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"AGNKTO-FLUID mechanics of inhnitely con-
~ ~ ducting fluids (or what is the same, the theory

~ ~

for Re = co) has been considerably developed. by now;
here many interesting cases of motion have been found.

Since, however, all real media possess 6nite con-
ductivity there occur the fo11owing situations. In one
case motion can be regarded only on the basis of mag-
netohydromechanics of 6nite1y conducting Quid; as
is the case with the study of the aerodynamics of a gas
discharge, some kinds of Inotion here having a limiting
form at Re —+ ao that is diferent from the theory
Re = ~ (an axially symmetric discharge, for instance,
with varying density of the current j in the direction
perpendicular to the axis).

In other cases motion can be regarded. according to
the theory for Re = Oo in principle, but can be com-
pletely realized only on the basis of the magnetohydro-
mechanics of a 6nitcly conducting medium; as is the
case with the study of the CGect of magnetic "pressing-
ofF,"some kinds of shock waves, etc.

Thus, the situation in magneto-Quid dynamics
resembles greatly tha. t of in usual hydromechanics,
where one should refer to the theory of viscious Quid

for treating and choosing a solution obtainable within
the limits of the theory of a perfect Quid (in explaining
the problem of lift for instance). This is the leading
point of the present paper.

The preceding analogy has obvious physical reasons,
as in both cases we have to do with diGusion processes
(in one case the current flows across the conductor, in
the other we have inner friction) having one common

point, the mechanism of colHsion of particles, and

therefore they are formally similar.

Now wc consider thc n1aln features of thc lntclactlon
between the outside magnetic fie1d and the Qow of a
conducting gas.

Let a plate be situated perpendicularly to the plane
of the chart in Fig. 1 and immersed in a conducting
Quid; and let the current be passed perpendicularly to
the plane of the chart, inside of the plate; the character
of the magnetic lines of force being shown in Fig. 1. If
the Quid is set in motion in the direction parallel to the
plate, the magnetic 6e1d given for the surface of the
plate by large Re (Re„))1)is localized. in a layer with
the thickness I/(Re )& (see Fig. 2). We call this layer
a magnetic boundary Layer of the first kind. (One should.
not confuse this magnetic boundary layer with a con-
ventional viscous boundary layer in a plasma where
electrodynamic forces are considered. )

Let us have next a plate as in Fig. 1, its leading and
trailing edges being electrodes, and let us have an emf
(electromotive force) inside of the plate and the plate
again immersed in a conducting Quid at rest; the char-
acter of current 1ines is given in Fig. 3. If the Quid
moves with the velocity U, the electric current in the
case of Re~)1 passes in the near vicinity of the plate
in a layer having a thickness of the order I/(Re )&.

This we call a magnetic boundary layer of the second kind
(see Fig. 4).

The equations of the magnetic boundary layers have
been given by the author. ' These equations yield a class
of similar solutions, viz. ,

P —~t8+2)f (L )
8'=x'&' +& og'), for the layer of the first kind

H=x&'hQ), for the layer of the second kind

pts

t =L(l)
T=z't(L)
s= m(P)

1 = g~a(&-2)y

I xo. 1, Magnetic force lines pattern near the edge of the plate
with a current. Note. Vectors indicated by overhead arrows in the
6gures are equivalent to boldface letters in the text.

Fn. 2. Magnetic boundary layer of the 6rst kind.

' V. N. Zhigulev, Doklady Akad. Nauk S. S. S. R. 124, 1001
(1959); Soviet Phys. Doklady 4, 57 (1959).
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Fxo. 5. Picture of magnetic "pressing-oG. "

FIG. 3. Pattern of the lines of the current density
in a conducting medium.

where iP is the current function; W the s component of
the magnetic Geld potential; 8 the magnetic 6eld
vector; p, p, T, and s the density, pressure, temperature,
and entropy per unit mass of the medium; and p
denotes p+EP/Ss. This class is hkely to describe quan-
titatively the main features of the interaction of the
outside boundary layer with the Qow of a conducting
gas.

Note especially that in the case analyzed for the
plate (8=0), the preceding solution is valid for the case
of a gas with arbitrary equations of state and with coef-
6cients of magnetic viscosity p, heat conductivity k,
and viscosity p, these being arbitrary functions of tem-
perature and density.

The main property of the magnetic boundary layers
of both the 6rst and the second kind is the constancy
of the value P+ (EP/Sm) across the layer (BP /By=0);
hence it follows that the pressure of a gas is likely to
change greatly across the magnetic boundary layer; for
large values H~„o,in particular, there appear zones
of negative pressure in the vicinity of the plate. Since
real media cannot possess negative pressures, the Qow

detaches from the plate and forms streamlines about
a certain equivalent body including the plate and the
magnetic 6eld (see Fig. 5). The 6eld in zone A is
subjected to the usual principles of electrodynamics
and therefore at the moment of detaching of the Qow

from the plate the increase of the thickness of the
streamline body with the increase of the magnetic field
on the plate is rather great.

We call this effect magnetic "pressing-OG" of the
As the previous analysis shows, the volume

separating the Qow from the magnetic field is the mag-
netic boundary layer. H the current in the plate Qows

perpendicularly to the plane of the chart there appears a

layer of the 6rst kind; if the current Qows in the direc-
tion of the Qow there occurs a layer of the second kind.
In the erst case the Joule losses take place at the
expense of the energy of the main Qow, thus leading to
drag applied to the electric currents inside of the plate;
in the second case the Joule losses take place at the
expense of the outside emf.

The effect of pressing-off exists when we have motions
with 6nite magnetic Reynolds number. In this case the
volume separating the magnetic 6eld from the Qow
reaches in6'nity and. embraces the total Qow.

hen Re~)1 the problem of magnetic pressing-off
can be divided as follows: (a) the problem of pressing-off
itself for Re = ~, (b) the problem of evaluation of a
magnetic boundary layer, and (c) evaluation of a set
of linear corrections to problems (a) and (b).

The 6rst examples of the solution of the problem
(a) were given by Kulikovsky. ' The general formulation
of the problem (a), the method. of solution of the plane
problem, and also the examples of streamlining one
linear current and a Qat dipole by a hypersonic Qow of
a gas are given by the author, ' and the author together
with Romishevsky. '

Since the magnetic 6eld tends to press-OG the Qow
of a conducting gas, the gas in its turn tends to oust
the magnetic 6eld; that leads to the effect of screeeieg.
If the screening layer is a magnetic boundary layer of
the second kind, the screening leads to the compression
of a discharge channel in a gas (Fig. 6). This effect is
Mialyzcd by thc author. i ~

In conclusion we point out one more c8ect that is an
illustration of thc thesis given at thc beginning of the
paper. We analyze an axially symmetric discharge of a
diverging kind (i.e., where BH/Bx/0) (see Fig. 7). One
can readily show that the discharge of this type on the

L

j„/Re

FIG. 4. Magnetic boundary layer of the second kind.

I'xo. 6. Electric discharge in a God of a
conducting IQedluIQ.

~A, G. Kulikovskii, Doklady Akad. Nauk S. S. S. R. j.17,
(195').

SV. N. Zhigulev, Doklady Akad. Nauk S. 8. S. R. 126, 521
(1959); Soviet Phys. Doklady 4, 514 (1959).

4 V. N. Zhigulev and E. A. Romishevskii, Doklady Akad. Nauk
S. S. S. R., 127, 1001 (1959);Soviet Phys. Doklady 4, 859 (1959).

5 V. N. Zhigulev, Doklady Akad. Nauk S. S. S. R. 124, 1226
(1959); Soviet Phys. Doklady 4, 61 (1959).
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taking into consideration that B~B~/Bx(0 for the
discharge in Fig. 7, we obtain for a case of an inviscid gas

du/dt&0,

Fxo. 7. Ejection of a gas by a discharge.

where I is the horizontal component of the velocity
vector. The pattern of the Qow is as shown in Fig. 7.

Thus, a diverging axially symmetric discharge ejects
the gas.

The equations of ejection have been given by the
author. 6 In case of incompressible Quid they admit a
dass of similar solutions of the kind

basis of the equation of conservation of impulse is
always accompanied by motion of the medium, even
if the latter is at rest at inanity. '

The main parameter that is an analogy of the mag-
netic Reynolds number for this type of discharge is the
value R=I//v cp& (I denotes the total current in a
discharge).

In case of large values R (R))1), the discharge has
the character of a boundary layer with the thickness
I/R, and the y component of the momentum equation is

Bp„/By= —(EP/4m y),

II=x~h(t); iP=xf(i); P =x'g(i); i =x y;
T=x't(i); (8=2+4n; y= —n '—2; q= —2ny).

The most interesting solution of this class is the
case (Fig. 7) in which the total current in a discharge
is independent on x; then y=o.= —1; b= q= —2;
i =y/x.

Note especially that in the last case the kind of
solution remains the same for a compressible viscous
heat-conducting Quid. Thus for the Navier-Stokes
equations, taking into consideration magnetic terms,

lane)hence we have the following axially symmetric (and. p
solution:m= mte J
4=*f(&)' &=h(t)/y; p-=g(i)/*'; T=t(f)/x',

6V. N. Zhigulev, Doklady Akad. Nauk. S. S. S. R; 1N, 280
i1960l. p= l t'; s=m(i; f=y x.
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1. INTRODUCTION

HE magnitude and degree of complexity of the
phenomena encompassed in the subject of non-

dissipative magneto-fluid dynamicslis perhaps best
illustrated by the presence of three distinct and strongly
anisotropic modes of signal propagation. The linearized

problem of the propagation of small disturbances in an
unbounded medium is fairly well uriderstood (but is by
no means complete). ' Boundary value problems, even

~ This vrork was supported by the U. S. Atomic Energy Com-
mission under contract.' For example, see (a) A. Banos, Phys. Rev. 97, 1435 (1955);
(b) A. Sanos, Proc. Roy. Soc. (London) A233, 350 (1955);
(c) J.Samer and O. Fleischman, Phys. Fluids 2, 366 (1959); (d) H.
Grad, in The Megeetodynumics of Condect~ng Fluids, D. Bershader,
Editor {Stanford University Press, Stanford, California, 1959).

when linearized, are considerably more abstruse. One
reason is that, although the various modes of propaga-
tion are inherently coupled even in an unbounded do-
main, they may be decoupled (somewhat artificially,
to be sure) by introducing Fourier components. In a
boundary-value problem, a higher-order system is,
generally speaking, solvable in useful terms only when
the boundary conditions as well as the diGerential
equations separate into subsystems.

An alternative technique which is very useful in the
early development of a new subject is the discovery of
special classes of Qows which yield conventional Quid-
dynamical or classical second-order mathematical
structures. This paper lists and to some extent develops
a number of such reducible Quid-magnetic boundary-


