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INTRODUCTION
' AXWELL'S equations and Ohm's law combined

- - with the equations governing the motion of a
compressible inviscid Quid with scalar electrical con-
ductivity are sufhcient to describe many of the phe-
nomena in magnetoaerodynamics. Since this set of
equations is formidable, simpliGcations, where appro-
priate, are in order. A possible approach is that of
treating small perturbations to some initial state and
linearizing the equations about that initial state. When
the initial state involves uniform Qow and magnetic
Gelds, the linear treatment has already been found to
be adequate in describing many phenomena in magneto-
hydrodynamics. This success is not surprising in view
of the widespread success of the linear treatment in
aerodynamics and in view of the fact that the nonlinear
terms that make solution of the general equations
difFicult occur in the Quid Qow equations.

A general treatment of the linearized equations is
presented and special solutions for the Qow past an
insulating sinusoidal wall with various magnetic Geld
geometries are given. Arbitrary values of the conduc-
tivity and compressibility are included and some
numerical estimates of magnetoaerodynamic effects
observable in the laboratory are made.

LINEARIZED EQUATIONS

Throughout this treatment electromagnetic units
(emu) are used, i.e. , the magnetic fiux density 8 equals
the magnetic Geld I for nonferromagnetic media. The
equations are linearized about an initial state involving
a uniform Quid stream and a uniform magnetic Geld,
as described elsewhere. ' A feature of this linearization
is the specification that the currents are perturbation
quantities, thus implying the existence of a uniform
electric Geld to balance the induced electromotive
forces. The linearization therefore results in particle
isentropic Qow. The magnetohydrodynamic interaction
term retained in this case is the electric body force in

the equation of motion. Suppose the x axis is aligned
with the main stream velocity U. If the total Quid
velocit vector q= 6+v and the total field H=Hp+h,
where v

~
&&U and

t
h (&&L7p, then the linearized versions

of the usual equations of magnetoaerodynamics are

Continlity eqlation:

Bp/Bf+UBp/Bpp+p„V v=0.

Equation of motion:

Bv Bv 1 JXH )XH—+U—+—Vp=
Bt 8x p„p 4m p

(Hp Vh —-', VH'), (2)
krp„

where Ampere's law (=VXH=4irJ has been used.
Here p is the mass density of the fluid, p the pressure,
and J the current density.

Eqlafion for magnetic fipppp:

BH/Bf=Ho Vv —U(B/Ba)H —HoV v+(1/4pr )V'H, (3)

obtained by eliminating the electric-Geld vector E
between Faraday's law VXE= BH/Bt —and Ohm's
law J=o(R+qXH) and using Ampere's law and
V' H=O; 0- denotes the electrical conductivity, which
is assumed to be constant.

By taking the divergence of (2) and using the fact
that the flow is isentropic so (dp/dp) P= a„(the ordinary
sound speed), and defining the operator D/Dt as
B/Bi+ UB/Bx, one obtains

Vsp —(1/a„') (D/Dt)'p = Hp/4pr VX g.

On using the curl operator on (2) and letting Q = VX v,
one arrives at

DQ/Dt =H p/4rrp„V (.

Upon taking curl of (3), using (1), and again the
* Supported jointly by the U. S. Air Force through the Office isentroptc relation between p and p it follows that

of Scientific Research of ARDC and by the Mechanics Branch of
the Ofhce of Naval Research.

t Present address: Aeronautical Research Associates of Prince-
ton, Inc. , Princeton, New Jersey. + (1/4pro. )Vs(. (6)' E. L. Resler, Jr., and J. K. McCune, "Electromagnetic
interaction with aerodynamic Rows, " in The Magnetod~umics of ] ~ ~ ~

cpridgptpiig pfiifd+ D flershadert Editor (Stanford University By ehmtnattng Q between (5) and (6) and subse-
Press, Stanford, California, 1959), p. 120. quently using (4), one obtains an equation for g alone:
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1 ~Dy' 1 Dg D'g 1
V2 —

~

—
~

V2 — + (Ho V)'g
~„~&at,) 4 ~ D~ Dt2

O' Hp
(H, X V)

p. Q Dt' 4m.

Thus, for small disturbance situations where the
unperturbed velocity and magnetic 6elds are uniform,
one need solve only the differential equation (7) for g.

For plane flows g= (0,0,$), and (8) becomes an equation
for a scalar rather than a vector quantity. If
Ho ——(HD„HO„,O) and n,'=Hp, '/4np„, n„'=Hp„'/4np„,
M= U/a„, then (g) takes the form

( 8' ) U 8$ 8'$ 8'$
~

V' M2
~

—V& +(n.' U') —+n„'—
Bx'J 4s.o Bx Bx' By'

t
g2

axay
—2n,n„V2

i
+M'e ' (9)) axay ax4

If the disturbances considered extend to plus and
minus inanity in the x direction periodically, e.g., as in
the case of Qow over a sinusoidal wall or over a system
of currents resulting in a periodic magnetic Geld at the
boundary, then the quantity $ can be synthesized
from components of the form Pi, =rte'"'e ~". In the
present discussion we consider only a purely sinusoidal
disturbance with wavelength /=2m/X. Then, substi-
tuting in (9) for $, we obtain an algebraic equation for

LINEARIZED STEADY PLANE FLOW

While Eq. (7) covers many phenomena including
stability criteria in appropriate cases, our purpose here
is to consider only steady plane Qows. For this case
it is possible to obtain certain exact solutions to the
linearized equations for arbitrary o- while including
compressibility eGects, and an examination of these
solutions yields information concerning magnetoaero-
dynamic phenomena. For steady flows Eq. (7) becomes

U' O' U 8$ 8'g 1
V' — V'——U' + (H V)'g

u„' Bx' 4n-o- Bx Bx' krp„

1 H
(HOXV) U' VX) . (8)

P~~m Bx' 4n.

P(X). If we define the magnetic Reynolds number R
as o-UL, then

iU' q
(p' —X') P'( n„'+

(
P—2ihn~„

( iU'q-
yz2~ U2 —~.'—

2R J

Since P is in general complex, assume P=A+rB;
then equating the real and imaginary parts of (11)
separately to zero gives two equations for A and B.
On equating the real parts to zero one obtains

2U'
~A'n„'+A'8

~

— ~+A'L —6n„'8'+li'U'
R„J

U2
+X'u'(M2 —1)+68lb,nw„]+A 8)I,'(2 —M')

R
U2-

+283
R

—2n~ 89.+84n '—89,'$U'+ (M2 —1)n']

2u~„BX'+X4DM—' 1)U'+n ' M'u—']=—0 (12)

and equating the imaginary part to zero gives

U2 ( U2 U2
+A'(48~„2 2Zn~„)—yA2~ —382

2R ( R. R.„

( $U
= —Ms P~gm~ (y 2+a 2+

2R„&

iUq
+l%.4~ U' n—'—a '—

~
. (10)

2R„&

In general we have a quartic equation for p with
complex coeKcients, which becomes, if we collect the
terms, and let a'= n '+n '

iU'
P' n„'+ +P'L —2iha~„]+P'X' U'+a'(M' —1)

2R

iU'
+ (M' —2) +2PiX'n~„X4 (—U' —a ')

2R

iU'
+M'(n' U')+— (M' —1) =0. (11)

2R
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FIG. |.Flow past a wavy wall where the applied magnetic
field is uniform and oriented at an arbitrary angle with respect
to the undisturbed free-stream velocity U.

U2 U2 U2
+82/2 —M282gm + $4(1—M2) =0 (13)

R 2R 2R
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INCOMPRESSIBLE FLOW conducting Quid past an insulated "wavy wall" as

As a simple example of the method of solution of a depicted in Fig. 1. For this case Eq. (10) becomes,

given boundary value problem, consider the flow of a after discarding the root p'=X2 as not appropriate,

or

p n)2 ngQ// p (—2E +i —4R i +22„—I 1—
~

—i=0
U2 & Uz ~ E U2)

ngEy f ning $ ng /r n~ )
&„z [

—4 2&„+i
P U' E U' i U' E U2)

Q'y

2 2E +i
U2

(14)

(15)

H, (Pz/zA)H„—0= g ~i'm —PIy

4n-pU
(17)

where E~ is a constant. Since V v=0, it is convenient
to define a stream function )p so that u= p„a)nd—
2/=)P . Then

ol

If we let E approach infinity in Eq. (15), then p/X
approaches (i U/n„) t (n /U) &15 Si.nce P is pure
imaginary in this limit, there is no decay with y of the
disturbance and $ remains constant along lines of slope
dy/dx=n„/(n, &U) Thu. s if U=O, the disturbance
moves along the magnetic field lines and can be identi-
fied with the Alfven wave mechanism. With a free-
stream velocity U, however, the currents also drift
with the stream. From a Gxed point in the Geld currents
move along the y axis at the speed Waxy and along the
x axis at the speed U&n„ thus if disturbances originate
at the wall under consideration, we must retain only
the root p/X=(iU/n„)[(n, /U)+15 If w. e call the
appropriate root Pz, then

g
—E eAa Paw

By using Eq. (5) to find Q and noting that the arbitrary
function of y introduced must be zero as it is not
periodic in x, it follows that

On recalling that VXE=O and /=0 when the
perturbations vanish, we find E,=constant= —UHy. It
follows from Ohm's law that

(=4zrrrfuH„+ Uh„7/H j. — (22)

On substituting for the perturbation quantities I, hy,
and 2/, Eq. (22) imposes a condition on the harmonic
parts of the solution which were introduced, namely,

E'2(H, +iH„)= UE2. (23)

At y=0, h and h„are continuous across the boundary
since no surface currents can Qow for Gnite conductivity
and steady Qow. Moreover, since there are no currents
fiowing within the wall (i.e., in the lower half-plane)
as it is an insulator, it follows that the stream function
for h in that region satisfies Laplace's equation. It is
then easily shown that necessarily h, = ihy at y=0, so

E4——E2L—2X/(Pg+X) ]. (24)

We now have five relations between five complex
coef6cients E~ through E~. In many cases one is also
interested in the pressure, which can be found using

Eq. (4) and a component of the equation of motion (2)
to determine the coefFicient of the solution to the
homogeneous equation. As y —+ ~, p~ p„, so the
pressure is given by

where

eAZ-p12+E e/x($+/2)

E =E LH + (zP /X)H„j/42rp„U(P '—Xz).

(19)

where

p —E e/) z—Pyy+E ei) (z+/2)gp (25)

One can now easily Gnd I and v, and to satisfy the
boundary condition of the wall being a streamline to
first order fe(y=0) =iUehe'" j, it follows that

E2+E'2= Ue.

H we also deGne a stream function for the magnetic
Geld h in the upper half-plane so h = —Sy and h„=S„
then V'5=g and

E,= (E'g/42r)L(H. p2+iXH'„)/() '—pzz)],

E7= —p„URGES.

The drag per wavelength of wall can be found:

2a/X 2n /k (dIrp
pdV= j~ p (26)

+ eihx —PIy++ &iX(x+iy)

where E'4=E)/(PP —Xz)

(21) and if Ez——Fee'" and Ez Fre'2", then——

D= ezr fFz sin82+Fz sin82}. (27)
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FIG. 2. Disturbances pro-
duced in an incompressible
fluid in a uniform magnetic
Geld propagate along the mag-
netic Geld lines as Alfvdn waves
relative to the Quid.

g /

For convenience the E's are tabulated:

2Xe(Piz Xz)—(H, +iH„)
Eg=

2X (n,'/U') —2Pi(n '/U')
+2i(n~„/U') (Pi+A) (Pi—+X)

Ez= {[H,+ (iPi/X)H„j/4zrpU(Piz X')}Ki-
Kz ——LU/2X (X—Pi) (H,+iHy) jKi

K4——Ki/(Piz —X')

Kz= Ki/2X(X —Pi)

K,= (Ki/4n) I (H.Pi+iXH„)/(X' —Piz)j=Fee*"

K7 (p U )[Kil(P ~)(H +zH )j
For the "aligned 6elds" case, that is, H„=O, so that
the velocity and magnetic fields are aligned, one finds

4idPH, $1 (n '/U')]—R„
2n ' 1 {1—+i2—R I 1 (n '/U—z)g}&

XexpI zhx —X 1+i2R
]

1—
) y [, (29)

U&

Note that $ becomes 1/e of its value at y=0 at a
distance

y= 8= Re(X '{1+i2R [1—(n '/U') j} &),

where Re denotes the real part. For large R the cur-
rents are con6ned in a layer 8 whose thickness is
proportional to l/{R L1—(zz,'/Uz)]} &, and in the limit
as R —+ ~ the coefficient of the exponential goes as
(R )'* so the current layer approaches a current sheet.
When the current layer is thin, the magnetohydro-
dynamic eGects are limited to what can be called a
"boundary layer" analogous in many ways to the
viscous boundary layer in regular Quid dynamics.

In all the other incompressible cases the results for
large R can be interpreted as follows. By using Fig. 2,
the currents penetrate the Quid at an angle 8, where

sin8=n„/$(n, +U)'+u„z$&, i.e., as we have seen for
R —+ ~, the mechanism of current penetration is
Alfven wave propagation relative to the Quid. As the
currents propagate away from the wall they diffuse
into one another because of the Gnite conductivity.
If we let a typical diGusion time r=gI2 sin'8 and let
r=yz/n„, where yz is a distance typical of the pene-
tration depth before di8usion smears the waves,

(o./U)'
y&=fTlU

L(~./U)+1j'+ (~./U)'
(30)

It can readily be checked that this result is in perfect
agreement with the penetration distance obtained from
expansion of Eq. (15) in inverse powers of R„.

Figures 3 and 4 show drag coefficients per wavelength
for the wavy wall for the cases H„=O, and H =0,
respectively. In the aligned fields case (H„=O, Fig. 3),
the drag is zero at R =0 and R = ~ and reaches a
maximum in between. In this case a large R approxi-
mation is good at about R =10'. This is to be con-
trasted with the "crossed 6elds" case (H, =O, Fig. 4),
where the drag is zero at R =0 but approaches a Rnite
value as R —+ ~. This is because the Alfven waves
transport momentum away from the wall and although
the Qow is incompressible there is a "wave drag. " In
this case a large R theory is valid at about R = j.0.

COMPRESSIBLE FLOWS

While compressible Qows for arbitrary angle between
the velocity and magnetic field can in principle be
treated with the above relations, in practice the
computation tends to be long and tedious. To illustrate
the effect the electromagnetic interaction has on a
compressible flow Geld, suppose Eq. (10) is treated for
the aligned fields case, i.e., n„=0, and also for the
moment in the limit R ~ ~. (The aligned fields case
is of special interest as it is easily attained experi-
mentally. ) Then it follows that

P'/&'= {L(U'/~') —13(1—~')/
f(U'/n, ')+M' —1g}. (31)
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FIG. 3. Drag coefFicient C~
plotted vs R =rUl for various
values of the ratio U/a, for the
case where U is aligned with Ho.

Drag per wavelength
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Note that our solution consists of standing waves in
the Row if P is imaginary or P'/X' &0, and that otherwise
the Qow has an elliptic nature. This is consistent with
previous work' in which other field orientations were
also treated in the limit E —+ ~. In the present case
the diferent regions are conveniently represented on
the U/n vs 3E diagram shown in Fig. 5.

Probably the most interesting region in this limiting
case is the range U/a, &1 and &&1.ln the hyperbolic
part of this region the standing waves are forward
facing. The appearance of these forward-facing waves
has recently been interpreted by the authors' in terms
of the basic "pulse" solutions of magnetoacoustics;
they have also been noted by Kogan and by Taniuti. '

Forward facing waves are not the only example of

disturbances moving counter to the Quid stream in
magnetohydrodynamics. Forward facing "wakes" have
been noted by Hasimoto, by Greenspan and Carrier,
and by Lary, 4 for incompressible Qow. It is believed
that such forward-facing "wakes" also appear for
compressible Qows, for example, in the elliptic region
in the lower left-hand corner of Fig. 5.

Extension of the analysis to finite E, because it
introduces a diGusion process, enables one to verify
that the forward-facing waves are indeed the proper
choice in the above hyperbolic region, since along these
waves the disturbances introduced by the wall diminish,
while along the rearward-facing waves they are ampli-
Qed. Also, one can determine in this way the magnetic
Reynolds number necessary to observe the phenomenon

0,8

OA-

Fxo. 4. Drag coefficient CD*
plotted vs R =oUl for various
values of the ratio U/n„ for the
case, where U is perpendicular to
Hp.

Drag per wavelength
gp„U»l (Xe)»

0.Of lOO

»J. E. McCune and E. L. Resler, Jr., J. Aero/Space Sei. 27, 493 (1960).
» T. Taniuti, Progr. Theoret. Phys. (Kyoto) 19, 749 (1958); M. ¹ Kogan, Priklad. Mat. Mech. 23, 70 {1959).
4H. Hasimoto, Phys. Fluids 2, 338 (1959); H. P. Greenspan and G. F. Carrier, J. Fluid Mech. 6, 77 {1959);E. C. Lary, Ph.D.

thesis, Cornell University, 1960.
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of forward-facing waves experimentally. For 0.„=0
Eq. (12) becomes

(U'/R~) D2= X'[U'+n, '(M' —1)](A' —8')
+X4(M' —1)(U' —n.') (32)

Dm—=A 8[2 (A' —8')+ (M' —2)X'j,

while (13) becomes

(U2/R~)Dy= —ABX2[2U +2a (M 1)j-'
Dg =—,'A4+A'(-,'3P) '—X'—38')+-,'84

+89,'——,'M'8'X'+-,'X4(1—M') .
(33)

'tA'bile the last two equations are dificult to solve
for A and 8, it is rather straightforward to take as our
unknowns n,' (or M2), and R . With this point of
view, it is convenient to write

n~' 2ABD2+[A' 8'+V(M—' 1)]D&—
, (34)

U' 2A 8 (M' —1)D,+ (M—'—1)[X'—A'+8']D
IO--4

R = (35)
y2[1+.(~.~/U2) (M~ 1)j (A2 —82)

+X4(M' —1)[1—(n,'/U') j IO

Recall that A is a measure of the damping and 8 of
the slope of the wave, If m is the wave angle, then

m= tan-'(dy/Ch) = tan '(X/8)

Fre. 6. The magnetic Reynolds number (E =OUl) required
for currents to damp to 1/e of the wall value in a distance l along
the waves vs the cotangent of the wave angle B/X.

Suppose we ask what R is necessary so the current wave. Then A and 8 are related as follows:

generated at the wall is damped to 1/e times its wall
A/) =[(8/X2) 1]~/2~.

value a distance 3 (= the wavelength, 2w/X) along the (37)

H0

ELLlPTlC gl'AVES

H YPER HOLI c

ELLIPSE IC

1

(&~- ")
FIG. 5. Various Qow regimes in the U/0.', M plane. The dotted

lines refer to the curves plotted in Fig. 0.

Thus, choosing 8/X determines both the wave slope
and A/X for this condition; and n, '/U', and subse-
quently R, can be calculated for given M. (Alter-
natively, M' and R can be calculated for given
~,'/U'. ) In Fig. 6 R„vs 8/X is plotted for M=-'„with
n,/U varying along the vertical dotted line shown in
Fig. 5. Also in Fig. 6, R is plotted vs 8/X for n,/U=2
with M varying along the horizontal dotted line shown
in Fig. 5. In either case R in Fig. 6 is the value of the
magnetic Reynolds number that must be achieved in
order that the forward-facing waves not damp out
before propagating into the Qow Geld one wavelength.

For M=-,' there is a minimum R of about 16 at
8/X= —0.5, i.e., for a wave tilted about 26' forward
of the normal. This is a difficult R to achieve in the lab-
oratory. For a wave swept forward the same amount but
along the curve for n /U= 2, one needs an R„of only
j..6, and the R continually decreases as M=1 is
approached. It seems best to work at a fixed Alfven
number and as close to 3f=1 as possible to facilitate
observation of forward facing waves.

However, this calculation has been carried out for
disturbances involving only a single harmonic. There



E. L. RESLER, J R. , AND J. E. McCUNE

is some evidence' that sharp disturbances (involving
many harmonics) may propagate more deeply into the
Qow field for a given E and thus enhance the possi-
bility of observation.

CONCLUSIONS

The compressible linearized equations of magneto-
aerodynamics can be solved in some simple cases.
These examples serve to illustrate many of the phe-
nomena common to this field. The addition of the
electromagnetic equations to the Quid flows leads to
Alfven waves so that even incompressible Qows have a
wave character. Finite electrical conductivity intro-
duces current diffusion, while compressibility eGects
bring in sound waves modi6ed by the currents and
Alfven waves modi6ed by the compressibility. The

' J. E. McCune, J. Fluid Mech. 7, 449 (1960).

interaction is complex and depends strongly on the
magnetic field strength and geometry.

The drag coeKcient per unit wavelength of a "wavy
wall" has been plotted for two Geld geometries and
various 6eld strengths. The appropriateness of approxi-
mate theories for large electrical conductivity is seen
to depend not only on E. but also on the geometry of
the field. The geometry governs whether the Qow field
is affected by an Alfven wave mechanism or current
diffusion, the wave mechanism being by far the more
powerful.

Under certain conditions the magnetic field makes
possible the propagation of disturbances counter to the
Quid stream. This phenomenon is strikingly diferent
from what is usually observed in conventional Quid
mechanics. An estimate of the experimental conditions
required to observe these eGects has been presented in
Fig. 6 and the conditions are found to be attainable in
the laboratory.


