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INTRODUCTION

HE study of the behavior and characteristics of
boundary layers over flat plates when the Quid

is electrically conducting and a magnetic Geld is present
has both theoretical attractiveness and practical im-
portance. Rossow has solved the laminar case: it is
the aim here to investigate the turbulent case.

The main steps of the present analysis can be enu-
merated as:

(1) deriving the basic equations for the turbulent
Qow of a constant property, electrically conducting
Quid )

(2) postulating a suitable model for the turbulent
boundary layers;

(3) obtaining quantitative results based on the
postulated model.
The analysis takes advantage of both the technique
and results of ordinary turbulent boundary layers (such
as have been recently presented, for instance, by Town-
send, ' Clauser, 2 and Ferrari' and of the results of the
elementary theory of hydromagnetic turbulence devel-
oped by Chandrasekhar. 4

In Sec. 1 the basic magneto-Quid dynamic equations,
linearized with respect to the induced magnetic 6eld,
are presented. In Sec. 2 their "turbulent" form is
derived and the balances of mean and turbulent kinetic
energy are formulated and discussed. In Sec. 3 a suitable
model of the turbulent boundary layer is deduced.

Based on this model, the law of the wall and the skin-
friction law in their modi6ed forms, valid for linearized
magneto-Quid dynamic turbulence, are derived in Sec.
4 in terms of two constants. In Sec. 5 the evaluation
of these two constants is carried out by means of a
technique closely patterned after the Clauser-Ferrari
method. ' ' Results are analyzed and discussed in Sec. 6.

1. LINEARIZED MAGNETO-FLUID DYNAMIC
EQUATIONS

Bv/Bt+ vI Lvv+ (1/yMO') pU+ (~/Re)1= 8~„JXH,

VXE= —BH/Bt; V E=O, (1)
VXH=4~R„J+aE/at; V H=O,

J=E (vXH),

where Re is the Reynolds number= VeL/v, E is the
magnetic Reynolds number=o-vppJ, and I' the mag-
netic pressure number =pIIO'/p Vo'. Subscripts 0 indicate
reference conditions and all the other symbols have
their usual meanings.

Equations (1) are consistent with the following
assumptions:

(i) The Quid is incompressible and with constant
properties.

(ii) Electric free charges density and displacement
currents are negligible.

(iii) The total electric Qeld and the convective electric
current are of the same order of magnitude as those
originated by the magneto-Quid dynamic interaction.
Moreover, any applied electric 6eld is absent.

(iv) The "continuum" hypothesis holds throughout.
JustiQcations for these hypothesis as well as their
implications and range of validity can be found in
several appropriate references.

By eliminating the electric 6eld E and the electric
current J and by specializing the viscous stress tensor
~ to the present case, the system (1) is reduced to the
following two differential equations in the two unknowns
v and H.

pU ~ I' Bv
vv+ — + (-,'H HU —HH) +—=0,

yMp' Re kr 8$

BH~. E„(Hv—vH) ——p'H +R„=O,
4m 8I

and, naturally, both vectors v and H have zero
divergence.

It may be proper here to point out that the Maxwell
equations for the electromagnetic 6eld in the absence
of the Quid-dynamic 6eld are linear. It is the coupling
of the two 6elds which introduces nonlinear terms in
the equation for the magnetic field and additional
nonlinear terms in the momentum equation. This con-
sideration bears a certain importance, as is seen later,
in the analysis of the turbulent 6eld.

The complicated nature of Eqs. (2) usually requires

5

The basic nondimensional equations for the magneto-
Quid dynamics of a constant property Quid are

V' v=0)

*This work was sponsored by the Italian C.¹R.through a
grant to the M.F.D. section of the Space Physics Research Center.' A. A. Townsend, The Structure of Turbulent Shear Ii/om (Cam-
bridge University Press, New York, 1956).' F. H. Clauser, Advances in Appl. Mech. 4, 118 (1956}.' C. Ferrari, "Turbolenza di parete, " Teoria della turbolenza,
C.I.M,E., Varenna, September 1-10, 1957.

4 S. Chandrasekhar, Proc. Roy. Soc. (London} A233, 33Q (1955).
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that some additional simpli6cations be made before
attempts towards a solution can be aGorded. One possi-
bility is the linearization with respect to the magnetic
field.

Let
H =n+ eh+0(e') (5)

where n is the unit vector Hp/) Hp( (Hs is the applied
magnetic field) and e is a quantity of the order of
magnitude of 8 . Since a large variety of cases of
interest for the aerodynamicist are concerned with small
values of R, it is assumed that terms of order higher
than the first in e can be neglected. Then, if the applied
magnetic field is assumed to be constant both in mag-
nitude and direction, substitution of (3) into Eqs. (2)
yields

pU
p'. vv+

yMO' Re

cP Bv
+ L(n h)U —(nh+hn)] +—=0,

4x Bt

~ L(nv —vn) —(1j4rr) ~h] =0. (5)

2. LINEARIZED MAGNETO-FLUID DYNAMIC
EQUATIONS FOR THE TURBULENT

FIELD. ENERGY BALANCES

The equations for the turbulent held are derived with
the usual assumption that Eqs. (8) still hold for the
instantaneous values of the quantities involved.

Let v= V+v' and p=(p)+p', where V and (p) are
average values of the velocity vector and of the
pressure; and s', p' the corresponding fluctuating parts. .

Angular brackets ( ) indicate an average. Substitution
into Eqs. (8) yields

~ (V+v')=0

Q)+p') U
I VV+v'v'+ Vv'+v'V+

1/2 l9

(V+v')+8 P (V„+v„')+ (V+v')—=0. (9)
Re Bt

Averaging these equations and indicating by angular
brackets ( ) the averaged values result in

v V=O

From these equations it appears that, in order to, , U

preserve the magnetic term in the momentum equation,
eP must be of order one. ~

A simple vectorial algorithm indicates that Eq. (5)
can be integrated once to obtain

VXh=4s(vXn)

q2P cIV
+E P V + =0. (10)

Re Bt

and that

V.P(n. h) U —(nh+hn)]= nX (V Xh), (7)

since both n and h have zero divergence and, in addi-
tion, VXn=0. Combining Eqs. (6) and (7) results in

V L(n h)U —(nh+hn)]=4snX (vXn) =4rrv„,

where v„ is the component of v normal to the applied
magnetic 6eld.

The linearized equations of niagneto-Quid dynamics
thus read

The turbulent linearized magneto-Quid dynamic equa-
tions have just the same expression as the Quid-dynamic
equations except, naturally, for the added magnetic
terms which, however, depend only on the mean
velocity field. This was naturally to be expected since,
as noticed before, there is no additional nonlinear term
involved and thus there cannot be any additional term
involving Quctuations.

It is now rather simple to extend to Eqs. (10) the
well-known boundary-layer order of magnitude analysis.
The result is, in terms of dimensional quantities and for
isobaric outer Qow,

pU V'v tv
V ' vv+ — +P~„v + =0, —

Re
"

a~

u.+s„=0, p„—=O(b),

uu. +su„+mu= iu„„—(u'v'),

& v=0.

The linearization process thus eliminates the addi-
tional nonlinear terms and uncouples the equation of
motion from that of the magnetic field.

~ Other possibilities may be of interest but they are outside the
scope of this 'paper. Actually, besides the unsteady term, the
momentum equation contains pressure, viscous, and magnetic
terms whose relative importance with respect to the convective
term is measured by the numbers ~yiV0'~, Re, and d', respec-
tively. The order of magnitude of these numbers determines
whether or not the corresponding terms are negligible and affords
several simplided forms of the equation itself.

where mean values are to be intended for all quantities
and where

m =ohio'(p (12)

depends on the applied magnetic field Ho, on the Quid
electric conductivity o, and has the dimension (time) '.
The term (uY) represents the familiar Reynolds stress
due to the Quctuation of velocity.

For future reference, it is useful to write down the
equations expressing the balance of mean kinetic
energy —',.Vs and of turbulent energy P.,=(rss").
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Multiply Eqs. (9) scalarly by v' and take the mean
to obtain

(v v.Lvv+v V))+(v' v (v'v'))

1+,(v''&p') —(v'' &'v')
yMp' Re

( Bv)
+R„I' (v' v„')+l v' — — i=0.

E a))

term is that corresponding to the Reynolds stress. To
relate this Quctuating term to properties of the mean
Qow Geld, it is necessary Grst to get a clearer idea of
what are the essential physical features of the subject
problem and how, and to what extent, they diBer from
the familiar ones of ordinary turbulence. This analysis
is carried out in the next section wherein it is also
formulated a suitable "model" of the subject dissipative
region so as to make subsequent quantitative analysis
possible.

It is easily veriGed that this equation can be trans-
formed into

V «&+v P(v'(p'+-,'v v'))g+(v'v'):vv
—Re—'f'PEg+P, P,(8v /Bx, )']

+E P ((v„')')=0, (13)

thus giving the turbulent energy balance in a steady
state. The 6rst four terms contributing to this energy
balance are well known. '' They are the convection
term, the diftusive term, the production term, and the
dissipation term, respectively. One more term is now
present, the last one. It is due to the presence of the
magnetic field and represents the additional dissipation
of turbulent energy caused by the magnetic Geld.
Physically, this is due to the fact that the line of forces
of the magnetic field tend to oppose any crossing of
conductive Quid, thus some of the available turbulent
kinetic energy must be spent to do work against the
magnetic field.

To obtain the balance of the mean kinetic energy
-', V'=E, Eq. (9) is multiplied scalarly by V to obtain

v2V
V y. VV+(v'v')+ (p)U —V.

7Mp' Re

BV
+Z I.V„V+V. =0,

8$

or, in the steady case and through the usual algorithm

V. «-+& (( ' ') v)+,& (pv)
yMp2

(BV;) '
—(v'v'): vv —Re—' V'E„~~ I—' &ax;)

+z„z„v„V=0. (1z)

Again, all the features of the corresponding energy
balance in a purely Quid-dynamic field are preserved.
In addition, there is again an additional term due to the
exchange of energy between the velocity and the
magnetic Gelds.

We revert now to Eqs. (11) valid for the turbulent
boundary layer in linearized magneto-Quid dynamics.
Within this linear approximation, the only fluctuating

3. DEDUCTION OF A MODEL FOR THE
TURBULENT LAYER

In the current view about turbulence, a fundamental
physical idea is that of the cascade of energy from the
larger to the smaller eddies. '' This process has been
recently generalized by Chandrasekhar' to hydromag-
netic turbulence.

In ordinary turbulence the accepted supposition is
as follows. Energy is Grst supplied to the Fourier com-
ponents of the velocity field which are of the smallest
wave numbers (largest eddies), it is then transmitted
to the higher wave numbers and it is Gnally dissipated
into heat by viscosity at the highest wave number. The
energy transfer from one wave number to another can
only occur because of the nonlinear coupling between
the di8erent Fourier components of the velocity field
(this nonlinearity character is contained in the inertial
terms of the equation of motion). The rate at which the
kinetic energy per unit volume and per unit wave
number interval at the wave number k' is transformed
into kinetic energy at the wave number k"()k') is given
by the transition probability Q&(v, k', v, k"). At any
number k, the rate of change of energy densi. ty is equal
to the balance between the energy gained from the lower
wave numbers, the energy lost to the higher wave
numbers, and the energy directly dissipated by viscosity.

According to Chandrasekhar, this process can be
generalized to hydromagnetic turbulence as follows.
First of all one must consider that there is another type
of turbulent energy, the energy of the turbulent mag-
netic Geld, so that at each wave number, one has to deal
now with two energy balances. Secondly, other non-
linear terms beside the inertial terms appear in the
equations of motion and in that of the magnetic Geld
so that additional couplings are possible among the
Fourier's components: kinetic and magnetic energies
can be transformed into one another. No direct trans-
formation of magnetic energy between two wave
numbers is, however, possible, owing to the linearity
of the Maxwell's equation. Chandrasekhar thus intro-
duced two more transition probabilities: Qq(v, k'; k,k")
(rate at which kinetic energy per unit volume and unit
wave number interval at the wave number k' is trans-
formed into magnetic energy at the wave number
k")k'); and Q2(k, k'; v, k") (rate at which magnetic
energy per unit volume and unit wave number interval
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Rt thc wave DUIQbcr. k 18 transforlncd Into IQRgnctlc
energy at the wave number k"&k'}. At any wave
Qumbcx' k thc Qct x'Rtc of chRQgc of klQct1c energy
density is now expressed by the balance of Gve terms:
(1) kinetic energy gained from lower wave numbers,
(2) tunetic energy lost to higher wave numbers; (3)
Inagnctlc cncI'gy fxoIQ lowcx' wRvc QUIQbcx' transforIQed
into kinetic energy at k (gain); {4)kinetic energy at k
transformed into magnetic energy at higher wave
numbers (loss); and (5) energy dissipation by viscosity.
The corresponding net rate of change of magnetic
energy at a wave number k is expressed by the balance
of three terms: (i) kinetic energy at lower wave
numbers transformed into magnetic energy at k (gain);
{ii} magnetic energy at k transformed into kinetic
energy at higher wave numbers; and (iii) dissipation
of Inagnetic cncxgy duc to thc clcctrlcal CGDductlvlty

(Joule heat). Chandrasekhar shows then that it is
plausible to a,ssume for the transition probabilities the
following relations:

y f'E(k')P~(k"}+JG(k')G~(k")j, (15)

where F(k) and G(k) are the turbulent kinetic energy
Rnd Inagnetic CDergy spcctx'R, respcctivclg, Rnd i= j;
j=o for s=j.;i=0, j=I for s=2;i=1; j=i for s=3.

F1GID these cxpl'cssloIls RDd from thc x'csults of
Chandrasekhar, it is possible to deduce the following
statexnents for the case of Hnearized magneto-Quid,

dynalnlc turbulence:
{1)The intensity of the turbulent magnetic energy

spcctruID ls~ Rt any wave number~ onc Order of xARg-

Qitude SIQROcr than that of the turbulent kinetic energy.
{2) As a consequence, from Eq. (15) it follows that

the probability of exchange between turbulent kmetic
RDd InagDctlc cDcrglcs is Dcgllglble coolpRlcd to thc
probability of transition of turbulent kinetic energy
f lorn GDc %'Rvc DUIQbcx' to anothcl.

(3) At ally wave number tile llltellslty of tile kllletlc
energy spectrum is lowered by the presence'of the mag-
netic 6cld.

The Grst two statements a,re alIQost obvious and
relate back to the already noticed absence of any other
nonlinear texm, beside the inertial ones, in the basic
equations. The third one could be rigorously demon-
strated by subjecting the Chandrasckhar theory to R

lincarization pI'occss. For RQ hcurlstlc proof, Gnc CRD

consider that thc bRlRQcc cquRtlon froID which the
energy spectrum is to be calculated must necessarily
have a structure similar to that of Eqs. (8). It therefore
contains thc additional dissipative term due to the
Joule effect and leads, consequently, to lower values of
the energy spectrum.

It is ogr intention, indeed, to do tMs in the immediate future.

In conclusion, the energy casca,de process in lincarized
magneto-Quid. dynamic turbulence can be pictured a,s
follows. Transfcx' can only occur between turbulent
kinetic energies of diferent wave numbers, all. the other
posslblc cxchRngcs having Inuch lowcx' probabilities. At
any wave number k, the ra, te of change of energy density
ls equal to tlM balaDcc bctwecIl tlM energy gmncd fx'OIQ

the lower wave numbers, the energy lost to the higher
wRvc QUIQbers, thc cnclgy directly disslpRtcd by vis-

cosity, and that dissipated by Joule effect.
Lct, Us Qow px'occcd fulthcx' RQd cxanllQc thc tux'-

bulcnt Qow along bodies. %hen the Quid is noncon-
ductUlg there cxlst two rcglons with dlfkrcnt charac-
teristic times of adjustment": the inner region and thc
outer region. IQ the 6rst one there ls a, form of sta;tls-

ticaBy determined local quasi-equilibriuIQ while in the
second one conditions of "dyna, mic equilibrium" prevail
which IcRd to self-pl cscrvlng Qows. Energy ls bclQg
extracted from the mean Qow by the ReynoMs stress
gradient~ transferred to thc lDQcr layer~ Rnd convcl ted
Into tulbulcQt cDcx'gy by thc working of tlM IQean Qow

against the Reynolds stresses. In the inner layex' this
turbulent energy input is nearly all dissipated by viscous
action, thc small surplus being fed back into the outer
laycl.

%hen the Quid is conducting, thc c6'ect of the mag-
1Mtlc Beld GQ thc Rbovc described energy tx'RDsfcx'

scheme as deduced from equations of energy ba,lances

(13) and (14) is twofold. For one thing, the exchange
of work between mean velocity Geld and magnetic Geld

InodiGcs the input of energy into the inner layer.
Secondly, the already modiGed turbulent energy input
ls dlsslpatcd by both viscous Rnd Inagnctlc Rctlon So

thRt tlM viscous dissipation Rt thc wall ls Dow a smaHcr

fraction of tlM energy 1Qput.
The turbulent energy input to the inner layer is

reduced since the interaction between mean Qow Rnd

magnetic 6cld in the outer layer leads to R dissipation
of mean kinetic energy. The reduction of local skirl-

friction codEcicnt is thus duc to two concomitant
factors: mRgnctlc dlsslpatlon of mean klnetlc cDC1'gy

in the outer layer Rnd magnetic dissipation of turbulent
klDctlc cnclgy 1D thc inner layer.

The equation giving the turbulent energy balance
Inakcs lt posslblc to forIQulate Rnothcl lnlpoltRDt CGD"

elusion which proves essential in the further develop-
ment of a quantlta, tive analysis. The addltlonal mag-
netic term comparing in the equation is InultipHed by
the number R~ which, by hypothesis, is of order of
magnitude one. Then the additiona, l "characteristic
time" connected with the magnetic Geld is of the same
order of magnitude as that prevailing in the absence of
the magnetic Geld. This fact justiGes then the funda-
mental assumption that even in the subject case the
jQQcx' lRycx' ls ln R stRtc of statlstlcaHy detcrIMncd quRsl-

equilibrium. Quite obviously this equilibrium is now

determined by the balance of turbulent energy pro-
duction) viscous dlsslpatlonq and magnctlc dlsslpatlon.
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To conclude: In linearized magneto-Quid dynamics
it is justiFied to extend the concept of the two-layer
model of the dissipative turbulent region and to assume
that equilibrium conditions and wake-type characters
still prevail in the inner and outer regions, respectively.
This accepted model for linearized hydromagnetic tur-
bulence forms the basis for the development of the
quantitative analysis which is carried out in the sub-
sequent sections.

f =u+y/v; y =os/u+. (16)

Here, u+= (rp/p) & and. ro is the shear stress at the wall.
Thus, in the inner region, the velocity profile is ex-
pressible as

u/u+= F (f',y).

F is still an undetermined function, and to get an explicit
relationship for it one must consider the velocity profiles
in the outer region first.

As. said, this region is characterized by the fact that,
for suKciently large Reynolds numbers, molecular
transport effects can be neglected. The equation of
motion indicates then that the Reynolds stress (uY) is
essentially a function only of the two independent vari-
ables rt=y/lp(x) and o =orox/Up, where lp(x) is an
adequate scale for the lengths. By accepting the usual
approximation that an analogous functional dependence
for the velocity pro6les follows from the momentum
and continuity equations, '—' we infer that in the outer
region it is

u —Ui=uoG(rt, o) LG(+ m, o) =Oj, (18)

where Ui ——Uo(1—o) is the free-stream velocity; uo(x)
is a suitable velocity scale. To determine the functional
expression for F, one now postulates the existence of an
overlapping region wherein both Eqs. (17) and (18)
are valid and, wherein, accordingly, it must be

4. LAW OF THE WALL AND SKIN-FRICTION LAW

In this section are derived the modified forms of the
law of the wall and of the skin-friction law with the help
of the two-layer model discussed in the preceding
section.

Since in the inner region there is statistically deter-
rnined local quasi-equilibrium, the velocity I can depend
only upon the quantities p, v, y, m, and 7 p with which
the following nondimensional ratios can be formed:

with

/.+=Fo(i-.)+x~ (t-o),

(u —U,)/u+ =
G p(rip)+ o G, (rto)

i p= uo+y/v; Xo= rwy/up+ & ohio= rt+y/8o,

(22)

(23)

where the subscript zero indicates the values for ~=0
(m=0) and ot+ is the value of rt for y=8p. It is pointed
out that once it is assumed that 0 is much less than i,
xp is also very small, since, as it is seen in the following
the maximum value of xo is equal to about (1/25)o.

Consider now that, to the same degree of approxi-
mation in 0., we have

Uo f ui+~

u+ uo+ - ( up+i
(24)

where, as it is always possible to do formally,

u+= uo+(1+oui+/u p+)

The requirement that the two diBerent expressions
for the velocity profile coincide within the overlapping
region is then equivalent to the following two equations:

Fp Q'p) = (Up/up+)+Gp(rto),

Ho Up ( ui+)-
F (fo)= G(~.)-— i

1+
'Qp up+ 0 up+I

(25)

wherein Hp=up+x/Upgo is now a constant. The first
equation yields the well-known relations

Fp lo 'Dni p+A j; ——Gp
———k-'Dnrtp+A'j. (26)

The second equation can be satisfied if, and only if,

Fi(fp) =const=B,
(Uo/uo+) t 1+(ui+/uo+) g= const= k„

(27)

and Eq. (19) becomes

F(Rrt, ort/H) =f(R,H)+G (rt,o)

with Ui/u+= f(R,H). It has been found impossible to
satisfy this relation with a suitable expression for F
which would reduce to the familiar one for o =0 (non-
conducting Quid) unless o itself can be considered small.
In this case, by neglecting the higher powers of r, it is
possible to write, for the inner and outer regions, respec-
tively,

u+F(i,g) = Ui+uoG(ot, o). (19) from which it follows that

where

f'= Rq; g =ort/H, (20)

R=u+8/v=R(x); H=u+x/Uy3=H(x), (21)

A necessary but not sufhcient condition for this equality,
is that some de6nite relationships exist between the two
couples of indhpendent variables (f',y) and (ot,o).

By assuming the scale length proportional to the
boundary layer thickness 8 and up(x) =u+, one obtains'

Gi(rto) = (&/Ho)rto+4 (28)

It should be pointed out that the second of equations
(27), following a fortiori from the hypothesis of the
existence of an overlapping region, is the crucial point
of the present approach. It is needless to say that it
cannot be justified theoretically but can be proved
valid. only through comparison with experiments.

By properly combining the preceding equations, we
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can write the law of the wall and the skin-friction law
in their modi6ed forms valid for 0&&1 as follows:

Law of the wall:

N j. No+/—=—ln +ri +/3 (8=const) (29)
N+ k v No+

Skin-friction law:

Uy 1 No+So mg—=—ln +A —A' —ko (ko =const), (30)
R k P Vo

(BM )' o (32)

where the e; are positive and X has the dimension of a
length (the so-called microscale of turbulence).

In the case of a nonconducting Quid the quantity
X'/(vy/oi+) is a constant. In the present case it is
logical to assume that it is a function of the nondimen-
sional parameter x=, my/oi+ so that, for x small, one
can let

X'=no(yv/N+)L1+ao(my/N+)7. (33)

Substitution of Eqs. (32) and (33) into Kq. (31) yields

from which, upon integration, Kq. (29) follows with

8= (no —noncao)/ni. (34)

where the constants k, 3, and A' are those of the familiar
laws of Quid dynamics.

The constants J3 and k2 are still undetermined. Their
evaluation is taken up in. the next section. Before this,
however, we show how the law of the wall, (29), is in
agreement with that derivable through the expression
of the energy balance close to the wall.

The balance of turbulent kinetic energy near the wall
is expressed. by

(oiY)U„+v P P((aors /ax, ))'+ioo(N;")=0, (31)

where the 6rst term gives the production of turbulent
kinetic energy E& and the last two the viscous and
'magnetic" dissipation, respectively.

It looks plausible to let

(NY) = —niE„(N")=noEi

extension of the Clauser-Ferrari technique is used. '3
Essentially, the method consists in determining a series
of "laminar" velocity pro6les, with nonzero velocity at
the wall, for the outer region and matching them with
the velocity distribution valid for the inner region by
imposing at the matching point continuity in the
velocity, the velocity derivative, and the eddy coefficient
of kinematic viscosity.

Consider the inner region 6rst. The velocity pro6le
is given by Kq. (39). To compute the eddy coefficient
o=r/Nv one must first determine the shear stress o.

From the momentum equation written in the form

NQ~+Sgv+Slm= (r/p)v,

it is inferred that in the inner region, if the terms con-
taining the second and higher powers of the distance
from the wall are neglected, the shear stress is still
constant and equal to its value at the wall vo. Con-
sequently, it is

o= r/Nv= ro/uo=k(yg+/v)$1 kB(my—/No+)5. (35)

Consider now the outer region wherein, by hypothesis,
molecular transport CQ'ects are neglected. The basic
equations are

f= &o(&)Uot fo(go)+&f i(go)+ ' ' ' 7 (38)

no =y/io(&), (39)

where lo(x) is the length scale. Substituting the ex-
pressions for the velocity components derived from
Eq. (38), grouping the terms in the like powers of o,
and neglecting terms in g' yield the following two equa-
tioiis foi' fo and fi.

where the eddy coefficient o=r/Nv is now assumed to
be a function only of x. The functional dependence for
e is to be determined from the requirement that this
rcglon rctRlns a ccltaln dcglcc of slmilRrlty 1.c. thRt
the velocity pro6les could be described by a series of

.universal functions in terms of the magnetic number
o.= oui/oUoIt is shown that this implies the following

expression for e.'

o=kpU&o+L1+trc] (a= const), (3/)

where ho+ is the displacement thickness in the absence
of the magnetic 6eld and h is a constant.

Let, indeed, the stream function P defined by f„=oi
and f,= —v be given by

There seems to be, therefore, an inner consistency in
the relations found for the law of the wall and the skin-
friction law.

5. DETERMINATION OF THE CONSTANTS
APPEARING IN THE MODIFIED LAWS

To evaluate the two constants k2 and 8 appearing
in the law of the wall and in the skin-friction law, an

eox lo s
fo"'+ fofo"= o, — —

Uo~o' ~o

lo'X
j'i'fo'- Pfofi"+ fifo"5 fifo"-

Eo

coÃ CyS
/ /// ///

Uo~o' Uo~o'

(40)
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where primes indicate difFerentiation with respect to
the pertinent variable and where, for the moment, we
have put p= oo+o p~.

For Eqs. (40) to be consistent with Eq. (38), it is

necessary that their coefficients be constant. The first
of Eqs. (40) determines the relationship between «
and lp. Since ~o is the value of the eddy coefficient in the
absence of the magnetic 6eld, one can let (cf. Clauser')

«= -', &o(4') I= kp&obo+ (41)

with k=0.018. The similarity requirements on the
second of Eqs. (40) imposes that lp'x/lo ——constant= a&

and that p& as indicated in Eq. (37) be proportional to pp.

The first requirement is the most stringent one since it
can be met only if the Reynolds number Upx/v is sufli-

ciently large, for then it is bp+ x" and a&
———,'(oo+1).

In conclusion, the characteristics of the outer region
can be found from the solution of the following system
of equations:

Qp+ ooy Np Blp pop+

+o +
kvi o kvi o &obo vfok i o

(46)

kB yp Ng+
t

kt p+o kf'& t'p — +ki p-
a, b, I,+I'

wherein it has been assumed that: op+= ep++olq+, and
it has been taken into account that

When Q is though of as belonging to the inner region,
it is characterized by the value i p+of& of i' with

f'o= No+yo/v; f'~= No+yi/vI

and the velocity, its gradient I„,and the eddy viscosity
coeKcient at the point Q are equal, respectively, to

Sp+ Nx+ Nx+f x ooo+yo
tPlni'p+A]+o (in' p+A)+ +B

k k ki o &o&o

f III+f f II 0 (42a)
o.=mx/Up=Ho(gyp/Np+) (Bp/yp). (47)

1 0 1 0 0 0 1 1 0

n 1

2$
f ill+ f III (42b)

n qo=g+yo/bo, gi=g+yi/&o, (45a)

When the point Q is thought of as belonging to the
outer region, it is characterized by the value pp+og& of

g with

The boundary conditions are

fo'(+")= 1, f~'(+ ")= —1,

fp(0) =0 fg(0) =0
fo'(0)=no, fs'(0)=ay.

(43)

wherein q+ is equal to the value of q for which y=bp.
Velocity, velocity gradient I„,and eddy coeKcient are,
respectively,

&p(fp'(ep)+oLnxfo" (go)+fr'(go) j),

The first two boundary conditions are dictated by the
joining of the outer region with the nonviscous Row.
The last one prescribes a velocity at the wall difFerent
from zero.

The velocity profiles are given by

U'pg+

(fp" (no)+oL~~fp"'(np)+f~" (np) j) (46a)
50

h&obo+

(1+oP).

—=f'(go)+os'(go)
Up

At the matching point Q the values given by Eqs. (46)
and (46a) must coincide for any value of o. This leads
to the following two systems of equations:

and are functions of the three parameters 0,0, 0.1, and
P=2a/(op+1). The latter one, together with the
constants still unknown in the expression for the
velocity in the inner region and in the skin-friction law
are to be determined by imposing a certain number of
continuity conditions at the point where the profile
given by Eq. (44) is matched with that holding in the
inner region.

The point where the matching occurs is also unknown
a prooro. Let y=yp+oy& be the ordinate of the point Q
where the matching takes place; yp being the ordinate
of the point where the matching would occur if the
magnetic Geld were absent. The point Q, by hypothesis,
lies within the overlapping region.

(Cy.ol ~ +o+

&2) U.

Upgo+

$+ CO

ICp=g+ = (1—fo )dp
&0 ~0

f'o= No+yo/v= (Co) ~Romp/&o,

info+A=kf (og ) o(/C)~o,

(ki p) '=Co '(&p/Rp)fp" (~p)

kg p=hRo,

(48)

(49)
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FIG. 1. Characteristics of the nonconducting turbulent
boundary layer.

relations:

(Co) ~=0.103313(1—ao),

f 3( 12)o= 1—0.749627(1—no),

fp" (qp) = (1.975902/21+) (1—ap),

otp/21+= yo/hp ——0.127110,

Ep/21+= 0.3 (1—np).

(52)

The diagram of (Co)1 against logEp as computed from
the preceding relations is compared, in Fig. 2, with that
obtained from Eq. (51). It is seen that the agreement is
satisfactory for our purposes.

Consider now the system of equations (50). The
functions fl' and fl" have been obtained by means of
an integral method (see Appendix A) and can be
expressed as

I 1 I 0'gl/gp

f (1g )=o&o+ (1+al)&1+P&2&

fl"(go) =&3'+ (1+ai)&1'+P&2',
(53)

Ni+ 111 B qo
(lump+A)+- —+——

kUp kgp Hp g+

= (Co) '
21o
—fo"(go)+f1'(21o)

p

241+ Bk 1 I 1 kE'3
+ ——= L~ifo"'(no)+f1" (np) l, (5o)

243+1 3 HpEo I o t o CoEo

where the Z; and Z are functions of np given in Ap-
pendix A.

By taking Eqs. (48) and (52) into account and by
reCalling that 241+/No+= k2(Co) ~—1, the SyStem Of

equations (50) can be written as

k2+ A iB+A 2P =Glo+ (1+nl)Gll+0. 749627 k2(1 no), —
A3B+A4P G20+ (1+ni)G21+ZG22

—0.103313k2 (1—np),
(54)

A3B P= 1——Z—0.—103313(1—no),

k&1 kB qo Nl+ kEo—+k =— P. -
t p Hp g+ 24p+ to

The system of equations (48) governs the matching
in the case of nonconducting fluids and it is identical
with that given by Clauser. ' The four unknowns are
fp, gp, (Cp)~, and Ep. The parameter free is the value
f'(0) =no of the velocity at the wall. By varying no one
can obtain the relation (Co)1=g(Eo). Clauser has shown

that the relation thus obtained is almost identical with
the following well-known law:

(1+nl)G11 Glp —0.749627 (1—no)+D4, (55a)

(55b)Z= 0.103313ko(1—np)+D3&

where the A s are constants, Z=I'1/I'o, and the G,, are
functions of (1—np) reported in Appendix A.

The fundamental unknowns of Eqs. (54) are the
three constants k2, B, and P. The quantities nl= f'(0)
and Z=I 1/I 3 are some as yet undetermined functions
of np. These functions must be such as to make the
right-hand side of Eqs. (54) constant.

I.et

(Co) '=5.6 logEo+4. 3. (51)

We have first solved the system of equations (48) using
for fp numerical solutions obtained by means of an
electronic computing machine. Some of the essential
quantities thus obtained are shown in Fig. 1.

For the solution of the system of equations (50), ail

the dependent variables are needed in terms of o,p.

Therefore, we have sought another solution by taking
for fp the expressions obtained by integral methods (see
Appendix A). All the results thus obtained exhibited
errors which never exceeded 1 or 2'po. The quantities
essential to the analysis are given by the following

0.07

0.06

0.05

0.04

—-5.6 log RS+'4 32
Gf

-',- Computed points

0.03

0.02
IO IO IO IO IO'

Rg~

Fxo. 2. Comparison between experimental skin-friction
law and computed points.
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Goo+ $ G—io 0—749. 627kp(1 n—p)+D4]
611

+GppL0. 137819Di(1—eo)+Dp]
—0.137819Di (1—no) =Do,

(55c)

0.96

0.92

0.88

D1=—0.739726k2,

so that the system of equations (54) becomes

kp+AgB+A pP=D4,

A pB+A pP= Dp, (56)

A pB+P=Dp —1,

where all the D s are constants. Equations (56a) and
(56b) can always be satisfied since they merely serve
to deGne the variation with no of the free parameters n1
and Z. It remains to see whether the variations thus
deGned are such as to render constant the left-hand
side of Eq. (55c). Since this relation contains three
arbitrary constants D1, D2, and D4, it is always possible
to satisfy it for three values of 0;0. Thus the actual
solution has been accomplished by determining Grst D4
and Dp as functions of kp from Eq. (55c) written for
three diferent values of 0,0 and then by solving Eq.
(56) for the remaining unknowns B, P, and kp. That
the constants D, thus determined would actually satisfy
Eq. (55c) for any value of no was checked a posterporp
for several values of no and proved to be true within
less than 1%.

This procedure yielded the following values for the
required quantities:

8= —56.94, E'=0.4222, k2=1.867,
Z=t g/I p 0;3973 ——0 1929(1—n.p), —(57)

(1+o'i)R&= —Gio —1.3997 (1—no) —0.3061.

This completes the solution of the problem since now
we know both qualitatively and quantitatively the
characteristics of the turbulent boundary layer. They
are discussed in the next section.

6. ANALYSIS OF THE RESULTS AND
CONCLUDING REMARKS

Let us summarize Grst the results obtained in the
present investigation. When an electrically conducting
fluid is in turbulent Qow along a flat plate in the presence
of a magnetic Geld, the law of the wall and the skin-
friction law assume the following modiGed forms:

I/op+=5. 6 log(ppp+y/v)+4 9.
—56.9(o/Rop+) (Np+y/v), (58a)

Ui/I+= 5.6 log (No+So/v)+7. 543—1.87o, (58b)

where o =pnx/Up, Rpo+= Upbp+/v, and the subscript zero
refers to conditions for o =0 (absence of magnetic field
or nonconducting Quid). Equations (58) hold for small
values of the magnetic Reynolds number and are valid
to within terms of order 0. The velocity U1 is the free-
stream velocity equal to Uo(1—o).

O.SO
IO . IO" IO' Io IO 10

UoXRx=-P

FIG. 3. Rate of decrease of friction velocity per
unit magnetic parameter o.

The friction velocity I+= (7 p/p) & is given by

op+= Np+D+o (1.867 (-,'Ct,)&—1)], (59)

where (-', Cto) &= ppp+/Np is the skin-friction coefficient for
0.=0. With the help of the preceding three. relations
we can now discuss the e8ects of the magnetic Geld on
the characteristics of the turbulent layer.

Considering that (-,'Cfo)& is a function of R,= Upx/v,
Eq. (59) indicates that, for a given It.„ the friction
velocity at the wall is decreased by the action of the
magnetic Geld. In Fig. 3 the quantity

L1—(I+/No+)]o '=1—1.867(-,'Cto)&,

yielding the rate of this decrease per unit a, is plotted
against the Reynolds number E,. It appears that the
rate increases as E. increases and that it is quite sizable.
For a Reynolds number of 10' the decrease in the
friction velocity (i.e., the shear stress at the wall) is
already of the order of 10% for o as low as 0.1.

This decrease in shear stress at the wall for a given
E is also discernible from the expression for the micro-
scale of turbulence given by Eq. (33). It appears
indeed, for the value of the constant that we have
computed, that everything else being constant (that is,
for R,=const), the presence of the magnetic field
tends to increase the microscale ) . and thus decreases
the percentage of turbulent kinetic energy dissipated
through the viscous action of the Quid.

This consideration leads to another important remark
which is connected with the previous discussion of the
energy transfer within the inner layer. We have seen
that, for a given initial energy level of the free stream,
the turbulent kinetic energy input into the inner layer
is decreased by the presence of a magnetic Geld Gxed
with respect to the plate due to "magnetic" dissipation
of mean kinetic energy (Joule dissipation) in the outer
layer. This reduced energy input is to be dissipated in
the inner layer by both viscous and "magnetic" action
so that one expects the shear stress at the wall to be
decreased for two reasons. If one considers that the
increase of the microscale of turbulence could be ascribed
to the reduced energy input, one sees, from Eq. (34)
and from the numerical value found for 8, that the
reduction of shear stress at the wall is mainly due to
the reduced input rather than to the additional Joule
dissipation within the inner layer.
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computed for several values of o-, Eq, and no can all be
correlated by the straight line given by Eq. (60). On
the same Ggure are also marked some points computed
for 0.=0.5. Their position on the diagram clearly indi-
cates the limitations connected with the present results.
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Fxo. 4. Velocity pro61es in the wall region for turbulent
magneto-Quid dynamic boundary layers.

Equation (58b) shows that, for a given Reynolds
number R„ the ratio (Ui/u+) (No+/eo) is always slightly
less than one: that is, the skin-friction coefIicients —,C~
referred to the free-stream velocity U~ is slightly larger
than 2C&0. This is an immediate consequence of the fact
that, as seen again from Eq (59.), the free-stream
velocity rate of decrease with cr is slightly larger than
that of e+.

In the laminar case the presence of the magnetic
field, with its corresponding introduction of an addi-
tional characteristic length, destroys the possibility of
having a strictly similar Qow Geld.

Likewise, in the turbulent case, the presence of the
magnetic fields destroys the validity of an "universal"
law of the wall insofar as there appears now an explicit
dependence upon the Reynolds number R even in the
velocity profile of the inner region.

These velocity profiles are plotted against f'0 in Fig. 4
for some indicative values of r and of E~+. It is seen
that the deviation from the classical straight line occurs
the earlier the lower the Reynolds number R&+, and it
is rather sizable even for low value of 0-. In Fig. 4 there
is also the profile in the laminar sublayer and it appears
that there is practically no inQuence of the magnetic
field on it. This is due to the fact that the corrective
terms appearing in the equation giving the "laminar"
profile

e/I+= f'Ot 1+-', (0./Ri+)| p'j

becomes appreciable only when f'0 lies already in the
"turbulent" region.

Although the law of the wall is no longer an "uni-
versal law, " such is not the case for the skin-friction
law. Considering that Uo= Uo(1—0), defining a skin-
friction coefFicient Cf referred to the initial free-stream
velocity Uo, and a Reynolds number R& by

(-,'Cr) '= (Uo/u+)' Rg ——(U050+/i) (1—0.23230)

Eq. (58b) could also be written as

(1—0) (-,'Ci) &= 5.6 log[(-', Cq)Rgg+7. 543. (60)

It is noteworthy pointing out the similarity of the
structure of this formula with the conventional skin-
friction law. In Fig. 5 it is indeed shown how points

CONCLUSION

Some aspects of turbulent magneto-Quid dynamic
boundary layers have been investigated here for the
case of low magnetic Reynolds number. The basic
equations have been derived together with the balances
of mean and turbulent kinetic energy. A suitable model
for the dissipative region has been assumed and the
modified forms of the law of the wall and of the skin-
friction law derived. The principal results are:

The intensity of turbulent magnetic energy spectrum
is, at any wave number, at least one order of magnitude
smaller than that of the turbulent kinetic energy.

At any wave number the intensity of the kinetic
energy spectrum is lowered by the presence of the mag-
netic Geld.

The reduction of shear stress at the wall is due to
two concomitant reasons. First the work done by the
mean Qow against the magnetic field in the outer layer
tends to reduce the energy input in the inner layer.
Second, the already decreased energy input is to be
dissipated by both viscous and magnetic action.

Quantitative analysis shows that the first cause of
reduction is the more important one.

The law of the wall is no longer an universal law
since it depends explicitly on the Reynolds number also.

The skin-friction law can be given an universal form
which is structurally similar to that valid in ordinary
turbulent Gelds. This last results as well as the majority
of the quantitative analysis is valid only for a small
value of the parameter 0 (the Karman number referred
to the streamwise distance x and to the initial free-
stream velocity Uo).

50
(I-rr ) It'Ct

20

I

o' = O. l—0' 0.2
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I

to
io' IO io'

R Pf Io"

FIG. 5. Skin-friction law for turbulent magneto-Quid
dynamic boundary layers.

APPENDIX A. SOLUTION OF THE BASIC EQUATIONS

Eqgatioe (4Za). The equation to be solved is

fo'"+fofo"=o (no=~+&/~o) (A1)

fo(o) =o fo (o) =« fo'(+")=1 (A2)

By letting s= rto/it+ and by integrating Eq. (A1) from
0 to + ~, the solution which satisfies the boundary
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condition given by Eq. (A2) and yields Sp = —4s'+3s4, S2= s—3s'+2s4, S2——s' —2s'+s4,

fp"'(o) =fo"(")=fo"'(")=o

is determined as

fp= n+Ls+ (1—np) T(s)]
with

2'(s) = —s+s' ——,'s'+-', s',

(rt+)2= 2/t 0 3 .0—182539(1 n—o)]
(A4)

1 p 1 p p 1 p p 1
n+1

f III+Pf Ill (A6)

f2(0)=0' f2'(+")=1' fr'(0)=nr (A7)

where n= 00 and E=2a/(n+1); a being the constant
de6ned by Eq. (37). The solution we are interested in
has to be given in terms of the two parameters o,~ and E.

The solution satisfying Eq. (A6) at s=ptp/rt+=0 and
the boundary condition given by Eqs. (A7) is

with
fl Ã0+ (1+nl)~1+++2 (A8)

The quantities essential for the analysis of the main
body of the paper are to be computed at 2to/2t+=»0
=0.12711 and are given by

(I/No) (so) =fo'(zo) =1—0.749627(1 no),

80+/80 = Jo'(1 fo') d»—=Eo/2t+ =0 3(1 n. o), —

fo"(So) = (1/2t+)1.975902(1—no),

fo(so) =pt+L0 12711—0.111077(1—no)]

Eqgatpon (4Zb). The equation to be integrated is

A i =zo/Ho= 0.043772;

A 2
———~2/(Co) ~=0.755845;

A3= k=0.018;
~4= —h»0Z2'/(Co) *=0.283287.

(A13)

Hp =0.15(1—np)/2,

1 g+ &p

n 1
Hg ———0.3—(1—np) 0.273811+0.007937

0.05'+'np
+ —,(A 10)

3 n+1,
1—clp %+1

H2-
pt+2A 3+n

A =0.091270(1—np) 0.15
3+n pt+2

The expression for 2t+ is that given by Eq. (A4). The
values of S s and of their 6rst derivatives at s=sp are

Sp= —0.007433, Si=0.121470) S2=0.012310,
'Sp 0 169236) Si 0 871019) S2 0 165494

(A11)

Expressions for the fenctpons appearing on the system
ef eqotatpons (54).

G10= (fo'+&0)/(Cp) i Gll=&1/(Co)',
Goo= 1+LhsoZ2 /(Co) ~]; G22= hsoZ2 /(Cp)&, (A12)

G22= (1—gofo); 4=0.4112.

All the functions are to be evaluated at 8=sp=0. 12711.
The constants appearing in Eqs. (56) are given by

Po =2H0S2 —1,

0!p
+2=1+So+2H2S2+ S2

S
(A9)

The constant Hp Np+x/Uppo has——been taken equal to
2.9038 by way of the following calculation.

From Eq. (A5) and (52) one derives that

80+/80=03(1 —np) =2.9038(C0)&.

Z2 2H2Sly

where the S s are functions only of 2' and the H s are
functions only of np. Their expressions are

On the other hand, for large R,= Upx/r it is, to within
an accuracy sufhcient for our purposes, 5p+= xCp, so that

No+x/U080 =2.9038. (A14)

DISCUSSION

Session Reporter: W. H. REID

Professor C. C. Lin (Institute for Advanced Study, Prince-
ton, Neer Jersey) asked for the physical reasons for assuming
that the turbulent magnetic energy is much smaller than the
turbulent kinetic energy. The author argued that since the
magnetic Reynolds number had been assumed to be small, the
equations could be linearized. There would then be no transfer
of energy from the turbulent velocity Geld to the turbulent
magnetic field or more precisely that G(k) «F(k) for all val-
ues of k, where G(k) and E(k) are the energy spectra of the
turbulent magnetic and velocity fields, respectively.

A further physical reason for accepting this assumption was
suggested by Dr. S. A. Colgate (Lamrence Radiation Labora-
tory, University of California, Liverrnore, California). He re-
marked that if the magnetic Reynolds number is small, as the
author had assumed, then the skin depth would be large.
Hence, the vorticity would not be able to stretch or distort

the lines of force. In the absence of such a mechanism, the

field would not be magnified and so would remain small.


