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taking into consideration that B~B~/Bx(0 for the
discharge in Fig. 7, we obtain for a case of an inviscid gas

du/dt&0,

Fxo. 7. Ejection of a gas by a discharge.

where I is the horizontal component of the velocity
vector. The pattern of the Qow is as shown in Fig. 7.

Thus, a diverging axially symmetric discharge ejects
the gas.

The equations of ejection have been given by the
author. 6 In case of incompressible Quid they admit a
dass of similar solutions of the kind

basis of the equation of conservation of impulse is
always accompanied by motion of the medium, even
if the latter is at rest at inanity. '

The main parameter that is an analogy of the mag-
netic Reynolds number for this type of discharge is the
value R=I//v cp& (I denotes the total current in a
discharge).

In case of large values R (R))1), the discharge has
the character of a boundary layer with the thickness
I/R, and the y component of the momentum equation is

Bp„/By = —(EP/4m y),

II=x~h(t); iP=xf(i); P =x'g(i); i =x y;
T=x't(i); (8=2+4n; y= —n '—2; q= —2ny).

The most interesting solution of this class is the
case (Fig. 7) in which the total current in a discharge
is independent on x; then y=o.= —1; b= q= —2;
i =y/x.

Note especially that in the last case the kind of
solution remains the same for a compressible viscous
heat-conducting Quid. Thus for the Navier-Stokes
equations, taking into consideration magnetic terms,

lane)hence we have the following axially symmetric (and. p
solution:m= mte J
4=*f(&)' &=h(t)/y; p-=g(i)/*'; T=t(f)/x',

6V. N. Zhigulev, Doklady Akad. Nauk. S. S. S. R; 1N, 280
i1960l. p= l t'; s=m(i; f=y x.
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1. INTRODUCTION

HE magnitude and degree of complexity of the
phenomena encompassed in the subject of non-

dissipative magneto-fluid dynamicslis perhaps best
illustrated by the presence of three distinct and strongly
anisotropic modes of signal propagation. The linearized

problem of the propagation of small disturbances in an
unbounded medium is fairly well uriderstood (but is by
no means complete). ' Boundary value problems, even

~ This vrork was supported by the U. S. Atomic Energy Com-
mission under contract.' For example, see (a) A. Banos, Phys. Rev. 97, 1435 (1955);
(b) A. Sanos, Proc. Roy. Soc. (London) A233, 350 (1955);
(c) J.Samer and O. Fleischman, Phys. Fluids 2, 366 (1959); (d) H.
Grad, in The Megeetodynumics of Condect~ng Fluids, D. Bershader,
Editor {Stanford University Press, Stanford, California, 1959).

when linearized, are considerably more abstruse. One
reason is that, although the various modes of propaga-
tion are inherently coupled even in an unbounded do-
main, they may be decoupled (somewhat artificially,
to be sure) by introducing Fourier components. In a
boundary-value problem, a higher-order system is,
generally speaking, solvable in useful terms only when
the boundary conditions as well as the diGerential
equations separate into subsystems.

An alternative technique which is very useful in the
early development of a new subject is the discovery of
special classes of Qows which yield conventional Quid-
dynamical or classical second-order mathematical
structures. This paper lists and to some extent develops
a number of such reducible Quid-magnetic boundary-
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value problems in order to map out solvable mathe-
matical structures and analyze the similarities and
contrasts with ordinary Quid dynamics. This analysis
of reducible Rows serves to separate large classes of
Quid-magnetic problems which are relatively accessible
using Quid-dynamical techniques from the remainder
which may require the development of significantly new
techniques in order to handle boundary-value problems.
Several of these unusual problems which one hopes will

lead to deeper understanding of the equations are also
pointed out.

The term "reducible" is intended to be quite Qexible.
One meaning is the reduction to a set of equations which
is mathematically identical to some system common to
ordinary Quid dynamics. While such an analog does not
necessarily yield explicitly solvable problems, it may
permit the application of a large variety of tested ap-
proximation techniques. In Sec. 4 we present such an
analog which allows the application of a large part of
the entire literature of inviscid Quid dynamics to a
certain part of magneto-fluid dynamics. Specifically, any
special solution or general technique for a gas-dynamical
flow which is two-dimensional nonsteady (or more
special), compressible or incompressible, linear or non-

linear, can be applied. For example, one can transfer
conventional results connected with simple waves,
shock waves, Riemann invariants, Qows around cylin-
ders, airfoils, and bends. One must be cautious with the
interpretation of boundary layers (which involve dis-
sipation) and most stability and turbulence analyses
(which are usually three-dimensional). A significant
point is that only a very small part of the
Quid-magnetic universe is covered by this analog.

Another reduction to a system with essentially one
characteristic cone (i.e., one signal speed) is given by
the parallel Rows (Ruid velocity and magnetic field
locally parallel) of Sec. 5. This constraint is compatible
in the sense that it does not restrict the solution to a
few isolated Rows but allows the imposition of a class of
arbitrary boundary conditions. In the incompressible
case, the parallel Qow is an exact mathematical analog
of a Quid-dynamical problem, Linearized compressible
parallel-Qow problems reduce to consideration of the
potential or wave equations which, except for certain
subtleties involving the domain of dependence, are
solvable by conventional aerodynamic techniques. ' The
nonlinear system, although essentially second order,
exhibits unusual transonic features which are only
touched on here. An example is given of a nozzle Qow

which is identical to the ordinary gas-dynamical solu-

tion when solved in the hydraulic approximation, but
which has three distinct sonic transitions, only one of

' (a) W. R. Sears, J. Am. Rocket Soc. 29, 397 (1959); {b)E. L.
Resler, Jr., and J. K. McCune, in The 3lugmetodyeamics of Coe-
dlcting Ii/eids, D. Sershader, Editor (Stanford University Press,
Stanford, Califor'nia, 1959); (c) W. R. Sears and E. L. Resler, Jr.,
J, Fluid Mech. S, 257 (1959); (d) J.K. McCune and K. L. Resler,
Jr., J. Aero/Space Sci. 27, 493 (1960).

which is at the throat. A combination of the transverse
and parallel Rows results in a system which is in a
formal sense very similar to the simple parallel Qow
but which has certain other very strange properties.

A linear system with constant coeKcients in two
independent variables can always be separated. Speci-
fically, one can compute a Riemann invariant for each
real characteristic line and obtain a pair of equati. ons

ately equivalent to the Cauchy-Riemann equations
for each pair of complex roots. This reduction has been
carried out previously for the case of one-dimensional
nonsteady Qow. ' In Sec. 6, we obtain this reduction
for two-dimensional linearized steady Qows. For
parameter values which yield a totally hyperbolic
system (all characteristic roots are real), boundary-
value problems (such as flow around a thin airfoil) can
be solved explicitly, although possibly tediously. When
the problem is partly elliptic and partly hyperbolic, a
solution by elementary means is only possible when the
boundary conditions do not mix the elliptic and hyper-
bolic variables. This splitting occurs in some special and
limiting cases, but in general, the appropriate physical
boundary conditions do not have this simple structure.
It is interesting to note that Quid-magnetic Qows do
not, in general, reduce to conventional Quid Rows in the
limit of vanishing magnetic field although this has been
observed in special cases. '

The three-dimensional limiting case of very large
magnetic field (more precisely, large Alfven speed
compared with the gas sound speed) is considered in
Sec. 7. For time-dependent problems, it has been
previously found that in this limit the full three-dimen-
sional linearized system splits (in a certain sense) into
three uncoupled systems, one for each characteristic
cone. 4 The steady-Qow problem is more complex, Grst
because of the appearance of an additional parameter,
the speed at inanity as compared to either the Alfven
or the gas speed, and second because the variables in
which the di6'erential equations split are not necessarily
those on which boundary conditions are imposed. The
results in this limit of large magnetic field are particu-
larly interesting. It is found that the magnetic 6eld is
not perturbed to lowest order. The disturbance is
entirely in the Quid variables. However, this is a very
unconventional Quid disturbance. Only the velocity
component parallel to the undisturbed magnetic fmld
is perturbed, and the domain of dependence is two-
dimensional, lying within the plane of the undisturbed
velocity and magnetic field vectors.

Sections 2 and 3 contain supplementary material on
the characteristics and appropriate boundary conditions
of the systems being studied.

g Reference 2d. The reason why this example is solvable and the
solution approaches the gas-dynamical limit as the Geld goes to
zero is seen later.

4 See reference 1d; a partial splitting is given in 1a.
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2. CHARACTERISTICS

For a self-contained exposition, it is necessary to
give a brief description of the characteristic surfaces of
the system under study. The complete nonlinear non-

steady system is taken as

Bp/R+div(pu) =0,
PBu//Bt+p(u V)u+VP= (1/tio) curlBXB,

BB/Bt+curl(B&&u) =0, (1)

PBrt/Bt+(u V)it=0, p=f(p, q).

We have taken a classical compressible Quid with
density p, pressure P, and entropy it, and have eliminated
the current and electric field from Maxwell's equations
(without displacement current) and Ohm's law for a
perfect conductor, E+u)&B=0.

The possible characteristic manifolds p(x,y, s,t) = con-
stant are given' by solutions of the first-order partial
differential equation for p:

Here a' is written for the ordinary gas sound speed and
A for the (vector) Alfven speed:

o =~p/~p A=B/(pop)'

The characteristic equation (2) is of eighth degree,
consistent with the eight scalar variables p, u, B, g. As
it stands, the system (I) allows solutions in which divB
is not zero; if divB =0 is taken as a constraint, the root
&&=0 is lost in (2) leaving (1) as an essentially seventh-
order system. If the Qow is assumed to be isentropic,
g= constant, the root p'=0 is lost, and we are left with

a sixth-order system. The first bracket in (2) refers to
the transverse characteristic cone and the second
bracket to the compressive or slow and fast cone.

These results can be visualized graphically by plotting
the characteristic locus, which is the intersection in

physical space of the characteristic cone at a fixed time
(Fig. 1). This is a three-dimensional locus with rota-

tional symmetry about the axis of B.One interpretation
of this figure is as a snapshot of the wave fronts resulting
from a point explosion at an earlier instant. The outside
wave front is that of the fast wave, the two cusped
regions arise from the slow wave, and the two encircled
points are the transverse wave front. Another inter-
pretation of this figure is as the appropriate "wavelet"
to be used (instead of a sphere) in applying Huygens'
principle. This figure contains the essential content of
the general Quid magnetic theory of the propagation of
discontinuous wave fronts (i.e., ray optics). '

In two dimensions (Fig. 1 is plane, exactly as repre-
sented), the fundamental solution for the linearization
about a uniform field has been computed explicitly'
giving the entire disturbance within the domain interior
to the fast locus in addition to the location and ampli-
tude of the wave fronts. It is an interesting fact that
the disturbance is identically zero within the two
cusped regions in this two-dimensional case.

An important point is that, although wave fronts
separate into three independently propagating signals,
the disturbance which is left behind after passage of the
fast front generally exhibits a complicated interaction
among the modes even in a linearized problem. ' In a
steady Qow, this interaction is crucial and causes most
of the difhculty.

The real characteristic cones for a steady Qow can be
obtained from Fig. i by a simple geometric construction.
On the characteristic locus, drawn at time 1=1, we
place the Qow velocity vector reversed in sign, —u. A
real (hyperbolic) characteristic cone is ruled by the
tangent lines from the termj. nus of —u to the locus, see
I'ig. 2 (the transverse cone has been omitted in order
to simplify the drawings). In two dimensions, the
characteristic "cones" are lines, exactly as shown. It is
interesting to note that the distinction between the
slow and fast cones is lost in a steady Qow. These terms
merely distinguish two real traces of a single analytic
complex manifold.

In principle, a characteristic cone of the differential
equations governing steady Qow is complete with both

~a'+ A'

FIG. 1. Characteristic loci.

A& a A=a A&a

' K. O. Friedrichs Los Alamos Sci. Lab. Rept. LAMS-2105 I,'1954) K. O. Friedrichs and H. Kranzer New York University
Rept. NYO-6486-UIII (1958); also see reference 1d.' A complete account is given in reference 1c.

7 H. Weitzner, Bull. Am. Phys. Soc, Ser. II, 5, 321 (1960).
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FIG. 2. Steady-Qow characteristics.

nappes present. However, it is well known that steady-
fiow problems are frequently improperly posed mathe-
matically unless one adds some sort of extraneous
"causality" restriction derived from study of the time-
dependent problem. This can take the form of a radi-
ation condition in an elliptic problem or a statement
that the upstream Qow is unperturbed in a hyperbolic
problem. More precisely, a simple investigation of the
time-dependent propagation of disturbances shows that
the correct domain of dependence in the hyperbolic case
is given by the 'single-napped cone (or ray in two di-
mensions) which is explicitly given by the ybove con-
struction. On occasion, this yields the upstream (or
forward) rather than the downstream (or backward)
characteristic, "e.g. , as indicated by the tangents shown
dashed in Fig. 2. This is no violation of any intuition
about supersonic flow since the wrong" direction for a
cone is found only when there exists a signal speed with
respect to which the Qow is subsonic. In other words,
signals can reach everywhere in space, and the real cone
represents a locus of possible discontinuities rather than
a strict boundary to the domain of dependence. What
is possibly confusing is that, in some special cases, the
forward characteristic does accidentally define the
domain of dependence, e.g., in two dimensions.

The characteristics for the special problems con-
sidered in this paper are easily obtained by specializa-
tion and limiting processes. For a parallel flow (Sec. 5),
u is taken on the axis in Fig. 2. In addition to the stream-
line (or magnetic line) multiply counted, there is a single
nondegenerate real cone when u falls inside the cusped
region Lbetween aA/(u'+A') & and the smaller of a and
2) or outside the fast locus (greater than both a and A).
The characteristic direction is parallel to the Qow at one
transonic point (at the cusp) and is normal to the Row

at the other two transonic points; the latter is con-
ventional in gas dynamics.

For the transverse flow (Sec. 4), one must integrate
out the ignorable coordinate parallel to S. This gives
a single cone corresponding to the signal speed (a'+A') ~

as well as the particle path (zero speed) counted several
times. In the two-dimensional problem (Sec. 6), one
must distinguish whether the ignorable coordinate is
or is not in the direction of the magnetic Geld. In the
former case, real characteristics are given by the
appropriate tangents in th, e plane represented in Fig. 2.
In the latter case, the three-dimensional characteristic

locus must first be integrated in the (skew) ignorable
direction before drawing tangents. The result is hard
to visuahze geometrically, but one interesting con-
clusion is that the transverse disturbance no longer falls
on top of the slow-fast front. '

3. BOUNDARY CONDITIONS

From the fact that there exist three nontrivial
characteristic cones, one would usually expect to be able
to impose three boundary conditions at a rigid boundary
across which there is a nonvanishing normal component
of S. The characteristics carried by the particle path
are not expected. to contribute boundary data at an
impermeable wall. If 8„=0 on the boundary, the
boundary surface is characteristic with regard to both
the transverse and the slow cones (as well as the par-
ticle paths), and one can only expect to impose a single
boundary condition. These expectations are found to be
fulfilled in the special problems which have been solved.

At a rigid wall, one always imposes the condition
N„=O. This is sufIicient to determine a unique solution
in the case where the magnetic Geld does not cross the
boundary, 8„=0,cf. Secs. 4 and 5. If B„does not vanish,
two more boundary conditions must be found. We
consider separately the cases of perfectly conducting
and nonconducting boundaries.

The perfectly conducting boundary is described by
the boundary condition that there is no tangential
electric 6eld, E~=O. If B„WO, using (E+uX&)~=0, we
conclude that u~=O. Together with N„=O, we state
simply that the fiuid sticks; the vector velocity is zero.
We conjecture that the steady-Qow problem is, in this
case, trivial; i.e., the only steady Qow of a perfectly
conducting Quid around a perfectly conducting object
across which 8 WO is u—=O. This is proved for two-
dimensional fiow in Appendix 1.

For a nonconducting object, the situation is more
complex. It is necessary to solve the electromagnetic
(interior) problem in the nonconductor as well as the
fluid magnetic (exterior) problem, joining them with
appropriate jump conditions. Only in special cases can
the interior problem be neglected and replaced by a
boundary condition which is sufIicient to make the
exterior problem well posed. We claim that the appro-
priate matching conditions (when 8„/0) are that the

g This fact was pointed out to the author by H. Weitzner.



834 HAROLD GRAD

vector 8 be continuous across the boundary (there is
no surface current). This claim is supported by heuristic
arguments (essentially counting) and later by direct
verification that the resulting problem is well posed
in special cases. Let us suppose that a solution to the
exterior problem satisfying N„=O has been found. The
conventional electromagnetic boundary conditions that
B„and E~ be continuous then allow us to solve a pure
electromagnetic problem for B and E in the interior.
We assume that the Quid is inviscid and can withstand
no shear stress. As a consequence, the tangential com-
ponent of the Maxwell stress must be continuous across
the interface. The stress tensor is

(1/t 0) (8'»—28'~'t)

The force per unit area on an element of the interface is

(1jpo) (8;8 —-'8'm ).
The requirement that the tangential component of this
force be continuous is

[8,8„],=8 [8,]=0,
where [Q] denotes the jump in the quantity Q. If
8 =0, this condition is automatically satis6ed and we
obtain no additional matching conditions; i.e., the
exterior and interior problems are essentially decoupled.
If 8 00, we have [8&]=0which, combined with 8„=0
is exactly [8]=0. For purposes of counting, on pos-
tulating an exterior solution with N„=O, we have found
a unique interior solution and, in addition, the two
scalar matching conditions [8~]=0. The requirement
that the Quid support no shear stress has therefore led
us to impose on the exterior problem the equivalent of
two boundary conditions in addition to I =0.

The possibility of a normal component of current J„
is of interest. It is clear that J„must vanish at the
surface of a nonconductor. This, we claim, is a physical
fact, but not necessarily a boundary condition. The
requirement [8,]=0 (when B„W0) implies that
[J ]=0.Moreover, since J=O in the nonconductor, we
conclude that J„=O follows from the already adopted
boundary conditions in the case 8„/0. For Qows with
8 =0, however, we 6nd solutions to the Quid magnetic
problem in which J„WO (Sec. 4). It is indicated in
Appendix 2 that the relation J„=0 is a legitimate
boundary condition for a Prtitety conducting fluid, but
this boundary condition is lost in the limit as the con-
ductivity approaches infinity. It nilst not be imposed
in the perfectly conducting problems which we treat.
The situation is entirely analogous to ordinary viscous
vs nonviscous Qow. The physical fact that the Quid
sticks to a wall must be ignored when nonviscous equa-
tions are used.

Quite generally, this question is the universal one of
relating a physical problem to a mathematical model.
Once the differential equations are chosen, the question
of how many,'and, to some extent, what kind of bound-
ary conditions to impose is a purely mathematical one

FIG. 3. Three-dimensional airfoil,

governed by the theory of the diGerential equations.
One must judiciously select from what is, in principle,
an inGnite list of physical facts (or approximate facts)
the correct number and type of boundary conditions
required by the theory.

In certain limiting cases, it is possible to eliminate
the necessity for the joint solution of interior and ex-
terior problems with matching conditions and formulate
a self-contained exterior problem subject to boundary
conditions even when B„WO. Speci6cally, we consider
the Qow about a thin airfoil, linearized about a uniform
magnetic Geld and a uniform flow (cf. Secs. 6 and 7).
The unperturbed velocity must lie in the plane of the
airfoil but the magnetic field orientation is arbitrary.
The airfoil is a thickened lamina of thickness ed(x, y),
see Fig. 3. We suppose that the exact solution to the
complete problem yields a perturbed magnetic field
8 +(x,y) on the top of the lamina and 8„(x,y) below.
The magnetic field inside is obtained as the harmonic
vector (curl8=0, div8=0) which takes these boundary
values. We write B' for the two-dimensional vector
projection of the perturbation Geld 8 into the (x,y)
plane and verify that, to low order in e,

B.= ,' (8„++8„—), —

and B' is given as the solution of the two-dimensional
Poisson equation

8'= V'y, div(ed8') =8„+ 8„——
In the limit as e approaches zero, we obtain the jump
condition [8„]=0across the lamina. Also, since 8~ is
continuous on top and on bottom and B' is, to lowest
order, independent of s, we have [8&]=0. Finally, we
must require that B& be a surface gradient, B&=Vp. We
summarize

[8]=o, 8,=ry.
This yields two boundary conditions which should be
sufhcient to complete the exterior problem. Since a
boundary condition must be specified on both the top
and bottom of the lamina, a jump condition on a scalar
quantity amounts to one-half a boundary condition.
Therefore, [8]=0 counts as three-halves, and 8,=Vp
(which need only be applied on one side) as the remain-
ing half. Or, B&=V'p can be counted as a single boundary
condition on each side and [P]=[8„]=0as the other.

In a two-dimensional problem (the lamina is a
thickened slit) one must distinguish between a restricted
two-dimensional problem in which all vectors have two
components and a general two-dimensional problem in
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which vector variables may also have components in
the ignorable direction. For the restricted problem, 8&

has only a single component and the statement 8&= V'@

is redundant; we impose only [Sj=0.' For the general
problem, the requirement B&=V'p implies that the
third component (in the ignorable direction) has a
constant magnitude on the slit.

The linearized airfoil Qow in which the unperturbed
Qow velocity is parallel to the unperturbed magnetic
field must be treated as a special case since the airfoil
becomes characteristic and boundary conditions are
lost; see Sec. 6.

4. TRANSVERSE FLOWS"

By a transverse Qow we mean one in which the mag-
netic field is unidirectional, the Quid-Qow vector lies in
the plane perpendicular to B, and the coordinate in the
magnetic field direction is ignorable. We take 8 to
point in the s direction while u has no s component; all
quantities are functions of x, y, and t. It is easy to verify
that these constraints are compatible; if they are
assumed to hold initially, they perpetuate. On using
two-dimensional vector notation, we find for the scalar
8 the equation

BB/Bt+div(Bu) =0. (7)

Combined with the continuity equation, this cari be
put in the form

(d//dt) (8/p) =0, (8)

where d/dt=8/R+u V' is the Lagrangian time deriv-
ative following the Quid. Ke introduce the notation

pe ——p+8'/2pp
ee =e+8'/2ppp

h.=e.+p./p= e+p/p+8'/pop

pe= 8/p.

The thermodynamic variables e and h are the internal
energy and enthalpy per unit mass. Just as the conven-
tional energy equation takes one of the two forms

de/dh+p divu=0, dg/dt=0, (10)

the magnetic field equation can be combined with the
others to give the alternative forms

de./dt+ p. divu=0, dq*/dt= 0.

momentum equations and one version each of (10) and
(11). This system is very similar to that of ordinary
Quid dynamics when expressed in terms of the starred
variables. The two are precisely identical except that
there is an extra variable, say 8, and an extra equation.
This equation can be made to look like a continuity
equation (7), or an energy or entropy equation (11).

Several suggestive pseudothermodynamic relations
are easily derived:

Tdrl+ (8/po)dye= des+pad(1/p). (13)

The left-hand side can also be written

Tdq+ pdf(1/2po)q"] or Tdrl+ pd( ,'A'/p)-, (14)

and the right-hand side,

de —p 'dpi'.

Bernoulli's laws are easily derived under essentially
the same restrictions as classically. For a steady Qow

(no further restrictions), we have

2'I'+h~= constant on a streamline. (16)

For an irrotational (u=Vg) strongly isentropic flow

(g and qe=B/p constant throughout), we have

Bp/Bt+-,'u'+h~= constant throughout. (17)

There is an additional slight specialization which
reduces the present system ideetically to that of ordinary
compressible Quid dynamics. This is to assume that q*
is a function of g,

q.=f(q)

By this we mean a very general type of functional
relation, namely, that the two families of surfaces
q*=constant and g=constant are the same. If the
initial state is such that q.=f(q), in virtue of dg/di
=dye/dt=0, this functional relation perpetuates. In
this case, the extra differential equation for the variable
8 can be integrated and the result written in the form
of an equation of state for (p~, p, q):

p (p,n) =p(p ~)+ (1/2po) p'f'(n)

It is easy to verify that this equation of state is com-
patible with the conventional thermodynamic convexity
conditions. The adiabatic sound speed is given by

a"=~P./ap= aP/Bp+ (1/po) pl =a'+A' (20)

The momentum equation is

pdu/dt+ V'p~= 0. (12)

as would be expected from the general theory (Sec. 2).
We now list the most interesting special cases in

which rl~=f (q) is automatically realized.

The complete system consists of the continuity and

' This boundary condition is given in reference 2d.
"This material was presented at a classified Sherwood meeting

at Princeton in 1954, was issued as part of a set of lecture notes
at. New York University in 1954, and was reissued in 1958 as
Institute of Mathematical Sciences Rept. NYO-6486-VII (un-
published) by A. A. Blank and H. Grad. Some of this material is
covered in a paper by M. Mitchener in The j/Iugwetodynamics of
Condlct~ng F/Nids, D. Bershader, Editor (Stanford University
Press, Stanford, California, 1959).

(a) One dimension-al nonsteady gow. With arbitrary
initial values, we have q(x) and q~(x), from which we
obtain q.=f(rl) (in the extended sense described before)
by eliminating x.

(h) Two dimensional stea-dy fiow. Both q and qe are
constant on streamlines, say g(P) and g*(P), where g
is the stream function. The required relation follows by
elimination of f.
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(c) qe ——8/pcs constant initially. From this we deduce
that q* is always constant and have an explicit equation
of state for pe(p, g).

(d) Iseutropic ffow; q=coustalt initially It. is neces-
sary to reinterpret some of the expressions in which p*
was assumed to be a solved function of g. The simplest
procedure is to take g* as the quantity which is to take
the place of entropy in the Quid analog. The analog of
fluid magnetic isentropic Qow is then Quid adiabatic Qow

We have the equation of state
p' p+f—i /2@0~ p' p~—/po

Equation (27) together with

(28)

i.e., X is constant on a streamline. The equation of
motion is

p(» V)u+VP= (1/p, ) (I V) —(1/&,)VPa2), (26)

which can be put in the form

p~(u V)u+Vp. =0 (27)
where

p (p,n ) =p(p)+(1/2p) p ~" (21) divu=0, (u V')p. =0 (29)

and we may, if we wish, adopt the identification Lcf.
Eq. (13)7

(22)

In summary, we have shown that general transverse
Qow is similar to ordinary compressible Quid Qow, and
with a slight specialization Lviz. , q~=f(q) initially7, it
becomes identical to two-dimensional nonsteady com-
pressible adiabatic Qow. This allows the transfer of
almost the entire literature of linear and nonlinear
compressible Qows including the theory of Riemann
invariants, simple waves, wave interactions, discon-
tinuous shock theory, free boundary Qows, provided
that the results are not special with regard to the equa-
tion of state. On the other hand, the part of Quid-

magnetic theory which is covered by this analog is quite
small. The basic reason for the simplicity of this special
geometry is that the Maxwell stress tensor, which can
never be isotropic in three dimensions, is in this case
equivalent to a two-dimensional scalar pressure.

P~+-,'p u'=P+-', pu'=constant on a streamline; (30)

it is satisfied in either the original or starred variables.
Now we turn to the case of compressible Qow."From

div(pu) =0 and divB=O, we conclude that

A=up (u V)n=O. (31)

completely describes a classical incompressible Qow in
the variables p*, p., u. No equation of state is required.
From any classical incompressible steady Qow (in
general, inhomogeneous), calling the fluid Qow vari-
ables p~ and p~, we obtain a Quid-magnetic incompres-
sible Qow. "We are at liberty to prescribe X or p arbi-
trarily as a constant on each streamline, after which we
can compute the remaining Quid magnetic variables.
A homogeneous incompressible Quid Qow can give rise
to either homogeneous or inhomogeneous Quid-magnetic
Qows. A potential flow (curlu=0, necessarily homo-
geneous in p~) can be nontrivial magnetically (curlBAO)
if X is taken to be i'nhomogeneous.

Bernoulli's law takes the form

5. PARALLEL FLOWS

We look for Qows in which u is parallel to 8,
B=tu. (23)

Although X is not constant on a streamline, X/p is. It
is convenient to eliminate the vector 8 from the di6'er-
ential equations, expressing it in terms of u and the
scalar 0.,

Specifically, we look for circumstances under which the
constraint (23) yields not just occasional special Qows
but is compatible with the imposition of a general class
of arbitrary boundary conditions. Presumably, the
imposition of certain boundary conditions in the original
problem guarantees that the Qow is parallel, with the
remaining boundary conditions left open. We note first
that BB/Bt= curl(uXB) =0 and confine our attention
henceforth to steady Qows.

First we examine the relatively simple case of incom-
pressible Qow, "

divu=O, (u. V)p=0. (24)

The flow is called homogeneous if p is constant every-
where instead of constant on each streamline. From
divB=O and divu=O, we deduce

(u V)X=O; (25)
"See NYO-6486-VII, footnote 10. A special case of this incom-

pressible parallel Qow is analyzed for stability by S. Chandra-
sekhar, Proc. Natl. Acad. Sci. U. S. 42, 273 (1956).

We obtain the system

div(pu) =0
(u V')u+p 'V'p= (n'/po) curl(pu) &(u

(u V)a=O

(u V)~=0, p=f(p, ~)

(32)

(33)

H we take the scalar product of the momentum equation
with the velocity u, we 6nd that the magnetic terms on
the right disappear. Consequently, we obtain the con-

"There exists another analog of incompressible Quid Qow with
an entirely different Quid-magnetic problem; see H. Grad and
H. Rubin, "Hydromagnetic equilibria and force-free Gelds, " in
Proceedings of the Second United Nations International Conference
on the Peaceful Uses of Atonsic Energy (United Nations, New York,
1959), Vol. 31, p. 190."In this connection see M. N. Kogan, Priklad. Mat. Mech. 23,
70 (1959). During this Symposium an exact Quid analog for a
parallel Qow which is two-dimensional, isentropic, and irrotational
was presented by I. Imai I Revs. Modern Phys. 32, 992 (1960),
this issue). This analog is discussed and extended in Appendix 3.
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pNS= const

g= const

h+-,'u'=const, h=f(p, 2t).

(36)

These equations hold in both the Quid and the fluid-
magnetic problems even though the complete Qow
equations are diferent in the two cases. Consequently,
the classical compressible channel flow carries over

'4 This coincides with the "Mach" lines computed in the linear-
ized problem, reference 2c.

ventional gas-dynamical Bernoulli's law

—,'u'+h= constant on a streamline. (34)

This should be compared with the transverse Qows of the
last section where Bernoulli's law contained modified
variables, and the incompressible parallel flow (30)
where two forms of Bernoulli's law coalesce.

The characteristics of the system (33) are easily
computed. If we denote by @ the angle between the
vector u (or B) and the normal to the characteristic
surface element, we find the single cone given by"

cos'y = a2/u'+ (n'p/p2) (I—a'/u')

a2/u2+ (A 2/u2) (I a2/u2)
(35)

A positive value less than one for cos'p yields a real
hyperbolic cone; otherwise, this root is elliptic. In
addition to this cone we find the streaml'ine counted
four times. Three of these roots correspond to 0., g, and
the Bernoulli constant.

The problem of a linear perturbation about a
uniform Qow uo and constant state at infinity has been
solved and is almost but not quite conventional aero-
dynamics. "The streamline characteristics integrate out
explicitly (almost unconsciously. ) and one is left with
either a wave equation or a potential equation stretched
in the direction of u2. Any classical elliptic solution (flow
over a wavy wall, past an airfoil, etc.) is immediately
transferable with only minor modifications. A classical
hyperbolic solution is directly transferrable only in the
hyperbolic range where No is larger than the fast sound
speed (u2 larger than both a2 and. A2). In the inter-
mediate hyperbolic range (u2 inside the cusped region,
see Sec. 2 and Fig. 2), the wave equation is solved with
the forward characteristics determining the domain of
dependence.

To observe the full implications of the three distinct
sonic transitions, one must attack a nonlinear problem.
We can solve one such problem explicitly after making
appropriate approximations: the Qow in a channel of
slowly varying cross section. We make the same as-
sumptions as in the classic hydraulic approximation,
i.e., all quantities are approximately constant over the
cross section and depend only on the axial distance
along the channel. To this approximation, the solution
is obtain in terms of the cross-sectional area 0', as a
parameter using only the conservation of mass, the
entropy constant, and the Bernoulli constant,

without change for the fluid variables u, p, p, h, etc.
The magnetic field is then determined once we choose
a value for the constant n. Specifically, let us examine
the transonic nozzle Qow in which we have u&a
upstream, N)u downstream, and I=a at the-throat.
It so happens that I=a is also a characteristic speed
of the Quid-magnetic flow; there is a sonic transition
at the throat. However, there are two other critical
points (which are attained in the flow if the area Q,

varies through a sufhcient range), viz. , at u=A and
u= aA/(a'+A') &. The latter is always upstream of the
throat while the former may be upstream or downstream
depending on the relative magnitudes of a and A.

In the classical nozzle Qow, the reverse transition
from supersonic to subsonic Qow is known to be unstable
without the occurrence of shocks. This raises the
question of the legitimacy of the Quid-magnetic solu-

tion, since it involves transitions in both directions
between elliptic and hyperbolic regimes. However, it is
easy to verify that the heuristic 'argument which indi-
cates shock formation in the classical case does not apply
in the present problem. The classical argument, roughly
given, is that a small disturbance upstream propagates
only along the Mach line in the downstream direction.
This Mach line becomes approximately normal to the
channel axis as it approaches the throat; consequently,
disturbances tend to collect at the upstream side of the
throat. In the corresponding Quid-magnetic case in
which the characteristic direction becomes approxi-
mately normal to the channel axis, the argument quoted
in Sec. 2 requires that it is the upstream characteristic
along which a discontinuity propagates; this is carried
safely out of the hyperbolic region.

This argument does not settle the question of the
existence or stability of the Quid-magnetic channel Qow.
What is necessary is to establish the existence and
stability (the latter either in the sense of allowing con-
tinuous deformation of the steady-Qow boundary data
or in the transient sense) of the full two- or three-
dimensional transonic Qow. Presumably, a unique
solution exists which takes on boundary data on an
upstream cross section in the initial elliptic regime (e.g.,
u„given), with only regularity imposed at the far-
downstream end. If such a solution can be shown to
exist, the hydraulic approximation is probably quite
accurate. But it is also possible that the hydraulic solu-
tion is an "approximation" to a nonexistent Qow'.

It is possible to combine the results of this and the
last section in a "parallel-transverse" Qow. Consider a
two-dimensional parallel Qow with superposed third
components of velocity and magnetic field. The sur-
prising result (cf. Sec. 6) is that the combination is a
system with only one nondegenerate characteristic
cone; the transverse characteristic does not appear.

We use the earlier notation of this section, S=npu,
to represent the (xy)-plane projections of the magnetic
field and velocity vectors and add the components 8,
and u, in the ignorable s direction. Instead of (33), we
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have

div(pu) =0
p(u V)u+VP+ (n2/p, )puycuri(pu) = —V(8,2/2p, )

(37)
(u V)n=O

(u V)ii=0

supplemented by

(u V)i4 —(n/po)(u V)8,=0
(u V)8,—np(u V)N, +8, divu=0.

From the first line of (38),

(u V)(N nB/p—p)=0

we conclude that
u. nB./p p= p-

where p is constant on a streamline,

(u V)P=O.

(38)

(39)

(40)

By using the continuity equation and the second line
of (38), we compute

p(u. V)(8,/p) = (u V)8, (B,lp)(u ~ V)—p
=(u V')8,+B,divu

=np(u V)Q
or

where
dp 5'(2M' —1)

h*= a.'—=h
p 2(M' —1)'

(48)

The ordinary enthalpy h would have to go to minus
infinity at a transition through M= 1. We have reached
the strange conclusion that in a transverse-parallel Row,
a given streamline is characterized by either M) 1 or
%&1, whereas in the limiting case of a pure parallel
fiow, there seems to be the possibility of crossing the
value %=1 on a single streamline. It should be noted
that %=1 is no longer characteristic for the parallel-
transverse Row. There can be at most one critical point
on a streamline with M& 1 and two when M &1.

It is possible to pass through the value Sf=1 in a
parallel-transverse Row by having an entire streamline
on which M=1. The parameters P and y would be
zero on this line and one would have B,=apg, . On this
sonic line the Qow is strictly parallel in three dimensions.

Steady transverse flow results from setting n=p=0
and two-dimensional parallel Qow from P=y=0 in the
foregoing formulas.

5. TWO-DIMENSIONAL FLOWS

easily verified that this transition cannot occur on a
streamline. The modified Bernoulli's law takes the form

h~+ —,'I'=constant on a streamline, (47)

(u V) L(8./p) —&*1=0, The characteristics of a system of first-order partial
differential equations can be defined in a special way
when there are only two independent variables. "We
assume that the system is homogeneous and linear in
first derivatives. We take linear combinations of the
equations (say e in number) and look for multipliers
such that the linear combination is a directional de-
rivative in a single direction for each of the dependent
variables. This poses an algebraic problem, viz. , the
solution of a homogeneous system of linear equations
for the e multipliers; the common direction of differen-
tiation (say described by its slope X) enters as an
eigenvalue parameter. The allowable values of A. are
the characteristic directions, and if, for example, they
are distinct, we can replace the original system of partial
differential equations by a characteristic system in
which each equation contains derivatives in a single
characteristic direction. H such a characteristic equa-
tion can be integrated, we obtain a Riemann invariant.
This is a function which is constant on each charac-
teristic curve of a given family. If the system of
equations is linear with constant coefFicients and every
characteristic is real, then each characteristic equation
can be integrated and we have a complete set of rs

Riemann invariants. Each one is a real linear combina-
tion of the original variables which is constant on a
given family of real parallel straight lines. Correspond-
ing to a pair of complex conjugate roots X, we find that
the real and imaginary parts of the corresponding

'5 R. Courant and K. O. Friedrichs, SNpersonic Iilom end Shock
8'ass (Interscience Publishers, Inc., ¹wYork, 1948), Chap. II.

which can be written

8,=p(nu, +y),

(u V)y=O.
where

(42)

The system (38) has been integrated completely:

8.= (np+v) p~p/(po n'p)—
~*= ( op+nV p)/(po n'p). —(43)

The net effect in the two-dimensional parallel flow (33)
is to replace p by p~, where

and 8 and M (the Alfven Mach number) are given by

~=p+V/n
M2 —N2/+2 —

p pl2/82 —
p /n2p

(45)

The equation of state (44) expresses p in terms of p
and the quantities p, n, 6, all of which are constant on
a streamline. In addition to the streamline counted
many times, we have a single characteristic cone which
is given by replacing a~ in (35) by the expression

a"=Bp*/Bp=a'+PM4/(M2 —1)'. (46)

The value of a*' may be positive or negative and can
apparently switch from plus to minus infinity at 3f= 1,
i.e., as p passes through the value po/n'. However, it is

2 (nP+7)2pop2 )2pM2

P =P+ =P(p,n)+ =P+ (44)
2po 2(po np)' — 2(M 1)'—
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(up V)p+pp dlvu=0

so(uo V)u+ao'Vs+(1/uo) V(~o ) = (1/uo)(llo V)&

curl(uXBp+up&&8)

(&o V)u —(uo V)&—&o divu=0

divB=0.

(49)

The subscripts (0) refer to unperturbed quantities, all
others being perturbations. The pressure has been
eliminated using VP=aoPVp. The relation div8=0 is
needed since from the preceding line (flux equation)
there follows only (up V) div8=0.

We introduce x and y as the relevant coordinates with
z ignorable. It is convenient to introduce dimensionless
variables in terms of the magnitudes Np and Bp of the
two-dimensional projections of the vectors up and Bp.
We write

p= ppo

up=up(1, 0, u)

Ho= Bp(cos8, sin8, b)

u=up(u, s, w)

=&o(s, ~, i.)
A o'= &o'/popo.

(50)

complex Riemann invariant satisfy an elliptic system
which can be obtained from the Cauchy-Riemann
equations by an a%ne transformation. Alternatively,
both the real and imaginary parts of the Riemann
invariant satisfy a second-order elliptic equation which
is ately equivalent to the potential equation.

This reduction for the Quid-magnetic equations has
been carried out elsewhere in the case of one-dimen-
sional nonsteady Qow, ' and we now examine this
question for two-dimensional steady Qow treating only
the linear problem of perturbations about a uniform
magnetic field Bp, arbitrarily oriented, and a uniform
Qow up. The results are applied to the Qow around a
thin airfoil.

There is an essential difference between the restricted
two-dimensional problem in which the velocity arid
magnetic-6eld vectors lie in the relevant plane and a
general two-dimensional problem in which they have
components in the ignorable direction as well. In the
former case, the system of equations is of fourth order
with characteristics corresponding to the slow and fast '

cones of the transient problem. In the latter case, a
transverse cone is also present, and the system is of
sixth order. Moreover, we distinguish an intermediate
case in which Bp has no third component but up and
the perturbations u and B are general. In this case, the
third components of u and B decouple from the remain-
ing variables, and this (transverse) solution is merely
superimposed on the restricted two-dimensional solution
for the remaining variables. We treat these cases in
order of complexity.

For simplicity we consider isentropic Qow for which
the linearized equations are

up'w, —Ap'(cos8 i,+sin8 i „)=0
sin8(cos8 w, +sin8 w„)—sin8 i,

—b (cos8 e,+sin8 p„—q,)=0.
(54)

For the restricted two-dimensional problem we take
the system (53) and set b=0 We introdu. ce A=tang
as the slope of the normal to the characteristic direction;
in other words, we introduce the directional derivative

XB/Bx+B—/By Multiplyin. g Eqs; (53) by p, q, r, s in
order and adding, then setting the ratio of the coefficient
of B/Bx to B/By for each variable equal to —X, we
obtain the system of linear equations

P, sin8+cos8)P+uoo cos8g+uoor=0
—XAp' sin'8q+s=0

(55)
P+ aport+ apo (X sin8+cos8) r =0

p+ (uo' —A o' sin'8) 8+uo'(cos8) r—Xs =0.

Note that the Alfven speed Ap is also de6ned in terms
of the plane component Bp. We normalize the angle 8
between up and Bo, taking 0&8&or/2.

In components, the equations are

0'~+ u~+ op =0
up'u +aooo, +A oo(sin 8) (g, P„)+—bAooi', =0
uo'o, +ao'p —Ap'(cos8)(pt, —$ )+bAo'i =0 (51)

4+nw=0
q+u sin8 —o cos8=0

and
cos8 w, +sin8 w„—f, b(u—,+o„)=0

(52)
uoow, —A p'(cos8 t',+sin8 i'„)=0,

where we have separated out the z-component equa-
tions. The last line of (51) is an integrated relation
which states that the plane component of B perpen-
dicular to up is equal to the plane component of u
perpendicular to Bp. It can be derived most easily by
noting that curl (uXBp+upXS) =0 implies that the
third component of u&&Bp+up&&$ is a constant. If the
perturbed Qow approaches zero as we approach infinity
in any direction, this constant must be taken to be zero.

There are six differential equations and one 6nite rela-
tion in the seven variables. We 6nd it convenient to
eliminate N in terms of v and p since the boundary con-
ditions will be imposed on e and on the magnetic-6eld
components. This elimination is invalid if 8=0. How-
ever, the case 8=0 is degenerate and must be considered
separately in any event. After a little manipulation, we
obtain

sin8 0.,+cos8 e,+sin8 v„—q, =0
ap' sin8 o.+uoo cos8 s.+ (Ap' sin'8 —up')q.

—Ao»n8$ = —bAo sin8i*
(53)

ap' sin8(cos8 a,+sin8 o.„)+uo'o~—uo' cos8 g,
bA p' sin8—(cos8 ,i+sin i8„)

h.+no= o,

and
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Fro, 4. Characteristic shadow region.

where mp and Hap are the Mach numbers

mp=up/up, Mp=up/Ap. (57)

An alternative form in terms of the angle p and also

is

The condition that a nontrivial solution exists is found
to be

(1+X')(cos8+X sin8)' —(1+)I,') (mp +Mp )
+mpPMp'=0, (56)

we can solve the airfoil problem explicitly. From domain
of dependence considerations (see Sec. 2), we can assign
to each characteristic an orientation such that all
quantities approach zero at infinity in this direction.
The corresponding Riemann invariant is then zero
except in a shadow zone intercepted by the airfoil
(see Fig. 4). The solution of the problem is given by the
linear superposition of four such shadows; we must
compute only the values of the four Riemann invariants
in the shadow zones. Consider the boundary values
taken by o; v, $, g on the airfoil and count the distinct
values above and below as eight functions defined on
the slit which represents the airfoil. In general terms,
the boundary conditions are four linear relations in
these eight variables. Combined with the four Riemann
invariants (also linear combinations of these variables)
which vanish on the airfoil, two above and two below,
we are able to solve for all eight boundary values and
thus evaluate the four remaining Riemann invariants.
For the specihc problem at hand, we have the two
boundary conditions that $ and g are continuous and v

is given above (v+) and below (v ). This leaves four
unknowns o+, o. , $, g to be determined from the four
vanishing Riemann invariants; these four equations are
inhomogeneous because they contain the given values
of v+andv .

We illustrate this procedure by taking the hypersonic
limiting case of large mp and Mp, the ratio mp/Mp being
considered fixed. We find A. to be large on the order of
mp To lowe. st order in an expansion in powers of 1/mp,
we find

cosg —(mp+Mp) cosp+mpPMp cos /=0. (59)

The solution for p, q, r, s can be written

P:q:r:s=up' sin8sinh: Mp' cosp(1 —mp' cos'p):

(mp'+Mp')' .
and for the Riemann invariant,

1 mp'+Mp' 4 sin'8mp'Mp' '
1~ 1—

2mp'Mp'
(64)

:(mpP cos8 cosQ —cos8):

XupP sin'8 co&(mp' cos'P —1), (60)

and the Riemann invariant can be put in the form

(cos8+X sin8 —mp' cos8) o —mp'(sin8 —X cos8) v

+mP[ mp'/(1+X') —1](hv—$) = const (61)

or, in terms of the angles &P and 8,

(cos8—mp' cos8 cosQ) o —mpP (sinb) v

+mp'(mpP cos'P —1) (g sing —$ co&)= const. (62)

By using (59) as an identity, one can obtain many
equivalent forms for the Riemann invariant; for later
use we list the form

o =-,'(o++o —), 8=-', (v++v —
)

o =& o+—0, V =& V+—V
(67)

cos8(o —Xv)+ (mph.
—'—1) (g—Xq). (65)

The four values of X are given by an independent choice
of the sign &X for each choice of sign in the expression
for )'. The four vanishing Riemag. n invariants corre-
spond to ) &0 above the airfoil and A, &0 below, viz. ,

cos8(o+—[P [e+)+ (mp'X '—1)((—[X [q) =0,
cos8(o +[X[v )+(mp9 '—1)($+[X[g)=0' (66)

each of these equations is counted twice by a choice of
sign in (64). The solution is effected most easily in terms
of the variables

(MpP sing cos'P —sin8 cos8)o+mp' cosg(1 —Mp' cos'g)v
+mpP cos'P sin8(Xg —$). (63)

There is a very large amount of information hidden in
these relations, but we illustrate their significance with
only a few examples.

In a purely hyperbolic problem with four real roots,

and we compute

g= —(Mp'/Qp) cot8 v'

q=Mp cos8 8/(mp sin8+Mp)
o.=mp(mp+Mp sin8)v'/Qp sin8

o.' =mpQp8/(mp sin8+Mp),
(68)
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where
QpP =mpP+MpP+'2' p3II p sin8. (69)

It should be recalled that sin8&0. The values of 0.

and ~+ and of the nonvanishing Riemann invariants
are easily calculated, and the solution away from the
airfoil is then given by certain lengthy expressions.

Other limiting cases in which the ratio mp/3IIp
becomes large or small are of particular interest. This
limit is equivalent to Ap/ap large or small; i.e., the
magnetic field either dominates or becomes negligible.
An interesting mathematical feature of some of these
examples is that they are partly elliptic and partly
hyperbolic. Only in special cases can a problem which
is partly elliptic and partly hyperbolic can be solved by
simple means. In the general case, the elliptic variables
(i.e., the real and imaginary parts of the complex in-
variant) do not satisfy one of the boundary conditions.
In applying a boundary condition to a linear combina-
tion of elliptic and hyperbolic variables, we are led to
a pair of integral equations over the slit for assumed
values of either the elliptic variables or of the real
Riemann invariants. The integral equation is derived
from the Green's function of the slit domain, or, if the
continuity of $ and q are appropriately used, from the
simpler Green's function of the entire plane.

Consider first the case Ao&)ao or 3fo((mo. The two
sets of characteristics are given by

X= + (Mp' —1)& (fast)

X = (&mp —cos8)/sin8 (slow).
(70)

Ihe fast wave is elliptic or hyperbolic depending on
whether Mo is smaller or larger than unity; the slow
wave is hyperbolic. To be strictly consistent with our
hypothesis, we should take A= +i for the fast wave if
mp is not large and A= Amp/sin8 for the slow wave if
mp is large. For the fast wave, we have tnp'/(1+X')
=mp'/Mp' which is large. Inspection of the Riemann
invariant (61) shows that the dominant term is the one
in $ and g. We conclude that $ and q by themselves
satisfy an elliptic or hyperbolic second-order system.
The boundary conditions that $ and 'pl are continuous
imply that $ and q vanish identically in both the elliptic
and hyperbolic cases. It remains to find 0 and e from
the slow Riemann invariant which takes the form

p —Xv= const, X=Amp/sin8. (71)

From this we easily compute 0- and e in the whole
plane, viz. ,

v =v+, o =mpv+/sin8 (above)
(72)v= v, p = —mpv

—/sin8 (below).

Here e+ and v signify the boundary values which are
taken where the appropriate characteristic through the
given point intersects the airfoil. In other words, the
values of v and o = &mpv/sin8 are carried as constants
on the relevant characteristics in the appropriate
shadow zone.

The most interesting conclusion is that the vector
velocity perturbation is in the direction of 80. From
the last line of (51), we see that g=o implies the
vanishing of the component of velocity perpendicular
to Sp. We can summarize by stating that in the limit
of very large magnetic field, Ao&)ao, the airfoil produces
a purely gas-dynamical disturbance with no inhuence
on the magnetic field, but this gas disturbance is quite
unconventional and is very strongly aGected by the
presence of the field.

The opposite limiting case Mo))mo can also be solved
in cases of combined elliptic-hyperbolic characteristics.
With mo finite and Mo&)1, we have

X=a (mp' —1)& (fast)

X = &3Ep/sin8 (slow).
(73)

Xp —m'v= const, X= & (mpP —1)&. (74)

This in an elliptic or hyperbolic problem depending on
whether neo'&1 or mg&1, and in either case it can be
solved for 0 and v using the given boundary condition
on e. The solution is exactly the conventional gas-
dynamical solution for this boundary-value problem.
Assuming that 0. and e have been evaluated, we now
turn to the slow Riemann invariants to Gnd the mag-
netic field components. In this case X is large, and to
lowest order, only the variables 0, v, and p appear:

(sin8) v+mpP (cos8) v —mpPg= const,
X= &Mp/sin8. (75)

To this order, the invariant has the same form for
each value of X; this implies that the invariant is iden-
tically zero, or

ri = (1/mpP) {sin8)o+ (cos8)v. (76)

This result is more strking in terms of the velocity com-
ponent I $cf. last line of (51)],

This result for I is also the classical gas-dynamical
solution for the airfoil problem. The foregoing analysis
is incorrect, however, since the value found for g is not
necessarily continuous across the slit. The correct
boundary condition can be imposed only if we remove
the degeneracy in the invariant (75) and keep the next
higher order term in $,

(sin8) p/mp'+ (cos8)v —q+ $/X, X= &Mp/sin8. (78)

The solution to this problem under the correct boundary
conditions yields a large value of $ on the order nf M'n. In

For the fast wave, X is finite and LmpP/(1+X') —1j is
small; consequently $ and q can be dropped from the
Riemann invariant. We are left with

k(sin8 —X cos8) v —m'(sin8 —X cos8) v = const.

Provided that X Wtan8 (which case requires special
treatment), we have
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$= —MOV'/sin8

0= U—V'

I= —a/mo'+ V'/sin8,

and in the shadow below,

(80)

other words, if we look for solutions in which $ is finite
(e.g., without specifying any boundary conditions), we

obtain the conventional Quid solution in the limit of
vanishing magnetic field. But, the boundary condition
that g be continuous across the slit implies that a certain
velocity component, p= v cos0—I sin8, be continuous,
and this condition is violated in all but certain very
special Quid Qows. In order to satisfy this boundary
condition, the magnetic field component $ must be
large and the x component of velocity is finitely affected
by even a small ambient magnetic field.

The solution for $ and g (also e) is easily obtained
from the invariant (78) and is most easily expressed in
terms of the solution of the equivalent gas-dynamical
problem. In particular, we introduce V as the pro-
jection of the Qow velocity in the Quid problem in the
direction perpendicular to $0 (which direction is
extraneous to the Quid solution),

V= cos8 s+sin8 0/m02;

0- and v are the same in the Quid and in the magnetic
problems. In the shadow region above the airfoil, we find

(Mo' sing cos'P —sin8 cos8)0.

+mo' cosg(1 —Mo' cos'p)e
+~o' cos'P sin8(lip —$)

+bmo' cosg(sin8 a+sing cosQ 1 )

(84)

We now turn to the case where u and 8 have com-
ponents in the s direction, but first look at the special
case where 80 is two-dimensional, b=0, in (53) and (54).
The two sets of equations are decoupled. Furthermore,
the two-dimensional system (53) is exactly the same as
the one previously analyzed. We need solve only the
system (54) for the s components of u and B. The
characteristic form of these equations is easily com-
puted:

PeoB/Bx~&0(cosH/Bx+sinH/By) j
X(uow~Aol) =0 (83)

The differential operator is, in vector notation,
llo' V&AO'V'. With the boundary condition that l' is
constant on the airfoil (cf. Sec. 3), we obtain the simple
solution that this constant value of 1 is propagated in

both shadow regions defined by the backward charac-.
teristics, while w takes the constant value +Aol/No
in the shadow above the airfoil and —Aol/uo below.
This is a pure transverse or Alfven wave.

Finally, we consider the general case with b /0. The
system (53) and (54) is of sixth order. After a certain
amount of manipulation, we find the Riemann invariant

$= —Mo V'/sin8

g= V+V'
u= —0/mo' —V'/sin8.

Outside the shadow regions, we have

corresponding to the four roots
(81)

cos9—cos $[3IIO + (1+9)ygo j
+mo'MP cos4& =0, (85)

and the Riemann invariant

j=0, g= V, u= —0./mo',

which is identical to the Quid solution. The symbol V'

represents the difference, —', (V+—V ), of the boundary
values taken by the component V of the Quid solution
at the point on the slit which is intercepted by the
appropriate characteristic through the given point.

If ao and No are taken to be finite and Ao approaches
zero, the shadow regions are very narrow; we can say
that the solution converges to the Quid solution except
in a bounda, ry layer and wake. However, if only uo is
finite and both No and Ao approach zero, the magnetic
Qow is entirely different.

There is an interesting special case treated by
McCune and Resler'~ in which the solution for small
magnetic field does reduce to the Quid Qow in the entire
plane. He takes 8=m/2 (magnetic field perpendicular
to the Qow) and considers a symmetric body for which
v+= —v . In this problem, we have g= —N. The con-
dition that g be continuous is that u be continuous; but
this is clearly satisfied in virtue of the symmetry, and
the bouridary condition is redundant. In the formulas
(80) and (81), we see this explicitly when we set
V'= —u'=0.

0 (sm'8 i w w

+ cos8aMO~ —1 )

mo' (cos'8 J b sin8 PMO~

b
+ f ~ (zq —

P) (86)3'' 3Eo

corresponding to the two roots

)i = (&MD —cos8)/sin8, cosh= &Mo cosP. (87)

We do not go into the properties of these solutions
except to show that the special case of a symmetric
airfoil, s+= —e-, with 8= ~/2 is solvable in a combined
elliptic and hyperbolic regime just as it is for b=0.
The general argument is quite simple, but the algebra
is rather formidable and has not been done. Under the
assumptions made, it is easy to verify that the real
roots occur in pairs, ~A, , and the complex roots occur
in pure imaginary pairs, A. =~is. Inspection of the
Riemann invariants shows that the variables o., q,
are even and w, g, w are odd in y. The boundary condi-
tion on $ implies that (=0; the boundary condition on
q is redundant. The variables m and $ are given on the
boundary. This leaves the boundary~values of 0, p, and
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m open. The conjugate elliptic variables are linear
combinations of the odd a,nd even variables, respec-
tively. On using the two vanishing real Riemann in-
variants, we can 6nd a linear combination of the two
elliptic variables which has known boundary values.
For example, we can solve for 0. and g in terms of m using
the two vanishing Riemann invariants and then elim-
inate m between the two elliptic variables. This linear
combination of the elliptic variables is itself' a solution
of the elliptic second-order equation, and it can now
be found. For the case b=0, the odd elliptic variable is
v itself (since $ vanishes), so no algebraic manipulation
is necessary.

A word should be said about the special case 0=0.
This problem can be treated directly and solved ex-
plicitly. "However, this result is not the same as that
obtained by letting 0 approach zero. The reason is that
the airfoil becomes characteristic and boundary condi-
tions are lost for 8=0; we observe bad behavior in all
the explicit solutions for small 8. It is not the equations
themselves that become singular; it is only the solution
to the specific type of boundary value problem under
consideration. However, the elimination of I in terms
of e and g becomes singular for 8=0, so the later forms
of the diBerential equations are not appropriate for a
study of the case 0=0.

It is an easy matter to reduce the problem with Ip
three-dimensional to the restricted problem b=0 in the
special case 8=0. This is exactly the parallel-transverse
flow that was treated nonlinearly in Sec. 5. The equiv-
alence of the two problems is obtained by replacing cp

by ap, where [in our present notation, cf. Kq. (46)]

ap '= apP+ [b'up'/(Mp' —1)j. (88)

/. THREE-DIMENSIONAL FLOWS WITH A
LARGE MAGNETIC FIELD"

We investigate the Qow about a three-dimensional
plane lamina (cf. Fig. 3) with an arbitrary cross section
which is described in terms of the given normal com-
ponent of velocity as a boundary condition.

We rewrite the linearized isentropic steady-Qow
equations (49) in the variables

o =p/pp, A = I/(pppp) &, Ap =Sp/(jtippp) & (89)

obtaining

(up. V)o jdivu=0
(up V)u+ap'Vo = curlA&&Ap= (Ap V}A—V(Ap A)

(9o)
(Ap' V)u —(up. ' V)A —Ap divu =0

divA=0.

On taking the curl of the second and third lines, then
multiplying by Ap, we find

(up V)Ap curlu —(Ap V)Ap curlA=O
(91)

(Ap V)Ap curlu —(up. V)Ap curlA=O.
' See reference 1d for an analysis of the time-dependent problem.

The pair of .variables (Ap. curlu, Ap curlA) satisfies a
Wo-dimensions/ hyperbolic system which can be solved
separately in each plane parallel to up and Ap, given
appropriate boundary conditions. In particular, we
obtain the characteristic system

curlAy Ap
——0. (93)

From the boundary condition that A is a surface
gradient, (curlA)„=0, we conclude that the vector
curlA vanishes at the boundary. In particular, Ap' curlA
=0 at the boundary. We conclude from (92) that
Ap curlA =0 everywhere. Combined with (93), we
have curlA=O everywhere. On recalling that divA=O
and all components of A are continuous across the
airfoil, we 6nally conclude that A=O. The correct
interpretation of this result is A/Ap((1; more precisely,
&/&p sp /&p or ap /Ap .

Next we compute u and 0. It is convenient to con-
sider the component of u parallel to Ap, Ap u, and the
two-component vector perpendicular to Ap which we
denote by u'. From the third line of (90), we obtain

(Ap V)u'=0

(Ap. V)Ap u+Ap'(up V)o.=0
(94)

(95)

after eliminating divu by use of the continuity equation.
Also, from the second line of (90),

(up V)Ap u+ap'(Ap V)o=0. (96)

The vector u' is a constant on each magnetic line. Ap.

On using the conventional regularity condition for
three-dimensional problems that all quantities approach
zero at ininity whether elliptic or hyperbolic, one would
conclude that u'=0. This is too hasty because the
hyperbolic characteristics of this problem behave two-
dimensionally. A more precise argument is as follows.
The value of u' cannot be carried along the line Ap,

since Ap is not a characteristic. However, it does
approximate the two characteristic directions (Ap V)
~(up V). By reinserting the vector A, we can derive
the following exact relations-:

(Ap Vaup V)(u'WA') =&V'(Ap A+ap'o). (97)

The symbol V' represents a two-component gradient.
According to our order of magnitude estimates, we can
drop the right-hand side; however, we choose to keep
the equally small up. V terms on the left simply to
preserve the correct characteristics of the problem. We

(Ap V&up V) (Ap curlu&Ap curlA) =0. (92)

In allowing Ap to become large compared to cp, we
consider separately the two cases mp cp and Np Ap.
In determining relative orders of magnitude, we con-
sider A to be on the order of A p and I on the-order of Np.

First, suppose Ap&&ap and Ap&&Up. From the second
line of (90), we conclude
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now conclude that u'=~A' to this order; i.e., u' is
small as well as A'.

Since u'=0, the remaining component of u, parallel
to Ap, takes the boundary condition set by the given
component normal to the airfoil. From (95) and (96) we
can solve for Ap u and 0.. The domain of dependence is
two-dimensional and is explicit in the characteristic form

(u0 V)o+divu=0

(up V)A0 u+a02(AD V)0'=0

(u0 V)u'= curlA&&A0

(A0 V)AD u —(u0 V)AD. A —Ap'divu=0

(A0 V)u' —(u0 V)A'=0, divA=O.

(99)

The only approximation that has been made is the
elimination of the term involving up' in taking the per-
pendicular component of the second line of (90). On

inserting A=O and u'=0, we find that all equations

Lao(AD V)&A0(uo'V)](A0 u&aoAoo') =0. (98)

We can summarize this solution as follows. The per-
turbation of the magnetic field is zero. The velocity per-
turbation is parallel to Ap. The magnitudes of Ap u and
o- at a point are simply expressed in terms of the velocity
boundary value at that point on the airfoil which is
reached by tracing back the appropriate characteristic
from the given point. The domain of dependence does
not widen conically. Exactly the same solution holds
for a wavy "airfoil" which is not plane but which is
any part of a cylindrical surface ruled by the straight
lines up.

The solution which we have obtained is not unique.
This can be seen most easily by examination of the
two-dimensional problem. It was seen in Sec. 6 that,
superposed on the plane solution, there can be a trans-
verse wave produced by a constant magnetic field which
is trapped in the airfoil. In the three-dimensional
problem, such a trapped field is also possible. For
example, even in a Quid at rest, one can "freeze" a
perturbation magnetic field into the nonconducting
airfoil. One can probably say that the solution to
the flow problem would be determined if one stated
from what equilibrium configuration the airfoil was
accelerated. The point in our previous argument at
which the trapped field was excluded was in the state-
ment that Ap curlA is zero globally. In the presence of
a trapped field there can be a singularity in Ap curlA
at the edge of the airfoil. Consequently, A is a harmonic
vector except for possible current sheets which lie on
the backward characteristic surfaces through the edges
of the airfoil. We do not consider these solutions further.

For the case in which Np is not necessarily small
compared to Ap we can verify that the solution just
given with A=O and u'=0 satisfies the equations. First
we replace the system (90) by an equivalent system
valid in the limit A p)&up'.

are satisfied identically except

(u0 V)0+divu=0

(uo V)A0 u+ao'(Ao V)0=0

(A0 V)A0 u —Ao' divu=0,

(100)

APPENDIX 2

Boundary Condition J„=O
We wish to compare the perfectly conducting trans-

verse Qow around a nonconducting object with a slightly
resistive transverse Qow around the same object. First,
it is necessary to complete the perfectly conducting
solution and obtain the interior solution, inside the
body. This is very simple, since the only harmonic
(i.e., vacuum) unidirectional magnetic Qeld is a constant
field. Since the magnetic field in the Quid is not constant
in general (it is proportional to the value of p on the
streamline which coincides with the boundary), there
must be a surface current in the Quid layer adjacent to
the conductor. The plane vector J=(1/p0) curlB is
equal to VB in magnitude but is perpendicular to it.
Thus, J„does not vanish at the boundary unless 8
(i.e., p) is constant there.

which is exactly what was found before LEqs. (95)
and (96)j.

APPENDIX 1

Two-Dimensional Flow around a
Perfectly Conducting Body

Consider the two-dimensional nonlinear equations
for the Qow around a perfectly conducting body. On
some portion of the surface it is assumed that 8 /0,
and where this is so we have the boundary condition
u=0.

From the magnetic Qux equation we conclude u)&B
E, where E is a constant vector in the direction of

the ignorable coordinate. The boundary condition tells
us that this constant is zero, so u)&B=O in the entire
Qow. This is a parallel Qow studied in Sec. 5. We have
B=A,u, where A. is a scalar and A. =o.p, where 0. is constant
on each streamline. It is more convenient to write
n=1/P; we have

pB=pu,

where P is constant on a streamline. At a point on the
boundary, u=0 and BAO; consequently, either P=O
or p approaches infinity near the boundary. However,
from Bernoulli's law LEq. (34)], we see that h(p)+-', I'
is constant on a streamline and p cannot approach
infinity. Hence P (and therefore u) is identically zero
along every magnetic line which intersects the boundary.
It may be possible to construct nontrivial Qows which

pass around both the body and a rigid mass of Quid at
rest with the body, but in such a flow it might be more
appropriate to consider the body together with the
stagnant Quid as the rigid body (with B„=O) around
which the Qow takes place.
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We now turn to the case of a finite but small resis-
tivity, E., and estimate the solution using methods
which, although not rigorous, are very similar to more
conventional boundary layer analyses, and which can
probably be made just as precise. The Qux equation
now reads

BB/BI+div (uB) = (R/po) hB.

This is a conventional heat equation with a convection
term. We consider only the steady-Qow problem and
construct a boundary-layer solution in several steps.

First, assuming that u is given as the solution of the
perfectly conducting problem, we solve this heat
equation subject to the boundary condition 8 = con-
stant exactly as we would the conventional convection
heat-transfer problem. The constant value of 8 is deter-
mined by the condition that the line integral of E around
the body vanish,

E dx= EJ dx=0.

But this is exactly the condition that there be no net
heat Qow into the body in the heat Qow analog. It is
very easy to verify by properly "stretching" the
boundary layer that the locally plane boundary layer
solution is consistent with pe ——constant and u=con-
stant. We interpret this to mean that, in the limit of
small R, both u and. p~ approach their perfectly con-
ducting values, and we compute p in the boundary
layer as p~ —B'/2po.

The resistive solution has the property that J„=O
at the boundary. However, there are very large, mostly
tangential, currents in a thin boundary layer, and these
merge into the finite currents of the perfectly con-
ducting solution (with J„&0)just outside the boundary
layer. From this analysis one can predict with confidence
that a rigorous solution of the resistive problem con-
verges in the limit of vanishing E. to the meuk solution
of the perfectly conducting problem including surface
currents.

The boundary condition J„=O is, in the resistive
case, an alternative way of stating the boundary con-
dition B=constant, but this boundary condition (in
either version) is lost in the limit.

APPENDIX 3

At the symposium, an exact Quid analog was pre-
sented by I. Imai for a parallel Qow which is two-dimen-
sional, isentropic, and irrotational. This analog can be
extended as is indicated in the following. However, the
existence of this analog does not reduce to a conven-
tional Quid problem the transonic difBculties of the
parallel channel-Qow problem discussed in Sec. 5. The
reason is that the analog is not global; the transfor-
mation is singular at M=1, and a given Quid Qow is
directly applicable to only one of the two regions M(1
or M&1. Furthermore, the induced equations of state

pt= p+B'/2po,

and impose the restriction

pfllf =pu.

(A2)

(A3)

In order for the two sets of equations of motion to be
equivalent, we must have

pt(ut V)ut= —Vpt=p(u V)u —(1/&o)(~ V)~.

From this (recalling that u is parallel to both ut and B
while n is constant on a streamline), we obtain

p(u V)Lu —(n'/po) pu —ut]=0.

This suggests that we complete the analog by specifying

ut= (1—n'p/po)»= (1—1/M')u

pt= (1 n'p/po) 'p—= (1—1/M') 'p.

Ke now introduce the notation

At =B'/popt= (1—1/M')A'

Mt'= ut'/At'= M' —1

and note the identity

p+o poo'= pt+

optant'.

In order to complete the system (A1), we still need
an equation of state connecting pt and pt. This is
obtained. with the aid of Bernoulli's law (34):

pt(pt; g,n, ho) =p(p, g)+B'/2po
=p(p, n)+nato'/2po (A7)
=p(p, n)+n'p'Lho h(p, n) )lpo—

after replacement of p in terms of pg; h0 is the stagnation
enthalpy or Bernoulli constant on a given streamline.
This equation of state, together with the system (A1)
and the supplementary adiabatic relations

(ut V)q=(ut V)n=(ut V)ho=0 (AS)

complete the system.
On using the thermodynamic relations (along a

streamline),
dh=dp/p, dht=dpt/pt

a'= Bp/Bp, at'= Bpt/Bpt,
we compute

ht=h+A'(1 ——,'M ') =h+At'(1+~oMt ')
(A9)at'= (1—1/M')'t a'(1—1/M')+A']

are not compatible with thermodynamic restrictions in
all regions and must be interpreted with great care.

We wish to introduce pt, pt, ut in such a way that the
Quid system

div(ptut) =0, pt(ut V)ut+Vpt=0 (A1)

is equivalent to the parallel-flow equations (33). Fol-
lowing Imai, we take
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t.'a)

FIG. 5. Parallel
Qow analog.

(b)

and verify that

ht+-,'ut'= h+-,'I'= ho. (A10)

H the quantities e, q, and ho are taken to be constant
in the entire Qow, then the circulation is conserved for
the analog velocity up, and one can adopt the constraint
curlut=0 as done by Imai.

On a given streamline, using the entropy and Ber-
noulli constants, one can solve for all the quantities

pt, ht, at', Nt' in terms of, say, pt. In a conventional
fiuid, one finds that p, h, a', p are monotone and vary
in the direction opposite to I'. The equation of state
given by this analog implies a much more complicated
variation. First we note that ug and pg change sign
across 3f=1; in particular, this implies the thermo-
dynamically unusual result that pt is negative for M&1.
The variation of ht, eP, and nt as functions of p and
of pp are indicated schematically in Fig. 5 for the case
u(A and the stagnation density larger than p=iio/n'

Two sonic transitions, et=ay, are found at u=u and
I=A. The third transition from hyperbolic to elliptic,
at I'=a'A'/(a'+A'), occurs where ot' changes sign.
The transition at N=u is similar to the conventional
Quid one. From the fact that pt becomes infinite as I
approaches A, one might be tempted to conclude that
Qow ends before reaching this state. But this analog
Qow is unusual in that hg remains finite as pt becomes

infinite, thereby allowing the Qow to be continued up

Pt=P +&'/21 o=P+ b/~') (2~'+ho h)—
ht= he+A'(1 ——,'M ')

=h+(M' —-', )([P/(M' —1)'g+ (A'/M') j
ot'= (1—1/~')'[~. '(1—1/~2)+A2j

= (1—1/M')'f (1—1/M') a'

+P'3P/ (M' 1)')+A'}—
which we present without discussion.

(A11)

to Sf=1. It would seem that the transition problem
across %=1 is less singular in the original variables
than in terms of the Quid analog.

The elliptic "fluid" system with ut'(0 and pt(0
seems to be quite unconventional. In the hyperbolic
case where pp&0, we can formally replace pp by —pp

in the equation of motion (keeping at' unaltered), after
which we obtain a conventional system including a
fairly conventional equation of state. The case pp&0
(M) 1) is conventional whether elliptic or hyperbolic.

It is tempting to associate the change in sign of ug

across M=1 with the altered domain of dependence
as discussed before; in the analog variable ug, one would
choose forward characteristics in both hyperbolic
regions.

This Quid analog can evidently be extended to the
parallel-transverse Qows since they were shown to be
analogs of the simple parallel Qow. The results are
contained in the formulas
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DISCUSSION

Session Reporter: G. S. S. LUDzoRD

W. R. Sears, Cornell University, Ithaca, New Fork: I want
to make one short remark about Fig. 2. For u parallel to 8,
the equations are hyperbolic, elliptic, hyperbolic again, elliptic
again, successively, as we go to zero speed. The last one is the
really interesting one, because it has no resemblance to any-
thing in ordinary aerodynamics; it is a hypersonic transition
from hyperbolic to elliptic, the speed being given by

847

1/u' ——1/a'+ 1/A'.

For this speed the propagation velocity of the Friedrichs-van
de Hulst-Herlofson-Grad waves goes to zero. As u decreases
to aA(a'+A') &, the waves, which are forward facing, become

hypersonic, i.e., they lie down on the (reverse) Qow direction.
If the Qow goes just a little bit slower they are gone entirely,
so that this is a transition between hypersonic and elliptic.

H. Grad: Just a remark about the second transition point.
In the nozzle problem, assuming a&A, Grst there is the transi-
tion through u=aA(a'+A') &, then one through A, and finally

there is the transition through the ordinary sound speed a.
Thus you have elliptic, hyperbolic, elliptic, and:hyperbolic re-
gions successively. The transition through u=aA(a'+A') & is

very unusual, as mentioned by Professor Sears. But the transi-
tion through u=A is also unconventional. For there is an argu-
ment in ordinary gas dynamics which indicates that if you
have a transition from supersonic to subsonic, it is unstable
without shocks. The argument goes something like this. Con-
sider an ordinary nozzle with supersonic conditions in front.
The domain of dependence tells you that you should take the
forward characteristics. A little disturbance at the wall is car-
ried forward and tends to pile up at the throat since the char-
acteristics steepen and never pass the throat. Now you can
very easily show that this argument does not apply here, be-
cause for a disturbance at the wall the correct characteristic
to take is the upstream one which passes the disturbance safely

away from the sonic section. So this particular argument does
not disqualify the solution. Whether there are others which do,
I do not know.

G. A. Lyubimov, Moscow University, Moscow, U.S.S.R.:
I would like to say a few words about M. N. Kogan's re-
searches on magneto-Quid dynamics in the U.S.S.R. Kogan
investigated, for o=co, the characteristics both for the case
where the magnetic field is parallel to the Qow and for the
case of -arbitrary orientation of the magnetic lines. The first
is investigated in a paper which has already appeared, ' the
second will be published this year." He found that the system
of equations is hyperbolic in the two regions, 1 and 2, marked
in Diagram 1, whene N=A/a and A=II'/4n-p has been assumed

&M. N. Kogan, Priklad. Mat. Mech. 28, 70 (1959) [English transla-
tion: Priklad. Mat. Mech. 88, 92 (1959)].

b M. N. Kogan, Kriklad, Mat. Mech. (to be published).

A
DIAGRAM 1.

to be smaller than a; elsewhere it is elliptic-hyperbolic. Only
one hyperbolic range for M remains if the angle n between the
magnetic Geld and the velocity exceeds a certain value. As the
magnetic Geld tends to zero (N~O) the region 1 is contracted
to a point, and therefore the Qow properties which are typical
of this region do not have any analogies in conventional gas
dynamics. Proceeding from these investigations, Kogan has
calculated the linear approximation to Qow around airfoils
for arbitrary orientation of the magnetic field.

J. A. Sbercliff, University of Cambridge, Cambridge, Eng-
land: There is a very easy way of showing that this compres-
sible parallel case is exactly analogous to ordinary gas dynam-
ics. This has been done by Cowley, ' who simply puts

u*=u(1—A'/u') .

It all comes out, without any linearization, with equations ex-
actly analogous to those in ordinary gas dynamics, and the
relevant speed of sound is given by

a+'=dp+/dp@, p+=Grad's p~=p+B /2IJO

but with p* different from Grad's p. In fact, p*=p(1—A'/u') '.
In addition, you can feel confident in taking these forward-
facing waves in the subsonic hyperbolic ease, because this is
the case where the factor (1—A'/u') is negative and, the real
flow is in the opposite direction to the fictitious nonconducting

gas Qow.
H. Grad: It would seem impossible, from this analogy with

ordinary fluid dynamics, to cross from one side to the other.
J. A. Shercliff: But the fictitious gas in the analogy some-

times has to have negative density and therefore Qow at dif-
ferent parts of the same "streamline" could be in different
directions.

' M. D. Cowley, Jet Propulsion 80, 271 (1960); see also I. Imai, Revs.
Modern Phys. 88, 992 (1960), this issue.


