 4 and 5 show the value of D//(pvW) and

L/(pvW) for It.=R„=0.1 and n=0', 9', 45', 90'. We

may remark a peculiar behavior of D for small n, near
P 1. The increase of drag with n is expected.

On the other hand, the maximum lift angle is
attained by an extremely small n if P 1, in contrast
to 45', which is the case for P far from 1.
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Some .&emar. ~s on . .—..yc romagnetic Waves
I or . ~ inite Conc uctivity

E. L. Rzsr.zz, JR.

Gradnate School of Aeronauticai Engineering, Cornell University, Ithaca, Peto borh'

' 'T is of some interest to discuss the form a "Friedrichs
~ - diagram'" might take for hydromagnetic waves

when the conductivity of the Quid is Gnite. Plane waves

in an otherwise undisturbed, electrically conducting
Quid containing a uniform magnetic Geld Ho are
governed by the equation'

1 8' 1 8( 8'g 1
v&— — v&—— + (H, v)&g

a„' Bt' 4m.o. Bt Bt' 4n-p„

1 ~' Ho
HOX~-pa' Bt' 4~

Fq. (1) a is the ordinary sound speed, o the
conductivity, Ho the applied magnetic field, and t the
time. g= V&(H, where H is the total magnetic vector
made up of the applied field Ho and the wave-induced

field h. In the derivation of Eq. (1) it was assumed

that (h(«(Hp(. Suppose we restrict attention to waves

where the currents associated with the wave are
perpendicular to the plane of the magnetic field and
the wave normal. Consider Fig. 1 where the angle q

between the wave normal and the magnetic field vector
is defined and treat waves propagating in the direction
as shown.

Assume that at y=0, $ varies as e'"', where pi is the

frequency in radians per second. For a wave of the

type under consideration $ is proportional to e'"' t'"t'»

&/Bx= 8/Os= 0 and if Hp= (II,IIv), Eq. (1) leads to

6) G)

+ +OP
f2'~ . . 4m'o'c2

co4 II '
(2)

'4 PooC - C ~ptegoo

wAYE FRONT ,
~-W'AV& N&R&4l

Denote the Alfven speed by n so n'=&p'/4orti„; then
for f= pi/27r (2) becomes

c'—c ra +aP+(if/2o)&+a 'a cos e,

+(if/2o)a '=0. (3)

In the various limits (3) reduces to well-known
expressions for C. As 0 —+ ~ Friedrichs' expression
follows for c; as a ~0 c equals the ordinary sound
speed; as o. —+0 we get ordinary sound waves and
current diffusion (skin-depth phenomena); and as
a„—+ ~, incompressible Alfven waves and again
current diffusion. In all the limiting cases c is real and
is the phase velocity.

If all the terms are retained in (3), then c is complex
and its value depends upon the frequency f. Let

'K. O. Friedrichs and H. Kranzer, New York University
Rept. No. 6486 (j.954), reissued 1958.

~ See Eq. (7) of E. L. Resler, Jr., and J. E. Mccune, Revs.
Modern Phys. 32, 848 (1960), this issue.

FIG. 1. Wave front traveling in the y direction whose normal n„
makes an angle p with the magnetic Geld 80.


