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where I" represents the acceleration of a particle by a
macroscopic force field and (df/Ck) ~, represents the rate
of change in f produced by collisions between pairs of
particles. Serious difhculties arise if an attempt is made
to describe a fully ionized gas by this method. In
particular, the collision term introduces into the
solution factors of the form

Q =)I o (v,8) (1—cos8)dQ,

the momentum transfer cross section. ' For the Coulomb
interaction 0 has the Rutherford form

o.= (e'/mz') 2 CSC4(8/2),

and the integral Q diverges for small values of the
scattering angle 8. The significance of this divergence
becomes obvious if the integrand in Q is expressed in
terms of the impact parameter b,

Q= JfL1—cose(b)]22rbdb
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1. INTRODUCTION

'HIS paper is concerned with a problem that lies
at the heart of the kinetic theory of transport

processes in an ionized gas, the nature of the effective
interaction between particles when correlation effects
are taken into account. The usual discussion of transport
processes in a diffuse gas starts from Boltzmann's
equation for the distribution function f(x,v, t), which
may be written

where be=v2(e'/ms2). Clearly, the divergence as
b ~~ arises from large values of the impact pa-
rameter b, and has been avoided in the past by cutting
off the range of integration at some large value b,
of the impact parameter. In the earliest treatments
this was taken as the interparticle separation n &, n
being the number density, ' but more recently as the
Debye shielding length,

~.= (»/4~~+)'. (4)

The cutoff procedure has been justified by arguing
that beyond b, many particles interact, and the
electric field of a particle is screened by its neighbors,
so that particles do not interact if their separation
exceeds the screening length. Our major problem is to
discuss the significance of this approximation.

A number of authors' have observed that encounters
are not binary, since there are many particles inside the
screening sphere. In fact, the number of particles
within the screening sphere is

Xi2222= p(kT/42re') 22 tj& A 1—0'

for typical gas discharge plasmas, e.g. , T=20000
n=10" or T=200 000', n=10". A method of treating
such many-particle encounters was developed by
Chandrasekhar' in a study of stellar dynamics. This
was based on Jean' s' demonstration that the effect on
the trajectory of a star of close binary encounters is
negligible when compared with the cumulative effect
of interactions with many distant stars. This holds for
encounters between charged particles in a diffuse
plasma, since the deQection is large only if the impact
parameter b be es/kTv2, and since interparticle
spacings are n &, the fraction of particles making such
encounters at any instant is

~L(e2/V2kT)1 &]2~A 2~10 '
while at any instant each particle is interacting with
~NP others.

The change in the distribution function produced by
these small overlapping encounters is random, but
almost continuous, the particles diffusing in velocity
space. An appropriate representation of this diffusion

( es
~
' b ,„ ~ Reference 1, p. 179.

~82r~ ( lim log, (3) 2 R. S. Cohen, L. Spitzer, end P. M. Routiey, Phys. Rev. 80,
Emss) 230 (1950).

4 S. Chandrasekhar, Principles of Stellar Dynamics (The
S. Chapman and T. G. Cowling, The Mathematical Theory of University of Chicago Press, Chicago, 1951).

Non-Uniform Gases (Cambridge University Press, New York, J. Jeans, Astronomy aed Cosmogony (Cambridge University
I952), 2nd ed. , p. 157. Press, New York, 1929), p. 319.
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can be borrowed from the theory of Brownian motion,
and is the Fokker-Planck equation,

(~f/~t) I .= .(—~/»r) (D f)+ p (~'/»'»r) (D'if)+

where the friction coefficients are D;= (d/dt)(Ap;), and
the diffusion coeKcients are D;;=((d/dt)hv;d, p;), the
quantities in angular brackets representing the mean
rate of change of products of the fluctuating velocity
components of a particle produced by the interaction
with its neighbors. These quantities have in the past
been calculated by forming the appropriate sums of the
accelerations of a chosen particle as its neighbors move

by it in rectilinear orbits, but even in this many-
particle treatment a cutoG is needed in the interaction
at long distance, otherwise the expressions for the
diGusion coeKcients D;; diverge.

In spite of these difliculties, the interaction between
any pair of particles is weak, since the ratio of the mean
potential energy between a pair of neighboring particles
to the mean kinetic energy is small, i.e., (e'n ~/kT)
=h. &&&1, and the probability of large angle scattering
is small; thus, the acceleration experienced by a particle
is usually small, and the velocity at any instant is
almost a constant. The remainder of this paper is
devoted to a calculation of the Fokker-Planck diffusion
coeKcients D;;, which makes use of these features, is
valid when A( 10') is large, and is suggested by the
electrical behavior of a plasma.

2. DIELECTRIC BEHAVIOR OF A PLASMA

If the electric field about any charge is screened by
its neighbors, and if in the Debye sphere there are
many particles (A. large), it should be possible to
ascribe the screening to the macroscopic dielectric
properties of the plasma. In studying the dielectric
behavior of a plasma, we can to a sufhcient approxi-
mation neglect entirely the effect of particle interaction
and use Vlasov's equation, in which the interaction
term is omitted altogether from the transport equation.
To avoid carrying initial conditions, however, and to
define a singular integral, it is preferable to retain a
crude representation of the collision terms, r'(f fp), — —
where fp is the distribution function unperturbed by
the electric field. Then, as has often been shown, ' the
charge induced by an harmonic electric field E(k,co)

Xexpi(k. x+&8) is, to a first approximation,

e'
t 8fp/itv

q(k, rp) = lim—E d'k,
rrp & p(pp+k v)+r '

and the dielectric coefficient,

(k )=1 ( o'/ ')y( /ke) (6)

where rpp' ——4prppe'/m is the square of the plasma fre-
quency, ez is the thermal velocity —',me&'=kT. For a

6 L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).

Maxwellian distribution, fp, and real x, p is the complex
function

x' t t exp( —tp)

y(x) =— dt i—prx exp (—x')
x—t

=x'(f+iit).

3. FIELD OF A TEST PARTICLE

We are now in a position to discuss the Geld of a test
particle, and assess the validity of the screened Coulomb
approximation. The potential produced by an impressed
charge f is determined by the relevant form of Poisson's
equation,

div(pE) =4irf(x,t),

or, writing R= —gradV and Fourier analyzing,

V (k,rp) =47rf(k,(u)/k'p(k, pp) . (g)

We may now consider the field due to a charged particle
moving with velocity v, whereupon the Fourier trans-
form of the induced charge density is f ti(pp+k v),
and the function p need be evaluated only at the point
rp+k v=0, i.e., —(&p/k) = p cos8, where 8 is the angle
between k and v. If the particle is at rest, the de-
nominator reduces to k'+kn' and the potential
V(r) e PD"/r, where kn= (2prrte'/kT)& is the reciprocal
of the Debye screening length; thus, for particles at
rest, or moving sufficiently slowly, the Geld is screened
as required. However, if particles are moving rapidly,
the denominator tends to k' ——'kn'ppP/p'cos'8 and as
Bohm and Pines' have indicated, the field propagates
away from the source as a wake.

This happens because the screening cloud does not
have time to form, the group velocity of the oscillations
being small. Since the critical speed above which this
happens is roughly the mean thermal speed of the
electrons, the screened Coulomb approximation is valid
for the ion interactions, but for the electron interactions
some new justification of screening is required. Since
the interaction is nonlocal and retarded, the discussion
of the modified binary interactions does not appear
hopeful.

4. DIFFUSION COEFFICIENTS IN TERMS
OF THE MICROFIELD

'
To escape from this difhculty we may avoid discussion

of the direct interactions of the particles, and use instead
the Fokker-Planck approach, calculating the diffusion
coef5cients in terms of the Quctuating electric micro-
Geld produced by the partially correlated motion of the
electrons, and then attempt to calculate this microfield.
A similar attempt was made by Gabor. Here we use
this method to calculate the electron contribution to
the two independent quadratic diffusion coeKcients
D«(v) = (p'pi/+)Dv(v) and D.(v) = t'pv ("~i/")jDv-
for a system in thermal equilibrium.

' D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
s D, Gabor, Proc. Roy. Soc. (London) A213, 73 (1952).
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v; = —(e/m) E;(x,t),
and

It is first necessary to express these diffusion co- =(k,/k) ~E(k,sr) ~, therefore
equi. cients in terms of the Quctuating electric microfield,
and it is easily seen that the correlation function of the

D
e (

microfield is required. The fluctuating components of "
2 &~ &

'
J J

velocity hv; for a particle of charge e and mass m are
obtained from &&c) (c0+k v) (12)

e r'
E;[x(t'),t']dt',

m~g,

where x(t') is the position at time t' of a particle with
velocity v which at t is at X. From this we obtain the
diffusion coefFicient

D,;(v) = (d/dt)(dv;t) v;) =(v, t) v+v;hvc)

g2 T

ds{E;(x,t)E;[x(t—s), t —s]

+Ex(xAB;L'x(t —x), t —xj)), C9)

where the brackets indicate average values. If the Geld
correlations persist for a time r,~ much less than the
time r, for the trajectory of a particle to be much
altered, two simplifications to (9) are possible: The
range of integration can be extended from 0 to inGnity,
and x(t—s) may be replaced by x(t) —vs, where v is
the constant mean velocity of the particle. These
substitutions are reasonable approximations if the
product of the plasma frequency coo= (4rrne'/m)& and
the scattering time r,= 1/NQv is large, i.e., using (3), if
(kT/emrt&)&Dog(kT/e e&)7 ~A is large.

It is possible to simplify (9) by introducing the
Fourier transform of the Geld

E(k,co) =fd'xfdtE(x, t) exp[—i(k x+cot)7, (10)

writing (9) as

e' (1)'
D&;

———
l
—

l
~ )I d'x )) dt l d'kJId'k'

XJtdceJI d~'J" ds([E, (k,c0)E;(k',s&')

+E;(k,ce)Ec(k',ce')7) exp[i(k+k') x]

&(exp[i(0)+c0')t] exp[ i(k v+(—o)s].
g2 ( f p

8

l d'kJl'd. &[E;E;*(k, )
~&i2~) 2 &

+E;*E,(k,ce)7)c)(a&+k v), (11)

where E*=E(—k, —cv) is complex conjugate to E(k,cd).

Since the Geld E is produced by charges, it may be
written as the derivative of a potential, and E;(k,co)

( (k v)'i
Di ———

l

—
l )I d'k )I d(a(E E*(k,co))l 1—

oem &2v) & ~ 4 k'v' )
Xb(&u+k v). (13)

5. FLUCTUATING FIELD

It is now necessary to calculate the energy spectrum
of the fluctuating microfield, a problem which is formi-
dable in general, but which may be tackled in a number
of ways for systems near thermal equilibrium. The
simplest of these invokes the Quctuation-dissipation or
generalized Nyquist noise theorem which has been
proved in some generality by Callen and Welton. It
enables us to express the energy spectrum in terms of
the resistivity R(k,co):

(E.E*(kp)))= 2)cT R (k,co). (14)

The resistivity in turn can be represented in terms of
the complex dielectric constant as

E(k,(a) = (4ir/a)) Im[e(k, ~)7
—' (15)

where Im means imaginary part or, using (6) and (7),

R(k,G7) =@I kD2. (k2/co). {g/[(k2+kD2f)2+kD2rt27). (16)

Thus we have

ee2
(E E*)=32m

X&Vy

k exp[—(co/kve)'7
(17)

[k'+kgP{ (—(e/kvt)) 7'+kn'ct'( —c0/kvt))

Note particularly that the resistivity (15) has
nothing to do with the loss of momentum by collisions;
indeed, we wish to calculate the collisional loss. Instead
this resistivity arises from the Landau damping term. '
in e and represents the effect on the harmonic com-
ponent E(k,ce) of those particles moving in phase with
that component. This permits a physical interpretation
of (1'7); the numerator represents the source of the
component E(k,co), those charges which remain in
phase, while the denominator represents the eGect of
the plasma on the propagation of the field. It is this
propagator that contains the correlation effects in-
cluding Debye shielding since these are neglected in
the numerator.

This procedure is possible only because the Landau
damping exceeds collisional damping for the signiGcant
range of frequency and wave number in (11).

9 H. B. Callen and T. A. Welton, Phys. Rev. SB, 34 (1951).
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6. EVALUATION OF THE DIFFUSION
COEFFICIENTS

We are now in a position to evaluate, the transport
coefficients, D», D4. Inserting (17) into (12), we have

obtain from (19)

82rne' 2 t' t' V'

loge.—~ dt t' exp
I

—t' —
~

m2eg m» p v22 I

d ee' 32M 1

dt m'v, (22r)2 2r& J where

s~~e'
logA Gi —),

m'v & v2)
' (21)

k exp[ —(40/kv2)2] (lr v)'
X i' d44 b(04+le v) (.18)

(k2+k 2f.)2+k 2~2 k2v2

Swee' 1
D)) = llm

&ma ~~ m2p~ ~k

2s'

X t d8 sin8 cos8 exp( —L(v/v2) cos8]2)

k . 1 Li+(kn/k ..)2$]2+(k42/k ..)22t2

X log +-log
kg) 4 i 2+2t2

2r—tan ' . (19)

At this point a difhculty introduced by use of the
Fokker-Planck equation must be faced; we have not
properly considered the effect of close encounters, and
consequently discover that (19) diverges as k,„—+m.
This divergence, however, represents the effect of close
encounters, for which the binary collision theory is
satisfactory. The k integration may be cut oG at the
value k, suggested by (3), k = 1/bv=mv2/V2e' The.
6rst term in the integrand of (19) can thus be written

log (k T/e'n&) &+log (mv'/k T). (20)

The 6rst term here, logA. , is larger than the remaining
terms in the integrand of (19) and has been called the
dominant term by Chandrasekhar. Following Chan-
drasekhar we now neglect the nondominant terms and

On introducing spherical polar coordinates (k,8,&) for
k with pole along v, we may write the argument of the
8 function as cv+kv cos8, and by performing the 40

integration replace the argument —40/kv2 of the
functions f' and 2t by (v/v2) cos8. The integration over
k then leads to

t

G(x) =— exp( —t2)dt —2: exp( —x2) 22;2 (22)
p

is the function tabulated by Chandrasekhar. In a
similar way,

D4= (Bvne4/m2v) logA H(v/v2)& (23)
where the function

II(x) =
~~ exp( —t')dt —G

~'~p
(24)

is also tabulated by Chandrasekhar.
Thus, by using Vlasov's method which neglects

particle interactions, we have been able to calculate
the propagation of an electric 6eld in a plasma, and
from this the Nyquist theorem has enabled us to
calculate the fluctuating micro6eld, including the main
sects of correlation between particles. In turn, from
this we have calculated the Fokker-Planck transport
coefEcients, and in the limit of small en&/kT=A &

have recovered the results of Spitzer et Ol. without
artificially introducing a long-range cuto8.

There are several obvious further developments of
this theory. One is to calculate D;=((d/dt)hv), which
requires a second-order treatment of the motion of a
particle in the fluctuating micro6eld but is fairly
straightforward.

The effects of a steady magnetic 6eld can be treated
at the price of much algebraic and analytical com-
plication, e being woefully complicated, but with no
change in principle. Of rather more interest is the
generalization to systems not in thermal equilibrium,
which presents no great difhculty if the system is
homogeneous in space and time, although the Nyquist
theorem can no longer be used to calculate the 6eld.
In this case, there does exist the possibility that the
nondominant terms may become large and introduce
novel phenomena. Finally, it is important to consider
more carefully the sects of close encounters, and
develop a formalism that will include these in a logically
consistent way. Some of these problems will be con-
sidered in publications which we hope will appear in
the near future.
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DISCUSSION

Session Reporter: W. B. RxzsENzzr. D

R. Lust, Mux-Plunck-Institut fur Physik und Astrophysik,
3lunich, Germany: I want to ask a question on the last point
you raised. The noise theory you mentioned was originally in-
tended only as a thermal noise theory.

W. B. Thompson: Yes, it is true that the noise theorem
applies only in thermal equilibrium; however, with the assump-
tion that the electric field produces only a small perturbation
in the motion of the particles, and that the correlation phe-
nomena induced by the interactions are adequately summed up
in the dielectric coefficient, the Quctuating fields can be calcu-
lated whether there is thermal equilibrium or not. First, the
dielectric coefficient e(~,k) may be calculated for any steady
spatially homogeneous distribution function fo, since the usual
solution of the Vlasov equation can be given for any function
of the velocities. Next, if we neglect correlations, an approxi-
mation to the charge Quctuation can be calcul'ated by using the
Bohm and Pines expression

p(k,ce)=Z; expL —ik (x~+v;t) j,
where the v& are constant. Finally, by using Po&sson's equa-
tion for a dielectric medium, we obtain

E(k,ce) = —4ccegikp (k,ce)/)'c'e(k, ce)g

(p (k,ce)p'(k, ce) ) (4cre)'I cef ——
ete(e(k, ~)te tie(e(k „)(I '

In thermal equilibrium this agrees with the noise theorem
result.

S. A. Colgate, Lawrence Radiation Lub'oratory, University

of California, Liverrnore, California: Does this allow you to
calculate diffusion coefficients for a nonthermal system?

W. B. Thompson: Yes.
S. A. Colgate: How does kT enter this situation?
W. B. Thompson: The fundamental energy spectrum does

not necessarily involve kT, it only involves the unperturbed
distribution function.

A. C. Kolb, U. S. Naval Research Laboratory, S'ashington,
D. C.: Does your analysis yield Spitzer's result with Debye
screening?

W. B. Thompson: Yes.
A. C. Kolb: You also 'asserted that in spite of the absence

of any explicit Debye screening in the analysis you obtain this
result. I suspect that this (the inference that there is no screen-

ing) may not be justified and may be connected with your
treatment of the delta function which can also be written as
a Fourier integral. One can then interchange orders of integra-
tion, and determine the spectrum from a Fourier analysis of
the correlation function. If you then cut off the time integral

by essentially the transit time across a Debye sphere, would
not you obtain precisely Spitzer's result?

W. B.Thompson: There is no cutof introduced here at all.
A. C. Kolb: Yes, according to your procedure, but could

not yet handle the intergrals in your theory slightly differently,
thereby putting the Debye cutoff in again automatically, and
obtain the same result? The main point here is that I consider
your statement that there is no Debye cutoff a little bit extreme.

W. B. Thompson: In this calculation no arbitrary eutoff
is made. Instead, an approximate treatment of the dielectric
properties of the plasma is used to derive the correct sereen-

ing, hence the fields are screened, but the physical origin of
this is given.

B. S. Liley, Associuted Electrical Industries, Ltd., Alder-
maston, Berkshire, England: Does not the cutoff amount to
the question of the distance at which the two-particle distri-
bution function becomes equal to the product of single-particle
distribution functions?

W. B. Thompson: Not quite, since in the absence of cor-
relation there would be no screening. Correlation effects are
included in this calculation through the dielectric coefficient
and it is possible to get at the charge correlation from the
calculated fields; however, for the Fokker-Planck equation
this is not necessary.

M. Mitchner, Lockheed Aircraft Corporation, Sunnyvale,
California: Apparently, if you use either the Boltzmann col-
lision integral or the Fokker-Planck equation to calculate the
conductivity you obtain the same result, seemingly on t'6e basis
of different physical ideas. Why?

W. B. Thompson: EssentialIy because the integral of a
sum of terms is equal to the sum of their integrals. In solving
the Boltzmann equation the momentum and energy transfers
ere needed, and collisions can be treated in the impulse ap-
proximation and the rate of change of momentum written as

ap;=Z; F;;dt,

where F4q is the proportional to the force exerted on particle
i by particle j as the latter moves along a trajectory unper-
turbed by the presence of particles. In the Fokker-Planck
treatment, on the other hand, you calculate the change in mo-
mentum experienced by a particle as it moves under the force
exerted by all the other particles moving along unperturbed
trajectories, d,p;= J'dt Z; Fg. Of course, the Boltzmann equa-
tion can also describe close encounters, hence avoids the inner
cutoff needed in the Fokker-Planck equation.

R. Balescu, University' Libre de Bruxelles, Bruxelles, Bel-
gium: With regard to your statement about equilibrium situa-
tions, I think it should be stressed that the system consists of
one particle out of equilibrium moving in a gas that is in
equilibrium. The diffusion coef'ficient, after all, describes a non-
equilibrium property. Secondly, you state that you rederive all
the results of the binary collision approximation. I think that
for very large velocities there are other corrections.

W. B. Thompson: This is correct; it is only in the domi-
nant term that there is agreement .between this and the Spitzer-
Chandrasekhar resuIt; that is, in the term ~log k,x. For very
large velocities the nondominant terms may become important;
however, for a system in thermal equilibrium these terms are
bounded for any Snite velocity, and in the limit, e'I&/kT~O
become negligible. If the system is not in thermal equilibrium,
however, these nondominant terms may become very large
indeed.

T. Kihara, Department of Physics, University of Tokyo,
Tokyo, JaPan: Is it possible to prove that your method is
equivalent to cutting off the time range of correlation func-
tions at the plasma period?

W. B. Thompson: Not quite; however, because of its fre-
quency dependence the dielectric constant does screen the
interactions in time as well es in space.


