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1. INTRODUCTION

N order to understand the effect of viscosity in
modifying the motion of a fluid in contact with
vibrating solids, Stokes examined a particularly simple
case (see Rayleigh,! 1896, p. 317). He supposed that an
infinite plane located at 2=0 executes harmonic vibra-
tion in a direction (x, say) parallel to itself, and that
the fluid in contact with this plane at 2=0 occupies the
whole of the region >0 and is at rest at very large
values of z. Assuming that », the coefficient of kine-
matical viscosity, is constant, and that no slip occurs
between the fluid and the vibrating surface, he showed
that if the velocity of the vibrating plane is (U, coswt,
0, 0), where ¢ denotes time, and Uy and w, which are
assumed to be constant, are, respectively, the velocity,
amplitude, and angular frequency of the vibration, the
velocity at any point in the fluid u= (2s,u,,%), is given
by

= U exp[[— (w/2v)*2] cos[wt— (w/2v)¥z],

S ey

According to this expression the velocity amplitude
falls off exponentially with distance from the plate,
having dropped to ¢1U,=0.3679U, at a distance 3= A,
where

A= (2v/w)}. 2

In addition to this variation of amplitude with 2, there
is also a variation in phase, due to the inertia of the fluid.
The wavelength associated with the variation in phase
is 27rA, at which distance from the plate the velocity
amplitude is

e27U4=0.0018U,.

The flow generated by the vibrating plane can be
regarded as a heavily damped plane shear wave, the
coupling between different layers being due to viscous
friction. The tangential force per unit area at any level
can be obtained from the stress tensor

p;j= p,-,-=pv(au,~/ax,~+ auj/ax;), (3)

where p is the density of the fluid, also assumed to be
constant. This gives

(o))
Pae= A exp N cos{ w A sinf{ w A

@

1Lord Rayleigh (J. W. Strutt), The Theory of Sound (1896)
(reprinted by Dover Publications, New York, 1945).

so that the tangential force per unit area acting on the
plane is
$2:(0,8) = (orU o/ A) (sinwt— coswt). 5)

The negative of the second term in this bracket is in
phase with the motion of the plane and corresponds to
a dissipative force tending to stop the motion. The other
term is 7/2 out of phase and represents an effective
increase in the inertia of the vibrating body due to the
presence of the fluid.

The rate at which internal stresses do work at any
surface parallel to the vibrating plane, in general
Peathat Paytty+poitt. (see Goldstein? p. 98), reduces to
P2z in this problem. Denoting this quantity by R, by
Eqgs. (1) and (4), we find that

R=R(z)
—prUg? ( 22)[ 1 + {2 22+1r
= -} — t——+—11, (6
AV2 P A/ LV2 o A 4}] ©

which oscillates at double the frequency of the vibra-
tion about a nonzero average value

R(2)= (—pvUg/24) exp(—23/4). )

The power input per unit area required to maintain
the motion, which is denoted by P, must equal — R(0,)
so that

P=P()) pUTL | (2 4 8
=P()=——]— - ) |.
m[\/z o 4)] @

The direction of energy transfer between the vibrating
plane and the fluid depends on the sign of P, which
alternates, changing twice each half-cycle. However,
the average value of P, given by

P=pUg/24, ©)

is essentially positive, corresponding to a net energy
transfer from the vibrating plane to the fluid, where it
is dissipated by viscous friction.

Rayleigh' made use of Stokes’ result for the drag on
the plane [see Eq. (5)] in his investigation of the effect
of the boundary layer on the propagation of sound in
tubes. The present writers became interested in the
main problem discussed here as a result of a suggestion
that it may be possible to measure in the laboratory
the effect of a magnetic field on the propagation of
sound in a tube containing mercury. The obvious exten-
sion of Stokes’ problem was to the case of a conducting

2 S. Goldstein, Modern Developments in Fluid Dynamics (Claren-
don Press, Oxford, England, 1938), Vol. I.
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TasLE I. Typical values of « and 8.
Electro-
magnetic By Alfvén
Temper- Kinematic  viscosity Density (vsm™2) velocity
ature viscosity ~ (m?sec™) o (X10* for (BoHo/p)? ow aw/B
°K y(m?sec?) A= (uo)? (kg m™3) B=\/v emu) (msec!) (sec?) (sec™?)
Mercury 293 1.14X1077  7.8X1071  1.35X10* 6X108 1 6 3X108 50
Sodium 373 6.31X1077  7.7X102  9.28X10? 1.2X108 1 20 6X10° 5X10*
Tonized hydrogen® 105 10 15 107 1.5 1071 2X105 4X10° 3X10°
Earth’s interior 10¢ 10-6? 1 10¢ 108? 103 6X1078 36? 3.6X107
Sunspots 4X103 102 20 10— 2X103 2X1071 360 107 5X10%
Solar granulation 6103 10 102 10~ 10 102 600 3.6X10* 3.6X10?
Magnetic variable stars 108 3X10™7 1 108? 3X108 1 20 100 3X10?
Interstellar space 10¢ 107 10%? 102 10— 10-9? 2X10¢  4X107° 4X10°
Interplanetary space 108 1016 10? 102 1015 10— 5X108  2.5X10™°  2.5X10¢
Solar corona 10¢ 106 1? 10718 10716 10~ 108 10~ 102

a For ionized hydrogen: » & p=1T5/2; A\ < T-8/2; B & pT~4; a & pT~8/2; /B o T3/2,

fluid (electrical conductivity o) in the presence of an
impressed uniform magnetic field of strength By in the
z direction, the formal solution of which is presented in
Sec. 2 and discussed in Sec. 3. Rationalized mks units
are used throughout.

The over-all behavior of the system now depends on

three parameters

H,B,
a= ; (10a)
pwy
1 A
p=—=-; (10b)
uoy v
Uo
= ; (10c)
(wp)t

where u denotes magnetic permeability (Bo=uHo) and
A= (uo)™! is sometimes called ‘“electromagnetic vis-
cosity”” because it has the same dimensions as ». Some
typical values of @ and 8 are listed in TableI. o, 3, and v
measure, in suitable units, the magnetic-field energy,
the electrical resistivity, and the velocity amplitude of
the motion of the plane, respectively. From their defini-
tions we can relate @, 8, and vy to the more familiar
dimensionless parameters of magneto-fluid dynamics
provided we base these parameters on the characteristic
length L= (v/w)?}, which is of the order of the boundary-
layer thickness A in Stokes’ problem. Thus we find the
Reynolds number

Re=U,L/v=17, (11)
the magnetic Reynolds number
Rm=U,L/A=v/B, (12)
the Hartmann number
Ha=BoL(a/pv)*= (e/B)*, (13)
and the Lundquist number?
Lu=BLo(u/p)t=a?/B. (14)

3T. G. Cowling, Magnetohydrodynamics (Interscience Pub-
lishers, Inc., New York, 1957).

po=4m X10~7 newton amp~2 oecopper =5 X107Q~1.m™1,

The fluid motion is no longer of the form given by
Eq. (1). In the presence of the magnetic field, %, consists
of two parts characterized by different attenuation and
phase factors. The mathematical form of these parts
suggests that they should be termed “velocity” mode
and “magnetic’’ mode. The relative amplitudes of these
modes, their associated attenuation and phase factors,
and the induced magnetic and electric fields depend on
a, B, and v. These quantities also depend on the electro-
magnetic boundary conditions, which in turn are deter-
mined by the electrical properties of the region <0
not occupied by the fluid and also on the conditions
prevailing at y=d-o. We have chosen to restrict at-
tention to the case when z<0 is filled by an insulator
and there are insulating surfaces, on which electric
charges are about to accumulate, at y=-- o, There are
no additional difficulties associated with the other cases
when the region 2<0 is a conductor or when charges are
not able to accumulate at y=o-c0.

Explicit solutions have been found in a sufficient
number of cases, corresponding to different limiting
values of a and 8, to cover most situations of physical
interest. The results demonstrate quantitatively the
complicated interplay between hydromagnetic and
viscous effects (see Sec. 3).

Now we digress before taking up the next part of the
problem, in order to explain how it arose. It is now
generally accepted that hydromagnetic flow in the
earth’s liquid core is somehow responsible for the main
geomagnetic field, and therefore, an entirely satis-
factory theory of the earth’s magnetism requires, in the
first instance, a theory of the dynamics of core motions.
For detailed discussions of this geophysical problem see
Hide* and Hide and Roberts.® Suffice it to say here that
no one is certain as to the cause of core motions, and
only very general indications of the flow pattern are

4 R. Hide, ‘“Hydrodynamics of the earth’s core,” in Physics and
Chemistry of the Earth, L. H. Ahrens, K. Rankama, and S. K.
Runcorn, Editors (Pergamon Press, New York, 1956), Vol. 1.

®R. Hide and P. H. Roberts, ‘‘The origin of the earth’s mag-
netic field,” in Physics and Chemistry of the Earth, L. H. Ahrens,

K. Rankama, and S. K. Runcorn, Editors (Pergamon Press, New
York, 1960), Vol. 4.
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revealed by geomagnetic data. However, it has been .

suggested that the near coincidence between the geo-
magnetic and geographic poles is the result of thestrong
influence of Coriolis forces, due to the earth’s rotation,
on motions in the core.

Rough order-of-magnitude estimates show that
Coriolis forces are very much stronger than inertial and
viscous forces. They also suggest that Coriolis and
hydromagnetic forces are comparable with one another
in strength, and one wonders why this should be. As the
magnetic energy in the core exceeds the kinetic energy
of fluid motion relative to the rotating earth by a large
factor, we cannot invoke equipartition of energy to
account for this state of affairs. Thus, in the absence
of any obvious general reason why a system should
adjust itself until hydromagnetic and Coriolis forces
are of comparable magnitude we have to take the alter-
native approach and seek a clue to the solution of this
problem by considering specific fluid systems in which
both forces play a part.

In spite of the importance in cosmical fluid dynamics
of understanding the effects of rotation and magnetic
fields on flow phenomena, the simultaneous action of
these agencies seems to have been studied in only a few
specific cases. Lehnert® has considered the effect of
Coriolis forces on plane hydromagnetic waves in a
perfectly conducting inviscid fluid and thus showed
how the propagation of these waves can, in some circum-
stances, be radically affected by rotation. However, the
assumption of perfect conductivity restricts the value of
Lehnert’s results in the present context. Chandrasekhar?
has examined the theory of the onset of thermal con-
vection in a thin horizontal layer of a conducting fluid
which rotates about a vertical axis, in the presence of a
magnetic field. He found a number of unexpected
results, the interpretation of which is far from simple,
owing to the essentially three-dimensional nature of the
problem.

We have considered the effect of uniform rotation
and a uniform magnetic field acting simultaneously on
the flow of a conducting fluid due to the oscillation of a
rigid plane with which it is in contact, as a simple exten-
sion of the first problem dealt with here. For simplicity
the angular velocity vector Q is taken to be parallel to
the z axis, and therefore to the magnetic field. The
formal discussion of this case is given in Sec. 2, where it
is shown that a further parameter,

0=2Q/w, (15)

which measures Q in suitable units, enters the problem.
It follows from its definition* that the so-called Rossby
number,

Ro=w/20=57, (16)

and that based on the characteristic length L= (v/w)?,

¢ B. Lehnert, Astrophys. J. 119, 647 (1954); 121, 481 (1955).
7 S. Chandrasekhar, Proc. Roy. Soc. (London) A225, 173 (1954);
A237, 476 (1956); Proc. Am. Acad. Arts Sci. U. S. 86, 372 (1957).
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the Taylor number,*

Ta=4Q2LY/ =4 an

Although it was expected initially that owing to the
symmetry of the system the mathematical difficulties
involved would not be prohibitive, an unanticipated
feature of the solution of the rotating case is that the
equations satisfied by the phase and amplitude factors
are formally identical with the corresponding equa-
tions of the nonrotating case. As a result of this fea-
ture, the properties of the flow can be found directly
from the discussion of the nonrotating case (see Sec. 4).
The interpretation of these properties will be dealt with
in the full account of this work, which will be published
elsewhere.

2. FORMAL SOLUTION

The hydromagnetic flow set up by the plane is
governed by the equation of hydrodynamics,

du
5;—+u- gradu-+2QXu
=—plgradp+p X B+rv2u; (18)
the equation of continuity,
diva=0; (19)
Maxwell’s equations (neglecting displacement currents),
curlB=ypj, (20)
curlE=—§, (21)
ot
divB=0; (22)
and Ohm’s law for a moving conductor,
i=c(E4uXB). (23)

In these equations p denotes the hydrostatic pressure;
E, the electric field; j, the electric current density.
We suppose that B consists of two parts

B= Bo+b, Bo'—“— (0,0,Bo),

where By is constant and b is the induced field.

The boundary conditions necessary to determine the
unique solution to these equations are the following.
We must require that the fluid be at rest at large
distances from the plane and that no slip should occur
between the fluid and plane, whence

u(z— «©)=0, u(z=0)= (U, coswt,0,0).

(24)

(25)

In addition, there are boundary conditions on the mag-
netic field. Because we are assuming <0 to be an
insulator, j must vanish there. It must also vanish as
z— . By (20) and (22), together with the fact that
because we are assuming that the fluid is bounded by
insulating surfaces at y=-o the total current must
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vanish, these conditions require that
b(z— «©)=0, b(z=0)=0. (26)

The fields set up by the plate depend on 2z and ¢
alone and, in consequence, it is found that u and b are,
without approximation, governed by the linear equa-

tions
9 1 92 du
[——-——— ~——]b=Bo—, 27
dt ou 922 02
a 92 By db
[—— v——]u+2$2><u=— —, (28)
ot 922 up 03

and that #, and b, are zero everywhere. On eliminating
b or u from Egs. (27) and (28), it may be shown that

9 1 829 9°7 B 9%\*?
(ol
o oup 022l 022) up 922
2

+492[5a;—-i @T } (u,b)=0. (29)

As Eqs. (27) and (28) are linear, we can, by analogy
with Stokes’ result (1), seek solutions of the form

(u,b) «etor=elt,  [L= (v/w)t],

where ®(g)>0, by (25) and (26). On substituting in
Eq. (29) and introducing the dimensionless parameters
a, B, v, 8 defined in (10) and (15), we find

LG—g) (i—Bg") —ag P=—&(i—Bg)"
When =0, §=0, the roots of this equation are
= 1/V2)(1+49), ¢=[1/2p)(1+s). @1

g2 corresponds to the magnetic mode which is of no
interest in this case since a=0. ¢; corresponds to Stokes’
solution, Eq. (1).

In the nonrotating case (§=0), Eq. (30) reduces to

(1— @) (i—Bg) —ag*=0, (32)

which has two roots qi, ¢» satisfying (25) and (26).
These we term the velocity mode and the magnetic
mode, respectively. As a— 0, these roots tend uni-
formly to (31).

In the nonmagnetic case =0, the magnetic mode is
[as in the Stokes’ case, (31)] redundant, but there are
two velocity modes ¢, and ¢ given by

[¢— (1+8)ill¢— (1—9)]=0,

the positive and negative subscripts referring to the
first and second brackets, respectively.

In the general case there are four roots of interest,
¢+1, G+2, ¢—1, g2, corresponding, respectively, to the
positive velocity mode, the positive magnetic mode, the
negative velocity mode, and the negative magnetic

(30)

(33)
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mode. ¢;1, ¢+2 are the relevant roots of

Be*—[at+i{1+B(148)} J*— (1+8)=0,  (34)
and ¢_;, ¢—» are the relevant roots of
B¢t —[at+i{1-+B(1—8)} J@?— (1—8)=0.  (35)

Observe that the last two equations are the same as
Eq. (32), provided we make a suitable change of scale:
In Eq. (34), write

Bi=(1408)8, g:=(1+0)%, (36)
and in Eq. (35) write
_=(1—8)8, ¢-=(1—08), (6<1),
B-=(1-0)B, ¢-=(1—0d)q, ©<1) @7

B—=(1-98)8, ¢-=—i(6—1)k, (>1).

In the remainder of this section we describe the
results obtained for the nonrotating case, returning
only briefly in Sec. 4 to the analysis of the rotating
case. In the nonrotating case, #, and b, are uncoupled
to u, and b,, so that Eqgs. (25) and (26) prove that #,,
by, j+, and E, are zero everywhere.

Let
= U fren#E4-foe0?/ L]
b= Boeiw![ gre= 0Lt goeareIL], (38)
By Eq. (27), g; is related to f; (=1, 2) by
(i—Bg)gi=—vaifs, (7=1,2). 39
Also, by the conditions (25) and (26), we have
frth=1, (40)
g1+g:=0. (41)
From (32) it follows that
0:19:=1/B%. (42)

On solving Egs. (39)-(41) for f; and g; and using (42)
as a means of simplifying the final results, we find

5*91—92 3%Q2—Q1
= y Jo= ) (43)
[1+64](q1—¢2) [14+6%1(g2—q1)
g1=—g={B[1+81(1—g2)} (44)
From these results and Eq. (20), we find
_ ( ) ,yewt
L/ 1+84](q1—g2)
X[qeaelb—goemarelZ],  (45)
and, from Egs. (20) and (23), we find
eiwt
Ey=—=UoBo)———
[1+641(g1—g2)
X[gee~0#lk—gre—e: ], (46)
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Note that, on the plane itself,

Ju(z=0)=—(Bo/uL) (ve*'/BH1+Y]),  (47)

and

E,(z=0)= (UoBy) (¢*/[1+%]). (48)

Thus, in the limit 83— 0, there is a surface current on
the plane, while the electric field there is given by

E=-1U,XB,,

[cf. Eq. (23)]. In the limit 8 — o, both current and
electric field tend to zero. Both these results are
physically reasonable.

The mean rate of working P of the force driving the
plate is the average, over a cycle, of

P=—vp[ 4,00/ 07 ] .—0,
and, by (38),
u,(z= 0) = %eri”t+%er_th,
ou.

" 1
——— g — 0 — ____U twt
Py (z=0) oL 0e*(f191+ f2g2)

1
+2—L"U03"i°"(f 191+ f242)%,

803

so that
~ P=(ovUd/L)3®(f1g1+ f2q2) +periodic terms,
or, using Egs. (42) and (43) and averaging,

P=(wU/L)3(B/[1+8 )R (g1 tg).  (49)

3. DISCUSSION OF SOME LIMITING CASES

Having given the formal solution we now present
the results in a number of limiting cases. We are inter-
ested in low, moderate, and high conductivity (8>>1,
B=1, 3K1), and these cases are designated 4, B, and C,
respectively. In each of these cases we must consider
first the effect of a weak magnetic field, and then the
effect of a strong field.

The results for case 4 are summarized in Table II.
Observe that a/f turns out to be the appropriate
measure of the magnetic field. In the weak-field case,
although the magnetic mode of #. is associated with a
slow fall-off with 2, its amplitude is only a small fraction,
~a/Bt of that of the velocity mode. In the presence of
a strong field, the phase and amplitude factors of the
velocity mode now depend strongly on o and By, the
amplitude”of this"mode of #, being only slightly less
than in the absence of a magnetic field. The magnetic
mode of u, is weak, the amplitude at z=0 being ~3~.

TaBLE II. Case 4: 83>1:[6&K (ur)™1]; low conductivity. (¢=3z/L.)

a/BKI[BeK (wp/a)?]
. k field

wea.

a/B3>1[Bo> (wp/o)12]
strong fiel

1 a
q2 [ 1-——-|-i(1+
(2821 28

[+%

1 a
') “—[1+—+i(1—
V2 28 28

)

a\V2  i/B\12
() +C)

B 2\«

H,Bo 12 4y F2N 1/2
()55
Y 2 \HBw

a B i
) N
28 2032 12

A2/ p 3/2 p 12
2 \HB, HoBy

Uy 2 o 1 1
14— o2t ———ea2t 1—— et f—ea2t
U getot e B3/2 B2 B2
be v
——(1—1:) Ee_ﬁf—e-qﬁ'] {e‘“qlf-—g_q'.'r}
Byeiet V2 (aB)1/2
E, 1 1 i 1
- ——g I gme2k —— 18— e
UBoeivt 8 B2 . 8
Ju (/) v(1—4)
- [—qie798 4 goem22t] [—qie~ 184 goe72%]
H et BV2 (ep)r2
P v/ “")1/2) 1 a 1 /a\ M2
—{ 14— - -
(o ) )




804

R. HIDE AND P.

H. ROBERTS

TasBLE III. Case B: 8=1 [o= (uv)"1]; moderate conductivity. (¢=z/L.)

aK1[BeK (wrup)l2]

>>1[Bo> (wrup)t2]

weak field strong field
1 a\12 « a 7
a —t1+(=) +-+if 1 adlif—
vz 2 8 8 all?
w\ V2 HoBo\ V2 P 1/2
/31 B +iw
v p)\V H ()Bo
1 12 o 1 A
P8 — 1—(— ttif 1= e
vz 2 8 8 sz g2
o\ V2 p \32 p
g:0 — w?(\p)1i2 )
v H B, HB,
Uz
%e—ali’_*_%g‘hf —%g“m{'-i—%e—flzf
eriwt
bs ¥ Y
— —— [0S — g2t — [t —egad7]
Beiet 2q1/2 202
E, 144
{ —-%g’qu-}.%e"qas’} J— ‘alf+
U,Boeiet (2a)12 2 2a
Ju(/w)M? v
- ——{—q1e718 }-qae™ 0¥} ___{ qlg—qll’-}-qﬂe—!lz!’}
etwtH 2aM/2 2a1/?
_ ( ¢ /w)llz ) 1 @ all?
P — 1= —_
pvUy? 2V2 8 4

According to the form of gs, this mode corresponds to
an Alfvén wave damped by electrical resistance (see
Alfvén,® p. 81).

Now consider case B, that of moderate conductivity,
corresponding to 8=1. The results are summarized in
Table ITI. Now it is « that measures the impressed
magnetic field. Observe that in the presence of a weak
field, in contrast with cases 4 and C, ¢; and g, contain
terms of order of. The amplitude factors of each mode
of u, are the same, namely, 0.5.

In the strong-field case, the phase factors of each
mode correspond to an Alfvén wave. The velocity mode
is much more rapidly attenuated than the magnetic
mode, and at moderate distances from the plane, the
magnetic mode dominates. The form of the attenuation
factor of this mode shows that viscosity and electrical
resistivity play equal parts in dissipating the energy of
the wave.

Finally, we consider the third case, C, that of high
conductivity (8<1). The results are summarized in
Table IV.

When the magnetic field is weak, the velocity field
is only slightly modified by it. The magnetic mode of

) 8H. Alfvén, Cosmical Ilectrodynamics (Clarendon Press,
Oxford, England, 1950).

. is weak, having a small amplitude at 2=0 and a high
attenuation factor, of order 8~%. There is no term in ot
in the expressions for ¢; and gs.

In the presence of a strong field, the velocity mode
of u, is characterized by a small amplitude at =0 and
rapid attenuation, the motion consisting almost entirely
of an Alfvén wave, which, according to the form of ¢,
is damped by viscosity. _

In all cases, the mean power P required to maintain
the vibration has to be increased in the presence of a
magnetic field; in the case of a strong magnetic field P
is proportional to Bi.

The possibility of detecting the effect of a magnetic
field on the propagation of sound in a tube of mercury
was mentioned in Sec. 1. According to Table I, >>1,
so that a/B is the appropriate measure of By As
a/B~50/w, frequencies of vibration as low as a few
cycles per second would be needed to produce any
marked effect. In the kilocycle region the sound speed
would be reduced by about 1%,. The position should be
rather more favorable if liquid sodium were used, be-
cause then it would be possible to work at much higher
frequencies.

4. ROTATING CASE

We have shown in Sec. 2 how the roots qii, g¢ys,
¢-1, g—2 for the rotating case can be obtained in pairs
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TasBLE IV. Case C: 8<K1[o>> (ur)™1]; high conductivity. (¢=z/L.)
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aK1[BK (kup)” 2]
weak

&>>1[Bo> (vopp)'2]

1 a a
A 5]
V2 2 2
o\ 12
(%)
v

1 a @
qz )
(2p)M2 2 2

o\ V2
o(:
14

Ugeiot
bs
T
E,
UoBgeiot
Ju(/w)
Hoetot

P v/w)1i2 1 ) o
[Ew] ﬁ( i )

7{ a1t q{}
.—e“l.—-e_ﬂ
V2

(1 =) e 08 —BL2g—a2t

Y
—4{ —qlg—ﬂf—i-qze—"h)f}
V2

(14iafii)e~ait — japV2gast

strong field
a\ V2
( ) 2(ap)'?
HoBo\ V2 w p v\12
( ) (HoBoi)

za:slz a1/2

wid [ p \ o \ 12
2 \H.B, HB,

BYzgait 4 (1 — B2) g—a

'y — -
__-l_/;.{e a8 — gk}
e

—ip12¢ a8 - (1 —p1/2)gma2k

Y
_:/;{ _qle—q1§+q23—qzr}
42

a2

2

from the nonrotating case by suitable changes of scale.
In this section, we show that the same is true of the
corresponding coefficients fi1, fis, fo1, fos, and gyy,
£+2, -1, g2 for the velocity and magnetic fields.

If we write [cf. Eq. (38)]

er'mt[f q+1zIL+f
el f_gganelL],
b,= Boe™ ‘[g+1e—“+“/[‘+g+ge_q+“
+gaem il g el ],
u,= eriwz[k+le-q+1z/L+k+2e—-q+zz/L
I Tl
b,,= B Oeiwt[l+le—q+1z/L_|_l +2e—q+zz/L
+1 e 1z/L+l2e—q—z=/L]

we find that Eq. (39) is still valid and that a similar
relation holds for the y components:

—q+2z/L

(50)

(i—B)l=—gg. (51)
These equations, together with the simplifying rela-

tionships
grigr2=1[ (1+6)/81%,
_JiLa=8)/81, &<1, (52)
q‘lq‘“{[(«s—n/ﬁ}, 5>1,

and the boundary conditions (25) and (26), lead to

2k Biigp— q+2
2=
) [1+8:](gr1— 9+2>
2kys Bigre—qia
f+2_ = )
& [1+8+1(gs2—g40)
2 2
2g1= “‘28+2=—5—= -
3 v(1+9)
B 1481 (gr1—g4o).
where
Bii=(140)38}
and to .
2%, Bdq1—
Zf—l = = 3
&  [1+841(g-1—q-2)
2k B-tq_o—
2f—-2= _—= ’
) [1+8-¥](g—2—g-1)
) ) 21, 2
T T
v(1-9)

T B[1HB](ga—gn)

3

(54)

(55)

(56)

(7
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where
(-0, e<t,

—i(6—1)¥%, 6>1.
By comparing the results (53), (54) and (56), (57)

with the results (47) and (44), we see how complete
the division between the two modes is; on writing

=5 (UhoyFz),  bs=%(boy+bs-),
it follows that

U= %6 (uﬂH-— ux—) )

(58)

bzz %5 (bm.;_- bg;_)
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and that each of the modes (#.4,b.+) and (u#,_,b,) can
be calculated independently of the other and directly
from the nonrotating case by means of the changes of
scale introduced in Sec. 2.

After our investigation had been completed, our
attention was drawn to a number of papers bearing on
some of the topics with which we have dealt.® 1

9 J. A. Shercliff, thesis, Cambridge, 1955 (unpublished).

10T, Kakutani, Proc. Phys. Soc. Japan 13, 1504 (1958).

1 J, A. Steketee, University of Toronto Institute of Aerophysics
Rept. No. 63 (1959).

DISCUSSION
Session Reporter: W. H. REm

In reply to a question by Dr. J. E. McCune (deronautical
Research Associates of Princeton, Princeton, New Jersey) con-
cerning the relationship between rotation and oscillation for
the case in which the whole system is in rotation, the speaker
remarked that for problems of this type in which one is pri-
marily interested in understanding the effects of Coriolis forces
one could, following the standard procedure in such cases,

ignore centrifugal forces and, hence, need not define an axis
of rotation.

Attention was also drawn to a number of related papers,
the references to which are given previously. Professor C. C.
Lin (Institute for Advanced Study, Princeton, New Jersey)
mentioned his generalization to magneto-fluid dynamics of
many of the exact solutions of fluid dynamics.®

a C. C. Lin, Arch. Ratl. Mech. Anal. 1, 391 (1958).



