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1. INTRODUCTION

''N order to understand, the CKect of viscosity in
~ ~ InodlfylDg thc- Inotlon of R Quid lQ contact with
vibrating solids, Stokes examined a particularly simple
case (see Raylelgh, 1896') p. 317). He silpposed tllat an
inanitc plane located at s=0 executes harmonic vibra-
tion in a direction (x, say) parallel to itself, and that
the Quid in contact with this plane a,t @=0occupies the
whole of the region s&0 and is at rest at very large
values of s. Assuming that v, the coc%cient of kine-
matical vlscoslty, ls constanti RQd that Qo slip occuls
between the Quid and the vibrating surface, he showed
that if the velocity of the vibrating plane is (U& cosoit,

0, 0), where t denotes time, and Uo and a&, which are
assumed to be constant, are, respectively, the velocity,
amplitude Rnd RngulRx' fx'cqucDcy of thc vlblatloQ tlM

velocity at any point in the Quid u= (u,l„,N,), is given

by

I,= Uo exp/ —(io/2 v) ~sf cosfoit —(co/2v) &sf,

I„=N, =O.

According to this expression the velocity amplitude
falls OB exponentiaQy with distance from the plate,
having dropped to e 'U0=0.3679UO at a distance s= 6,
where

8 =—(2v/oi) &.

E.=E(s,t)

2s) 1 28 g
exp~ ——

(
—+cos 2oit—+-, (6)

a& v2

which oscillates at double the frequency of the vibra-
tion about a Donzero average value

B(s)= (—pvUO'/2A) exp( —2s/6). (7)

T1M power Ulput pcI' unit Rx'cR lcqullcd to malntRln
the motion, which is denoted by I', must equal —E(0,t)
so that

so that the tangential force per unit area acting on the
plane is

p„(0,t) = (pvUO/6) (sino@—cosa&t). (5)

The negative of the second. term in this bracket is in
phase with the motion of the plane and correspond. s to
a dissipative force tending to stop the xnotion. The other
term is s/2 out of phase and represents an effective
increase in the inertia of the vibrating body due to the
plcscncc of thc Quid.

The rate at which internal stresses do work at any
surface parallel to the vibrating plane, in general
p..N +p,vn„+p..N, (see Goldstein, ' p. 98), reduces to
p„l, in this problem. Denoting this quantity by R, by
Kqs. (1) and (4), we find that

pvUO' 1 (&=&(t)= —+cos~ 2~et+ —
~

.
av2 V2

ln ad.dition to this va, ria, tion of amplitude with s, there
ls Rlso a vax'1Rtloll Ul phascq duc to thc lncx'tlR of tlM Quid.
The wavelength associated with the variation in phase
is 2+6, at which distance from the plate the velocity
axnplitude is

(8)

The direction of energy transfer between the vibrating
plane and the Quid depends on the sign of I', which
alternates, changing twice each half-cycle. However,
the average value of I', given by

I'= pvUO'/2d, (9)

ls essentially posltlvcq col responding to R Dct. cncx'gy
transfer from the vibrating plane to the Quid, where it
is dissipated by viscous friction.

Rayleigh' made use of Stokes' result for the drag on
the p»ne Lsee Eq (5)3 in hi»nvestig«Ion o«he e«ct
of the boundary layer on the propagation of sound in
tubes. Thc present writers became interested, in the
main problem discussed here as a result of a suggestion
that it may be possible to measure in the laboratory
the eGect of a magnetic 6eld on the propagation of
sound in a tube containing mercury. The obvious cxten-

g-' Uo= 0.0018UO.

The Qow generated by the vibrating plane can be
I'cgRlded Rs R 4cRvlly damped plRDc shear %'ave~ the
coupling between diferent layers being due to viscous
friction. The tangential force pcr unit area at any level
can be obtained from thc stress tensor

p;;=p;;=pv(~n;/», +PI;/»;), (3)

where p is the density of the Quid, also assumed to be
constant. This gives

—pvUD t s~ t sy p
sq-

~J & ~) & ~)
(4)—0 sion of Stokes problem was to the case of a conducting

gZ p

' Lord Rayleigh (J. %'. Strutt}, The Theory of Sound (j.896} ~ S. Goldstein, ~0@re DueloPments iN Illlid Dyeamks (Claren-
(reprinted by Dover Publications, New Vork, 1945). don Press, Oxford, England, 1938},Vol. I.
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TABLE I. Typical values of e and P.

Mercury
Sodium
Ionized hydrogen'
Earth's interior
Sunspots
Solar granulation
Magnetic variable stars
Interstellar space
Interplanetary space
Solar corona

Temper-
ature

'K

293
373
105
104

4X 10'
6X 10'

10'
10'
105
106

Kinematic
viscosity

v (m2 sec-~)

1.14X10 '
6.31X10 7

10
10 '&

10 2

10
3X10 '

1017
1P16
1P16

Electro-
magnetic
viscosity
(m2 sec ')
) = (per)

7.8X10 '
7.7X10 '

15
1

20
102
1

10'?
10?
1?

Density
P

(kgm 3)

1.35X104
9.28X10'

10 '
104

10 '
10—4

10'?
1P-21.
1P—20

10 "

P =X/v

6X 10'
1.2X10'

1.5
10'?

2X10'
10

3X10'
10—14

1P—15

10 "

Bp
(vsm 2)

(X104 for
emu)

1
1

10 '
10 3

2X10 '
10 2

1
10 P?

10 9

10 4

Alfven
velocity

(&p&p/~)'
(m sec ')

6
20

2X106
6X10 '
360
600
20

2X104
5X10'

106

(sec ')

3X10'
6X109
4X10'

36?
10'

3.6X104
10'

4X10~
2.5X10 9

10 4

neo/P
(sec ')

50
5X104
3X10'

3.6X10'
5X10'

3.6X10'
3X10'
4X105

2.5X10'
10"

a For ionized hydrogen: v cr- p 'T»2' X cr. T ~/2 p cr- pT 4; e ~ pT ~~2; ajp ac T3» po =4~ X10 7 newton amp 2 cr«p~ =5 )&ip7Q-1 m-&.

Quid (electrical conductivity o.) in the presence of an
impressed uniform magnetic field of strength Bo in the
s direction, the formal solution of which is presented in
Sec. 2 and discussed in Sec. 3. Rationalized mks units
are used throughout.

The over-all behavior of the system now depends on
three parameters

(10a)

(10b)

Up
7

(cov) &

(10c)

where p denotes magnetic permeability (Bo=vII&) and
X—= (po) ' is sometimes called "electromagnetic vis-
cosity" because it has the same dimensions as v. Some
typical values of n and P are listed in Table I.n, P, andy
measure, in suitable units, the magnetic-field energy,
the electrical resistivity, and the velocity amplitude of
the motion of the plane, respectively. From their defini-
tions we can relate a, p, and y to the more familiar
dimensionless parameters of magneto-Quid dynamics
provided we base these parameters on the characteristic
length L= (v/&o)', which is of the order of the boundary-
layer thickness 6 in Stokes' problem. Thus we 6nd the
Reynolds number

Re—= UpL/v=

the magnetic Reynolds number

Rm=—UoL//X =y/p,

the Hartmann number

Ha= BpL(o/pv) &= (u/p)~, —
and the t.undquist number'

Lu= BoL ( /P)'=~'/p— (14)
' T. G. Cowling, Magnetohydrodynamics (Interscience Pub-

lishers, Inc., New York, 1957).

The Quid motion is no longer of the form given by
Eq. (1).In the presence of the magnetic field, I, consists
of two parts characterized by diferent attenuation and
phase factors. The mathematical form of these parts
suggests that they should be termed "velocity" mode
and "magnetic" mode. The relative amplitudes of these
modes, their associated attenuation and phase factors,
and the induced magnetic and electric fields depend on
o,, p, and y. These quantities also depend on the electro-
magnetic boundary conditions, which in turn are deter-
mined by the electrical properties of the region s&0
not occupied by the Quid and also on the conditions
prevailing at y=& ~. We have chosen to restrict at-
tention to the case when s(0 is filled by an insulator
and there are insulating surfaces, on which electric
charges are about to accumulate, at y= ~ . There are
no additional difhculties associated with the other cases
when the region s&0 is a conductor or when charges are
not able to accumulate at y=

Explicit solutions have been found in a sufBcient
number of cases, corresponding to different limiting
values of u and p, to cover most situations of physical
interest. The results demonstrate quantitatively the
complicated interplay between hydr omagnetic and
viscous effects (see Sec. 3).

Now we digress before taking up the next part of the
problem, in order to explain how it arose. It is now
generally accepted that hydromagnetic Qow in the
earth's liquid core is somehow responsible for the main
geomagnetic field, and therefore, an entirely satis-
factory theory of the earth's magnetism requires, in the
first instance, a theory of the dynamics of core motions.
For detailed discussions of this geophysical problem see
Hide4 and Hide and Roberts. ' Sufkce it to say here that
no one is certain as to the cause of core motions, and
only very general indications of the Qow pattern are

4 R. Hide, "Hydrodynamics of the earth's core,"in Physics and
Chemistry of the Earth, L. H. Ahrens, K. Rankama, and S. K.
Runcorn, Editors (Pergamon Press, New York, 1956), Vol. 1.

6 R. Hide and P. H. Roberts, "The origin of the earth's mag-
netic field, " in Physics and Chemistry of the Earth, L. H. Ahrens,
K. Rankama, and S. K. Runcorn, Editors (Pergamon Press, New
York, 1960), Vol. 4.
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8—=20/(v, (15)

which measures 0 in suitable units, enters the problem.
It follows from its definition4 that the so-called Rossby
number,

(16)Ro—=(o/20=8 '

and that based on the characteristic length I-= (v/or)&,

8 3.Lehnert, Astrophys. J. 119, 647 (1954); 121, 481 (1955).' S. Chandrasekhar, Proc. Roy. Soc. (London) A225, 173 (1954);
A237, 476 (1956);Proc. Am. Acad. Arts Sci, U. S. S6, 372 (1957).

revealed by geomagnetic data. However, it has been .

suggested that the near coincidence between the geo-
magnetic and geographic poles is the result of the strong
inRuence of Coriolis forces, due to the earth's rotation,
on motions in the core.

Rough order-of-magnitude estimates show that
Coriolis forces are very much stronger than inertial and
viscous forces. They also suggest that Coriolis and
hydromagnetic forces are comparable with one another
in strength, and one wonders why this should be. As the
magnetic energy in the core exceeds the kinetic energy
of Quid motion relative to the rotating earth by a large
factor, we cannot invoke equipartition of energy to
account for this state of affairs. Thus, in the absence
of any obvious general reason why a system should.

adjust itself until hydromagnetic and Coriolis forces
are of comparable magnitude we have to take the alter-
native approach and seek a clue to the solution of this
problem by considering specific Quid systems in which
both forces play a part.

In spite of the importance in cosmical Quid dynamics
of understanding the eGects of rotation and magnetic
fields on Qow phenomena, the simultaneous action of
these agencies seems to have been studied in only a few
specific cases. Lehnert' has considered the eGect of
Coriolis forces on plane hydromagnetic waves in a
perfectly conducting inviscid Quid and thus showed
how the propagation of these waves can, in some circum-
stances, be radically affected by rotation. However, the
assumption of perfect conductivity restricts the value of
Lehnert's results in the present context. Chandrasekhar'
has examined the theory of the onset of thermal con-
vection in a thin horizontal layer of a conducting Quid
which rotates about a vertical axis, in the presence of a
magnetic Geld. He found a number of unexpected
results, the interpretation of which is far from simple,
owing to the essentially three-dimensional nature of the
problem.

We have considered the eGect of uniform rotation
and a uniform magnetic Geld acting simultaneously on
the Qow of a conducting Quid due to the oscillation of a
rigid plane with which it is in contact, as a simple exten-
sion of the Grst problem dealt with here. For simplicity
the angular velocity vector Q is taken to be parallel to
the 2 axis, and therefore to the magnetic field. The
formal discussion of this case is given in Sec. 2, where it
is shown that a further parameter,

2. FORMAL SOLUTION

The hydromagnetic Qow set up by the plane is
governed by the equation of hydrodynamics,

Bll—+u gradu+2QXu
8t = —p 'gradP+p 'jXB+vV'u; (18)

the equation of continuity,

divu=0;

Maxwell's equations (neglecting displacement currents),

curlS=p, j, (20)

curlm=-
Bt

divS=0;

(21)

(22)

and Ohm's law for a moving conductor,

j=o (E+uXB). (23)

In these equations p denotes the hydrostatic pressure;
E, the electric Geld; j, the electric current density.

We suppose that B consists of two parts

B=Bp+h, Bo= (O,O,Bp), (24)

where Bo is constant and b is the induced Geld.
The boundary conditions necessary to determine the

unique solution to these equations are the following.
Ke must require that the Quid be at rest at large
distances from the plane and that no slip should occur
between the Quid and plane, whence

u(z ~ ~)=0, u(z=0) = (Uo comt, 0,0). (25)

In addition, there are boundary conditions on the mag-
netic Geld. Secause we are assuming s(0 to be an
insulator, j must vanish there. It must also vanish as
z-+ ~. By (20) and (22), together with the fact that
because we are assuming that the Quid is bounded by
insulating surfaces at y=~~ 'the total current must

the Taylor number, '
Ta=—4Q'L4/v'= 8'.

Although it was expected initially that owing to the

symmetry of the system the mathematical difhculties
involved would not be prohibitive, an unanticipated
feature of the solution of the rotating case is that the
equations satished by the phase and amplitude factors
are formally identical with the corresponding equa-
tions of the nonrotating case. As a result of this fea-
ture, the properties of the Qow can be found directly
from the discussion of the nonrotating case (see Sec. 4).
The interpretation of these properties will be dealt with
in the full account of this work, which will be published
elsewhere.
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8 j. 8 i BU
b=Bp—,

8$ op Bz ~ 8z
(27)

vanish, these conditions require that

b(» —& ~)=0, b(»=0) =0. (26)

The 6elds set up by the plate depend on z and 3

alone and, in consequence, it is found that a and 5 are,
without approximation, governed by the ljnggr equa-
tions

mode. q+~, q+2 are the relevant roots of

and q ~, q 2 are the relevant roots of

Observe that the last two equations are the same as
Kq. (32), provided we make a suitable change of scale:
In Eq. (34), write

8 8 Bp Bb——2 u+2QXu= ——,
8$ Bz pp t9z

P+= (1+6)P q+ = (1+8)'*q

(28)
and in Eq. (35) write

(36)

and that u, and b, are zem everywhere. On eliminating
b or n from Kqs. (27) and (28), it may be shown that

p =(1—h)p, q =(1—b)&q, (b(1),
p =(1—8)p, q

= —2(b—1)~q, (b&1).
(37)

I ( & 8 1 82 8 82 8 ' 82 &
'

p
I 1. 8$ gy B»2 R 8»2. PP Lj»2)

8'
+4n' —— (n,b) =0.

op Bz
(29)

In the remainder of this section we describe the
results obtained for the nonmtating case, returning
only brieQy in Sec. 4 to the analysis of the rotating
case. In the nonrotating case, N„and b„are uncoupled
to 22, and b„so that Eqs. (25) and (26) prove that u„,
b„, j„and E, are zero everywhere.

Let

D2 q') (2 pq')—~q')—'= ~—'(2 pq')'. —

%hen n=O, 8=0, the roots of this equation are

(30)

ql= (1/~) (1+2), q2= L1/(2p)')(1+2) (31)

As Eqs. (27) and (28) are linear, we can, by analogy
with Stokes' result {1),seek solutions of the form

(n, b) "»'"' "", LJ-= (~/~)')

where Q, (q)&0, by (25) and (26). On substituting in

Fq. (29) and introducing the dimensionless parameters

n, p, y, 8 de6ned in (10) and (15), we find

I —p ezzzQ' e q, zlL+f S 2—zzIL)—
SkoZLg e 2gz/L+g g 22zlL)

By Eq. (27), g; is related to f; (j = 1, 2) by

{2 Pq')g = -Vqf, (i-=1, 2).

Also, by the conditions (25) and (26), we have

+f2 1z

gl+g2=0.

From (32) it follows that

(38)

(39)

(40)

(41)

q2 corresponds to the magnetic mode which is of no
interest in this case»ncc ~=0. qr corresponds to Stokes'
solution, Kq. (1).

In the nonrotating case (5=0), Eq. (30) reduces to

(2—q') (2—pq') —~q'= o,

wlilcll llas two l'oo'ts ql q2 satlsfylng (25) and (26).
These we term the velocity mode and the magnetic
mode, respectively. As o. ~O, these roots tend uni-

formly to {31).
In the nonmagnetic case e=O, the magnetic mode is

Las in the Stokes' case, (31)) redundant, but there are
two velocity modes q+ and q given by

qlq2=2/P~ (42)

pql q2 pq2 qlf1=, , f2=
L1+p')(ql —

q2) L1+p')(q2 —ql)
{43)

gl= —g2=fp'L1+p'){qi —q2)} '

From these results and Eq. (20), we find

f32 q y»zzz Z

k pr )P'[1+P )(ql q2)

On solving Eqs. (39)—(41) for f; and g; and using (42)
as a means of simplifying the final results, we Gnd

I q
—(1+~)2)Lq'—(1—»2) =0, (33) xLq s—2»lL q» 22zIL) (45)—

the positive and negative subscripts referring to the
first and second brackets, respectively.

In the general case there are four roots of interest,

q+~, q+2, q ~, q 2, corresponding, respectively, to the
positlvc vcloc1ty mode tllc poslt1vc Inagnct1c IIlode the
negative velocity mode, and the negative magnetic

and, from Eqs. (20) and (23), we find

gscsg

E„=—(U282)
t 1+p')(ql q2)—

Xpg2e 22«L qle22«L) -(46)— -.
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Note that, on the plane itself,

J.(z=o)= (f-io//I)(v"'//I'D+(f'3) (47)

&.(z= o) = (Uof4) (e'"'/Ll+0')).

Thus, in the limit P —2 0, there is a surface current on
the plane, while the electric Geld there is given by

E= —Uo)( Bo,

Lcf. Eq. (23)]. In the limit P —v oo, both current and
electric field tend to zero. Both these results are
physically reasonable.

The mean rate of working P of the force driving the
plate is the average, over a cycle, of

P= —vpLoe. c/u. /c)z], p,

and, by (38),

I (s=0) =-'Uoe'"+-'Uoe —'"',

BN~ 1
(s=0) = Uoe'"'(frat+ foq2)

Bs 2I.
1

+ Uoe '" (ft/)1+f2/I2),
2L

so that

P= (pvUo'/L) 2 8,(ftqt+ foqo) +periodic terms,

or, using Eqs. (42) and (43) and averaging,

P= (pvUo'/L) 2(&'/Ll+/3'3(m+Vo). (49)

3. DISCUSSION OF SOME LIMITING CASES

Having given the formal solution we now present
the results in a number of limiting cases. We are inter-
ested in low, moderate, and high conductivity (P»1,
p= 1,P«1), and these cases are designated A, 8, and C,
respectively. In each of these cases we must consider
first the eGect of a weak magnetic Geld, and then the
e6ect of a strong Geld.

The results for case A are summarized in Table II.
Observe that o//P turns out to be the appropriate
measure of the magnetic Geld. In the weak-Geld case,
although the magnetic mode of u is associated with a
slow fall-oG with 2', its amplitude is only a small fraction,
~co/pi, of that of the velocity mode. In the presence of
a strong field, , the phase and amplitude factors of the
velocity mode now depend strongly on 0. and Bo, the
amplitude 'of this' mode of I, being only slightly less
than in the absence of a magnetic field. The magnetic
mode of o4 is weak, the amplitude at z=p being P

—i.

TABLE II. Case 2:P»1:Lo«(/tov) 'g; low conductivity. (i =z/I.)—

(vj

n/p« i t'Bp«(a)p/0. )1/'g
weak Geld

1 a ( a)—1+—+2I 1-—
I

2P i, 2P)

n/p&&&P& p)) (p/&)' j
strong. Geld

(n) 1/8 i (p ) 1/oo

I

—
I

+-I —
I

E/s) 2E )
(++2) 1/2 2/o ( pg ) 1/2

I
+-I —

I

E p)v ) 2 k&&pv&

(~) 1/2

E v)J

(2p)'/'

n ( n't
1 +ol 1+

~p & 2p)

p i+-
2n8/8 nl/2

)a2( p )2/2 ( p )1/2

I+ I

2 E, HoBo) t Ho&o)

P eitot

( in ) in
I

1+—Ie
2't ——e "t ( 1) 1

I
1—Ie-22t+—e-oot

E.

esca) t

UpBpe'"'

j„(v/pp)'/'

Hpe'"'

((v/~)»&)

( pvUoo )

v—{1—i)te &It' —e ff&&$

pV2

1 1—-e-@I''+ e-est'

p p1/2

v(1—i)
&,e

—ca+&,e-cd j
pv2

1 ( a—I'+—"
I2' q 2p )

v
{e ~fa' e &mt'}

(np)1/&

i 1
e
—qg+ e

—q2t'

n p

v
L—q1e pI&+gge fI2tg

(np)1/R

1 (a)1/2
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TABLE III. Case B:P= 1 Lo-= (pv) 'j; moderate conductivity. (t =—s/1. )

q2

(~) 1/2

Ev

(oo) 1/Q

n«1LBp«(mt pp) /2j
rveak 6eld

1 /'e) '/' e t/' ct, g—1+ I/
—

I
+-+ 'I & ——

I(2) 8 g 8)

1 (ab '/o a ( a)
+-+'I 1—

I(2) 8 ( 8)

n))1)Bp)) (covpp)'/2 j
strong 6eld

$
~1/2+

~1/2

(IioBo) o/o ( p
+~I

E p» ) E&Po)

1 i—+—
0,8/2 ~1/2

( p ) II/2 ( p ) 1/2

aoi»l'/oI
I

+i
I

E.&o&o) (&o&o)

U' eicut
ke-~~t+-,'e-~2& —,'e &&&+—,'e &&&

ezcpt

U' Bpeieet

jv(v/~)'"

(io/~l'"l
I'I

L pod, o )

7
Le-etl e-cd]

1+i
e
—

hatt+ e
—

@20)

(2+)1/2

7
f —qle «t+q2e &&&)

2~1/2

1
+ 0 ~ ~

242 8

7
Le

—q1f' e-q2$$
2~1/2

i —(1 i)—e o&r+I + le oo/'

2a E2 2a)

7
(—q&e &&&+qme ff&&)

2~1/2

According to the form of g2, this mode corresponds to
an Alfven wave damped by electrical resistance (see
Alfven, ' p. 81).

Now consider case 8, that of moderate conductivity,
corresponding to p=1. The results are summarized in
Table III. Now it is 0, that measures the impressed
magnetic field. Observe that in the presence of a weak
Geld, in contrast with cases A and C, q~ and q2 contain
terms of order 0,&. The amplitude factors of each mode
of I, are the same, namely, 0.5.

In the strong-field case, the phase factors of each
mode correspond to an Alfven wave. The velocity mode
is much more rapidly attenuated than the magnetic
mode, and at moderate distances from the plane, the
magnetic mode dominates. The form of the attenuation
factor of this mode shows that viscosity and electrical
resistivity play equal parts in dissipating the energy of
the wave.

Finally, we consider the third case, C, that of high
conductivity (P«1). The results are summarized in
Table IV.

When the magnetic Geld is weak, the velocity Geld

is only slightly modiGed by it. The magnetic mode of

H. Alfven, CosmicaL I/'Lectrod'ynamics (Clarendon Press,
Oxford, England, 1950).

I,, is weak, having a small amplitude at a= 0 and a high
attenuation factor, of order P &. There is no term in n&

in the expressions for q~ and q2.
In the presence of a strong field, the velocity mode

of I is characterized by a small amplitude at s=0 and
rapid attenuation, the motion consisting almost entirely
of an Alfven wave, which, according to the form of g2,
is damped by viscosity.

In all cases, the mean power P required to maintain
the vibration has to be increased in the presence of a
magnetic Geld; in the case of a strong magnetic Geld P
is proportional to Bo.

The possibility of detecting the effect of a magnetic
field on the propagation of sound in a tube of mercury
was mentioned in Sec. 1. According to Table I, P))1,
so that a/p is the appropriate measure of Bo. As
a/p~50/oe, frequencies of vibration as low as a few
cycles per second would be needed to produce any
marked eGect. In the kilocycle region the sound speed
would be reduced by about 1%.The position should be
rather more favorable if liquid sodium were used, be-
cause then it would be possible to work at much higher
frequencies.

4. ROTATING CASE

We have shown in Sec. 2 how the roots q+~, q+~,

q &, q 2 for the rotating case can be obtained in pairs
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and. the boundary conditions (25) and (26), lead t.ofrom the nonrotating case by suitable changes of scale.
In this section, we show that the same is true of the
corresponding coeKcients f+i, f+2, f i, f 2, and g+i,
g+2, g &, g 2 for the velocity and magnetic fields.

If we write [cf. Eq. (38)]

2k+i Py gyi /+2
2f+1

L1+P+'j 4+i—V+2)
(53)

2k+2 p+ /7+2 0+i

I 1+P+'3(&+2 a+i)—
21+2

g,,=@pe'~'[f e q+'*/ +f+ e q+"/L

+f e q tz/L+f e q O—z/L-j—-
2l+y

g+&= g+2=

~(1+~)
(54)

p+*[1+p+'j(&+2 V+2)—
where

and to
(55)p, '= (1+~)1p:—g3petvtp ie q+tz/L+$+qe q+Oz/L- —

+l ie q tz/L+lqe q 2 L-j P- g-i g-2

[1+p-'j(~-.-~-)we find that Eq. (39) is still valid and that a similar
relation holds for the y components: (56)2k2Pg2 —

g
2f—2

L1+p '3V 2 V i)--—-(51)(2 Pg')1= Vm— —

It/z
—gpetzzt[g ie q+tz/L+g qe

—q+2/L-
+g ie q tz/L+g qe q —Oz/—Lj—-

(»)
qt, = Uoe'"'[k+, e q+"L+k+qe 2+"'L- —

+k ie q tz/L+kqe q qz/Lj—-—-

V+ V+ =2[(1+~)lpj',
[(1-&)iPj', &(1,

[(6-1)/pj's, »1,
(52)

These equations, together with the simplifying rela-
tionships 2g =—2g

2Lg 2L2

v(1—~)
(57)

p [1+p j(t7 i—q 2)
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where

By comparing the results (53), (54) and (56), (57)
with the results (47) and (44), we see how complete
the division between the two modes is; on writing

u, =-,'(u~+u. ), b = ,'(b~-+b. ),
it follows that

u. =-,'8(u~ —u ), b, =-',&(b. +—b )

and that each of the modes (u~, b,+) and (u, b ) can
be calculated independently ot the other and directly
from the nonrotating case by means of the changes of
scale introduced in Sec. 2.

After our investigation had been completed, our
attention was drawn to a number of papers bearing on
some of the topics with which we have dealt. ' "

' J. A. Shercliff, thesis, Cambridge, 1955 (unpublished).
1o T. Kakutani, Proc. Phys. Soc. Japan 13, 1504 (1958).
» J.A. Steketee, University of Toronto Institute of Aerophysics

Rept. No. 63 (1959).

DISCUSSION

Session Reporter: W. H. REm

In reply to a question by Dr. J. E. McCune (Aeronautical

Research Associates of Princeton, Princeton, Eeet Jersey) con-

cerning the relationship between rotation and oscillation for

the case in which the whole system is in rotation, the speaker

remarked that for problems of this type in which one is pri-

marily interested in understanding the effects of Coriolis forces

one could, following the standard procedure in such cases,

ignore centrifugal forces and, hence, need not define an axis
of rotation.

Attention was also drawn to a number of related papers,
the references to which are given previously. Professor C. C.
Lin (Institute for Advanced Study, Princeton, Kern& Jersey)
mentioned his generalization to magneto-Quid dynamics of
many of the exact solutions of Quid dynamics. '

a C. C. Lin, Arch. Ratl. Mech. Anal. 1, 391 (1958).


