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INTRODUCTION

HE study of the behavior and characteristics of

boundary layers over flat plates when the fluid

is electrically conducting and a magnetic field is present

has both theoretical attractiveness and practical im-

portance. Rossow has solved the laminar case: it is
the aim here to investigate the turbulent case.

The main steps of the present analysis can be enu-
merated as:

(1) deriving the basic equations for the turbulent
flow of a constant property, electrically conducting
fluid;

(2) postulating a suitable model for the turbulent
boundary layers;

(3) obtaining quantitative results based on the

postulated model.
The analysis takes advantage of both the technique
and results of ordinary turbulent boundary layers (such
as have been recently presented, for instance, by Town-
send,! Clauser,? and Ferrari® and of the results of the
elementary theory of hydromagnetic turbulence devel-
oped by Chandrasekhar.

In Sec. 1 the basic magneto-fluid dynamic equations,
linearized with respect to the induced magnetic field,
are presented. In Sec. 2 their “turbulent” form is
derived and the balances of mean and turbulent kinetic
energy are formulated and discussed. In Sec. 3 a suitable
model of the turbulent boundary layer is deduced.

Based on this model, the law of the wall and the skin-
friction law in their modified forms, valid for linearized
magneto-fluid dynamic turbulence, are derived in Sec.
4 in terms of two constants. In Sec. 5 the evaluation
of these two constants is carried out by means of a
technique closely patterned after the Clauser-Ferrari
method.?3 Results are analyzed and discussed in Sec. 6.

1. LINEARIZED MAGNETO-FLUID DYNAMIC
EQUATIONS

The basic nondimensional equations for the magneto-
fluid dynamics of a constant property fluid are

V-v=0,
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av/ot-+V-[vv+ (1/yM ) pU+ (v/Re) J= RuPnI X H,

vXE=—-0H/d; v-E=0, (1)
vXH=47R,J+0E/d¢t; v-H=0,
J=R,(vXH),

where Re is the Reynolds number=V,L/», R, is the
magnetic Reynolds number=¢VouL, and P,, the mag-
netic pressure number=uH ¢*/pV % Subscripts 0 indicate
reference conditions and all the other symbols have
their usual meanings.

Equations (1) are consistent with the following
assumptions:

(i) The fluid is incompressible and with constant
properties.

(ii) Electric free charges density and displacement
currents are negligible.

(iii) The total electric field and the convective electric
current are of the same order of magnitude as those
originated by the magneto-fluid dynamic interaction.
Moreover, any applied electric field is absent.

(iv) The “continuum” hypothesis holds throughout.
Justifications for these hypothesis as well as their
implications and range of validity can be found in
several appropriate references.

By eliminating the electric field E and the electric
current J and by specializing the viscous stress tensor
© to the present case, the system (1) is reduced to the

following two differential equations in the two unknowns
vand H:

pU =
yM¢ Re

P 3
v [t +ZGH-HU-HE) |+ =,
4 ot

(2)
1 oH
\ L [R,,.(Hv— vH) -—-—VH]—I—R,,.—-*—- 0,
4 at

and, naturally, both vectors v and H have zero
divergence.

It may be proper here to point out that the Maxwell
equations for the electromagnetic field in the absence
of the fluid-dynamic field are linear. It is the coupling
of the two fields which introduces nonlinear terms in
the equation for the magnetic field and additional
nonlinear terms in the momentum equation. This con-
sideration bears a certain importance, as is seen later,
in the analysis of the turbulent field.

The complicated nature of Egs. (2) usually requires
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that some additional simplifications be made before
attempts towards a solution can be afforded. One possi-
bility is the linearization with respect to the magnetic
field.

Let

H=n+eh+0(e), 3)
where n is the unit vector Ho/|Ho| (H, is the applied
magnetic field) and ¢ is a quantity of the order of
magnitude of R,. Since a large variety of cases of
interest for the aerodynamicist are concerned with small
values of R, it is assumed that terms of order higher
than the first in e can be neglected. Then, if the applied
magnetic field is assumed to be constant both in mag-
nitude and direction, substitution of (3) into Eqgs. (2)
yields

pU =
v {vv—!————-——
’)/]M—o2 Re

P, av
+—(n-h)U~— (nh+hn)]|+——=0, 4)
A ot

v-[(av—vn)— (1/4x)vh]=0. (5)

From these equations it appears that, in order to
preserve the magnetic term in the momentum equation,
eP,, must be of order one.®

A simple vectorial algorithm indicates that Eq. (5)
can be integrated once to obtain

vXh=47(vXn) 6)
and that
V:[(n-h)U— (nh+hn)]=nX (Vv Xh), (7
since both n and h have zero divergence and, in addi-
tion, VXn=0. Combining Egs. (6) and (7) results in
V:[(n-h)U— (nh+hn)]=4mnX (vXn)=4rv,,

where v, is the component of v normal to the applied

magnetic field.
The linearized equations of magneto-fluid dynamics

thus read

pU ) Vv av
) _'——'+PmRmvn+_= O,
Re ot

v ' v+
’YM02
®

v-ev=0.

The linearization process thus eliminates the addi-
tional nonlinear terms and uncouples the equation of
motion from that of the magnetic field.

5 Other possibilities may be of interest but they are outside the
scope of this paper. Actually, besides the unsteady term, the
momentum equation contains pressure, viscous, and magnetic
terms whose relative importance with respect to the convective
term is measured by the numbers |yM¢|, Re, and eP., respec-
tively. The order of magnitude of these numbers determines
whether or not the corresponding terms are negligible and affords
several simplified forms of the equation itself.
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2. LINEARIZED MAGNETO-FLUID DYNAMIC
EQUATIONS FOR THE TURBULENT
FIELD. ENERGY BALANCES

The equations for the turbulent field are derived with
the usual assumption that Egs. (8) still hold for the
instantaneous values of the quantities involved.

Let v=V+44 and p=(p)+p’, where V and (p) are
average values of the velocity vector and of the
pressure; and v’, p’ the corresponding fluctuating parts.
Angular brackets { ) indicate an average. Substitution
into Egs. (8) yields

v (V+v)=0
(p)+p"U
yYM?

V2 0
——(V+V)+Rp P (Vb v, ) +—(V+v)=0. (9)
Re at

Vel VV+vV+ Vv vV

Averaging these equations and indicating by angular
brackets ( ) the averaged values result in

v-V=0
VYV (V) +(p) v }
Ve vy
{ ? M
\a'% av
——-—+RumVn+——=0. (10)
Re ot

The turbulent linearized magneto-fluid dynamic equa-
tions have just the same expression as the fluid-dynamic
equations except, naturally, for the added magnetic
terms which, however, depend only on the mean
velocity field. This was naturally to be expected since,
as noticed before, there is no additional nonlinear term
involved and thus there cannot be any additional term
involving fluctuations.

It is now rather simple to extend to Egs. (10) the
well-known boundary-layer order of magnitude analysis.
The result is, in terms of dimensional quantities and for
isobaric outer flow,

u+1,=0, p,=0(),
Wtk vty Fmu=vu,,— (u'v'),

(11)

where mean values are to be intended for all quantities
and where
m=oB 02/ P (12)
depends on the applied magnetic field Ho, on the fluid
electric conductivity ¢, and has the dimension (time)—.
The term (u'v') represents the familiar Reynolds stress
due to the fluctuation of velocity.
For future reference, it is useful to write down the
equations expressing the balance of mean kinetic
energy 3V? and of turbulent energy E,= (3v2).
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Multiply Egs. (9) scalarly by v’ and take the mean
to obtain

(Vev-[WHVV)H(- v (v'V))

_I_.

1
', AV /2y’
’YM()?(v vp') ——Re(v vv')

/

FRuP ol v )+ (v'-—-) =0.
ot

It is easily verified that this equation can be trans-
formed into

V-VEAV-[(vV('+5v- V) ]+ (V) VvV
—Re[VEEA3: 3 (0vi//0x;)*]
FRuPm{(va')?)=0, (13)

thus giving the turbulent energy balance in a steady
state. The first four terms contributing to this energy
balance are well known.!* They are the convection
term, the diffusive term, the production term, and the
dissipation term, respectively. One more term is now
present, the last one. It is due to the presence of the
magnetic field and represents the additional dissipation
of turbulent energy caused by the magnetic field.
Physically, this is due to the fact that the line of forces
of the magnetic field tend to oppose any crossing of
conductive fluid, thus some of the available turbulent
kinetic energy must be spent to do work against the
magnetic field.

To obtain the balance of the mean kinetic energy
3V?=E,, Eq. (9) is multiplied scalarly by V to obtain

1 V2V

Vv i VYV (V) +—(p)U =V —
Re

M

oV
+RnPu Ve V4 V,,-—é?:O,

or, in the steady case and through the usual algorithm

1
V-VE,+v-({vV) -V)+

v (pV
QL

AV;\?
—{v'Vv):vV—Re| V2E,,— 3 Z( ) ]
i 7 \0x;

+RunPuVa-V=0. (14)

Again, all the features of the corresponding energy

balance in a purely fluid-dynamic field are preserved.

In addition, there is again an additional term due to the

exchange of energy between the velocity and the
magnetic fields.

We revert now to Egs. (11) valid for the turbulent

boundary layer in linearized magneto-fluid dynamics.

Within this linear approximation, the only fluctuating
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term is that corresponding to the Reynolds stress. To
relate this fluctuating term to properties of the mean
flow field, it is necessary first to get a clearer idea of
what are the essential physical features of the subject
problem and how, and to what extent, they differ from
the familiar ones of ordinary turbulence. This analysis
is carried out in the next section wherein it is also
formulated a suitable “model” of the subject dissipative
region so as to make subsequent quantitative analysis
possible.

3. DEDUCTION OF A MODEL FOR THE
TURBULENT LAYER

In the current view about turbulence, a fundamental
physical idea is that of the cascade of energy from the
larger to the smaller eddies.!® This process has been
recently generalized by Chandrasekhar? to hydromag-
netic turbulence.

In ordinary turbulence the accepted supposition is
as follows. Energy is first supplied to the Fourier com-
ponents of the velocity field which are of the smallest
wave numbers (largest eddies), it is then transmitted
to the higher wave numbers and it is finally dissipated
into heat by viscosity at the highest wave number. The
energy transfer from one wave number to another can
only occur because of the nonlinear coupling between
the different Fourier components of the velocity field
(this nonlinearity character is contained in the inertial
terms of the equation of motion). The rate at which the
kinetic energy per unit volume and per unit wave
number interval at the wave number £’ is transformed
into kinetic energy at the wave number &” (> %) is given
by the transition probability Qi(v,k’;v,k”). At any
number £, the rate of change of energy density is equal
to the balance between the energy gained from the lower
wave numbers, the energy lost to the higher wave
numbers, and the energy directly dissipated by viscosity.

According to Chandrasekhar, this process. can be
generalized to hydromagnetic turbulence as follows.
First of all one must consider that there is another type
of turbulent energy, the energy of the turbulent mag-
netic field, so that at each wave number, one has to deal
now with two energy balances. Secondly, other non-
linear terms beside the inertial terms appear in the
equations of motion and in that of the magnetic field
so that additional couplings are possible among the
Fourier’s components: kinetic and magnetic energies
can be transformed into one another. No direct trans-
formation of magnetic energy between two wave
numbers is, however, possible, owing to the linearity
of the Maxwell’s equation. Chandrasekhar thus intro-
duced two more transition probabilities: Qs(v,%’; k,k"")
(rate at which kinetic energy per unit volume and unit
wave number interval at the wave number %’ is trans-
formed into magnetic energy at the wave number
B'>F); and Qqu(hk ;v,k") (rate at which magnetic
energy per unit volume and unit wave number interval
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at the wave number k' is transformed into magnetic
energy at the wave number k”/>Fk’). At any wave
number % the net rate of change of kinetic energy
density is now expressed by the balance of five terms:
(1) kinetic energy gained from lower wave numbers,
(2) kinetic energy lost to higher wave numbers; (3)
magnetic energy from lower wave number transformed
into kinetic energy at % (gain); (4) kinetic energy at %
transformed into magnetic energy at higher wave
numbers (loss); and (5) energy dissipation by viscosity.
The corresponding net rate of change of magnetic
energy at a wave number % is expressed by the balance
of three terms: (i) kinetic energy at lower wave
numbers transformed into magnetic energy at % (gain);
(ii) magnetic energy at % transformed into kinetic
energy at higher wave numbers; and (iii) dissipation
of magnetic energy due to the electrical conductivity
(Joule heat). Chandrasekhar shows then that it is
plausible to assume for the transition probabilities the
following relations:

’

Q. (k' k)= const[ﬁ]

X[iF (EVFHE")+jGE)GHE)],  (15)
where F(k) and G(k) are the turbulent kinetic energy
and magnetic energy spectra, respectively, and i=1;
7=0for s=1;4=0, j=1for s=2;4=1; j=1 for s=3.

From these expressions and from the results of
Chandrasekhar, it is possible to deduce the following
statements for the case of linearized magneto-fluid
dynamic turbulence:

(1) The intensity of the turbulent magnetic energy
spectrum is, at any wave number, one order of mag-
nitude smaller than that of the turbulent kinetic energy.

(2) As a consequence, from Eq. (15) it follows that
the probability of exchange between turbulent kinetic
and magnetic energies is negligible compared to the
‘probability of transition of turbulent kinetic energy
from one wave number to another.

(3) At any wave number the intensity of the kinetic
energy spectrum is lowered by the presence of the mag-
netic field.

The first two statements are almost obvious and
relate back to the already noticed absence of any other
nonlinear term, beside the inertial ones, in-the basic
equations. The third one could be rigorously demon-
strated by subjecting the Chandrasekhar theory to a
linearization process.® For an heuristic proof, one can
consider that the balance equation from which the
energy spectrum is to be calculated must necessarily
have a structure similar to that of Eqgs. (8). It therefore
contains the additional dissipative term due to the
Joule effect and leads, consequently, to lower values of
the energy spectrum.

6 It is our intention, indeed, to do this in the immediate future.
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In conclusion, the energy cascade process in linearized
magneto-fluid dynamic turbulence can be pictured as
follows. Transfer can only occur between turbulent
kinetic energies of different wave numbers, all the other
possible exchanges having much lower probabilities. At
any wave number %, the rate of change of energy density
is equal to the balance between the energy gained from
the lower wave numbers, the energy lost to the higher
wave numbers, the energy directly dissipated by vis-
cosity, and that dissipated by Joule effect.

Let us now proceed further and examine the tur-
bulent flow along bodies. When the fluid is noncon-
ducting there exist two regions with different “charac-
teristic times of adjustment’: the inner region and the
outer region. In the first one there is a form of statis-
tically determined local quasi-equilibrium while in the
second one conditions of “dynamic equilibrium” prevail
which lead to self-preserving flows. Energy is being
extracted from the mean flow by the Reynolds stress
gradient, transferred to the inner layer, and converted
into turbulent energy by the working of the mean flow
against the Reynolds stresses. In the inner layer this
turbulent energy input is nearly all dissipated by viscous
action, the small surplus being fed back into the outer
layer.

When the fluid is conducting, the effect of the mag-
netic field on the above described energy transfer
scheme as deduced from equations of energy balances
(13) and (14) is twofold. For one thing, the exchange
of work between mean velocity field and magnetic field
modifies the input of energy into the inmer layer.
Secondly, the already modified turbulent energy input
is dissipated by both viscous and magnetic action so
that the viscous dissipation at the wall is now a smaller
fraction of the energy input.

The turbulent energy input to the inner layer is
reduced since the interaction between mean flow and
magnetic field in the outer layer leads to a dissipation
of mean kinetic energy. The reduction of local skin-
friction coefficient is thus due to two concomitant
factors: magnetic dissipation of mean kinetic energy
in the outer layer and magnetic dissipation of turbulent
kinetic energy in the inner layer.

The equation giving the turbulent energy balance
makes it possible to formulate another important con-
clusion which proves essential in the further develop-
ment of a quantitative analysis. The additional mag-
netic term comparing in the equation is multiplied by
the number R,P, which, by hypothesis, is of order of
magnitude one. Then the additional *characteristic
time” connected with the magnetic field is of the same
order of magnitude as that prevailing in the absence of
the magnetic field. This fact justifies then the funda-
mental assumption that even in the subject case the
inner layer is in a state of statistically determined quasi-
equilibrium. Quite obviously this equilibrium is now
determined by the balance of turbulent energy pro-
duction, viscous dissipation, and magnetic dissipation.
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To conclude: In linearized magneto-fluid dynamics
it is justified to extend the concept of the two-layer
model of the dissipative turbulent region and to assume
that equilibrium conditions and wake-type characters
still prevail in the inner and outer regions, respectively.
This accepted model for linearized hydromagnetic tur-
bulence forms the basis for the development of the
quantitative analysis which is carried out in the sub-
sequent sections.

4. LAW OF THE WALL AND SKIN-FRICTION LAW

In this section are derived the modified forms of the
law of the wall and of the skin-friction law with the help
of the two-layer model discussed in the preceding
section.

Since in the inner region there is statistically deter-
mined local quasi-equilibrium, the velocity # can depend
only upon the quantities p, », y, m, and 7o with which
the following nondimensional ratios can be formed:

S=uty/v; x=my/ut. (16)

Here, ut= (1¢/p)? and 7 is the shear stress at the wall.
Thus, in the inner region, the velocity profile is ex-

pressible as
w/wt="F({x). Qa7

F is still an undetermined function, and to get an explicit
relationship for it one must consider the velocity profiles
in the outer region first.

As said, this region is characterized by the fact that,
for sufficiently large Reynolds numbers, molecular
transport effects can be neglected. The equation of
motion indicates then that the Reynolds stress (#'v') is
essentially a function only of the two independent vari-
ables n=y/ly(x) and o=mx/U, where l(x) is an
adequate scale for the lengths. By accepting the usual
approximation that an analogous functional dependence
for the velocity profiles follows from the momentum
and continuity equations,’~® we infer that in the outer
region it is

u— Ul:qu(mo') [G(+°°7 U)=0]; (18)

where U,=Uy(1—0) is the free-stream velocity; #o(x)
is a suitable velocity scale. To determine the functional
expression for F, one now postulates the existence of an
overlapping region wherein both Egs. (17) and (18)
are valid and, wherein, accordingly, it must be

wrF (¢,x) = UrtuG(n,0). (19)

A necessary but not sufficient condition for this equality,
is that some definite relationships exist between the two
couples of independent variables (¢,x) and (n,0).

By assuming the scale length proportional to the
boundary layer thickness 6 and #o(x)=u*, one obtains

§=Rn; x=on/H, (20)
where
R=uts/v=R(x);

H=urx/U=H(x), (21)
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and Eq. (19) becomes
F (Rﬂﬂ"l/H) = f(R,H)+G(1],0)

with Ui/ut=f(R,H). It has been found impossible to
satisfy this relation with a suitable expression for F
which would reduce to the familiar one for ¢=0 (non-
conducting fluid) unless ¢ itself can be considered small.
In this case, by neglecting the higher powers of o, it is
possible to write, for the inner and outer regions, respec-
tively,

u/ut=Fo(§o)+xoF1($0),

(u—U1)/wt=Go(no)+0G1(n0) @2

with
Co=udty/v;" xo=my/ust; no=uty/d, (23)

where the subscript zero indicates the values for =0
(m=0) and yt+ is the value of 4 for y=4¢o. It 1s pointed
out that once it is assumed that ¢ is much less than 1,
Xo is also very small, since, as it is seen in the following
the maximum value of x, is equal to about (1/25)c.

Consider now that, to the same degree of approxi-
mation in ¢, we have

Uy, Ugrl ut
!
ut  wugt ot

where, as it is always possible to do formally,
ut= uo+(i+au1+/uo+).

The requirement that the two different expressions
for the velocity profile coincide within the overlapping
region is then equivalent to the following two equations:

Fo(fo) = (UO/“0+) +G0(770)’

Ho Uo u1+ (25)
Fx(s“o)=—[Gl("lo "——(H‘—‘ ],
+ ugt

il Uo

(24

wherein Ho=uqx/Uo is now a constant. The first
equation yields the well-known relations

Fo=k[Ingo+A4]; Go=k"[Inne+4"].  (26)
The second equation can be satisfied if, and only if,
F1(to)=const=B,

(Uo/udt)[1+ (u1t/uet) ]=const=k,, (27)
from which it follows that
G1(no)= (B/Ho)no+k. (28)

It should be pointed out that the second of equations
(27), following a fortiori from the hypothesis of the
existence of an overlapping region, is the crucial point
of the present approach. It is needless to say that it
cannot be justified theoretically but can be proved
valid only through comparison with experiments.

By properly combining the preceding equations, we
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can write the law of the wall and the skin-friction law
in their modified forms valid for ¢<<1 as follows:
Law of the wall:

my

u 1 ugty
—=—[ln—~—+A]-l—B—— (B=const)  (29)
ut k 4 %0+
Skin-friction law:
Ui 1 w560 mx
—= —[ln +A4—A4 ’] —ky— (ka=const), (30)
ut v U

where the constants &, 4, and A’ are those of the familiar
laws of fluid dynamics.

The constants B and k; are still undetermined. Their
evaluation is taken up in the next section. Before this,
however, we show how the law of the wall, (29), is in
agreement with that derivable through the expression
of the energy balance close to the wall.

The balance of turbulent kinetic energy near the wall
is expressed by

W)Uy +v S 5 ((ud/dy)+m(ul%=0, (31)

where the first term gives the production of turbulent
kinetic energy E; and the last two the viscous and
“magnetic” dissipation, respectively.
It looks plausible to let
W)= —aiE; (4?)=arE,

2

aui' lIgEt
() -2,
i 7 \9x; A2

(32)

 where the a; are positive and A has the dimension of a
length (the so-called microscale of turbulence).

In the case of a nonconducting fluid the quantity
A2/(vy/wt) is a constant. In the present case it is
logical to assume that it is a function of the nondimen-
sional parameter x=my/ut so that, for x small, one

can let
N=ay(yv/ut)[1+as(my/u*)]. (33)
Substitution of Egs. (32) and (33) into Eq. (31) yields

% azesl as—azouas m

b
wt  ap Y ar  ut

from which, upon integration, Eq. (29) follows with
(34)
There seems to be, therefore, an inner consistency in

the relations found for the law of the wall and the skin-
friction law.

5. DETERMINATION OF THE CONSTANTS
APPEARING IN THE MODIFIED LAWS

B= (as—azoqas)/01.

To evaluate the two constants %k, and B appearing
in the law of the wall and in the skin-friction law, an
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extension of the Clauser-Ferrari technique is used.??
Essentially, the method consists in determining a series
of “laminar” velocity profiles, with nonzero velocity at
the wall, for the outer region and matching them with
the velocity distribution valid for the inner region by
imposing at the matching point continuity in the
velocity, the velocity derivative, and the eddy coefficient
of kinematic viscosity.

Consider the inner region first. The velocity profile
is given by Eq. (39). To compute the eddy coefficient
e=7/u, one must first determine the shear stress 7.
From the momentum equation written in the form

Wittty +mu= (1/p)y,

it is inferred that in the inner region, if the terms con-
taining the second and higher powers of the distance
from the wall are neglected, the shear stress is still
constant and equal to its value at the wall 7o. Con-
sequently, it is

e=1/tty= 1o/ ty=k(yut/v)[1—EB(my/us*)]. (35)

Consider now the outer region wherein, by hypothesis,
molecular transport effects are neglected. The basic
equations are

U0y = 0, (36)

where the eddy coefficient e=r7/u, is now assumed to
be a function only of x. The functional dependence for
¢ is to be determined from the requirement that this
region retains a certain degree of similarity, i.e., that
the velocity profiles could be described by a series of
universal functions in terms of the magnetic number
o=mx/U,. It is shown that this implies the following
expression for e:

e=hpUb¢t[1+0a] (a=const), (37)

where 8, is the displacement thickness in the absence
of the magnetic field and % is a constant.

Let, indeed, the stream function ¢ defined by ¥ ,=u
and ¢,= —v be given by

Y="1(x)Uo fo(no)+ofi(no)+---]

Wik V1t mu= iy,

(38)
with

10=1/l(x), (39)
where Io(x) is the length scale. Substituting the ex-
pressions for the velocity components derived from
Eq. (38), grouping the terms in the like powers of o,
and neglecting terms in ¢? yield the following two equa-
tions for fo and fi:

eox f /I’_’_lo,xf f "
Ui 0 A ofo =0,
. lolx
S 0'—T[f of "+ fufd 1= fifo” (40)
’ €X €1X
+ = fllll+_folll’

Uil Uole?
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where primes indicate differentiation with respect to
the pertinent variable and where, for the moment, we
have put e= eg+oe;.

For Eqgs. (40) to be consistent with Eq. (38), it is
necessary that their coefficients be constant. The first
of Egs. (40) determines the relationship between e
and Jo. Since ¢ is the value of the eddy coefficient in the
absence of the magnetic field, one can let (cf. Clauser?)

60=%Uo(l()2)'= hpU030+ (4:1)

with %£=0.018. The similarity requirements on the
second of Egs. (40) imposes that ly'x/lo=constant=a,
and that ¢ as indicated in Eq. (37) be proportional to €.
The first requirement is the most stringent one since it
can be met only if the Reynolds number Ug/v is suffi-
ciently large, for then it is §¢t~x" and ;=% (n+1).

In conclusion, the characteristics of the outer region
can be found from the solution of the following system
of equations:

fo""+ fofo"' =0, (42a)
2
;_ﬁ[fl fo' = fufd"+ fo' 1= fofy"' = fifo
— /’I+ za n 42b
=fi n—_ﬁfo . (42b)
The boundary conditions are
fi(+»)=1, fi'(+o)=—1,
fo(0)=0, f1(0)=0, (43)
fd' (0)=a, f'(0)=a.

The first two boundary conditions are dictated by the
joining of the outer region with the nonviscous flow.
The last one prescribes a velocity at the wall different
from zero.

The velocity profiles are given by

;]u—o=f’(no)+vf1' (n0) (44)

and are functions of the three parameters aq, a1, and
P=2a/(n+1). The latter one, together with the
constants still unknown in the expression for the
velocity in the inner region and in the skin-friction law
are to be determined by imposing a certain number of
continuity conditions at the point where the profile
given by Eq. (44) is matched with that holding in the
inner region.

The point where the matching occurs is also unknown
a priori. Let y=9o+0oy:1 be the ordinate of the point Q
where the matching takes place; yo being the ordinate
of the point where the matching would occur if the
magnetic field were absent. The point Q, by hypothesis,
lies within the overlapping region.
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When Q is though of as belonging to the inner region,

it is characterized by the value {o4o¢1 of ¢ with
Co=ugtyo/v; S1=udtyi/v, (45)

and the velocity, its gradient #,, and the eddy viscosity
coefficient at the point Q are equal, respectively, to

wt$r ustyo
+B }
ugt? 1}
viok ol

uo+ u1+
= fnfk AT o] o)+

Bu0+

H )

% 0+2 u 1"'%0"'
e { (46)

kvfo kvfo

kB Yo u1+
k§'0+0'{ ke —§o——+kfo— },
Ho 80 ’140+

wherein it has been assumed that: #*=u¢*4-ous*, and
it has been taken into account that

o=max/Uo=Ho(myo/ut) (5o/y0)- (47)

When the point Q is thought of as belonging to the
outer region, it is characterized by the value no-+on1 of
7 with

no=7"y0/80; m=u"y1/d, (45a)

wherein gt is equal to the value of 9 for which y=2o.
Velocity, velocity gradient #,, and eddy coefficient are,
respectively,

Uo{ fo' (o) +o[n1fo” (no)+ f1' (no) 1},

U o’l7+
; {f" (o) +-olmfo” (no)+ " (n0) 1},  (46a)
hU bt
{1+oP}.

At the matching point Q the values given by Eqs. (46)
and (46a) must coincide for any value of ¢. This leads
to the following two systems of equations:

Co=wuqtyo/v=(Co)*Rumo/ Ko,
Ingo+A="Ef' (n0)/ (Co)},

48
(kgo)1=Cq(Ko/Ro) fo'' (n0), (48)
kto="hR,,
with
Cro\}? wugt Uodo*
(Co)t= ("—') =—; Ro= ;
2 Uo 14

(49)

St @
Ko=n+—-=f (1—£o)dn
do 0
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F16. 1. Characteristics of the nonconducting turbulent
boundary layer.

and
S1={om/no,
urt 1¢1 B o
—'—'(lnfo—f‘A)'f"——‘f"—'“—
kU, k¢o Hont
{1
=(C o)“%[ﬂog_‘f o (no)+ f 1’(’70)];
0
A A0, (0)
. : HoRe fo o CoRoLm o' (mo)+ 11" (mo) ],
kS1 kBB o wit IRy
So Hont  ugt  &o

The system of equations (48) governs the matching
in the case of nonconducting fluids and it is identical
with that given by Clauser.? The four unknowns are
¢o, M0, (Co)}, and Ry. The parameter free is the value
f'(0)=ay of the velocity at the wall. By varying ao one
can obtain the relation (Co)¥=g(R,). Clauser has shown
that the relation thus obtained is almost identical with
the following well-known law :

(Co)~4=5.6 logRo+4.3. (51)

We have first solved the system of equations (48) using
for fo numerical solutions obtained by means of an
electronic computing machine. Some of the essential
quantities thus obtained are shown in Fig. 1.

For the solution of the system of equations (50), all
the dependent variables are needed in terms of ao.
Therefore, we have sought another solution by taking
for fo the expressions obtained by integral methods (see
Appendix A). All the results thus obtained exhibited
errors which never exceeded 1 or 29. The quantities
essential to the analysis are given by the following
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relations:
(Co)1=0.103313(1—a),
fo' (1) =1—0.749627 (1 — o),
Jo" (o) = (1.975902/5*) (1—a),
no/7t = y0/80=0.127110,
Ko/nt=0.3(1—aq).

(52)

The diagram of (Co)? against logR, as computed from
the preceding relations is compared, in Fig. 2, with that
obtained from Eq. (51). It is seen that the agreement is
satisfactory for our purposes.

Consider now the system of equations (50). The
functions fi" and fi"’ have been obtained by means of
an integral method (see Appendix A) and can be
expressed as

S (o) =20+ (14a1)Z1+P2,,
fi'' (o)) =2d+ (14a)Z/+PZ,,

where the 2; and 2,/ are functions of «y given in Ap-
pendix A.

By taking Egs. (48) and (52) into account and by
recalling that wut/ugt=Fky(Co)i—1, the system of
equations (50) can be written as

k2+A 1B+A 2P= Gl()+ (1+0(1)Gu+0749627k2(1 '—Dlo),

A3B+A44P=Goot (14+a1)Ga+ZG2e
—0.1033 13k2(1—a0),

— A3B—P=1—27—0.103313(1—ay),

(53)

(54)

where the 4;’s are constants, Z={1/{,, and the G;; are
functions of (1—aq) reported in Appendix A.

The fundamental unknowns of Eqs. (54) are the
three constants ks, B, and P. The quantities a;= f’(0)
and Z={1/{o are some .as yet undetermined functions
of ap. These functions must be such as to make the
right-hand side of Egs. (54) constant.

Let

(1+0£1)G11= —Glo'—0.749627 (1 —ao)+D4, (558.)
Z=—0.103313%(1—ap)+Ds, (55b)
Ot
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Fi16. 2. Comparison between experimental skin-friction
Jaw and computed points.
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Ggo-}-G—n[:—Gm—-0,749627k2(1—ao)+D4]
Y Gu[0.137819Dy(1—ag)+Ds]
—0.137819D; (1—ag)=Ds,
Dy=—0.739726k,

(55¢)

so that the system of equations (54) becomes
kst A1B+A:P=D,,
A3B+AP=D,,
A3B+P=D;—1,

where all the D;’s are constants. Equations (56a) and
(56b) can always be satisfied since they merely serve
to define the variation with ay of the free parameters a;
and Z. It remains to see whether the variations thus
defined are such as to render constant the left-hand
side of Eq. (55c). Since this relation contains three
arbitrary constants Dy, D, and Dy, it is always possible
to satisfy it for three values of ao. Thus the actual
solution has been accomplished by determining first Dy
and Ds as functions of ks from Eq. (55¢) written for
three different values of ap and then by solving Eq.
(56) for the remaining unknowns B, P, and k,. That
the constants D; thus determined would actually satisfy
Eq. (55c) for any value of ay was checked o posteriors
for several values of ao and proved to be true within
less than 19,

This procedure yielded the following values for the
required quantities:

B=—56.94, P=0.4222, k,=1.867,
Z={1/t0=0.3973—0.1929 (1 —ay),
(14a1)Gu= —G1—1.3997 (1 —a) —0.3061.
This completes the solution of the problem since now
we know both qualitatively and quantitatively the

characteristics of the turbulent boundary layer. They
are discussed in the next section.

(56)

(7

6. ANALYSIS OF THE RESULTS AND
CONCLUDING REMARKS

Let us summarize first the results obtained in the
present investigation. When an electrically conducting
fluid is in turbulent flow along a flat plate in the presence
of a magnetic field, the law of the wall and the skin-
friction law assume the following modified forms:

u/ut=>5.6 log (usty/v)+4.9
—56.9(c/Rso+) (usty/v), (58a)
Uy/ut=35.6 log(uotdo/v)+7.543—1.870, (58b)

where o=mx/ Uy, Rso+=Uodgt/v, and the subscript zero
refers to conditions for c=0 (absence of magnetic field
or nonconducting fluid). Equations (58) hold for small
values of the magnetic Reynolds number and are valid
to within terms of order o. The velocity U, is the free-
stream velocity equal to Uo(1—o0).
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F1c. 3. Rate of decrease of friction velocity per
unit magnetic parameter o.

The friction velocity #t= (7¢/p)? is given by
wt=ugt[ 140 (1.867(3Cr)}—1)7, (59)

where (3Cro)}=us"/uo is the skin-friction coefficient for
o=0. With the help of the preceding three relations
we can now discuss the effects of the magnetic field on
the characteristics of the turbulent layer.

Considering that (3Cs)? is a function of R,=U,x/7,
Eq. (59) indicates that, for a given R, the friction
velocity at the wall is decreased by the action of the
magnetic field. In Fig. 3 the quantity

[1— (u/ugt) Jo—t=1—1.867 (RCro)},

yielding the rate of this decrease per unit o, is plotted
against the Reynolds number R,. It appears that the
rate increases as R, increases and that it is quite sizable.
For a Reynolds number of 105 the decrease in the
friction velocity (i.e., the shear stress at the wall) is
already of the order of 109, for ¢ as low as 0.1.

This decrease in shear stress at the wall for a given
R, is also discernible from the expression for the micro-
scale of turbulence given by Eq. (33). It appears
indeed, for the value of the constant that we have
computed, that everything else being constant (that is,
for R,=const), the presence of the magnetic field
tends to increase the microscale N and thus decreases
the percentage of turbulent kinetic energy dissipated
through the viscous action of the fluid.

This consideration leads to another important remark
which is connected with the previous discussion of the
energy transfer within the inner layer. We have seen
that, for a given initial energy level of the free stream,
the turbulent kinetic energy input into the inner layer
is decreased by the presence of a magnetic field fixed
with respect to the plate due to “magnetic” dissipation
of mean kinetic energy (Joule dissipation) in the outer
layer. This reduced energy input is to be dissipated in
the inner layer by both viscous and “magnetic” action
so that one expects the shear stress at the wall to be
decreased for two reasons. If one considers that the
increase of the microscale of turbulence could be ascribed
to the reduced energy input, one sees, from Eq. (34)
and from the numerical value found for B, that the
reduction of shear stress at the wall is mainly due to
the reduced input rather than to the additional Joule
dissipation within the inner layer.
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F16. 4. Velocity profiles in the wall region for turbulent
magneto-fluid dynamic boundary layers.
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Equation (58b) shows that, for a given Reynolds
number R,, the ratio (U1/u*) (ugt/uo) is always slightly
less than one: that is, the skin-friction coefficients 3C;
referred to the free-stream velocity U, is slightly larger
than $Cr. This is an immediate consequence of the fact
that, as seen again from Eq. (59), the free-stream
velocity rate of decrease with o is slightly larger than
that of #*.

In the laminar case the presence of the magnetic
field, with its corresponding introduction of an addi-
tional characteristic length, destroys the possibility of
having a strictly similar flow field.

Likewise, in the turbulent case, the presence of the
magnetic fields destroys the validity of an “universal”
law of the wall insofar as there appears now an explicit
dependence upon the Reynolds number R, even in the
velocity profile of the inner region.

These velocity profiles are plotted against o in Fig. 4
for some indicative values of o and of R;+. It is seen
that the deviation from the classical straight line occurs
the earlier the lower the Reynolds number R;+, and it
is rather sizable even for low value of ¢. In Fig. 4 there
is also the profile in the laminar sublayer and it appears
that there is practically no influence of the magnetic
field on it. This is due to the fact that the corrective
terms appearing in the equation giving the “laminar”

profile
u/wr=¢o[1+%(o/Rs)$ %]

becomes appreciable only when { lies already in the
“turbulent” region.

Although the law of the wall is no longer an “uni-
versal law,” such is not the case for the skin-friction
law. Considering that U= U,(1—¢), defining a skin-
friction coefficient C; referred to the initial free-stream
velocity Uy, and a Reynolds number R; by

(ACot= (Uo/u)?; Rs=(Uodst/v)(1—0.23230),
Eq. (58b) could also be written as

It is noteworthy pointing out the similarity of the
structure of this formula with the conventional skin-
friction law. In Fig. 5 it is indeed shown how points
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computed for several values of o, R;, and ag can all be
correlated by the straight line given by Eq. (60). On
the same figure are also marked some points computed
for ¢=0.5. Their position on the diagram clearly indi-
cates the limitations connected with the present results.

CONCLUSION

Some aspects of turbulent magneto-fluid dynamic
boundary layers have been investigated here for the
case of low magnetic Reynolds number. The basic
equations have been derived together with the balances
of mean and turbulent kinetic energy. A suitable model
for the dissipative region has been assumed and the
modified forms of the law of the wall and of the skin-
friction law derived. The principal results are:

The intensity of turbulent magnetic energy spectrum
is, at any wave number, at least one order of magnitude
smaller than that of the turbulent kinetic energy.

At any wave number the intensity of the kinetic
energy spectrum is lowered by the presence of the mag-
netic field.

The reduction of shear stress at the wall is due to
two concomitant reasons. First the work done by the
mean flow against the magnetic field in the outer layer
tends to reduce the energy input in the inner layer.
Second, the already decreased energy input is to be
dissipated by both viscous and magnetic action.

Quantitative analysis shows that the first cause of
reduction is the more important one.

The law of the wall is no longer an universal law
since it depends explicitly on the Reynolds number also.

The skin-friction law can be given an universal form
which is structurally similar to that valid in ordinary
turbulent fields. This last results as well as the majority
of the quantitative analysis is valid only for a small
value of the parameter ¢ (the Karman number referred
to the streamwise distance x and to the initial free-
stream velocity Uo).

APPENDIX A. SOLUTION OF THE BASIC EQUATIONS
Equation (42a). The equation to be solved is

F"+fofd"=0 (no=n%y/d0), (A1)

fo(0)=0; fo'(0)=ao; fi'(+»)=1. (A2)

By letting z=17/4+ and by integrating Eq. (A1) from
0 to -+, the solution which satisfies the boundary

5 30 et
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Fi16. 5. Skin-friction law for turbulent magneto-fluid
dynamic boundary layers.
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condition given by Eq. (A2) and yields
S (0)=fo" () = fo' () =0
is determined as
Jo=ntz+(1—a)T(z)]
T'(2)=—z+22—32'+ 125,
(n")2=2/[0.3—0.182539(1 —a) .

The quantities essential for the analysis of the main
body of the paper are to be computed at no/7t=2
=0.12711 and are given by

(1) 40) (20) = fo! (20) =1—0.749627 (1 —axo),
b6t/8u= S5 (1= fo)ds=Ko/1+=03(1=a0), (559
" (20) = (1/7+)1.975902 (1 —ax),
Fo(z0) =n+[0.12711—0.111077 (1 —axo) .

(A3)
with

(A4)

Equation (42b). The equation to be integrated is
2
n+1

LA S = fufo"+ fo' 1= fufd —fofi”
= "+ Pf",
f1(0)=0; f1'(+°°)=1; f1'(0)=a1

where n=4% and P=2a/(n+1); ¢ being the constant

defined by Eq. (37). The solution we are interested in
has to be given in terms of the two parameters a; and P.

The solution satisfying Eq. (A6) at z=n¢/4t=0 and
the boundary condition given by Egs. (A7) is

(A6)
(A7)

=20+ 1+a)Z:+ P2, (A8)
with
ZO= ZHO“SI_ 1)
7
>1=1+S¢+2H,S:+ S (A9)
n+1

Z2=2H2'317

where the Ss are functions only of z and the H/’s are
functions only of ao. Their expressions are
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So=—4284324, S1=3—355422,
Hy=0.15(1—ay)/A4,

So=22—22%424

1 70
H1=—Z{O.3—(l—ao)[0.273811-l—0.007937 ]

n+1
0.059 2w
S— ], (A10)
3 nt+1
1—aynit1
724 34
n+1 1
A4=0,091270(1—a¢) —0.15— —— —,
34 g2

The expression for 5t is that given by Eq. (A4). The
values of Sy’s and of their first derivatives at =g, are

So=—0.007433, $;=0.121470, S»=0.012310,
So'=—0.169236, Sy'=0.871019, S;’=0.165494.

Expressions for the functions appearing in the system
of equations (54).

Gro= (fo' +20)/ (Co)}; Gu=21/(Co)},
Gao=1+[k2Z:'/ (Co)*]; Gau=kaZ1'/(Co)},
Gao= (1—nof0); k=0.4112.

All the functions are to be evaluated at 3=2,=0.12711.
The constants appearing in Egs. (56) are given by

Ar=20/Hy=0.043772;
Ag=—35/(Co)t=0.755845;
A3=h=0.018;

Ag=—FEzoZ5'/ (Co)?=0.283287.

The constant Ho=us"x/Uodo has been taken equal to
2.9038 by way of the following calculation.
From Eq. (AS) and (52) one derives that

8o+/80=0.3(1—ag) = 2.9038 (Co)?.

On the other hand, for large R,=Ugx/v it is, to within
an accuracy sufficient for our purposes, 8¢*=xCy, so that

uo+x/U050= 2.9038. (A14)

(A11)

(A12)

(A13)

DISCUSSION

Session Reporter: W. H. R

Professor C. C. Lin (Institute for Advanced Study, Prince-
ton, New Jersey) asked for the physical reasons for assuming
that the turbulent magnetic energy is much smaller than the
turbulent kinetic energy. The author argued that since the
magnetic Reynolds number had been assumed to be small, the
equations could be linearized. There would then be no transfer
of energy from the turbulent velocity field to the turbulent
magnetic field or more precisely that G(k) <F(k) for all val-
ues of k, where G(k) and F(k) are the energy spectra of the
turbulent magnetic and velocity fields, respectively.

A further physical reason for accepting this assumption was
suggested by Dr. S. A. Colgate (Lawrence Radiation Labora-
tory, University of California, Livermore, California). He re-
marked that if the magnetic Reynolds number is small, as the
author had assumed, then the skin depth would be large.
Hence, the vorticity would not be able to stretch or distort
the lines of force. In the absence of such a mechanism, the
field would not be magnified and so would remain small.



