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INTRODUCTION

'HE investigations described had their origin in a
suggestion by a colleague' that one ought to con-

sider the possibility of a "magnetohydraulic" analogy.
The proposition was to modify a "water table'" as used
to study the conventional hydraulic analogy by em-

ploying a conducting Quid Qowing through a transverse
magnetic field. Accordingly a device employing mercury
was constructed and placed in operation about a year
ago.' In the course of our studies with and of the mer-
cury table we have considered some shallow-liquid
magnetohydrodynamic Qows, surface wave motions,
and rotating Qows. However, we do not report here any
experiments in which the mercury table has been used
as an analog device in the sense of the conventional
water table. Much of the work done thus far and re-
ported here is still on a qualitative basis.

Free-surface magnetohydrodynamic phenomena have
also been considered by Donaldson, ' Donaldson
and Golden, ' Fraenkel, ' Lundquist, ' and Shirokov.
Fraenkel's work, in particular, is a penetrating discus-
sion of many related shallow-liquid magnetohydrody-
namic problems, including some of the wave-motion
analysis included in the present paper. Lehnert has
reviewed or referred to much of the previous work on
magnetohydrodynamic studies using liquid metals.

DESCRIPTION OF THE MERCURY TABLE

The mercury table illustrated in Fig. j. is patterned
after a conventional water table. A shallow layer of
mercury (typically s' to 1 cm deep) Qows with a free
surface through a relatively wide channel (typically 10

or 15 cm) between the .poles of a large electromagnet.
Flows with velocities up to a meter per second have been
studied. The channel can be tilted or run with a depth
gradient to overcome friction. The correction needed is
very slight. Flow depth and velocity are controlled by
a variable eaux from an upstream reservoir —the con-
trol is an adjustable bottom slot. The Qow is spread to
be smooth and to fill the channel by traversing a con-
vergent-divergent section before entering the field.
After passing through the transverse magnetic field the
mercury drops into a sump where it is cooled and
whence it is recirculated to the reservoir by a centrifugal
pump —a water pump with its impeller cut down to
handle mercury. The basic channel is Lucite to which
side walls and bottom regions of desired geometry and
conductivity can be fastened. The field is provided by a
water-cooled magnet having 61-cm diam polepieces
with a 10.25-cm gap. The power supply permits continu-
ous operation up to 4200 gauss. Satisfactory uniformity
obtains over a 50-cm region.

Before considering the several phenomena studied, let
us develop the equations of Qow in the channel.

CHANNEL FLOW EQUATIONS

Consider steady-state shallow Qow in the x direction
of an incompressible Quid with s the depth coordinate as
well as the direction of the uniform applied field. The
channel is considered to be infinite in the y direction. If

*Portions of this work were supported by the Ballistic Missile
Division, U. S. Air Force.' A. J. Nerad (private communication).

2 There is a considerable literature on the hydraulic analogy and
water tables. See for example, the article by A. H. Shapiro, in
Princeton Series on High Speed Aerodynamics and Jet Propllsion
(Princeton University Press, Princeton, New Jersey, 1954), No.
H, 1, Vol. IX; J.J. Stoker, 8'ater 8'aves (Interscience Publishers,
Inc. , New York, 1958).' R. A. Alpher and R. H. Johnson, Bull. Am. Phys. Soc. Ser. II,
4, 282 (1959). Such a device was suggested independently by C.
duP. Donaldson and L, H. Fraenkel.

4C. duP. Donaldson, in Heat 2'ransfer and F/mid Mechanics
Institlte (Stanford University Press, Stanford, California, 1959),
p. 55. Also C. duP. Donaldson and K. I. Golden (unpublished).' L. H. Fraenkel, J. Fluid Mech. 7, 81 (1960).

6 B.Lundquist, Arkiv Fysik 5, 297 (1952).
~ M. F. Shirokov, Soviet Phys. JETP 6, 50 {1958).' B. Lehnert, Electromagnetic Phenomena in Cosmica/ Physics,

Intern. Astron. Union Symp. (Cambridge University Press, New
$?ork, 1958), p. 50.
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FIG. 1. Free-surface mercury channel is shown outside of the
magnet gap for greater visibility. Copper strip and disk shown warp
used in experiments described in this paper,
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d'e/dz'= (M'/h') dl/dz,

where the Hartmann number is de6ned as

M = (pHh/c) (o/pv) &,

(2)

changes in the channel depth h are taken to be small,
then the continuity equation reduces to that for an
incompressible Quid, viz. ,

7' (hu) —7' u=O.

It is supposed that the total Geld 8 and velocity u are
functions of s only, and that one may neglect free charge
and displacement currents. If now vertical accelerations
of the Quid be neglected, it then can be shown that the
pressure gradient is constant in the Qow direction, and
the magnetohydrodynamic equations reduce to the
following differential equation for the velocity I' ':

whether the channel is insulating or conducting, al-
though the pressure gradient to maintain a given Np

certainly does. Moreover the induced electric and mag-
netic fields and the current density also depend on the
bottom conductivity. Let us de6ne

R=o Pg/(orby),

where 0. and h are conductivity and thickness or depth,
respectively, and the subscripts b and f refer to the
channel bottom and to the Quid, respectively. Thus
R=O de6nes an insulated channel, and R= ~ a channel
bottom of in6nite conductivity. A straightforward
application of electromagnetic boundary conditions
leads to the following for E, H, and current density per
unit channel length, j, with uo'= No&(coshM/[(coshM)
—1

where H is in gauss, 0. is in esu, and the characteristic
dimension h, in cm, is taken to be the channel depth.
The solution of Eq. (2) which gives N=O at z=0, and
N=lp, the surface velocity, at s= h, can be written as

eo'BN ( 1
(Rv), = I

1—ta~M
I
= (&v)

c(1+R) ( M

(& )r = (&*)x=(&.)~= (&.)~=0,

(6)

coshM ' coshM(1 —z/h)
N=gp

(cosh M) —1 coshM

For large Hartmann number, Eq. (3) reduces to

u Up[1—exp(—Mz/—h)]

(3)

(4)

Np'B, h sinhM(1 —z/h)

c M coshM

Arrl No ~z
(&v)x— (z—h)

c

As with Qow in a closed rectangular or circular chan-
nel' " viscous effects are compressed into a very thin
boundary layer —an exponential. boundary layer at
large Hartmann number. The Qow as considered is one-
dimensional, i.e., neither I nor the boundary layer
thickness vary in the Qow direction. For an applied 6eld
of 4 kgauss and a depth of 1 cm, 3E is j.03.6, so that
Eq. (4) predicts a very thin boundary layer indeed.
Since by far the bulk of the Qow is sluglike, i.e., at a
uniform velocity, it would appear that Qows at large
Hartmann number might be approximated as inviscid
Qows. However, if the channel bottom is nonconducting
the current Qow through the Hartmann layer plays a
significant role in determining the damping. This is
discussed later in connection with rotating Qows. We
have not considered the boundary layer developed on
the conGning channel walls which are parallel to the
applied Geld. The work of SherclifP' on closed channels
suggests that these boundary layers are very curious as
well as being very thin and we consider only Qows in
which the channel is quite wide compared to the fluid
depth.

The velocity profile, Eq. (3), does not depend on

' j. Hartmann, Kgl. Danske Videnskab. Selskab Mat. -fys.
Medd. 15, 6 (1937); J. Hartmann and F. Lazarus, ibid. 15, 7
{1937)."J. A. Shercliff, Proc. Cambridge Phil. Soc. 49, 136 (1953);52,
573 (1956); Proc. Roy. Soc. (London) 2M, 396 (1955); J. Fluid
Mech. 1, 644 (1956)."W. Murgatroyd, Phil. Mag. 44, 1348 (1953).

4n-Jg
(H,) p

—— (z+hg),
chb

(&v)r = (&.)r = (&v) b= (&.)~=0,

(j.)~= iL(R.)~—»*/cj,

(j„)p ——o p(E„)p ——Jp/hp,

(j,)r = (j,)g= (j,)g= (j.)g=O,

(10)

(12)

(13)

where we have located s=O at the interface between
Quid and bottom and have required that the total cur-
rent J (per unit length of channel), i.e., current in the
Quid plus that in the bottom, vanish. The quantities J~
and Jb are the total currents in the Quid and bottom. It
follows from Eqs. (6)—(13) and the equations of motion
that the pressure gradient may be written as

p Bx

0rB No ( R 1'1
+ —tanhM (. (14)

pc' (1+R 1+R M

If M is very large, Eqs. (6)—(14) reduce to what one
would calculate in inviscid approximation, provided
that in the inviscid calculation one takes the quantity
R to be large, implicitly or explicitly. In other words, an
inviscid calculation must provide for the return path of
Qow-generated currents through 6xed conductors co-
planar with the Quid elements generating the currents.
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Such inviscid Qow calculations have been performed by
Donaldson' ~ and by Fraenkel. '

The Qows being considered here are at low magnetic
Reynolds number. Perturbations of the magnetic Geld
due to induced currents are not considered. However,
the increased retardation of the Qow due to a conducting
region on the bottom illustrates the tendency of the lines
of force to be frozen into the mercury and thus prevent
relative motion. If one were to interpose an insulating
surface between the mercury and the conducting region,
there would be electric Geld components parallel to II
in the insulator, so that even if the bottom region had
infinite conductivity, there could still be relative motion
of the magnetic lines of force in the conductor and in the
mercury.

Consideration of Eq. (6) suggests that in the case
R=O, the insulated bottom, the Qow for large 3f is
characterized by

oEXS/B'= —u, (15)

This decay time is therefore characteristic of all Qows
for which Kq. (15) is not satisRed. Examples are Rows
with R= ~ and irrotational wave motions. On the other
hand, for rotational Rows Eq. (15) can be satisRed and
for large M the characteristic decay time becomes

ro'= Mr p= Mac'/(oB') j (17)

The foregoing suggests that the mercury channel
Qows may also be characterized by the dimensionless

quantity

&= (I/&)lr = (I/I) (oB')l (po')

discussed by Cowling" being of order unity. Here I.is a
characteristic dimension in the Qow direction, I the Qow

velocity, and ro is dehned in Eq. (16). The quantity cV

is then a comparison of the time constants of the motion
with and without a magnetic field.

Consider now the currents in the presence of an insu-

lated and of an infinitely conducting bottom. In the
former case one has R=O, and the total current induced

L In reference 4 Donaldson considers inviscid Qow in an insu-
lated channel with walls of a laminated insulator-conductor con-
struction. This construction is suggested to ensure current return
in conductors coplanar to the current-generating Quid elements."T. G. Cowling, Magnetohydrodynamics (Interscience Pub-
lishers, Inc. , New York, 1957), p. 11.

which is just the condition that pertains in a Quid of
infinite conductivity where the lines of force are frozen
into the Quid and move with the Quid velocity. "In the
present case with viscous eGects compressed into a thin
layer the electric field induced is one which in the
absence of nonmagnetohydrodynamic forces induction
drag" would cause the Qow to approach a velocity such
that Eq. (15) is satisRed in a characteristic decay time

ro ——pc'/(oB') = 1.31X10'/B' sec. (16)

in the Quid must vanish, i.e.,

This leads to a current density distribution in which
the total current in the boundary layer is equal and
opposite to the total current in the slug Qow. More pre-
cisely, for large M, j„hasone polarity in the boundary
layer, is zero at a depth determined from Eq. (11),viz. ,

h'—(h lnM)/M, (19)

and is of opposite polarity in the slug Qow. Clearly, one
should expect sects associated with the thin Hartmann
boundary layer, particularly if any sort of Qow dis-
turbance is introduced into the channel. In the limit of
an infinitely conducting bottom, the field 8 vanishes,
the local current density becomes strictly proportional
to the local Quid velocity, and all the induced cur-
rent returns through the channel bottom, rather than
through the Hartmann boundary layer. Hence Qow

disturbances in the presence of a conducting bottom
depend less, if at all, on the fact that the Quid is viscous.

It is interesting to compare the Quid pressure gradient
in the case when R=O and R= ~. One finds from Rq.
(12) that for large M

(1/p) (Bp/Bx)= —(a.rB.'up'/pc'), E= ~,
——(o~B,'No'/po'M), R=O. (20)

To achieve the same surface velocity at a given M and
8, over a conducting bottom of large R requires a pres-
sure gradient which is M times the pressure gradient
over an insulated bottom. Moreover, Eq. (20) suggests
that the characteristic decay time for Qow over an
inRnitely conducting bottom is that given by Kq. (17).

Note added in proof. It has come to our attention that C. C.
Chang and T. S. Lundgren PIeat Transfer and Fluid Jj/Iechanics
Institute (Stanford University Press, Stanford, California, 1959),
p. 41jhave calculated the Qow through a rectangular duct of arbi-
trary conductivity with the walls parallel to the Geld displaced to
in6nity {generalizing the Hartmann case) and the Qow through a
6nite duct with walls of innnite conductivity. In view of our
Eq. (1), their results for walls of arbitrary conductivity can be
rewritten to yield our free-surface channel Qow analysis.

CHANNEL FLOVf EXPERIMENTS

Because only the surface of the mercury can be seen,
one's impression of the channel Qow is that it is funda-
mentally diferent from that on a conventional water
table. To the extent that the mercury does not wet the
insulated channel walls (we have used Lucite and glyptal-
coated copper) when both are quite clean, or if the walls
are not highly polished, so that they act as a source of
capillary waves —with no Geld the mercury surface is
covered with a fine pattern of intersecting capillaries—
much like Mach lines. The intensity of such waves in-
creases with increasing surface velocity and decreases
with increasing applied field. It has actually proved
advantageous to work with unclean mercury and chan-



nel surfaces to ensure that there is no slip at'boundaries
and to suppress capillary disturbances. Thus far me have
seen no evidence of boundary layer phenomena or Qow
instabilities in the absence of a magnetic Geld, in regimes
where occurrence might have been expected from
shallow water Qow instability studies. " Flashes and
irregularities such as might arise with the onset of
turbulence would be hard to see in the presence of the
capillary patterns. Moreover, me have not measured
volume Qow rates as would be required to compare the
delay by a magnetic Geld of the onset of turbulence with
what one might expect from closed channel studies. "
Under all conditions in which experiments have been
run, no evidence has been found of Qow choking due to
boundary layer gromth.

The erst group of experiments to be described in-
volved surveys of the depth, surface velocity, and electric
potential in a slightly divergent insulated channel.
Figure 2 shows a potential survey in a completely insu-
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lated channel where the gradients in the y or across-the-
channel direction agree satisfactorily with what one
would predict from Eq. (6).The flow is one-dimensional
to a good approximation through all of the uniform
magnetic Geld. region. By contrast consider Fig. 3 in
which the channel with the same geometry as in Fig. 2
was used as a power generator by connecting externally
two short wall electrodes. The e6ect of allowing con-
duction to an external circuit is the same as though the
Qow had encountered a local region of conducting
bottom. Along the line between electrodes, the potential
gradient Lsee Eq. (6)g is reduced. A comparison of the
potential gradients across the channel at the electrode
position in Figs. 2 and 3 enables one to estimate the
equivalent E in Eq. (6), assuming velocities in the two
eases are the same. The reduction in g observed is as

'4 A. M, Binnie, J. Fluid Mech. 5, Ni (1959).
's R. C. Lock, Proc. Roy. Soc. (London) A233, 105 (j.955).
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Fro. 2. Survey of electric potential in free-surface mercury Bow,
in a completely insulated channel (case B, Figs. 3 and 4). Note
horizontal scale contraction.
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though there were a copper conducting region across the
channel about 0.02 cm thick. Since the increased pres-
sure gradient called for by Eq. (14) is not available,
there is a pileup and a hydraulic jump is formed. The
Qow is no longer one-diinensional. Figures 4 and 5 show
measurements of depth and Qom velocity along the
centerline of the channel. The e8ect of extracting power
from the channel shows quite vividly here. In cases. D
and E the channel side walls were conducting, with an
external connection across a small resistance in case E,
wherea, s in case D no external connection was made
(current return paths through the mercury both in and
outside the magnetic field were no longer one-dimen-
sional). In both cases the flow behaved as though it
mere running through a conducting channel, mith cur-
rent return in the boundary layer being of little conse-
quence. In case D the Qom is "choked" at the Geld

entrance, with a hydraulic jurnp appearing.
Two further experiments of interest were the follom-
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C 4000. GAUSS, INSULATKO CHANNKL, 29AMPS DRAWN FROM KLKCTROOES AT SG cm
0 4000 GAUSS, INSUI. ATKO BOTTOM, CONDUCTING SIDE WALLS

K 4000 GAUSS, INSULATEO BOTTOM, CONDUCTING SIDE WALLS SHORTEO AT 90'
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Pro. 4, Surveys of mercury depth in free-surface channel Bow in
a variety of experimental situations. Note the hydraulic jumps in
C and D, the former at the locus of power extraction, the latter
representing a "choked" Qow condition.
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Fn. 3. Survey of electric potential in free-surface mercury Sow
in a channel insulated except for short wall electrodes through
which power is extracted (case C, Figs. 3 and 4). Note horizonta1
scale contraction.
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Fro. 5. Surveys of surface velocity in free-surface channel Bow.
Note particularly the sects on entry into and exit from the
field.

ing: A strip of copper, thin compared to the Quid depth,
was mounted along the y direction in the channel, first
on the bottom and up the walls to the mercury surface
and, alternatively, starting at the walls on the channel
bottom and running up and then across the channel, but
not in contact with the mercury surfac- a bridge, as it
were. As expected, and as illustrated in Fig. 6, the Qow
effect is the same. A small hydraulic jump forms over/
under the copper, and the potential gradient shows the
reduction expected from Eq. (6).In a second experiment
a copper disk which was very thin compared to the Quid
depth was mounted on the bottom. With both subsonic
and supersonic flow (with respect to surface wave
velocity) through the magnetic Geld the gross effect due
to change in E and Bp/Bx over the disk was nearly as
though a fixed cylinder were immersed in the Qow. Most
striking was the formation of a Karman vortex street in
the wake of the disk (see Fig. 7). When we replaced the
strip or disk by insulating material of the same geome-
try, all sects vanished. Moreover, so long as the strip
or disk was thin compared to the Quid depth, there was
no difference between observations with the obstacle on
the channel bottom or inset to be Qush with the bottom.

As one would expect, it is quite easy to accelerate or
decelerate the channel Qow by applying a small voltage
to electrodes arranged as in Fig. 3. A few millivolts can,
with one polarity, so decelerate the Qow as to form an.
hydraulic jump with mercury Qowing over the side walls,
while opposite polarity can so accelerate the Qow as to
cause the mercury to separate in the electrode region.
Finally if short segments of conductor are formed by
chopping the mercury Qow mechanically, the segments
can be accelerated roughly as an entity on passing by
the electrodes with a suitable potential. No quantitative
studies of these phenomena have as yet been carried out,
theoretically or experimentally.

ln the region of entry into and exit from the magnetic
field, the channel surface shows in terms of a locally
increased depth the additional pressure gradient one
would expect in the nonuniform field region. We have
not made any studies of this beyond what is shown in
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FIG. 6. Disturbance in channel Qow over a conducting region.
A 1-cm wide 0.013-cm thick copper strip on the channel bottom is
transverse to the Row direction in (a). The strip also comes up the
channel walls to above the mercury surface. The view is normal to
the channel surface via a 45 mirror. In (b) mercury is flowing
through 4200 gauss; an hydraulic jump has formed over the strip.
In (c) the strip is inverted so that it contacts the mercury at the
walls but is above the surface elsewhere. A hydraulic jump is
formed on the mercury beneath the strip indistinguishable from
(b). Plow velocity is - 40 cm/sec, depth ~1 cm.

Figs. 4 and 5. Qua1itatively the behavior is in agreement
with the predictions of Hartmann' and Shercli6" who
have considered the entry and exit problem in some
detail for closed channels.

SURFACE WAVE MOTION

We have alluded in the foregoing to Qows being
subsonic or supersonic with respect to surface wave
velocity, in the sense of regarding surface wave velocity
as a characteristic or "sound" velocity in the channel.
Let us examine the propagation of small-amplitude
disturbances in shallow mercury in greater detail. The
propagation characteristics may be expected to depend
on gravity and surface tension, ""with viscosity and

'GH. Lamb, Hydrodynamics (Dover Publications, Inc., New
York, 1945).

'7 A. H. Taub in Irandbook of Physics, E. U. Condon and H.
Odishaw, Editors (Mcoraw-Hill Book Company, Inc. , New
York, 1958), pp. 3—55; or J. J. Stoker, Water Wattles (Interscience
Publications, Inc., New York, 1957).
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magnetohydrodynamic efFects providing attenuation. It
is not dificult to include viscosity and surface tension,
but they play a trivial role in mercury, numerically
speaking, so that we shall ignore them in this paper.
(Capillaries do have a profound effect on the appearance
of such surface disturbances as the classical "fish-line"
pattern. ") Surface waves are of interest not only in
terms of understanding the channel disturbances one
sees, but also because the velocity of gravity waves plays
the role of the velocity of sound in the usual hydraulic
analogy.

The result desired follows from the equations of
shallow water theory for propagation of small dis-
turbances in one dimension (no viscosity or surface
tension) "viz. ,

and
Bu/Bt = —

g (Brt/Bx)+X, (21a)

Bg/Bt = —(B/Bx) (hpe),

(a)

(c)

FrG. 'l. In (a) is seen a 2-cm radius copper disk, 0.013 cm thick,
on the channel bottom —the view being as in Fig. 6. In (b) surface
dirt shows the magnetohydrodynamic e6'ect of a low-velocity Qow
over the disk at 4200 gauss. In (c) one has a view of the channel
Bow over the disk while looking upstream. The velocity is such
that the disk is shedding a vortex street,

(21b)

where the Quid is basically at rest, u= u(x) is the Quid

velocity associated with the disturbance, g=g(x) is the
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Fre. 8. Velocity and attenuation of gravity waves vs wavelength

1 cm.
in mercury at 4000 gauss —shallow-liquid approximation d thep

surface displacement from the undisturbed depth hp
(which we take not to vary in the propagation direction
but which may vary in the y or across-the-channel
direction, as discussed later), and X is the body force
which here is the Lorentz force term for wave propaga-
tion transverse to a magnetic 6eld B„viz.,

X= —peB,'/(pc'). (22)

In arriving at Eq. (19) one assumes nonlinear terms are
small, pressure everywhere in the Quid is hydrostatic,
and vertical accelerations are neglected so that e=u(x)
only. Equations (21) and (22) combine to yield the
following irrotational wave equation for I or g in a
horizontal channel of mean depth hp".

Boe/Bto= ghp(BPu/Bx ) (rrB,P/p—c ) (Bu/Bt)
=oo'(B'u/Bx') —(1/r p) (Be/Bt), (23)

where rp is the characteristic time deQned in Eq. (16)
and. vp is the classical gravity wave velocity. " From
Eq. (23) one Qnds the phase velocity for a wave of
angular frequency ~ to be

o= (2)~op{1+L1+(1/rdrp) j~) ~ cm/sec~ (24)

and the attenuation constant to be

n= L(2) ~to/eo]{ —1+$1+(1/&pro)oj&)& cm ~. (25)

Note that vpvp plays the role of a "characteristic" dis-
tance; for an hp of 1 cm and j30 of 4000 gauss, vprp= 2.5
cm. Equations (24) and (25) are plotted in Fig. 8 for
these values of hp and Bp. A generalization in. two
dimensions of the foregoing irrotational wave equation
is discussed in Appendix A.

In addition to Donaldson, Lundquist' and Fraenkel'
have considered surface wave velocity. Lundquist ob-
tains a result in the case of ininite conductivity a7

'II C. duP. Donaldson, reference 4, and L. H. Fraenkel, refer-
ence 5; also arrived at this equation.
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situation which does not apply to the present work since
the approximations of this paper include a small mag-
netic Reynolds number. Fraenkel's excellent survey of
some of the basic problems of shallow-liquid magneto-
hydrodynamics includes both the result obtained in
Eq. (22) and the generalization in Appendix A.

As an examination of' Fig. 8 indicates, it is only for
extremely low-frequency waves that a velocity signi6-
cantly different from (ghe)& can be expected at 4000
gauss. Wc have attempted to detect a deviation in two
ways. In a steady channel Qow of known depth, surface
Quid velocity in excess of (ghe)& was measured by an
impact probe, by potential measurement and by a
paddle wheel arrangement with tips immersed in the
Quid. Then a standing wave was formed by creating a
small surface disturbance. It would seem reasonable
that with viscous CGects in the channel Qow conhncd to
the thin boundary layer, a superimposed surface dis-
turbance might weH behave as though the Qow were
inviscid. Hence no correction would be needed in ap-
plying Eqs. (24) and (25) to this experiment. Within our
accuracy of measurement, admittedly crude, the "Mach
angle" of the standing wave (with respect to surface
velocity measured) was independent of magnetic Qeld.
At points on the wave well away from the disturbance
the wave profile was slightly broadened. This may have
been due to a slightly lower velocity for low frequency
waves, a much greater attenuation for high frequency
waves, or an interaction with the ever-present capillaries
(despite their diminution in a magnetic Geld). '

A second experiment involved the production of
traveling waves in a rectangular trough of mercury
otherwise at rest. No quantitative data are oKered
beyond. thc observation that at 4200 gauss, using a
"pebble dropping" technique, we could not create a
disturbance which wouM survive to the edges of the
trough (a 10-cm path). A nearly one-dimensional dis-
turbance of appreciable amplitude propagating from one
end of the trough decayed so rapidly that within several
centimeters of the disturbance origin one saw only a
disturbance whose wavelength was of the order of the
trough dimension (30 or 40 cm).

With regard to the existence of a magnetohydraulic
analogy, the free-surface mercury channel Bow is indeed
a true analogy to two-dimensional compressible Qows
which are normal to the magnetic Geld direction and
independent of the coordinate in thc GeM direction.
Although the direction of the magnetic Geld must be
everywhere the same, the magnitude of the Geld can
depend on the coordinates perpendicular to the Geld. In
this case one would have to ignore the fact that a three-
dimensional Geld conGguration necessarily has com-
ponents, albeit small, normal to the main fieM direction.
It inay in some circumstances nevertheless be legitimate
to ignore these components.

In linear approxiination one can show an analogy
between the descriptive equations of the channel and
of the gas regardless of the dependence of gas con-

V' j=o,
where j is the current density and E is required to be
perpendicular to S.In the free-surface mercury channel,
E must be parallel to the mercury surface and hence
perpendicular to 8 if V'h is small compared to unity.
(This last condition on V'h is required in the conven-
tional hydraulic analogy. However, as in the con-
ventional hydraulic analogy the onset of shocks can be
studied as the onset of hydraulic jumps, since weak
shoeless are nearly isentropic. ) Moreover, we require in
the channel

where j is the projection of the current density vector on
the plane of the table. Thus the condition for the
channel on V)&E becomes

VXp(Sy«h)+(uXSgi)g=O. (29)

Hence 00k in the channel is the analog of 0 in the gas.
Note thRt thc ldcntlGCRtlon of jh ln thc chRIHlcl with j
in the gas is necessary to maintain formal identity in the
equations of motion. Moreover, we have not used the
Maxwell equation V' E='4trtt, where g is charge density,
in either the gas or channel description, for we have not
been interested in charge density and the force due to
charges is small here as in the usual magnetohydro-
dynamlc cquRtlons.

In the case of two-dimensional unsteady Qows in a
Quid of inGnite conductivity Blank and Grad'9 have
shown that the deGning magnetohydrodynamic equa-
tions may be so cast as to render them formally equiva-
lent to conventional Quid dynamic equations.

In our consideration of the analogy problem, we
examined the question of altering the analogy speci6c
heat ratio by working with other than R rectangular
channel. Kelland" found the propagation velocity of
long waves in a shallow horizontal channel of arbitrary
cross section symmetrical about a center line to be
(ghe) &, where he is the mean depth of the half-channel
width. Some authors" have suggested that if the channel
proGle mere Of the form s=y", then the analog specific

"A. A. Blank and H. Grad, New York University institute of
Mathematical Sciences, Research and Development Rept. , U. S.
Atomic Energy Commission Computing and Applied Math.
Center, NYO4486 (July 15, 1958).

0 P. Kelland, Proc. Roy. Soc. Edinburgh 14, 49/ (1840); work
quite fully described in reference 15.

«' The inost recent discussion of this problem is by %. H. T.
Loh, J.Aero jSpace Sci. 26, 389 (1959).

ductivity on density and for any speci6c heat ratio.
Nonlinear cGects in the mercury channel simulate the
nonlinear behavior of a gas in which the conductivity is
proportional to density and the pressure is proportional
to the square of the density, i.e., a speciGc heat ratio of
two. The requirement on conductivity follows from the
fact that for the gas we must have

v'pm=0,
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heat ratio would be a function of n and therefore
adjustable to values other than two. There are some
theoretical questions involving the consistency of such
arguments with the assumptions of shallow-water theory
(the assumption of no vertical accelerations is dificult
near the edges of a shallow triangular channel, for ex-
ample). "We constructed a series of very shallow chan-
nels and could find no eKect within measurement accu-
racy of profile on measured wave velocities at the
channel center. With the exception of the rectangular
channel, so long as the channels were shallow, channel
edge eGects such as are fully discussed in Lamb" com-
pletely dominated the wave motions and rendered them
no longer one-dimensional.

We have examined the Qow modifications caused in
the mercury channel by such bodies as wedges and
cylinders. The surface wave disturbances are in no
essential way diBerent from those one would observe on
a water table in terms of hydraulic jumps simulating
shock waves, wake Qows shedding vortices, etc., all
under conditions one would expect for the Qow velocities
used in terms of the gravity wave velocity. One major
difference is the effect already mentioned of conducting
regions placed on the channel bottom which cause dis-
turbances as though they were solid bodies in the Qow.
A second major difference, on the one hand, is the
enhancement of visibility of capillary sects in mercury
as compared to water (T/p= 74 in water, 40 in mercury)
due to their lower velocity, and, on the other hand, the
striking attenuation of capillary waves by the magnetic
field. One finds that capillaries associated with unsteady
disturbances of the mercury surface in a magnetic field
are damped almost critically. This is qualitatively con-
sistent with Shirokov's conclusion' that capillaries are
critically damped in a Quid of infinite conductivity. In
a steady surface disturbance in channel Qow, such as the
classical "fish-line" disturbance" at Qow velocities in

FIG. 9. Disturbance created in "supersonic" mercury Qow by a
small wire touching the mercury surface;. field is 4200 gauss —the
pattern at 0 gauss diGers only subtly.

~ E. V. Laitone LBull. Am. Phys. Soc. Ser. II, 5, 43 (1960)j
has raised questions about the nonrectangular channel also.

u lhl4:,
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Fro. 10. Photograph of the free-surface mercury motor —over-all
diam 10 in.

excess of (gho)& but less than the group velocity of
capillaries one Gnds a beautiful pattern of capillaries
ahead of the hydraulic jump (see Fig. 9 and Appendix
A). We do not discuss this work further here since the
pattern is virtually unchanged over the magnetic Geld
range available to us—there is some barely noticeable
attenuation of the capillaries and broadening of the
main jump with increasing distance from the disturb-
ance center line.

ROTATING PLOWS

As already mentioned, well-defined vortices are pro-
duced in the wakes of cylinders and conducting spots in
the mercury channel Qows; extensive vortices can be
produced by disturbing an otherwise stationary trough
of mercury. The apparent stability of these vortices
formed with the vorticity vector in the Geld direction
impressed us sufFiciently that we sought to study the
decay of such Qows from a "standard" initial state. To
obtain such a state we have used a free-surface mercury
motor as illustrated in Fig. 10. The motor has a Lucite
bottom, an inner copper cylindrical stator or electrode
of radius 2.2 cm, and an outer copper electrode of radius
12.5 cm. The equilibrium mercury depth was 1.9 cm.
The mercury was brought up to a steady-state rotation
by placing the motor between our magnet polepieces
and applying between 5 and 35 mv across the elec-
trodes, depending on the applied Geld. Once a steady
state was reached, the driving voltage was disconnected
and the decay observed by measuring either the voltage
drop across the electrodes or by following the potential
on a probe touching the mercury surface (a radial
location of minimum depth change being selected). No
essential diBerence was noted between these two meas-
urement points. The device has several interesting
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Fxo. 1$. Comparison of calculated and observed half-lives for
decay of vortex Qow in free-surface and closed-surface mercury
motors (hydromagnetic capacitors). The half-life of the initial
decay period during which the Hartmann-type Bow is being
established is of the order of 5 to 10sec, with little or no dependence
on the applied magnetic Geld.

properties as a motor, one being the surface profile,
another being its self-regulating nature. If the driving
voltage is too high, the mercury breaks away from the
central stator and breaks the exciting circuit.

That one can establish a slowly decaying rotating Qow

of this type indicates that the boundary layer must be
of nearly constant thickness in the Qow direction at a
given radius. This is just the case with a Hartmann
boundary layer, and in fact it is reasonable to suppose
that this characterizes the decaying Qow. The dissipa-
tion of such a Qow must then be the result of viscous
drag in the boundary layer and of induction drag in the
slug or free stream Qow. Moreover, the velocity change
in the decaying Qow should be observable as a potential
decay, the two being proportional to one another
through Kq. (6).

A time constant for the decaying Qow can be most
simply obtained as follows. In the presence of viscous
drag and induction drag only, the decay of velocity is

pBuo/Bt = —(j,8,/c) +pV'u. (30)

Integrating with respect to depth and dividing through

by zt0'ph yields approximately

—a,
jgz+ dz. (31)

N0 4 PACQp kN0 ~P Qg

On substituting for j„from Eq. (11),for E from Eq. (6),
and for I from Kq. (3), and performing the indicated
integrations, one finds the first term vanishes (total
current in the Quid is zero), and for large M one is left
with

(1/uo') (duo'/dt)=( —vM/h') = —(1/Mro). (32)

This result also can be obtained from a generalized
vorticity analysis (see Appendix 8).

Half-lives for decay computed from Eq. (32) are

compared with measured half-lives in Fig. 11.The decay
measurements were complicated by the fact, not im-
mediately recognized, that it should take some time for
a Hartmann boundary layer with zero net current in
the Quid to become established after removal of the
driving current. When the decaying Qow was followed
for a time longer than several of the half-lives predicted
by theory, a change in the decay to the final values
plotted in Fig. 11 was observed consistently. Some of
the difference between theory and experiment here may
lie in dissipation neglected at the inner and outer walls
of the motor. Changes of surface deformation are not
put in the calculation, but it must be noted that by the
time the motor has decayed through several half-lives
to the time of measurement, the surface profile has
Qattened to a point where the motor had essentially a
constant depth.

The mercury motor is nearly equivalent to a hydro-
magnetic capacitor, a device of recent interest. " The
difference lies in that some energy is stored in the free-
surface motor as potential energy of deformation of the
mercury surface, whereas in the true hydromagnetic
capacitor all the energy storage is kinetic. One can then
interpret Fig. j.i in terms of the decay of this "mercury
motor" capacitor on open circuit, i.e., this, as all
hydromagnetic capacitors, has a leaky dielectric.

As this work was being prepared, a paper of Chang
and Lundgren'4 appeared in which the properties of a
"mercury motor" which is completely enclosed are
calculated, i.e., the free-surface condition is replaced by
an insulated top cover. One finds their calculated
charging time constant should be the same as the decay
constant, Eq. (32), providing that the characteristic
depth in the closed case be taken as half the actual
depth, since the top of the motor also has a Hartmann
boundary layer. Chang and Lundgren also neglect
dissipative e6ects at the walls parallel to the applied
field. It was a relatively simple matter to enclose our
mercury motor, making it identical to the geometry
studied by Chang and Lundgren, and the results of a
series of decay measurements are given in Fig. 11. A
calculated quantity which is easy to check is the re-
sistance of the motor when running at steady-state—our measurements agree within experimental error
with their theoretical result.

CONCLUDING REMARKS

The work reported here shows that the free-surface
mercury channel has pedagogical value in under-
standing Qows in which the magnetic Reynolds number
is low and the dimensionless parameter X= (I/I)//ro is
of order unity. Moreover, there is the possibility of
obtaining semiquantitative data by using the channel as
a magnetohydraulic analogy. While the principal appli-
cation of the analogy may well be to simulation of closed

~'O. Atkinson, W. R. Baker, A. Bratenahl, H. P. Furth, and
W'. B.Kunkel, J. Appl. Phys. 30, 188 (1959).

~ C. C. Chang and T. S. Iundgren, Phys. Fluids 2, 627 (1959).
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channel Qows at low magnetic Reynolds numbers, there
are undoubtedly special geometries for which the chan-
nel may provide useful insight into the Qows around
bodies in the presence of a magnetic 6eld. Finally, the
work already done suggests other experiments in linear
and rotating Qows which should be interesting in the
context of the shallow-liquid approximation.

(Here VP is the two-dimensional Laplacian opera, tor). In.
view of Eq. (AS) the divergence of Eq. (A4) is

—(p/hp) (B'h/BP) = —gpV'h —VPPp —(B/c) V'X. (A6)

Since the magnetic 6eld is time independent, the electric
field may be expressed in terms of a scalar potential, to
wit,
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APPENDIX A

Wave Equation for Irrotational Flow

We have developed the wave equation which governs
two-dimensional irrotational surface waves in the pres-
ence of a uniform magnetic 6eld under the usual water
table approximations. Speci6cally, we assume that the
Qow velocity, current density, "and pressure gradient
are independent of depth, and we neglect surface tension
and all nonlinear terms.

Under these approximations the equation of motion
for the two-dimensional velocity vector u has the form

pBu/Bt= —pgVh+(jXB, /c) —Vpp. (A1)

Here p is the Quid density, h is the local thickness of the
Quid layer which has the equilibrium value ho, j is the
current density, and pp is the pressure applied to the top
surface of the Quid. The term pp is included to make
possible the study of the e6ects of certain types of
external perturbation on the Qow field."

We express the two-dimensional velocity and current
density vectors in terms of the scalar functions it and x
by means of the equations

u= VP,

j=V'ykX.

(A2)

(A3)

(Here k is a unit vector normal to the Qow plane and
parallel to the applied magnetic field. )

The equation of motion then assumes the form

Hence

(A11)

the characteristic distance

xp = eppc'/(oB'),

and the characteristic time

re =xp/ep. (A13)

If the units of time and space are set equal to zo and
xp, respectively, Eq. (A10) assumes the form

B'h/Bt' V'h+ Bh/—Bt= (1/pg) Vppe. (A14)

In studying the qualitative effects of a.perturbation
which moves with respect to the Quid at a uniform
velocity, it is useful to have the Green's function which
is a solution of the equation"

8'h 8'h 8'h 8h
+- =B(x+mt,y). (A15)

8P Bx2 By2 Bt

Here m is the Mach number of the perturbation which
is moving in the negative x direction, i.e., the pertur-
bation velocity is mao.

The form of the solution depends upon whether m is
less than, equal to, or greater than unity. "

If m is less than unity,

h = $1/2x(1 etc)']Ep{lr+p+) exp—(a+(x+m't) j,

j=VXk&= —oLVpp+ {BXVit/c) j. {AS)

The curl of Eq. (Ag) has the form Lusing Eq. (AS)j
P&= (o [ It (/c) V'tP= —(rr ( 8 [/hpc) (Bh/Bt). (A9).

Hence Eq. (A6) has the form

B'h/Bt' —ghpV'h+ {oB'/pc') (Bh/Bt) =he V'pe/p. (A10)

This equation is equivalent to Eq. (23) in the text. It
contains the characteristic velocity

ep= (ghp) i,

pVB$/Bt = —gpVh —Vpp —(8/c) V'X.

The linearized form of the continuity equation is

Bh/Bt= —hpV u= —hpVQ.

(A4)

(AS)
and

«+= m/L2(1 —m') j
p+= L(x+mt)'+ (1—m')y'j&.

{A16)

~~ Since the electric 6eId is not in general equal to IXu/c, where
u is the free-stream velocity, the current density in the free stream
is comparable to that in the boundary layer. Hence it is legitimate
to neglect the boundary layer current on the basis of the usual
~ater table assumption that thick boundary layers do not develop
since the viscosity is small.

~6In reference 5, Fraenkel considers the propagation of the
disturbance from a perturbation which does not move with respect
to.the Quid.

~~ This differential equation is discussed by P. M. Morse and
H. I eshbach, PAthods of Theoretic a/I'hyd cs (McGraw-Hill Book
Company, Inc., New York, 1958), Sec. 'J.4, p. 865 ffjin connection
with heat transmission through an absorbing gas. The Green's
functions given here are appropriate integrals of the two-dimen-
sional Green's functions given by these authors in Eq. (7.4.27).» The Bessel functions I0 and E0 are used with normalization
dered by E. T, %'hittaker and G.¹%'atson, Modern Aeelys~s
(Cambridge University Press, New cwork, 1940), p. 372 g.
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If m is equal to unity,

h, = L4~(*+t)j-~ exp( —y'/L4(~+t) j&.

If m is greater than unity,

tt =0 for @+mt((m' —1)~~y~,

h„=,'( -m' 1—) '*Io(a p -)—expL ~ (x—+mt))
for a+mt) (mo —1)'*~y ~,

where .-=m/L2(m' —1)j,

p
—=

L (x+mt)' —(m' —1)y')l.

{A18)

assumption that the variation of velocity with depth
follows the Hartmann proflle, and that the total fluid

depth is always approximately equal to its undisturbed
value, ho. If u(x, s,t) is the free-stream velocity, for a
closed contour, we find

pho— 8 8s—ho F'lis
dt

Here ho is the equilibrium mercury depth and F is the
body force density, i.e.,

hoF= JXS,/c,
The Qow pattern which results from a highly localized

pressure applied at a position which moves with respect
to the Quid at a velocity mvo would be formally obtained
by taking the Laplacian of the solutions given in Eqs.
(A16)—(A18). If m is greater than unity, the corre-
sponding disturbance is concentrated along the Mach
line because of the discontinuity in h along this line.

In a physical case the form of the solution on the
Mach line depends on the detailed shape of the pressure
disturbance. It should be kept in mind that since the
water table approximation breaks down for wavelengths
which are comparable to or smaller than the depth of
the fluid, the solutions of Eq. (A10) for a delta-function
pressure disturbance have quantitative physical signifi-

cance only in the sense that they can be used as the
Green's functions for constructing solutions for less
localized disturbances. For example, if the pressure
perturbation po extends over a radius ro which is large
compared to ho but small compared to xo the actual
solutions are closely related to the Laplacian of the
Green's functions. The behavior of the actual solutions
along the Mach line depends, however, in detail on the
shape of the pressure disturbance. The specific relation-
ship for a disturbance with circular symmetry is

1
h(r, t) =—V'JI h„(~r—r'~, t)po(r')dr', (A19)

pg

where the components of the vectors r and r' are, re-

spectively, (x,y) and {x'+mt, y').
Another complicating feature is that the appearance

of the mercury surface in the presence of a localized
disturbance is strongly affected by capillary waves which
are not included in the foregoing analysis. Hence,
although the expected lack of dependence of Mach angle
on magnetic 6eld strength has been qualitatively veri-
fied, a detailed comparison of the observed Qow pattern
with the solution of Eq. (A10) has not as yet been made.

APPENDIX 3
Vortex Decay

%e here consider a general two-dimensional rotational
flow in the limit of large Hartmann number under the

where J is the free-stream current density integrated
from the top of the boundary layer to the upper surface
of the liquid. The pressure gradient term does not
contribute to the right side of Eq. (Bi). We ignore the
diGerence between the actual local Quid depth, h, and
the equilibrium depth, ho. By using the fact that 8, is
normal to the Qow plane we may recast the right-hand
side of Eq. (81) so that the equation becomes

lIl*l t
pho— u ds= —

~l JI dAV J,
dt C

(83)

where the integral on the right is over the area enclosed
by the contour and 8, is assumed to be directed in the
positive sense with respect to the direction of contour
integration. By charge conservation we have

V' J= —V'. Jb.i.,

where J&.i. is the current density integrated over the
boundary layer. For the Hartmann profile, we have

Jb.&.
———(p~~)' Xuo&,/ ~

8,
~

(85)

(The direction of the boundary layer current is such
that the Lorentz force tends to drive the Quid in the
direction of the free stream velocity. )

The substitution of Eqs. (84) and (85) into Eq. (83)
together with the use of Stokes' theorem then yields

d )8, ) (~p) &

u ds= —
(
—

i
u ds.

dt cho & p )
Hence the vorticity decay constant is

(8,/cho) (o v/p)
*'= 1/(3lro) = 1/ro',

~ B.Lehnert, Quart. Appl. Math. 12, 321 {1955).

in agreement with the arguments in the text. It may
be noted that Lehnert" has shown that the 6eld-
dependent portion of the decay factor for magneto-
turbulence is a function of To with the asymptotic
state of the decay being two-dimensional with respect
to the 6eld.
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Session Reporter: M. MncHNER

E. L. Resler, Jr., Cornell Un~uersity, Ithaca, New York:
Was the copper disk on the bottom Qush or did it project into
the Qow end cause a disturbances

R. A. Alpher: I showed one picture of just hydrodynamic
flow over the disk and there is essentially no surface disturb-
ance visible in the capillary pattern. We have also run experi-
ments with disks in the bottom and therefore flush. The thick-
ness of the copper we used is typically two hundreds of a
centimeter.

E. L. Resler, Jr.: Is the disturbance due to the fact that
the copper is anchoring the Geld lines, or is it due to an Alfven
mechanism which causes any disturbance to become cylindricalP

B. Lehnert, Royal Institute of Technology, Stockholm,
Smeden: I think the lines ere, in effect, anchored in the cop-
per. By neglecting the influence of viscosity and for very strong
magnetic Gelds, it is easily shown, in general, that the flow

pattern become two-dimensional, in the sense that there should
be the same state of Qow along a magnetic field line.

For the case where the entire bottom surface of the chan-
nel is an insulator and when dissipation is neglected, the mer-
curcy next to the channel behaves in a manner equivalent to
a free surface. The electric field induced by the flow across
the magnetic Geld then becomes uniform in the direction of
the latter and no currents flow in a stationary state. An

analogy to this is a number of generators. which aH have the
same electromotive force (corresponding to vXB with v and
B constant) and which are connected in parallel.

Next, consider the alternative case where the entire surface
of the channel is a perfect conductor and the electrical contact
between the channel surface and the fluid layers above is ex-
cellent. Then, electric currents can cross the interface and this
makes the channel surface form a part of the conducting fluid

from the point of view of magnetohydrodynamic coupling. This
also implies that there is a "Quid layer, " i.e., the channel sur-
face itself, where the Quid velocity is zero. If the fluid layers

above moved, the situation would resemble that of a number
of generators connected in parallel and vrhere there is a short-
circuit across the whole configuration caused by bottom of the
channel. As a consequence, at high electrical conductivity and
very strong magnetic Gelds, the Qow adjusts itself so as not to
induce infinite currents, i.e., the Quids are frozen to the bottom
and stay at rest.

The case of a copper disk placed in the center of an insu-
lated channel surface represents an intermediate situation where
part of the channel surface is conducting and where both the
magnetic field and conductivity are finite. Even if the copper
plate is thin, the conductivity of copper is about SO times
larger than that of mercury, and some of the effects which I
have outlined here still come into play.

B. Lehnert: In my experiment with a rotating conducting
annulus at the bottom of a mercury layer, the analogy with
frozen field lines applies. Field lines which are anchored in
the annulus transmit their motion to Quid layers situated above.
The parts of the conducting bottom which are at rest force
the fluid on top of them to be at rest, somewhat like the situa-
tion in Dr. Alpher's experiments.

This question of anchored field lines is, of course, a way of
expressing a thing which is much more corriplicated. In s more
rigorous treatment one should look at the magnetic Qux in-
stead, and how this changes as the Quid moves.

J. E. McCune, Aeronamtical Research Associates, Princeton,
Neer Jersey: Is it not true, in fact, that Chere is no direct
analogy, but only a similarity'

R. A. Alpher: There is a magnetohydrodynamic analogy
in the same sense that one has an e,nalogy for the usual com-

pressible Qow with a conventional water table. The analogy

holds for low magnetic Reynolds number Qows.

E. L. Resler, Jr.: I think the analogy is good as long as

Joule heating is unimportant.












