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I. INTRODUCTION

HK general theory for a multicomponent gas
mixture has been developed by several authors. ' 3

On the assumption that thc behavior of a plasma can be
adequately described in terms of binary collisions, the
results can be applied directly to a thermal plasma in R

magnetic Geld. Unfortunately, the relevant equations
are extremely complicated, and for this reason their
value is somewhat questionable. The prime object here
is to present these equations in a summary form in
which the differences between these and those of mag-
netohydrodynamics are emphasized.

In the next section the basis of thc general theory is
brieRy outlined. In principle, the method for obtaining
dynamical equations for a gas mixture is simple.
Equations of chRQgc fol R 6nltc number 'of IQRcroscoplc
variables are generated and then closed by using an
approximation for the velocity distribution function. IQ

this, and the papers referred to heretofore, a particular
approximation due to Grad, 4 namely, the j.3-moment

approximation, is used. Equations derived in this
manner for a binary (completely ionized) plasma are
given in Sec. 3. From these, transport relations can be
generated by a method of successive approximation.
Expressions of this nature are given in Sec. 4, The sig-
ni6cancc of relaxation and other characteristic times is
also briefly discussed. In Sec. 5 comments are made on
the validity of the 13-moment approximation and
its relationship to other types of approximations.
Except for minor differences, which are explained when

introduced, the notation is the same as that of Chapman
and Cowling, ' and where applicable rationalized mks
units are used.

2. GENERAL THEORY

2.1. Closure of the Equations of Change

The general equation of change of a dynamical vari-
able If'(wr)r~f), '1'efelTed to a fl'aIIle IIlovIIlg wl'tll 'tile

' R. Herdan and B.S. Liley, A.E.I. Research Rept. No. A.1004
(1959) (to be published).

~ R. Herdan and 3.S.Liley, A.E.I.Research Rept. No. A, 1005
(1959) (to be published).'I. Kolodner, doctoral dissertation, New York University,
1950.

4 H. Grad, Communs. Pure Appl. Math. 2, 331 (1949).'S. Chapman and T. Cowling, The Metharl@ka/ Theory of
ÃorI-UeiforrrI, Gases (Cambridge University Press, New York,
1952), Chap, 1.

mean mass velocity v, iss

de,(P;) 8 8
+e;(tt;)—v+—tI,Q,w,)
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Bfg Big; Bv
+b," Xw, — wI .———p I;1,(p;). (1)

8%'~ 8%'z Br

w; is the peculiar velocity, while j and k denote particle
types. In writing (1) the following abbreviations have
been used:

d/dh= 8/Bt+v 8/Br, (2)

F;=f;+vXb;—dv/dt. —

In (3), f,+vt&b; is the acceleration due to fieids of
a macroscopic nature. . For instance, f;= (e;/III;) E,
b;= (e;/III;)8, where E is an electric field vector
and 8 a magnetic induction vector. e; and m; are, re-
spectively) thc chRrgc Rnd mass of R pRltlclc type J. fb~

is the particle number density, and the average value
over velocity space, Q;), is defined by

1
(tt )=—,ffdw.

ej

f; is the velocity distribution function of particles
mJ

The collision integrals on the right-hand side of Eq.
(1) are

III =J fsfI~rI (4'~)g~I&db«dw~dwI i

where g;I ——
j w;—w&~, fp is the impact parameter, e the

azimuthal angle, and d;1(tt;) is the change m
colllsloQ of R pRrtlclc of type J with oQc of type k.

In the theory of binary elastic collisions, there are
three summational invariants f; for which

2 Z I~'(f~) =o

These are m;, m;w;, and 2',m,~, which on being sub-
stituted in (1) give the continuity, momentum, and
thermal energy equations, respectively. In view of (6)

S. Chapman and T. Cowling, reference 5, Chap. 18.
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these equations are of special interest. However, as is
well known, they do not form a closed set since the
two higher moments P; the stress tensor, and q; the
heat Qux vector, are introduced. Taking )P; equal to
m, w;w, and ', m-, w, w, in (1), equations for P; and q;
could. be obtained, but again two higher moments of the
form e;Q,w;) would be introduced. This process of
generating equations for the higher moments could be
extended indeinitely depending solely on how many
primary variables one is prepared to introduce.

However, if at any level the distribution function is
known, or can be approximated to, in terms of primary
variables for which the equations of change have already
been generated, then this system of equations can be
closed. Of immediate interest and applicability to a
thermal plasma is Grad's 13-moment approximation.
On introducing the dimensionless velocity

g, = (2n;) w, ; n;=m, /2kT;, (7)

where k is Boltzmann's constant and T; the kinetic
temperature of particles type j (referred to the mean
mass velocity v), this expression for f; is'

f.=f.(P)

f1+a�.

(&) .g.+La(P) ~ g.$.
+ha "'K (U—5)), (8)

where
f~'" =~ ( ~/n~~)' exp( —phd)

is the usual Maxwellian velocity distribution function.
The coefIIcients e&"& are given by

a~'" = (2n')'u J,

a (')=(1/p)(P —p U)=(1/p)»'
(10)

a;&') = (2/p;) (2n;) &(q; ,'p;u;—)=—(2/p;—) (2n;) &R;. (12)

2.2. Co11ision Integrals

These have been discussed in detail elsewhere" and
only those points relevant to the accuracy of the ex-
pressions given in the next section for a thermal plasma
are commented upon here.

In these u; (i.e., (w;)) is the drift velocity of particles
type j with respect to a frame moving with the mean
velocity v. p; is the "hydrostatic" pressure, U the
second-order unit tensor and P, defined by (11), is
the "nonhydrostatic" component of the stress tensor.
R; is an associated heat-flux vector defined by (12).

More is said about this approximation to f; in Sec. 5.
For the moment, though, it is clear that if equations
of change for u;, T;, P (or P;), and R; (or q;) are
generated, the higher moments m, Q;w;), which inevi-
tably appear, can, using (8) in the defining equation
(4), be expressed in terms of these same variables.
Furthermore, knowing the dynamics of a colhsion the
integrals can be evaluated and a closed system of
equations obtained.

Equation (8) can be written in the abbreviated form

f;=f,"'(1+6;).
In reference 2 the collision integrals have been evalua-
ted only to the accuracy involved in taking

f;fp= f;")fp")(1+&;+&p) (13)

in expressions (5). The quadratic terms have been con-
sidered in detail by Kolodner, ' ' but they are in most
practical cases unimportant, and no such terms are
given here.

To within the approximation (13), the general result
Is

I,p(f)) = &)p("+&~p("~~+~)p("up+&) p("P,'
+&;p(')Pp'+&;p(') R;+h p(') Rp. (14)

The &);p(")(Wl)p;(")) are scalars, being functions of I,,
mi„T;, and T~, the exact dependence on these parameters
being determined by the nature of )P; (w;). The fact
that Eq. (14) is of nonuniform tensorial rank implies
that in the case of each particular )p, cert.ain of the l)'s

are necessarily zero.
In general, the 6("&'s are extremely complex, only

simplifying in the case of equal temperatures. However,
in a binary electron plasma, in which m,((m;, they do
reduce to something manageable provided

T,«(m, /m. )T,. (15)

(Here as elsewhere in this paper j and k refer to general
particle types, while the subscripts ~ and e refer ex-
plicitly to ions and electrons, respectively. )

In evaluating the integrals (5) for a plasma an upper
limit has had to be placed on the impact parameter b.
This has been taken to be the Debye length h and the
coeGicients of the next section, corresponding to the
I)(")'s of (14), involve as expected the ratio h/r;q. r; p is
the distance of closest approach of two particles, types
j and k, which possess the mean relative energy of these
particle types (in the center of mass frame of the col-
liding particles). Following Spitzer, the ratio h/r;p is
denoted by A;q. This, in general, is given by'

3 fnp+n) ) mp'm; 4)rpp
X;,=-h~

2 E npn, ) m, +m; ~e;e„[
(16)

1nA..=1nA;, +InZ, ~lnA, , (18)
7 I. Kolodner, Institute of Mathematical Sciences, Nevr York

University, NYO-7980 (1957).
L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience

Publishers, Inc., Neve York, 1956), Chap. V.

n& and n; are as defined in Eq. (7) and pp is the per-
mittivity of free-space. 1nh.;, is tabulated in reference
8. In particular, since m;))m, and n;))n, (consistent
with Eq. (15)j, it can be easily verified that

inh. ;;=Ink, ,+ln(T, /T;Z, ) Ink;. , (17)



Z, is the ionic charge, while the approximations follow
from the fact that 1nA;, is usually within the range Io
to 20,

3. DYNAMICAL EQUATIONS FOR A
BINARY PLASMA

In the following subsections, equations corresponding
to the dynamical equations for I,, N,m;u;, p;, P, and
R; are given in summary form. The detailed deriva-
tion can be found in reference 1, For notational
convenience, q; and. P; also appear in these equations,
ot being understood that these are related to P and
R; by Eqs. (11) and (12). In cases where no confusion
can arise, j, the conduction current density, is used in
preference to the u;. This permits a ready comparison
of the equations of this section with those of magneto-
hydrodynamics. To be explicit,

j=~ N, e,u;,

3.3. Momentum Equations

The equations of change for p,u, and p;u, , on being
added, lead to the total momentum equation

pdv/dan=a(E+vX$)+pg+jX$ (—8/Br) P (27)

where P=—P~+P„and pg is any nonelectromagnetic
body force such as gravitation.

Again, if these equations of change are 6rst multiplied
throughout by e;/pip; and e./pip„respectively, and then
added, the "generalized Ohm's law" is obtained,
namely)

-ssg sj 8 8 ) 1 8—+)—v+3 —v — —P + )X$
e,s d~ ar ar t ~,ear

'
e,s

me—(E+vX$)= —plj —ni R,—Z, R; i. (28)
m; )

but since by definition

piue+peue=0, (20)
where

it follows that
ps Ss1Ss p pg Se ffjegy

NgeeUq. (21)

Although the following equations apply to a com-
pletely ionized plasma, use of the approximate equality
p4~e,

~

pp, e, has only been made in simplifying the
collision integrals and in neglecting terms in which the
ratio o/N, e, occurs explicitly. p is the charge density
de6ned by

Ba/Bt+ (8/Br) ~ (j+o v) =0

Bp/Bt+(8/Br) pv=0,

(25)

(26)

where p= p,+p, . Since the plasma is completely ionized,
the collision terms are zero.

3.1. Maxwell's Equations

In order to emphasize the distinction between con-
duction, convection, and displacement currents, the
relevant Maxwell equations are included, namely,

cllll$=pp)+ppp'v+ppppBE/8$& (23)

curlE = —(p1$/R). (24)

po is the permeability and eo the permittivity of free
space.

3.2. Continuity Equations

The equations of change for e, and n; may be com-
bined to give the continuity equations for mass and
charge. These are

g = I.29&10'T, :Z; ink;, ohm-m.

The second coefFicient n is related to g by

n= ,' (ge/kT. ). —

(29)

(3o)

It is shown in Sec. 4 that the coupling between the
electrical and, thermal properties is responsible for the
well-known anisotropic resistivity of a plasma (ignoring
Hall currents). Owing to the mass ratio m./m;, the term
in R, in (28) can usually be neglected.

It is convenient to de6ne a time ~D by the relation

(31)

le = 'JSg/ppSgp . (32)

Inspection of (28) shows that p.D is simply the electron
collision time for momentum exchange. It has, however,
another interesting interpretation: /, is the penetration
depth in a stationary collisionless plasma, Hence v~ is
of the order of the time for an electromagnetic 6eld to
penetrate this distance when collisions are dominant.
Numerically,

p D ——(2.72X10'/Z, ink, ,) (T,&/p4) sec, (33)

where it must be remembered that n, is number per
cubic meter and T. is in degrees Kelvin.

3.4. Energy Equations

The thermal energy equations for both ions and

e(—=
~
e, ~) is the charge on a proton. The coeKcient g

is the same as that given by Spitzer' for the resistivity
perpendicular to a strong magnetic 6eld in the absence
of Hall currents Lthese are associated with the jX$
term in (28)], pressure gradients, and inertial terms.
Numerically,
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electrons have the general form

if2pj 3 8 8 . Bv
+ p~

-.v—+ q'—p~F—' n +P;:
dt 2 Or Or Or

where
ih, ih—i, v, i,(T; T„)—, (34)

and
F,=—e,/m, (E+«X B)+g—dv/Ch,

~„=i „=3k (m./m, ) (1/ih, rD),

(35)

(36)

rz& being defined by Eq. (31) or (32).
On adding the equations for the two components, the

total thermal energy can be obtained. This is

ih'p 3 8 8 Bv
+—P—v+—q+P:—=j (E+«XB), (37)

dt 2 Or Or Or

2 (m;T, )
9 Em, T;)

T$8 TD)
2 (T.~ 4 (T,y

'
5 ET, & 45 InA;, (T;.)

(42)

rg), (43)
4 t'm;~: ~ T,pt: lnA. ;;

3Z, , 1+ Z,
]
—

/ ]
—

[

15&2 t m. ) (T,) 1nA;.

10 1 m,
Tei TD)

27Z;m.
' (44)

more, to note the ordering of the subscripts j and k in
(39) since P, i, &Pi,;and r;i, &ri,;, ascanbeseenfrom the
following explicit forms for these coefficients:

where

p=p, +p„q= q;+q„. P= P;+P..

Again, taking the scalar product of (27) with v and
adding the result to (37) gives

10
Tee

13 8 1 lnA„
1+

13v2 Z, lnA;, i

'TD)

a(-', p+-', pv') 8
+—(q+P v+gpv+ ,'pv'v)-

Or
=E (j+~v)+pg v. (38)

This is simply the equation for total energy balance.

3.S. Stress Equations

The equations for the "nonhydrostatic" components
of the stress tensors, written in general form, are

dP +P' «-+6 «(~—/~ )rqi))' 2p9&&Fpu2)—)'
dt Or

—2—(&P''X B))'+2«»»/~r))'
mj

P~~ . P~~= ——P,'-—P,'. (39)

(h'. =

4 (m;T, t ( T~ '1

15 t m, T, ) 4 3T;)

2(T 1 4 (T i

5 1,T, & 451~,.iT, &

1 lnA.„
1+

12

13

V2Z, lnA. „
8 1 lnA„

1+
1392 Z; lnA. ;,

3~2 (m;& l (T.~
l InA, ;'+

2 10 (m, ) t.T„) in', , 3
p"=—

hm, ) ~ (T, '1 * ln&i;; 2
1+ Z~ —'

I
~

—'
~

v215 Em, i t.T,) lm, .

(46)

(47)

(P'X B)i,„—=E i'e„,B,. (40)

e„, is the permutation tensor. If A and B are two
vectors,

(&(AB))') „=——,'(A 8„+8A„—-,'8 „A,B ), (41)

where A could be the vector operators 8/Br or P 8/Br'
6),„is the Kronecker 8.

In (40) and (41) the double sufFix summation con-
vention applies to Greek indices. However, in (39)'and
elsewhere, no such convention applies to the Roman
indices j and k (or i and e). It is important, further-

In these equations F, is as given by (35), while the
cross product between a tensor and a vector is defined
to be

P„=8/27 (49)

These expressions for the coefficients in (39) are
exact to within an error of the order of 1/2 in&;,.

The times T;; and T„should not be confused with
ion and electron self-collision times. Contributions from
self-encounters are, however, included, being easily
identified since they are those terms which involve the
ratios

ink, ;/1nA;, and lnA, ./ink. ;,.

Since collision times add according to the law

1/re= 1/x~+1/re,

it is seen from (45), for example, that the electron
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self-collision time is

L(5v2/4)Z;]((InA;, /InA )TDg. (50)

This is independent of Z; since rn LEq. (33)j is in-
versely proportional to Z;.

At first sight the coeKcients (42) to (49) appear
disappointingly complicated. However, owing to the
mass ratios, the crossterms involving the v, ~ can usually
be neglected. That is, the right-hand side of (39) can be
approximated to by

[(p,„/ „)P.'j+L(p, ,/ „)P, 'j=(p;,/;;)P . (51)

Similarly, the corresponding terms in the heat-Qux
equations (see next subsection) can also be ignored.
Trial solutions indicate that these are valid approxi-
mations provided

(m,/m, )T,«T,«T, (m;/m, )'*, (52)

the error involved being of the order of (T,/T, ) (m,/m, )&

near the upper limit. Furthermore, within the range
indicated by (52), only the self-collision terms are
important in r... while from (17) and (18),

Inh, ,/InA, . lnA„/lnA;, 1. (53)

Therefore, to within the limits imposed by (52) and
(53), the collision terms simplify considerably. The
crossterms can be neglected and the remaining ones
are relatively uncomplicated.

In one sense the thermal-energy equations are super-
fluous, since they could be combined with (39) to give
dynamical equations for P, rather than P . This
follows from the fact that 3p; is, by detmition, simply
the contraction of P;.However, —,'m, m,' is a summational
invariant and is therefore of special interest. Thus, Eq.
(34) has been retained in explicit form.

As pointedout in Sec. 3.5, the crossterms involving
the times r;&(jWk) can, subject to (52), be neglected.
Furthermore, since y;~(m, /m;)', the term y;j can be
ignored in the equations for the ions. This, however,
is not true of the corresponding term 7.j, which is of
major importance in coupling the thermal and electrical
properties of a plasma.

4. TRANSPORT RELATIONSHIPS

4.1. General

The equations of the preceding section are a set of
quasi-linear differential equations which must be solved
subject to certain initial and boundary conditions. This
is, in general, a difhcult problem. However, in certain
cases it is possible to develop expressions of a transport
nature which lead to a reduction in the number of
variables and thus an over-all simplihcation.

In particular, in slowly varying flows, it is possible
to express the components of j (or u; —ui,), P, ', and
R; in terms of the e; (or o. and p), T; and the com-
ponents of E, I, g, and v. The latter of these two sets
of variables is called primary, the former secondary,
and in what follows are denoted by E„and S„, respec-
tively, irrespective of tensorial rank or particle type
concerned.

It is convenient to consider the problem generally
and write the component equations of (28), (39), and
(54) in the generalized form

BS„BS), BE,
+op&" +di v'

Bt Bx» Bx»

dP. BP„)
+Si,

~
k„),. +c„i,"

~
=y„i,Sg, (57)

dt ax i
3.6. Heat-Flux Equations

where, as before, the double sufBx summation conven-
tion applies to the Greek indices. Inspection of Eqs.
(28), (39), and (54) shows that many of the coefficients
a, b, c, d, and p are zero, but when this is not so they
are peculiar in that they are functions of the E„only.
In particular, after making allowances for dimensional
differences, the y„),'s are basically the reciprocals of the
collision and Larmor times (and. one other which is
discussed in Sec. 4.2.3), while the a„i' and d„q" are the
thermal and mean mass velocities. Again, it is observed
that the

These are the most cumbersome of the set, being
given by

5 dT; e; Bv
+ e;ku, —P,' F,——— R;)&B+R,"—

2( 8 Bv Bv
+—

] q,—v+q; —+—q; )

5 0 ar ar ar ) dP./dt may be dT;/dt or dv, /dt, (58)

dR; B k (7 B 5 BT B
+R,—v+—

i
PP T;+ p, —+T—, P— —

dt Br m; E2 Br 2 Br Br i

= —(I/r; )R —(I/r;;) R,—y,j. (54)

The v-'s are the same as those in Sec. 3.5 while the y's are

where e, is the v th component of the mean mass velocity.
On the other hand, in nearly all instances,

7.= s (kT le) (I/~D),

9kT. 1 (m.T;i' 16 (T.i 10 (T.i'
v'= —— —

I I
1——

I
—I+—

f

—
I

2 e 7n Em~T, i 9 kT, ) 9 t.T;)

(55)
c„i,„"BP,/Bx" are equivalent to 1V„i„'8V,/Bx", (59)

the E's being merely numbers. In slowly varying Qows
the terms in Si on the left-hand side of (57) may be
ignored in comparison with those on the right. Hence,
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erst approximations to the Sz are given by

(y)SQ = dye BPg/Bx
or

(6o)

dP. BP„q BP„
+(„)S(&~ b». +c»,"

~
+&),(.dl„" . (62)

Ch ax"J ax"

In this manner "solutions" to any degree of approxi-
mation may be obtained, subject to the fiow being
slowly varying.

An alternative form of this process of successive
approximation emphasizes the question of convergence.
If the S), are expanded in the form

($)SQ—Fgpdp BP /Bx (61)

The F),„are the reduced cofactors of the determinant
(which is assumed nonzero). A second approxi-

mation can now be found by putting the terms in S„
(and S),) on the left-hand side of (57) equal to the
p)S), of (16) and those on the right equal to (»S), , or,
in general, the (v+1)th approximation is

8(„)S„B(~)Sg
( +g)Sg Fgy +c»"

Bt Bg"

Unfortunately, the resulting expressions are so un-
manageable that they are of little value. The fact that
this can be done, however, is of importance in showing
the relationship between the 13-moment approximation
and the direct Chapman-Enskog solution of the Boltz-
mann equation.

If the Qows are not slowly varying, at least to the
extent implied previously, it may still be possible to
use (66) as a first approximation provided the y's are
replaced by the coefEcients of the S), on the left-hand
side of (57). These involve dP, /dt and BV,/Bx" Ho. w-

ever, the convergence of a series of the form (63) for
this case has not been investigated by the authors of
this paper.

In the next subsection the first approximations to
(28), (39), and (54) are considered in detail. Although
these are basically similar to those of Chapman and
Cowling, ' they do di8er by the inclusion of extra terms.

4.2. First Approximations

For simplicity it is assumed that the ion temperature
lies within the limits stipulated by (52). Therefore,
jo), P, '(", and R, ('& satisfy the equations [compare
with (28), (39), and (54)]

where
S =S (')+S),(')+S),(')+ S),(")+ . . 8—P,+ jXR+(E+vXS)=gj+nR„(68)

(65)

(66)

S,«) =0,

S),('& = I'g„d„„"BP„/Bx',
+2m, e,((u, (E+vX 8+m, g/e, )))'=—p, ',

rj
5 kBT; e;——p,— +—R,XB
2 m~ 8f mj

(69)

and for n&1,

gS (~)

+~»"
8$ 8$"

S~(e+I)
e, m; p R;+—p

) E+vXS+—
& i=—+y,1. (70)

e,dP„BP„)
+S" )

I
b»~ +«~"

I
~ (67)

d$ Bx" The double suffix notation on the p's and ~'s has been
dropped and the superscripts (1) denoting the first
approximations have been left out.

From (20) and (21),
The expansion (63) should be compared with the

Chapman-Enskog expansion of the velocity distribution
function. Furthermore, the recursive nature of (67)
implies that (63) is an expansion in terms of the reduced
cofactors I"~„or the I"),„a,~", etc. Remembering the
nature of the y),„'s, u„q"'s, etc. , this is tantamount to an
expansion in terms of the collision, Larmor, or hybrid
times or mean free paths and Larmor radii. Hence, the
rapid convergence of (63) would appear to require
that the primary variables change little in times and
distances comparable with these characteristic quan-
tities. Certain explicit examples are considered in more
detail in Sec. 3.3.

By using (23)—(27) and (34), it is possible to eliminate
the time derivative from (63) and thus obtain the S),
in terms of the I', and their spatial derivatives only.

eee+e

hence due to the factor m, /m; the third term on the
left-hand side of (69) can be ignored in the case of the
ions. Therefore, the ion and electron equations "de-
couple" in the erst and all subsequent approximations.

Although this in itself introduces a considerable sim-
pli6cation, the determinant for the electrons, corre-
sponding to the ~y),„~ of Eq. (60), is still 12X12 (six
components of the stress tensor: three for j, and three

( g)S),—=S),(')+S),(')+ . S),'"+" (64)

then (61) and (62) are equivalent to the series of 2p ((Bv/Br))0+2 ((p ~XR))o
equations mj
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for R,). Hence, rather than attempt to solve the set
(68) to (70) ee bloc, it is much simpler to proceed in
steps. This is done in the next three subsections.

4.Z.1.Stress Tensor

It is preferable to start with Eq. (69) since this
involves no terms in R;. This can be written in the
abbreviated form,

large ar or large r (see the next section for 1/r=0).
However, as r-z ~ (a collisionless plasma) the ex-
pressions for the diagonal components become mean-
ingless and the exact Eqs. (39) must be used. In this
case, subject to certain other assumptions, these
equations when combined with the thermal energy
equations give the well-known double adiabatic law. '

4.Z.Z. Heat-F/Nx Vector

—2p, e +2((P X,))'=—P, (71) As for the stress tensor it is convenient to write the
equation for. R; in the abbreviated form

where ao;—=e;/m;8. In all subsequent equations it should
be noted that a&;=e;/m;[8[ W ~;[. In particular,
co.= —e/m. [8[, while in general r»;[ is the cyclotron
frequency.

1
e,'=—((8v/ Br))'——((j[E+v X8+m, g/e. ]))',

where

5 k 1——p,—D;+R;Xo»;=—R,,
2 'm; '

BT; e; 2m; m;
D;—= —— P E+vXB+—g,

Br m; Spk e;

(73)

0 0P, =—2pe, ,

p '——
1+(4co'r'/P')

ku'r' 2(or
f

X'[ zz+2(ww+ zz) + zz JzO'

p gg

1 + (4oo& rm/P2)

4o'r' 2&or
[X eiz +2 (ezz~+ezz ) ezz

O' P

2p
[

2»or
+o ' eo* +2(e eoz )

1+(4 '"/~')

2y cur
P~'- =P~ 'i ezy + ezz

1+(oo'r'/P) J P

2p G) V'

0 0 0 0P„=P„=— e„——e~
1+(~'"/0')

Pzg

p, is the coefficient of viscosity deGned to be

I =pr/p (72)

The limiting forms of these expressions when cur&&1

are of special interest. Those for the nondiagonal com-
ponents are still valid whether this corresponds to

e —=((Bv/ar))',

while P,~—', ; P,~1 [compare with Eqs. (47) and. (48)$.
If a Cartesian reference frame is so orientated that

the magnetic Geld is in the x direction, then the solu-
tion of (71) is formally the same as that given by
Chapman and Cowling. ' On dropping the subscripts j,
this is

BT, 2m, e, 2m, m,
D,—= + y, j—— P,' E+vXB+—g .

Br Sp,k m, Sp,k e,

Using the vector identity

&X(BXC)=8(A C) —C(A 8), (74)

the solution of (73) is straightforward. On ignoring the
subscript j, the result is

R= —P/(1+aPrm) j(D+r'ra D~—nuXD}. (75)

Contained in this solution are the usual properties
of heat conduction parallel and perpendicular to a
magnetic Geld, while the Righi-Leduc and Kttings-
hausen+eGects are accounted for by the transverse
terms ~)&D. ) is the coefficient of thermal conductivity
deGned by

X = -',p(k/m) r. (76)

R, l
———) Dff, (77)

R,= —,'P(k/m)(~XD/a)'). (78)

As for the diagonal stress components, if 1/r —& 0, the
expression for Rlf becomes meaningless and the more
exact equations must be used. However, the expression
for R& is still valid, provided it is regarded as an average
value over a Larmor period. This is easily seen by con-
sidering the more exact equation [compare with (54)]

9 G. F. Chew, M. L. Goldberger, and F, E. Low, Proc, Roy. Soc.
(London) A236, 112 (1950).

The expression for (75) is relatively straightforward
except for those components of D which involve P'.
These could be eliminated by using the results of the
previous subsection. There is, however, little value in
doing this except in explicit cases. A simple example
along these lines is given in the next subsection. Equa-
tion (75) is a vector equation, but for cur»1, the only
signihcant components are
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for 1/r=0, namely,

(dR/Ct) —RX ra= D.

From the deGnition (84) and the previously deGned
values of n, y„r„and g LEqs. (30), (45), (55), and
(29)g, it may be shown that

If it is assumed that v =0, then D is independent of
R. Let the magnetic Geld be in the x direction and D
in the y direction, then provided D is essentially con-
stant over a Larmor period,

4(V2Z; InA, .+2 ink„)

13V2Z; lnA. ;,+8 l~„ (87)

E,= —(D„/co)+E cos(cot+e),

R„= IC sin (—cot+ e),

where E and e are constants. Therefore, R, has a steady
component in the s direction upon which there is super-
imposed another component which rotates with a
frequency co. This is analogous to the guiding center of
a particle moving with a drift velocity EXB/8'. The
effect of collisions is to damp out the periodic component.

pere ~
BT,

Rg) = jXere+
1+a& 2' y.r, Br

(80)

Use of this expression for R, in (68) gives the Ohm's
law,

&„j=A+KX R, (81)
where

1 8
A —=— p,+E nRg)+— —aa, . ~„(82)

m, e, Br 1+cog r 2 Br

1 (chere/K= j+v—a
ne, (8)

The use of both 8 and ~, is a matter of convenience,
while it should be noted that e.= —e (the charge on an
electron) and ~,= —e/rn&. rt&& is deGned by

et' ~
= rtL1 —(ny, r,/rt) j,

4.Z.3. Ohm's Law

The coupling between j and R, in (68) is of prime
importance. To illustrate the effects of this, two special
cases are considered. In the Grst, the term in P,' in (70)
is neglected; when this is done, substitution of the
expression for D, in (75) yields t after a certain amount
of manipulation in which the vector identity (74) is
again used j
Re= pere) re6) e XRD+ RD

X,r,2 BT,
(79)

]+(g 2r 2

where

In particular for Z, =1, g/et» 2, while as g, —e oo,

p/p&& ~ 3.25, these results being consistent with those
of Spitzer. ' The coefGcient er in (86) is called the
thermal diffusion emf coe%cient and is deGned as

15 k 8 1 ink —' k
Kr —=Q)I e=—— 1+

13 e . 13%2Z, lnh. ;,. e
(88)

If pressure and temperature gradients can be ne-
glected, and there is no current Qow in the direction of
jX8 (that is, no Hall currents), then rt is the resistivity
perpendicular to a strong magnetic Geld. On using (80),
(82), and (83), subject to these restrictions, (81)
becomes

~Vere |'~ere'2

rt„j=E+vXB+
~

~(jX~,)XB.
1+co,'r.' 0 8 )

For (co,r,)'&)1, the identity (74), now gives

a'yere
~

(g&i+er.y.r,)j—=rtj= E+vX&+ (j ~.)~.,
COg

K=q j+nR„
2((Ej))'= (1/")P.',

(e,/tn, )P, E= (1/r, )R,+y,j.
For E—= (E„0,0), the solution of these equations is

j„=j,=0,
nii (1—t- E*')

(89)

(90)

(91)

(92)

P„'= 3E '7.,
P„„'=Pzz' = —2P, ';

et, (1—1'E*')
P „'=P„.'=P, '=0, (93)

which proves the preceding statement.
In general, the R~ term in K, is responsible for the

para- and diamagnetic properties of a plasma (the
temperature gradient term in this expression is the
Nernst effect).

Coming now to the second case, it is assumed that
8=0 and that all space derivatives are zero. Then Kqs.
(68)—(70) are

rt„=A 8/j 8, (85) where

and as implied by the notation is the resistivity parallel
to a magnetic Geld. That this is so can be seen by taking
the scalar product of (81) with 8, namely,

yr.E $1+(e/n4) e3 (r—,/y, )E,2j
(1-1'E*')

R„=R,=O, (94)

where

A 8= p —(1/n. e.) (Bp./Br)+ E+ar(B& /Br) j e(86).
4 ne 4 m, e'

g2—
3 gi lm, 5 kT,&m,' yi,

(95)
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It is now convenient to define an acceleration time r, equations [compare with (67)j
by the relationship

', k T,-= ,' (e'/—me)E.'r.'. (96) —-P'"+"+2((p'"+"X~))'= 5(((alar) R'"')), (100)

2 ink„
K2+-

Z; ink;,

8 ink„
13V2+-

Z; ink;,

and rr) is as defined by (31) or (33). For Z, = 1; B2

while for Z; —+ ec, B' +60/13-. Therefore, according to
(92), the effective resistivity tends to zero as r +BrD—
and does, in fact, eventually become negative. This
implies that the Grst approximations are no longer
adequate, and the "inertial" terms, in particular the
time derivatives, in Eqs. (28), (39), and (54), must be
taken into account. This suggests, for this particular
problem, that an adequate criterion for the complete
"runaway" of electrons is

B'(re/r ') ) 1

or, numerically,

That is, r is the time to accelerate an electron, in the
absence of collisions, to an energy equal to -,'kTee (It
should be noted that by definition T, is measured with
respect to the mean mass velocity. The true thermal
temperature T,' of the electrons is related to T, by
gkTe=)kTe +gmele )

By using (87) and (45), the term (1—PE,') can now
be written as

12E 2 1—B2(rg)2/r 2)

where
120

1
R(n+))+ R(n+&) )(

T
7k BT k 8=——P'&"' + T P—'"'—. (101)
2 m Br m Bx'

Since P'&'& is zero, it follows from (100) and (101) that

P'&"'=0 for e odd; R&"'=0 for n even.

The Grst case to be considered is

BT/Br = (BT/Bx—,0,0); ~—= (0,0,0).

The only nonzero components are E, P ', I'»', and
I'„'.At all levels

By usin. g (75), (100), and (101), it may be confirmed
that to the third approximation,

4 k r a t BT~
P &&=0 P &&=----—

I
p.

3 m P Bx 4 Bx )
P„'(3)=0, (102)

Sk BT
R.(n = Pr,. —R,—&2& =0,

2m 8$

14(kp'r' B ( BT) BT
R.'"=—

I
—

I

——
I

p.
3 (mi P Bx( Bx) Bx

2.25)&10'8( E'eT'e/Z e2r4') B)1 (97)

(corresponding to in', , 15). E is in v/m and e, is
number/m'. Comparison with Secs. 4.2.1 and 4.2.2
shows that (92)—(94) and the subsequent discussion still

apply in the case of a magnetic Geld provided it is par-
allel to E and there are no space gradients.

4(k)'r B B ( BT)
+-I —

I
-T——

I p I (1o3)
3(m) P ax axE ax&

Since r and p are simple algebraic functions of T, it
is obvious that I' ' and E can be expressed as a power
series in r. E,& ' involves derivatives of T up to the
order and degree of three. In particular, one such term is

4.3. Higher Ayyroximations

In general, the higher approximations are extremely
complicated. However, to illustrate what is involved,
two relatively simple examples of possible practical
value are considered. In both of these, it is assumed
that the mean mass velocity, time derivatives, forces,
and currents are all zero. With these assumptions, Eqs,
(39) an

(14/3) (k/m)'(r'/p) p(BT/ax)mar/Bx,

which, since r T&/r), includes

[R &'&53 7(k/m)'——(r'/p) (p/T) (BT/Bx)'. (104)
d 54 are

For rapid convergence E,~a) should be small compared

4(((a/ar) R))n 2((PoX~))o y/r) po (98) with R &'&. Since (104) is likely to be a dominant term
in (103), consider the ratio of [R,('&g)) to R &'&. This is

7 k BT k 8 5 k BT R
——P' + T .P'+ P —-R—Xa)—=——.—(—99)
2m Br ns Br 2 msgr T

[R "&j /R &'& = (28/15) (P/T') (aT/ax)', (105)

where P=P(kT/m)]&r is the mean free path. Thus,
The first approximation to P' is zero, while Ro) is rapid convergence requires little change over a mean

given by (75). The higher approximations satisfy the free path.
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The second case to be considered is for

BT/Br= (—O, BT/By, 0),
s)—= (~„0,0).

From the first approximation (75), it is seen that the
"expansion" times are of a hybrid nature. However, for
(&vr)»1, the only significant component of R&'& is

R,&"= -', (k/m) p(1/&v, )BT/By.

On using this expression for R&'& in (100), the only
terms of P''2& of any magnitude are (compare with
Sec. 4.2.1)

k 1 B (pBT)
P ~(2&=

( i
P ay&

2m(a. By «o. By)

Consequently, the solution for R, &'& is given by (103)
when r is replaced by 1/co, the expression multiplied

by —s and P= i. Since p ~ 7', a convergence criterion
similar to (105) follows, namely,

1»(7/15) (r'/T') (BTIBy)'

where r=L23(kT/m)7'*(1/&u, ) is the Larmor radius. In
these higher approximations the gradient of the mag-
netic Geld also appears and this may be dominant. For
instance, such a term in R,"' is

1 k 1 kT BT(B 1)'
2m~, m By &By~,&

The ratio of this term to R,&') is

(2/15) (r'/~') (B~*/By)'.

That is, as anticipated, the magnetic Geld should vary
little over a Larmor radius. Similar arguments apply
to density gradients and all such primary variables,
while time dependence can be taken into account in a
like manner.

S. DISTRIBUTION FUNCTION

Expression (8) for the distribution function is an
approximation to the complete expansion in terms of
multidimensional Hermite polynomials. By considering
more terms in this series, greater accuracy can be
achieved, but only at the expense of greater complexity.
It might be expected that the equations deduced by
using (8) only apply near true equilibrium states, hence
the inclusion of "thermal" in the title of this paper.
There is, however, no rigorous mathematical argument
by which the range of validity of these equations can
be judged and a certain amount of physical reasoning
is required.

With regard to the distribution function itself, it is
clear that it must be finite and nonnegative, at least
over a considerable range of P. Take, for example, a
problem in which there is an axis of symmetry in the
x direction and along which there is applied a force
Lcompare with Eqs. (89)—(91)j. The only nonzero
components of the vectors u, R, and the tensor P' are
u, R„P„', P~', and P„', while again from the
symmetry

Pg/g Pzz Q Pxt

In this case, expression (8) becomes,

f=f"'(1+(2~)' N4+(1/I2p»-'(4' —'t '—'~ ')-
+ (2/P) (2 )'&.(.(P—5)). (106)

Therefore, in particular, when $,=0,

which is valid only if

Similar arguments apply to other values of (,.
If now (106) is expressed in terms of the peculiar

velocity w, instead of $, a useful and interesting variant
for this distribution function can be obtained. If m,
is put equal to mcosH, where H is the polar angle in
velocity space, this is

f= f~o&(Pp(cos&)+QP&(costt)+xE2(costt)). (107)

The P„are Legendre polynomials in cosH, while

0 =—wP~N. + s (~/p)~. (~w' —-') 3,
x= (~/p)&-'~—

could be regarded as the first term in, say, expansions
of Sonine polynomials. The "variant, " (107), is par-
ticularly useful for determining average values over H

within the shell w, w+dw. It may, for instance, be
readily conGrmed that

(w.)g
——-',~.

In view of (107) and the discussion given in Sec. 4, the
relationship between the 13-moment approximation of
Grad and. other types of expansions and approximations
in common use can be understood.
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DISCUSSION

Session Reporter:

B. Lehnert, The Royallnstitute of Technology, Stockholm,
Sweden: The second of your momentum equations corresponds
to Ohm's law. Do you get in this equation e term which is due
to thermal conduction as well?

B. S. Liley: The second moment equation involves the to-
tal heat Qux vector, which in turn can be related to tempera-
ture gradients.

J. M. Burgers, University of M aryland, College Park,
Maryland: It is the type of approximation assumed for the
distribution function which brings the necessity of having the

8, RIES ENFELD

heat-fiow terms go with the diffusion terms on which the
electric current depends.

J. E. McCune, Aeronautical Research Associates, Prince-
ton, Mezz Jersey: At what point did your discussion stop treat-
ing a multicomponent gas and start dealing with a fully ionized

gas?
B. S. Liley: I intended all the explicit moment equations

which I presented to describe a fully ionized gas. Actually
the formalism for incomplete ionization is much the same. The
nature of the numerical coefficients changes, however.


