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GENERAL INTRODUCTION

~ 'HIS paper discusses systematically irreversible
processes in plasma in a magnetic field without

attempting laborious numerical calculations. The
irreversible processes can be classified with regard. to
the tensor rank of the irreversible Qow under consider-
ation. Thus, in the case of relaxation between ion and
electron temperatures the Row is a scalar. This simplest
case is treated in Sec. I. For electric and thermal
conductions, on the other hand, Rows are vectors.
These phenomena are discussed in Sec. II. The theory
of irreversible processes may be considered from the
phenomenological (or macroscopic) point of view and
from the molecular (or microscopic) point of view.
In Sec. I a microscopic theory of the temperature
relaxation in a fully ionized gas is developed; in this
case the macroscopic theory is trivial. In Sec. II the
discussion is developed from both macroscopic and
microscopic points of view.

The phenomenological theory in this paper is an
application of the thermodynamics of irreversible
processes. In the absence of the magnetic field, or for
weak. 6elds at most, the phenomenological coefficients
in linear relations for irreversible processes are scalars.
This case has been treated by Maecker and Peters'
and by Kihara. ' In the presence of a strong magnetic
6eld these coeKcients are tensors whose characteristic
features are discussed here.

The main purpose of our microscopic theory is an
application of the force-correlation formalism to a
gaseous plasma. When the mean gyration radius of
electrons is larger than the Debye length, the micro-
scopic theory can be developed by use of the Boltzmann
equation; in fact, many studies have been made along
this line. ~' Here the electron gyration radius can be
smaller than the Debye length, and the Boltzmann
equation is not used.

I. ION-ELECTRON TEMPERATURE RELAXATION

I. Introduction

(T,/m, )—:«(T,/m, ) t. (2)

The long-range many-body interaction which results
from the Coulomb potential r ' can be eliminated by
the use of a shielded interparticle potential, say,
r ' exp( —xqmr). Although the shielding constant ~~2 can
not be determined exactly, it is of order of the Debye
characteristic constant l~—', lD being the Debye length.
At high temperatures or low densities, i.e., for weak
interactions, the rate or relaxation does not depend
sensitively on the constant x~2. We treat this case.

2. Formulation in Terms of the
Force Correlation

The particle velocities of the ion and electron are
denoted by c& and c2, respectively, with ~c&~

—=cr and
~c2~. =—c2. The average value of sm~cP is kT~, and the
time rate of change of kT& is given by the average
value of the time rate of change of 3mjcP:

is much smaller than that between ions or between
electrons. Hence, the ion temperature T~ and the
electron temperature T2 are often different even when
the velocity distributions are both uniform and Maxwel-
lian. The rate E. of this relaxation is de6ned by

(d/dt) (T2 Tj)= —(—T2—Tg)E,
where t denotes time.

The object of Sec. I is to discuss the rate of relaxation
in a fully ionized gas in a magnetic field. Both the gas
and the magnetic field are assumed to be uniform in
space. We consider a gas which is composed of one type
of positive ion and electrons. The particle mass,
particle charge, and number density of the ion are
denoted by m&, Ze, and e&, respectively; those for
electrons are expressed by m2, —e, and n2 (Ch.arge
neutrality, Ze&=n2, is assumed and the inequality
Z'«mq/m2 is used. ) Here we consider the case where
the mean ion velocity is much smaller than the mean
electron velocity:

(d/dt)kT~=-, 'm~(1/Dt) {~
c,+her

~

'—cP),~)Since the mass ratio of an ion to an electron is far
from unity, energy transfer between ion and electron

' M. Maecker and Th. Peters, Z. Physik 144, 586 (1956).
2 T. Kihara, J. Phys. Soc. Japan 14, 128 (1959).' T. G. Cowling, Proc. Roy. Soc. (London) A183, 453 (1945).' R. Landshoff, Phys. Rev. 76, 904 (1949).' E. S. Fradkin, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 117

(1957).' S. I. Braginskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 45
(1957).

k being the Boltzmann constant, or

(d/dt)kT~= am~(1/Dt) ((2c~+Ac,) hc~)». (3)

Here, hc& indicates the increment in ion velocity due
to the interaction with surrounding electrons in a time
interval ht; Dt is taken to be much larger than the
time characteristic of Quctuation of the interaction,
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I RREVERSI BLE PROCESSES IN PLASMAS 723

yet it must be much smaller than both the ion gyration
period and the relaxation time R '. ( ), denotes
the average with respect to the ion velocity and the
interaction with surrounding electrons.

When the ion temperature T~ is much smaller than
the electron temperature T2, the average value of
cI hc~ can be neglected in comparison with the average
value of l hci l'; hence,

(d/ch)kT, =-',m, (1/&t)(lac, l') for T «T, . (4)

This is essentially diffusion due to the Brownian motion
in the velocity space. '

The relation (4) can be generalized into the form

(d/ch) kTi=-', mi(1/&t) (l scil'). L(T2—Ti)/T2], (5)

which holds for Ti satisfying (2). The quantity l deil'
averaged with respect to the interaction with surround-
ing electrons is independent of c~, but the average value
of hc& depends linearly upon c&. For constant T2,
therefore, (lhcil'), isindependentof Ti, and (ci hci),~
is proportional to Tj. On taking account of the fact
that ((2ci+Aci) Aci),„vanishes for Ti= T2, we obtain

2 (cl ' ~cl)= —(Ti/T~) ( l
&ci l ')a..

Then (5) follows from (3). (Under our assumption, the
dependence of the shielding constant on the ion temper-
ature has been neglected. )

By use of the relationship

from all the surrounding electrons

6(t) =2' F"(h),

F' indicating the force due to ith electron. The long-
range many-body interaction has been eliminated by
the use of a shielded interparticle potential, and the
force due to an electron is independent of force due to
other electrons, namely,

(6(0) $(h))..= (2;F'(0) F'(t))...
where the crossterms vanish. We have, therefore,

(5'(0) p(t)).„dt= '

J F(0) F(t)fidc2drdt, (8)

where F(t) is force due to an electron at time t, and

f2 is the velocity distribution function for electrons,

f2——nm(m2/2s k T2) '* exp( —m2c2'/2kT, ).

Here r and c2 are position and velocity of the electron
at tim'e 0 in the absence of the interaction.

Thus, we obtain, from (6)—(8), the basic relation

1 Si+rhm 1 h' h' fR=- —
~

~

~
F(0) F(t)f2dc2drdt (10).

3 kT2e2 mg ~

3. Correspondence with the Kinetic Theory

pbt
d, ci———

~

Q(r)dr,
5$$ o

dr= bdbdPds (0—&b, o&P&2s., —m &s&m),

where b is the impact parameter. It follows from (10)
where Q(r) is the force acting on the ion at time r
Hence,

(d/dt) (miT, +N, T,) =0, This section is devoted to the transformation of (10),
in the absence of a magnetic Geld, into a form which

the rate of relaxation E defined by (1) is calculated to

g i(z,+.z,)(~,/kT, +,)(1/gh)(lac, l2) (6) By taking the origin of coordinates at the position
of ion and taking s axis in the direction of initial velocity

The increment in ion velocity during At is given by c2 of an encountering electron, let us introduce the
cylindrical coordinate (b, P, s); then

bt &bt

lhcil'=
'

Q(r) Q(r')drdr'
mg o "o

2ir Si+S2 1 h' h' h'

R=— —~

~ J~ F(0) F(t)dtdsbdbf2dc2 (11).
3 kT2n2 my ~

Q(~) Q(~+t)dhdr.
. m~2 ~o 4 &

Since ht is much larger than the continuance of the
force correlation, we have

Now, —F(t) is the force acting on the encountering
electron, and we have

" F(t)dt =2mmc2 sin(e/2),

8 being the angle of diffraction of the electron orbit.
(&) Further,

00 00 00 2

The force acting on an ion is a sum of contributions l I F(0).F(t)dtds=cm I F(t)dt

7 For example, S. Chandrasekhar, Revs. Modern Phys. 15, 1
(&943). =2m22c'2 (1—cos8).
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Hence,

(4n-)' e&+ppp mpp " p"
(1—cos8)cpPfpbdbdcp. (12)

3 kT2e2 my 'p p

The expression (12) can also be derived directly
from (6). Moreover, (12) can be obtained from the
Boltzmann equation without using the basic relation
(6)

For the eR'ective interparticle potential

Ze'r ' exp( —pgpr) (13)

between an ion and an electron, the integral in (12)
has been calculated by Kihara and Liboff. '%'ith such
results, we can write

This domain is characterized by

where t„ is the period of plasma oscillation, and t, is
the mean time of passage through a sphere of strong
interaction, namely,

(m, q~ ( mp '&t 1 Ze

Lkr, ) &kr, & kr,

Thus, when coordinate origin is taken at position of
the ion, F(0) is simply equal to Ze'r/lrl', and F(t)
is given by

F(t) =Ze'I r+s(t, cp)]/I r+ s(l,cp) I
',

where
E=E' ln (3kTp/4Ze'e»), where s(l,cp) is the increment in the position vector

during time t when the electron velocity is c2 at t=0:
Z'—= (8/3) (n&+ happ) (mp/m&) (2prkr, /mp)'(Ze'/krp)'. (15) s(0&cp):0& I ds($&cp)/d$]g p=cp.

r r+s 4pr
— dr=r' r s' s

1

Ir+sl
Z=gP ln(kr, l /Zne') (16)

ln (14) an irrational number close to pP has been replaced First, the relation
by 4' in the argument of the logarithm.

The expression (14) is exact as a weak-interaction
asymptote for krp/Ze'e»))1, so far as the effective (18)
potential (13) is assumed. When the plasma is suffi-
ciently hot and dilute, then 1n(krp/Ze'Kyp) is much
larger than unity and the formula (14) can be approxi- is Proved. The volume integral on the left-hand side

mated by the well-known expression of (18),

in which /~ is the Debye length. To obtain the limiting
expression (16), it is sufhcient to make integration of
(11) or (12) over the domain of "weak interaction
without correlation" Ze'/kr p& b& lD The integ. ral
J'J'F(0) F(l)dtds in this domain becomes

can be transformed into an integral

r'r s

jI JF
deeds =

" ~ ~ „(b'+s')1 Lb'+(s+c, t)']1 b'cp

and, after integration with respect to cp, (11) is reduced
to

which is equal. to (16). Here, this kind of approxima-
tion is used throughout.

over three spherical surfaces —a small sphere at r=0,
a small sphere at r= —s, and a large sphere with the
center near the origin; I is the normal on the surfaces
from the domain of original volume integral. The
integration over the 6rst small spherical surface gives
the right-hand side of (18), those over the other two
vaIlishing.

On denoting by c&l and c& the parallel and perpendic-
ular components of the electron velocity with respect
to the magnetic field, and by co2 the gyration frequency
of the electron, we have

4. Relaxation in a Magnetic Field

Returning to (10) let us discuss the rate of relaxation
and

in a magnetic 6eld. We assume that the mean electron
gyration radius r, is larger (but not necessarily much
larger) than the limit of weak interaction Ze'/krp.
For our purpose it is sufEcient to integrate (10) over
the domain of "weak interaction without correlation. "

I s(t, c,) I
=

I 2(c,/Mp)'(1 cs op)p+pl—'ct']

(19)
Ill

2(1—cosy) 1

I—= 1—

F
1 mp )~tanh 'F 1

fpdcp= 2spl
ls(l, c,) I

&2~kr, & I'

T. Kihara, J. Phys. Soc. Japan 14, 402 (1959).
~ R. L. LiboB, Phys. Fluids 2, 40 (1959).

P= (de. (20)



I'RREVERSIBLE PROCESSES IN PLASMAS 725

v=Q nm, vs/P n, m; (Q—=Ps),"st& Yttanh 'F p dyR=R' ln(t /t, )+ l
—1

l
—,(21)

F ) y
E and B the electric and the magnetic fields, g the
gravitational acceleration, and I' the pressure. (The
Gaussian system of units is used, and @=3&10'0
cm/sec. ) The equation of motion can be written in
the form

where the second term in the bracket is an increasing
function of cost„. The first term, ln(t„/t, ), gives the
same result as (16).

The integral in (21) takes the asymptotic value
—,'l ln(cost„)g' for large tost„, and the expression (21) is
essentially equivalent to

(24)g n;F;*—gradP=O,
where

Fs*=e;(E+c tv;XE)+nt;Lg —(tt/ttt+v grad)v7. (25)

R ln(t, /t, ) Following Prigogine' we "decompose" the pressure

(22) gradient into
R' ln(tp/t, )+-',

l ln(cp2tp) j' for tpmt„&1. gradP=Q n, (gradttt;)r

Thus, (10) is calculated to be, with R' defined by for the plasma as a whole. Here v is the average flow
(15),

IL ELECTRIC AND THERMAL CONDUCTIONS

5. Phenomenological Foundation

The thermodynamics of irreversible processes, which
has been developed since Onsager-Casimir s reciprocity
theorem, is applied, in Secs. 5 and 6, to plasmas in a
strong magnetic Geld. A fundamental assumption is
that the system is not far from thermal equilibrium.
We consider plasmas composed of several species of
component Quids in which neither ionization nor
recombination occurs nor radiation plays any role.
We suppose in Sec. II that no temperature difference
exists between plasma components and that the
viscosity is negligible.

I et n; and v; be, respectively, the number density
and the Qow velocity of jth component. Then the
equation of continuity for the component is

Bns//Bt+div(n; v;) =0. (23)

Denoting by n,m; and n;e; the mass and the charge
densities of the jth component, we adopt the equation
of motion

Here co2t„ is equal to the ratio of the Debye shielding
length to the mean electron gyration radius. The
limiting value at a very strong Geld,

R=R'-,'I ln (to,t,)g',

was previously obtained by one of the present authors"
in an elementary manner.

In conclusion, the rate of relaxation increases with
increasing magnetic field according to (21) or (22).

T(8s//Bt);„=g X Y .

When a linear relation

(3o)

Here, p; is the chemical potential per particle of the
jth species and

(gradp, ,)r—=gradtt, —(Bts&/8T) p, composition gladTt

7' being the temperature. The equation of motion (24)
then becomes

P n, LF;*—(gradt;), j=o. (26)

On assuming that the plasma is not very far from
thermal equilibrium, we can adopt the thermodynamics
of irreversible processes, which gives the rate of entropy
production (Bs/ttt);„due to irreversible processes in
the form'

T(tts/Bt);„= —q grad lnT+g n;v;
LFs*—(g»dt t)rj (27)

Here q is the heat Qow, sometimes called reduced heat
Qow, due to conduction.

By virtue of (26), v, and F,* in (27) can be replaced,
respectively, by v,—v and

F =e (E+c tv&&8)+nt:, l g—(8/N+v grad)vj, (28)

namely,

T(tts/Bt);„= —q grad 1nT+P n, (v, —v)

'I Ft—(g»d»)rj
The entropy production (27) or (29) indicates that

forces conjugate to Quxes q and v; are, respectively,

—grad lnT and n LF *—(gradtt )rj.
With forces X conjugate to Quxes Y, the entropy
production (27) or (29) is thus expressed in the form

Pn;nt, ;l —+v grad lv) X =PpL pYp (31)

f=g n; e;l E+-v;X8 l+nttg —gradf'c'
"T.Kihara, J. Phys. Soc. Japan 14, 1751 (1959).

is assumed among forces and Quxes, the so-called
phenomenological coeKcients L„p are tensors. For the

"I. Prigogine, Etude Thermodyncnsiqle des Pheeomeees
irreverszbles (Liege, Ed. Desoer, 1947), p. 101.
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II

0

I II 0
Lp' 0
0 L III

because the tensor must be invariant with respect to
rotations about the s axis. Furthermore, (33) must be
invariant with respect to the transformation

S —+ —B, z —+ —z, y —+ —y,

choice (31) of the linear relation the Onsager-Casimir
reciprocity" takes the simplest form

I=e() =Le-t(—&). (32)

This relation means that the tensor L p in the magnetic
field S is equal to the transposed tensor Lp ~ in the
field —S.

Let us take in the plasma a rectangular coordinate
system with the z axis in the direction of S. Then
each tensor is of the form

of the type (36) follows, with coefficient tensors satisfy-
ing the reciprocity (37). As the entropy production is
always positive, the quadratic form for the coeKcients
is positive definite; in particular, tensors Epp and E;;
are positive, the thermal conductivity X—=E'pp/T being
positive. By virtue of (26) we have the relations

ZsKsp=Z~ EON=0, Z~ K~'=Zr Km=0 (39)

The second set of equations (38) gives the equation
of motion of each component which can be transformed,
by use of (39), into

n (F *—
(grady )r]+K,p grad lnT

+P; (—K;;)(v;—v;) =0. (40)

The term with E,p indicates an inner force due to
thermal diGusion and the last term is the friction due
to relative motion. For two-component plasmas the
coefficient of friction —ECJ2 is positive definite.

hence

or g+L(B/Bt)+v grad]v=0.
I--o(&)=L-o'(—&) (34)

Then (29) becomes
From (32) and (34), we obtain therefore

~-e(&) = Ie-(&) (Bs)
T) —

~

= —q grad lnT+P n (v —v)
( Bt);„for all n and P.

In a weak magnetic field the phenomenological co-
)eScients L p are scalars independent of the magnetic

field for which the Onsager-Casimir reciprocity is
simply L p

——Lp . This case has been treated by Maecker
and Peters. ' It is a characteristic feature of (otherwise
isotropic) plasmas in a magnetic ffeld that the Onsager-
Casimir reciprocity (32) reduces to the simple reciprocal (41) reduces'to

relation (35) between tensors. T(Bs/Bt);„= —q.grad lnT+ J (E+e-'vX B)
If, instead of (31), we express the linear relation in

such a "mixed" form as in terms of the conduction current

1
~ e,

~
E+—VXB

~

—(grady;)r . (41)
E.

In the absence of the mutual diffusion, i.e., when

(42)

(b) Transport Coegeients
L p'&S' =L p'~ —S~, L p"~S~ = —L p" ~—S„- In the following we neglect the gravitation and

inertia:

Yo KDDXD+Q ' Ko'Y'

X;=K,OXD+P; K;;Y; (j=1,2, . ),

J=P n, e, (v,—v).

(36) From (42), the linear relation

(43)

then the reciprocity relation becomes

Ep = —E p E"=E" (37)

q= —TX grad InT+aJ
E+o—'vX S=n grad lnT+rtJ,

follows, X, st, n being tensors of the type (33):

(44)

6. Linear Relations

(a) Equation of Motion for Components

From (27), the linear relation

q= —E'pp grad lnT+P; Ep;v;

n PF;*—(grady, )r]= E,p grad lnT+P; K,v; —(38)

~ See, for example, S. R. de Groot, ThermodyrltJmics of Irrevers-
ible Processes (North-Holland Publishing Company, Amsterdam,
1952); or J. Meixner und H. G. Reik, Hundbuch der Physi&
(Springer-Verlag, Berlin, 1959), Vol. III2.

ryI ) II 0
X= ger yz 0, etc.

.0 0

The ) is the thermal conductivity and p is the electric
resistivity, both being positive definite.

On returning to (41), we next consider a neutral
two-component plasma under uniform pressure

Ri8J+@282=0,

ng(grady&) r+np(gradts p) r=0
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~I ~II
I ~II ~III

(~')'+(n")' (v')'+(~")'
(4&)

in terms of the components

~I
~II

.0

~II 0
0

III

&~I

~II

.0

~II 0
0-I 0
0 III

concerning the rectangular coordinate system with the
s axis in the direction of B. Then we have, for E+c 'v
)& B=O, the equation of diffusion

Ul U2 J +1~1

= —o (egeP+n2e2') '[(grading) r—(grad@2) r]
on(Ngeg—) ' grad lnT.

On introducing the "modified" diffusion coefficient D*
and the thermal diffusion ratio kT by

Ul —U2 = —DTlg [(grady&) r—(gradp2) r]
kT

(ng+N2)'
+ kT grad inT (48)

01S2

with the Boltzmann constant k, we obtain Gnally

D*/kT= o/(ttgeP+e2e2'), (49)

[('1+l2) 0/ +1B2]kT '[(B1el +S2e2 )/Nlel](CE/kT), (50)

In the following we consider a dilute gaseous plasma
for which the chemical potential p; of jth species is
related to the partial pressure P; of the same species
simply by

n, ( rgadp, )r=gradP,

The modified diffusion coefficient D* then reduces to
the conventional diffusion coefficient

.DI DII 0
D= D» DI 0

DI»

Then it follows that

e~ '(gradtl&)r=e2 '(gradp2)r
= (ei—e2) '[(gradt ~) r —(gradt 2)r].

Then (41) can be transformed into

T(Bs/Bt);„= —q grad lnT+J (E+c—'vXB
( 1 2) [(gr dP1) T (g dP2) T]j (45)

the corresponding linear relation being

q= —Tt grad inT+nJ
E+c 'vX B—(e~—e2) '[(grady~) ~—(gradp2) r]

=u grad 1nT+rtJ. (46)

Here we introduce the electric conductivity 0., which
is the inverse p

' to the electric resistivity, or

(u) D" and o"
At the limit of vanishing interaction D'I takes a

definite value, which will be calculated by choosing a
coordinate system where the flow vr of ions (and
therefore v also) vanishes.

When the electric field does not exist in this co-
ordinate system, E+c 'vX $=0, the Qow v2 of electrons
is simply

v2= (ckT/B) (—ee2) 'bXgradrs2 (54)

at the limit of vanishing interaction, a proof being
given in the following. The component D, which is
defined by the relation

v2 —v~ ———D"bX (n2
—' gradn2 —e~ ' grade~)

[(nq+n2)/e~e2]D—bXgrade2,
"Sections 7 and 8 were prepared with the assistance of Dr. S.

Kaneko.

defined by

v, —v2 ———D(e& ' gradnI r—s 2' gradn2), (51)

and (49) reduces to the Einstein-type relation

D/kT =a/(ngeP+n2e2').

'7. Diffusion and Electric Conduction"

In this and the following sections transport coeffi-
cients across. a strong magnetic Geld are calculated,
forces and Quxes being supposed to be perpendicular
to the magnetic Geld. We consider a fully ionized gas
composed of one type of positive ion, as species 1,
and electrons, as species 2. The electric charge of an
ion will be denoted by el= Ze and that of an electron by
e2 ———e; charge neutrality ZN~=n2 (or quasi-neutrality
in case of diffusion) and the condition Z'«m~/m2 are
assumed.

In this section we assume that the electrons make
many gyrations in a time interval between effective
collisions (while in the next section such an assumption
is made both for electrons and ions).

First, it is proved that under these conditions
interference terms with coefficient a can be ignored.
When electrons do not collide in a period of gyration
they have a drift velocity cB 'E'Xb (b—= B//8) with
respect to the coordinate system moving with the
Row vl of ions or the mean Bow v. Here E' is the
electric 6eld in this coordinate system, E'= E+c 'vX B.
This electron drift does not cause any conduction of
heat. We have, therefore,

J=e2ecB—'bX(E+c 'vXB) and q=0 (53)

for gradT= 0. (q is the reduced heat Row excluding the
convection heat. ) Hence, n=O at the limit of free
gyration of electrons; and, for weak interactions, the
terms with n can be neglected, the tensor 0.2 being
sufficiently smaller than the tensor TXq.
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is therefore
D"=$e&/(e&+e2)](ckT/eB). (55)

Proof of (54). In terms of the distribution function
f2(c2,r) of the electron velocity c2 at a position r, the
Row v2 is determined by

1
V2 I c2f2 (c2,r)(EC2

S2

When electrons gyrate many times during a time
interval between successive collisions, the function f2
is equal to a Maxwellian distribution with respect to
the position of the guiding center,

For an increment in ion velocity Aced due to the interac-
tion. with surrounding electrons in a time interval ht,
the displacement of the guiding center is given by

Ar, =~g-'(AcgX b).

Here ht is taken to be much larger than the time
characteristic of fluctuation of the interaction, but it
must be much smaller than the ion gyration period.
Taking the average in regard to the ion velocity, and
the interaction with surrounding electrons, we have

(At) '()Ar, ~'), =(co~') '(At) '(~Ac~Xb~'), . (60)

Now (51) can be written in. the form

Thus,
r+a2, where ag —=cd2 c2Xb. vg —v2 —— j(n—&+e2)/e, ]De~ 'gra—deg

fg(cg r) = f2'(c2, r+a2)
= f2'(c2, r) f1+a2 grad inn~]
= f2'(c2, r)$1+co~ 'c~ bXgrad lnn2], (57)

where

f2'(c2, r) =n2(rn2/2vrkT)» exp( —re2c22/2k T), (58)

e2 being the number density of guiding centers of
electrons at the position r. On substituting (57) into
(56), we obtain

and the diagonal element of the coefficient (nq+e2)eq 'D
is given by'

L(ey+e2)/n2]D'= (At) '([Argt'). .

Hence we obtain

D'= ', L /n-( n+ )e]~ (At) '(~A-c, Xb~'), (.61)

The diagonal element 0' of the electric conductivity
is calculated, by use of (52), to be

V2=
bXgrad lnn2 I' fm

C2C2—d C2

0)2 n2

o =Zo (kT) (ny+n2)D
= -', (n, /k T) (Ze/co, )'(At)-'(

~
Ac, Xb ~')«. (62)

bXgrad 1ne2 kT

( re2c2 l
X-p( — )4.c.d.,

2kT )

m2

bXgradlne2 t
"1

t re2 p»

G&2 o 3 E 21rkTI

The factor (At) '(~AcqXb~'), can be transformed,
as in Sec. 2, to an integral of force correlation:

1 1—(~Ac Xb~'), = J~ I ~t LF(0)Xb]

LF(t) Xb]f2dc2drdt. (63)

The integration can be performed along a line similar
to Sec. 4, the equation corresponding to (18) being

the final expression being equal to (54).
The nondiagonal ~l~~~~t of the el««i«ond«tivity

is given by the relation (52): 4/rJ' ] (Jr+sf'
o. = (Ze'/kT) (ej+n2)D" = eemc//B. (59)

This result agrees with (53).

8m 1
L1+-,'P2 (cost») ].

3 tsf

(k) D' and o' Here I'2 is the Legendre polynomial of the order two,
and costt=b s/~s~. The result is

(""~ tanh 'V
=in(t„/t, )+ I

—1

r, =r++~ '(c&Xb),

The diagonal element D' of the coeKcient of diffusion
perpendicular to the magnetic field appears when there
is an interaction between an ion and electron. At 3 my & re, ) L kT J

The guiding center r, of an ion with the velocity c&

at the position r is given by

where co& is the gyration frequency of the ions:

co& ZeB//re&c. ——
1 (3—V'

q dy+ (
tanh-~I —3

~
—,

4I'2E I j
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ln(t„/t, ) for Io1t„&1

ln(to/t, )+4/in(Io2t„) j' for Io1t„&1. (64)
(b) Expression for V

Here to and t, are the same as in (17). The limiting
expression 43)in(&o&t~) ]' can be derived in an elementary
way.

When the magnetic 6eld is so strong that the electrons
and ions make many free gyrations, only collisions
between ions determine the heat conduction in the
direction of the temperature gradient which is assumed
to be perpendicular to the strong magnetic field.
LBecause an effective collision between ions causes an
energy transfer proportional to the square of ion gyra-
tion radius, which is nearly nsI/rn, times the square of
the electron gyration radius. The collision frequency
between electrons or between ion and electron is only
(nsI/nt&)& times the collision frequency between ions.j
The ion gyration radius is usually larger than the Debye
shielding length, and the collisions between ions can be
treated in a way similar to collision integrals in the
kinetic theory of gases. In fact, the coefficient of thermal
conduction in this case has been obtained by Fradkin, '
who solved the Boltzmann equation. Here we give a
short discussion without using the Soltzmann equation.

Let e denote the unit vector in the direction of
gradT. Then

(c) Itr and It"

As regards electric resistivity, (47) reduces to

~I oI (oII)—2 ~II (oII)—1

since (oI)'(((oI')' for weak interactions.

8. Thermal Conduction

The thermal conductivity ) is treated under the
assumption that both electrons and positive ions make
many gyrations between effective collisions.

(a) Expression for XII

When collisions can be neglected entirely the reduced
heat Qovr q is given by

2

q= g -,'nss
'

c; cyf;(c;,r)dc;
J

(65)
—',rnI(CI'aI'+CI'"aI" —CI'aI —c1"a1') e

where F is defined by (20); the right-hand side is as it should since there is no interference between
equivalent to thermal and electric conductions (cf. the third para-

graph of Sec. 7).

in terms of the distribution function f;(c; r). Here the
function f; is equal to a Maxwellian distribution f,
with respect to position of the guiding center r+a, ,
where

aj=co; 'c,Xb,

orj being the gyration frequency. Thus,

f~(c1,r) =f8(c,, r+as)
= fP(c;,r) {1+/(rn;cps/2kT) ,'ja;—-

~ grad lnT), (66)

where it has been taken into account that the number
density n; is inversely proportional to the temperature
T. On substituting (66) into (65), we have

5 n;(kT)'
q= —P bXgrad lnT.

2 j mj07j

Since A,
"is dined by

q=X"bX (—gradT),

we finally obtain

or

(rnl/21o1) (c1 c1 +c1 cl c1 c1 c1 cl ) ' (bXe)

indicates energy transferred in the direction of e by a
collision with initial velocities c~, c~' and final velocities
c~', c~". The component q of the heat Row in the
direction of e is then given by

1 5$$
q= — (CI 'c1 +CI' 'cI' —CI'c1—c1"c1')

2 2(oI J

~ (bXe)f1(c1,r)fI(cI', r)gbdbdedcIdcI', (69)

mj
q= (grad InT(

126)y

where g is the relative speed ~c,—cI~, b is the impact
parameter, and e is the azimuthal angle of the orbit of
relative motion.

The expression (69) can be transformed, by virtue of
(66) for j=1, into

njVI= ,'k'T Q——
mP) j

It is important to note that all vj vanish,

1
v;=—t c;f;(c;,r)dc;=0,

nj~

(68)

(ntICI 5 ) t ntICI 5$
CI Cy

L 2kT 2J ( 2kT 2i

XfI'(cI)f10(c10)gbdbdedcIdcI' (70).
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On introducing the center-of-mass velocity 6=-,' (el+el )
and the relative velocity g=ci —ci, and integrating
with respect to G, we can reduce (70) to

g =
I grad lnT I (m~/6) (B& /~i') (mi/4kT)'

Xm&~ ~j g' exp( m—~g'/4kT) (1 co—s'8)gbdbdg, (71)

where 8 is the angle of diffraction in the orbit of relative
motion. On evaluating the integral in (71), we obtain
the thermal conductivity across a strong magnetic field.

8 kT fmkT~ & tt'Z'e'~ ' kTlD
Xr=-k ~Pi ) ) ) In, (72)

3 a)Pmg & mg ) E kT ] Z'e'

which agrees with Fradkin's' expression.
According to (72) X'/k is equal to the square of ion

gyration radius, kT/m&&s&, multiplied by the ion-ion
collision frequency per unit volume, as it should be.

CONCLUSION

Irreversible processes in plasmas in a strong magnetic
field are discussed from both the phenomenological and

the microscopic points of view. It is not assumed that
the gyration radius of electrons is larger than the
Debye length. The rate of relaxation between ion and
electron temperatures in a fully ionized gas increases
with the magnetic field. When the gyration radius r,
of the electrons is shorter than the Debye length /D

the rate of relaxation is proportional to

1 n(kTt /DZ e)+-', Dn(l /nr, )$'

where Ze and —e are the charges of an ion and an
electron, respectively. The thermodynamics of irrevers-
ible processes is applied in general and it is shown that
the Onsager-Casimir reciprocity relation takes a
symmetrical form for plasmas in a magnetic 6eld. For
a two-component fully ionized gas where the electrons
make free gyrations interference between electrical and
thermal conductions vanishes. In this case the diagonal
elements of coefFicient tensors for the electric conduction
and diffusion perpendicular to the magnetic field are
proportional to

ln (k T/n/Ze') +4 Dn (l~/r, )j',
when the gyration radius r, of the electrons is shorter
than the Debye length /D.

DISCUSSION

Session Reporter: W. B. RzzsENFELD

L. Spitzer, Jr., Matterhorn Project, Princeton University,
Princeton, New Jersey: What is the physical reason for the
modification of the rate of equipartition? Why should the
magnetic field affect this process?

T. Kihara: In the presence of a strong magnetic field the
mean interaction between an ion and an electron is modified
by the tightly spiraling orbits. The time of interaction is longer
in the mean than in the absence of fields; the relaxation rate
increases.

W. B. Thompson. Atomic Energy Research Establishment,
Harzvell, Berkshire, England: But, if the orbits are tight spirals,
the electr'ons do not appear to be scattered; instead the guid-
ing center is rotated in coordinate space, and I do not see why
scattering should be increased.

T. Kihara: In dealing with this problem, intuition is not a
very powerful method. That is why I calculated analytically.


