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'HESE remarks are confined to one special class of
problems: steady Qow past solid bodies in the

presence of external magnetic fields.
Even within this limited category, various investiga-

tors have studied problems falling into a number of
subcategories. Some have made approximations appro-
priate for small electrical conductivity, others for large
conductivity, and still others have been able to treat
cases where the conductivity may have arbitrary values.
The Quid medium is sometimes assumed to be incom-
pressible and, in other studies, compressible. The vis-
cosity may or may not be neglected. In some cases the
magnetic Geld strength has been taken to be very small
or very large. The geometry of bodies and fields may be
such as to produce Qow of special symmetry, such as
plane or axisymmetric. Finally, although most investiga-
tions have been made for constant, scalar (Ohmic)
conductivity, there have been some studies in which
realistic variation of this property with temperature has
been introduced, and a few in which anisotropy of elec-
trical conductivity in the presence of a magnetic field
has been considered.

It is diKcult (and may be impossible) to make gen-
eralizations that are correct for all of these cases. Never-
theless, certain common features seem to be recognizable
in the results of a number of studies, and these are the
subjects of the present lecture. Broadly speaking, these
are features which appear to distinguish Qows of low
conductivity from those of high conductivity, or more
accurately, Qows of low magnetic Reynolds number R
from those of high E .There are unmistakable analogies
between the inQuences of the magnetic and the actual
Reynolds numbers, i.e., between electrical resistance
and viscosity in their sects upon Qow patterns. Thus
the features that distinguish between low™E and high-
E Qows are often analogous to those that distinguish
between Qows of small and large Reynolds numbers.

FLOWS OF SMALL MAGNETIC REYNOLDS NUMBERS

Flow patterns in this category are analogous to Qows
of small Reynolds numbers, such as those treated in the
approximations of Stokes and Oseen. The analogy is not
only mathematical but arises from the fact that in both
situations the diglsion process (i.e., the diffusion of
vorticity by electrical resistance and by viscosity, re-
spectively) is rapid compared to the convective process,
and in extreme cases may dominate the situation com-
pletely. Thus the Qow past a solid body results in a large
vortical wake, for the disturbance due to the body
diffuses rapidly into the Quid as it is carried down-
stream (Fig. 1).

But in the magnetohydrodynamical analog a most
remarkable new phenomenon appears, for, if the mag-
netic Geld strength is suSciently large, the "wake" may
extend Npstreum instead of downstream (Fig. 2). It
seems that the magnetohydrodynamic effect has re-
versed the convection, so that now the vorticity diGuses
outward from the body as it is transported upstream
rather than downstream. To be sure, the physical nature
of this kind of transport can be recognized: It is not
convection but the mechanism of Alfven-wave propaga-
tion, which for suKciently strong Geld carries Qow dis-
turbances along the field lines at a speed exceeding the
Qow speed. These effects are clearly seen in the results
presented by H. Hasimoto at this conference, ' in which
both magnetohydrodynamic and viscous wakes appear,
extending, in general, in different directions,

In general, low-E Qows are characterized by large
"wakes" of vorticity and electric current. Diffusion is a
dominant process, and wavelike disturbances, excepting
sound waves, are completely absent. Nevertheless, the
presence of the Alfven-wave mechanism is felt indirectly,
for by this means convection is overwhelmed and appar-
ently reversed when magnetic-field strength is large.
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FIG. i. Sketch showing steady Bow past body at low R .U denotes
the Bow vector and B the magnetic-Geld vector. Small B.

1'01

FIG. 2. Same as Fig. 1, except 8 is large.

I H. Hasimoto, Revs. Modern Phys. 32, 860 (1960), this issue.
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The analogy between Stokes Qow and magnetohydro-
dynamic Qow at very low R also implies an analogous
mathematical difBculty. It is well known that the Stokes
approximation, in which the inertial terms are neglected
in comparison with viscous terms, must fail at large
distances from a disturbance. The same is true of the
analogous approximation in which the diffusion term is
taken to be the only significant one in the equation of
electric-current distribution. One result is the failure of a
very simple-looking process of successive approxima-
tions in which terms of successive powers of R are
sought. This process consists of neglecting the magneto-
hydrodynamic effects entirely in calcu]ating, to first
order in R, the current-density distribution. In prin-
ciple, this distribution could be inserted into the mo-
mentum equations to find the first approximation to the
magnetohydrodynamic effect on the Qow field; this in
turn yields a second approximation to the current dis-
tribution, and so on. The failure of this simple procedure
has apparently been corrected by Murray and Ludford.

FLOWS OF LARGE MAGNETIC REYNOLDS NUMBERS

For Qows about slender obstacles, at least, the equa-
tions of motion linearized in the fashion of Oseen's
approximation are adequate to describe the Qow pattern
for a wide range of R . In certain problems of this class,
namely, those of "aligned fields, " in which the unper-
turbed Qow and magnetic vectors are parallel to one
another, it is possible to construct Qow patterns by
distribution of singular solutions having, locally, the
character of sources, vortices, and doublets. These
singular solutions involve vortical wakes extending
downstream (for relatively small field strength) or up-
stream (for large field strength). The lateral extent of
these wakes is determined by the speed of diffusion in
relation to the effective transport speed, which is the
speed of Alfven-wave propagation relative to the moving
medium as mentioned in the foregoing. We suggest that
for other orientations of the fields the results would be
analogous. At moderate values of R, there must be
vortical wakes extending outward from solid bodies in
directions determined by the effective convection ve-
locity, which is the resultant of the true convection and
Alfven propagation. As R is increased, such wakes must
become narrow, for at suKciently large R the regions
of vortical current-carrying Qow lose the character of
wakes and become narrow diffusion zones lying along
wavelike disturbances (Fig. 3). These disturbances are,
in fact, standing Alfuem wanes, their directions deter-
mined by the resultant of Alfven propagation and con-
vection by the moving Quid.

This is the character of large-R steady Qow: The
picture is dominated by standing Alfven waves. The
effect of electrical resistance is only to diffuse these
waves, and thus to cause them to attenuate at a distance
from the solid obstacle. The analogy with the damping
of sound waves by viscosity is accurate.

The special case of "aligned Gelds" in connection with
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Fxo. 3. Sketch showing steady Rom past body at high E~.
The shaded regions denote diBuse standing Alfven waves.

small-perturbation Qow has been mentioned. More
generally this name might be applied to any case in
which the magnetic and velocity vectors are locally
parallel to one another. This is a singular case in which
the wave character of the Qow pattern is less obvious,
since Alfven propagation occurs along streamlines, up-
stream or downstream, and the result of diffusion again
appears as a (narrow) wake ra, ther than a diBuse wave.
In particular, the standing Alfven waves now lie along
the body surface and form there boundary layers of
rotational Qow.

These wave-dominated Qow patterns are rather com-
plicated, in general, because there are several families
of waves. The discussion is clarified by use of certain
wave-propagation diagrams that have appeared in
studies of unsteady magnetohydrodynamic Qow.

Friedrichs Diagrams

Studies of small-disturbance propagation in a con-
ducting gas (or of the real characteristics of the differ-
ential equations of magneto-gas dynamics) have been
made by several investigators, notably van de Hulst,
Herlofsen, and Friedrichs. Actually these were studies
of perfect conductors, but as has already been mentioned
in the foregoing the effect of small resistance is princi-
pally to diffuse the waves at a distance from the dis-
turbance source and for the present qualitative discus-
sion this effect can be overlooked.

Friedrichs used two diagrams in discussing these
acoustic-magnetohydrodynamic waves, the Grst of
which (Fig. 4) is a hodograph of the propagation ve-
locities of plane waves. Each point of the curves drawn
in Fig. 4 represents the propagation speed in still gas of
a plane wave and the direction of its wave normal. What
is most interesting is that there are both "fast" and
"slow" waves. In Fig. 4 the notation adopted is as
follows: a=speed of sound in absence of mhd effects;
3=speed of Alfven waves for incompressible medium.
Thus, for example, there are four possible propagation
speeds for plane waves normal to the magnetic Geld
vector 8; two of these travel at the speed of sound u,
and two at the Alfven speed A. For propagation of
waves at an arbitrary angle to the Geld vector there are
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generally four possible speeds, but these speeds are not
equal to u or A. For the special case of a wave parallel
to B there are but two speeds, namely, & (a'+A')~.

Figure 4 has been simpliied by omission of still
another curve, representing what may be called "inter-
mediate" waves. These are characterized by velocity
components that are normal to the plane of 8 and the
wave normal, i.e., the plane of Fig. 4; thus they are not
produced by motions of bodies in either two-dimensional
or axisymmetric geometries.

From this wave-velocity diagram the second Fried-
richs diagram can be constructed. It is the shape of the
disturbance that propagates from a point disturbance
at the origin. It is, in other words, a picture of the pulse
that propagates from a point with self-preserving geom-
etry. Since it is self-similar, the diagram is also a velocity
diagram; i.e., every point represents in direction and
magnitude the velocity of propagation of a part of the
pulse. But since it is composed of elementary plane
waves, every part of the pulse must propagate normal to
itself at the speed and direction given by a point of
Fig. 4. This tells how the pulse shape is to be constructed
(Fig. 5):if a normal nP is drawn to any vector of Fig. 4,
a corresponding element of the pulse may occur any-
where along aP, provided the element is tangent to aP.
One simply draws such normals for all points of the
fast and slow waves of Fig. 4; the result is the pulse
shape of Fig. 5. Particular attention is called to the
points I', Q, R, and S of this diagram. The propagation
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FIG. 4. Friedrichs diagram showing speed of propagation of
plane acoustimagnetohydrodynamic waves as function of the
direction of the wave normal. The horizontal axis is in the direction
of the magnetic-field vector. A is the speed of Alfvdn waves and
a the speed of sound in the absence of magnetohydrodynamic
sects. Here A/a=&2 or 1/V2.

Fxo. 5. Friedrichs diagram showing shape of self-similar pulse
propagating from a disturbance (heavy lines). The light lines in
the diagram show how this figure is constructed from Fig. 4. The
points P, Q, E, 5 are defined in the text. A/a=&2 or 1/V2.

speeds of these points are as follows:

I"a or A, whichever is greater;

Q: (a'+A')&;

R: A or u, whichever is less;

S (a '+A ') '

This pulse. consists of a wave front of oval shape,
behind which lies a region of disturbed Qow; this region
contains, in particular two "cusped triangles" formed
by the envelopes of "slow waves. "These are not fronts,
but might be called crests, i.e., discontinuities in the
disturbance pattern. The standing-wave patterns of
steady magneto-gas dynamics may be formed by the
envelopes of both the wave fronts and the wave crests
of this diagram.

Before proceeding to draw conclusions regarding
steady Qow from these diagrams, let us remark on the
degeneracy of Figs. 4 and 5 in the case of incompressible
Quid. .This is the case u —+ ~, so that the "fast waves"
travel at infinite speed. It is clear that the propagation
speeds at the several points identified before are I" ~;
Q: ~; R and S:A. Thus, the diagram degenerates into
two points (actually two cusped triangles of vanishing
size) moving in the directions along the magnetic lines
with the Alfven speed LFig. 6(b)]. Correspondingly the
wave-speed diagram, Fig. 4, consists simply of two
circles LFig. 6(a)$.

Standing Waves of Steady Flow

The differential equations of plane steady Qow at
large E reveal a complicated situation of Row patterns,
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FIG. 6. Degenerate Friedrichs diagram for incompressible Quid.

sometimes doubly hyperbolic and sometimes elliptic-
hyperbolic depending upon the relative magnitudes of
Row speed, sound speed, and Alfven speed, and also
upon the relative orientation of the Qow and. 6eld vec-
tors. The diagrams constructed in the foregoing are
sufficient-to predict and explain these various regimes.
The principle involved is that standing waves are en-
velopes of the pulses that a moving body produces at
all points of its trajectory, and therefore, given any
point in the plane of Fig. 5 representing the body's
velocity vector, such standing waves must appear as
tangents drawIl froID this point to the pulse dlagrRIn. It
is easy to verify that this construction is equivalent to
drawing a series of self-similar pulses from successive
points of the body's trajectory and finding their
envelopes.

This construction has been used in Fig. 1' to Hlustrate
two doubly hyperbolic and two elliptic-hyperbolic Qow

situations. These have been chosen in particular to show
how wows infixed upstream are formed.

These standing waves can also be found by a simple
construction involving Fig. 4, for the waves are actually
propRgRtlng plRne wRves 1elatlve to the Quid and Inust
therefore propagate at speeds given by Fig. 4. 3ut the
construction based on the pulse shape has the important,
advantage of distinguishing between the upstream and
downstream branches .of any particular plane wave in
these cases where the waves are produced. by body
motion.

This construction and. the determination of the num-
ber of waves involved in the pattern are local/y correct,
where the Qow and 6eM vectors are the local ones; in
other words, we are determining the real characteristics
of the Qow at any point. In linearized small-perturbation
Qow the characteristics are everywhere those of the un-
disturbed Gelds. The small sketches of Qow about
bodies in Fig. 7 have been drawn for this special case
for clarity.

Let us now consider the degenerate case of uNgggd

fields, i.e., flow and Geld vectors parallel to one another.
The construction reveals only two symmetric families of
waves LFigs. 8(a) and 8(c)j or none at all D igs. 8(b)
and 8(d)j. The other families have degenerated into
the horizontal axis, i.e., they coincide with the stream-
lines. But such a characteristic permits the introduction
of discontinuities along streamlines in order to satisf
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boundary conditions; the result is a surface-current
layer at a boundary surface. Investigation shows that

the number of available functions always colncld th
the number of boundary condltlons to be "t' 6 d

'
h

the interpretation that surface currents are permitted
only when a characteristic direction has degenerated
into the Qow direction.

It is interesting to note that incompressible Qow is
always elliptic-hyperbolic except for aligned 6elds, for
in such flow we are always in the situation of Figs. 7(b)
and 7(d). On recalling that the two "Alf ' ' t " f
Fig. 6(b) are really tiny cusped-triangles, we recognize
that a tangent can be drawn to each of them from any
point of the plane. For aligned 6elds the standing waves
degenerate into the streamlines and the field is purely
elliptic with surface currents.

Effects of Finite Conductivity

As already mentioned, the dkcts of small electrical
resistance of the Quid medium is to dam th t dRmp e s Rn lng

ven waves, and to expand the surface currents of the
aligned-6eld Qows into magnetic boundary layers. %e re-
turn to this point to emphasize that the appearance of
waves extending upstream from a solid body does not
render the resulting Qow pattern physically impossible
or uninteresting. In actual experiments, because the
e ectrical resistance is appreciab1e, the experimenter
probably 6nds that upstream waves are damped to ex-
tinction in a few body lengths and have little if any

n. 7. Sketches showing how Friedrichs diagram dete
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ve pattern produced by body in stead Q Th
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eGect on the upstream Qow conditions in a wind tunnel
or shock tube.

Similarly, the upstream wakes mentioned before at-
tenuate gradually with distance upstream of the body
and therefore do not necessarily involve any conQict
with experimental observation. Since these wakes are
due to eGects that occur at the body surface and are
propagated upstream in an attenuating fashion, we be-
lieve that these Qows can, be produced by causing a uni-
form stream to Qow past the body. When steady Qow is
established the wake extends forward —perhaps even
into the nozzle of a wind tunnel —but does not neces-
sarily aGect the Qow pattern appreciably.

In those aligned-field Qows for which the wake extends
upstream of the body it is found that the magnetic
boundary layer that replaces a current layer is thinnest
at the rear parts of the body, increases in thickness
toward the front, and there joins the upstream wake.
It seems particularly interesting that the "pulse dia-
gram" of Friedrichs provides information concerning
the direction of growth of the magnetic boundary layer
and the direction (upstream or downstream) of the
wake. When both of the degenerate, horizontal tangents
must be drawn downstream from the body-speed vector,
as in Figs. 8(a)—8(c), the wake lies behind the body.
When one degenerate wave extends forward, however,
as in Fig. 8(d), it is always found that the wake lies
ahead of the body. (Since in the last case there is also a
degenerate characteristic wave lying downstream along
the streamline, it is not clear why the wake should not
extend in both directions. Neverthe1. ess, the diGerential
equations seem to yield the unambiguous result stated
here. )

Thus the speed at which the change-over from up-
stream to downstream wake occurs is the speed of point
S (Fig. 5); i.e., the magnetohydrodynamic wake ex-
tends upstream when

flow speed((a '+A ') '

and downstream when

flow speed) (a '+A ') '.

Since previous work was concerned with incompres-
sible Qow, the change of behavior was attributed to the

FIG. 8. Same as Fig. 7 but for cases of "aligned Gelds. " The
wavy lines in the Bow sketches denote magnetohydrodynamic
"wakes. "

change from sub-Alfvenic to super-Alfvenic Qow, i.e.,
from Qow speed &A to Qow speed& A. We now recognize
that this requires modi6cation for compressible Quids.

CONCLUSION

At the present writing, actual observation of most of
these phenomena characterizing magnetohydrodynamic
Qow about solid bodies is still to be achieved. Our studies
suggest that some of the most intriguing effects will be
dificult to see at laboratory scale because of the small
available values of E . One hopes, nevertheless, that
upon the occasion of another international symposium
on the subject experimental proof or disproof of the
generalizations of this paper will be available.

DISCUSSION

Session Reporter: G. KUERTr

S. I. Pai, University of Naryland, College Park, M'aryland:

I would like to add, as a case of practical interest, the case of
a strongly magnetized thin body in a uniform Qow of a com-

pressible Quid of small conductivity. In this case

$2Q $2Q 2Q
(1—M')—+—+—=R~Fg.

BH By2 BS2

Here the undisturbed Qow is in x direction (Mach number
M) end Q denotes any of the perturbed velocity components
or the perturbed density; Fq is a known function of the
magnetic Geld of the body; Ra=Re~ vrith the magnetic
Reynolds number R «1, and the magnetic pressure number
R~——(II,.II)'/pU'=1. The general solution of (1) is Q=QO+
R~Q~, where Q0 is the solution of the corresponding gas-
dynamical problem.


