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I. INTRODUCTION
History of Conservation Laws

ONSERVATION laws in physics are almost as
old as the Newtonian revolution. Originally con-
ceived when physics dealt only with particles, their
usefulness continued after the advent of field physics,
of special relativity, and even of quantum mechanics.
It is therefore not surprising that considerable attention
has been paid to the question of the application of con-
servation laws to theories, such as general relativity,
which are covariant under general coordinate trans-
formations. It has been hoped that such laws would be
just as beneficial in the application of and the under-
standing of such theories as they have been elsewhere.
In particular, great interest has centered around the
problem of finding the laws analogous to the conserva-
tion of momentum, of angular momentum, and espe-
cially of energy, which are familiar in theories (such as
special relativity) which are not generally covariant.
Today, nearly fifty years after the advent of general
relativity, no general agreement has been reached on
this problem; the appropriate form that each of these
laws should take is still a subject of controversy.

The original suggestion as to an energy-momentum
conservation law for general relativity was made by
Einstein when the notion of general relativity was
scarcely a year old (21, 22).T As was immediately noted,
there are two curious features of Einstein’s law, fea-
tures not present in Lorentz-covariant theories. First,
the conserved quantity does not constitute a tensor nor
a tensor density. This enabled Schroedinger (50) and
Bauer (5) to show that the value of the total energy as
derived from Einstein’s law could be radically altered
merely by performing a coordinate transformation.
Second, the values for the total energy and momentum,
defined as integrals over a three-dimensional initial
surface, could be rewritten as integrals over the two-
dimensional boundary of that surface.! It was dis-
covered that these two features were inherent in the
nature of the theory.?

Einstein’s energy-momentum law was generally ac-
cepted as the energy-momentum law for general rela-
tivity for over thirty years. During this period, however,
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T References in parentheses will be found in alphabetical order
at end of article.

1 The explicit expression for the quantity to be integrated over
t(}ge)two-surface was first given by Freud (29). See also Zatzkis

8).

2 See Secs. III and VI.
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alternative expressions for that law were advanced such
as those of Klein (36) and Lorentz (40). Then about
1950, Landau and Lifschitz (39, p. 318) suggested a new
expression which had the advantage of being ‘“‘sym-
metrized.” The existence of more than one expression
supposedly representing the energy was a cause of some
disturbance. This disturbance became chaos in 1958
when the number of alternative expressions suddenly
increased to infinity. This was due largely to the efforts
of Goldberg, who listed an infinite number in a single
paper (32). Expressions suggested by Mgller (43),
Bergmann (11), Komar (37), and Dirac (19) also added
to the general confusion. This rapid multiplication of
energy expressions motivates the work in the present

paper.
Statement of Purpose

The present paper examines the situation created by
the presence of so many proposed energy laws and
attempts to understand it. The connection between
these various laws is illuminated. An inquiry is made
into the wuses of conservation laws. Such an inquiry is
obviously much needed, for no other way is evident to
decide which, if any, of the proposed laws is the correct
energy law and of what significance the other laws
might be.?

Conservation laws may be put to two general kinds
of uses. First, the numerical values of the conserved
quantities may be used in various ways. For example,
they may be used as a ‘“‘check-up service”: Two sets of
physical data are given, one representing the initial
state of a physical system, the other an alleged final
state of the system. One calculates the total energy
represented by each set of data; if they are not the same
in value, one concludes that the two sets of data do not,
as alleged, describe the same physical system. Second,
conservation laws may be put to mathematical uses.
Such uses depend on the specific way in which the
conservation law is written; in such uses the conserva-
tion laws are regarded as interesting rewritings of the
equations of motion, rewritings which may provide new
physical insights. For example, the Einstein-Infeld-
Hoffman treatment of the motion of sources of the
gravitational field depends upon the field equations
being rewritten in certain ways which are suggested
from the consideration of conservation laws.

The conclusion of this paper is that the uses of the

3 Similar sentiments have been expressed by Eddington (20)
and more recently by Dirac (19).
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values of conserved quantities in generally covariant
theories are far more limited than in other theories.
Some uses cannot in fact be made at all. On the other
hand, mathematical uses are quite appropriate in gen-
erally covariant theories and have a value which has
not as yet been fully appreciated.

Outline of Subsequent Sections

The remainder is devoted to showing the relation
between the various conservation laws in generally co-
variant theories and to examining the usefulness of
these laws. Sections II through VI are concerned with
various concepts and theorems relating to conservation
laws. Section II reviews some of the basic facts about
the kinds of theories under discussion. It introduces
much of the notation and describes some particular
theories that are used as examples. The Lagrange for-
malism is briefly reviewed.

Section III introduces and describes the notion of
a local conservation law, pointing out the contrasts
between strong and weak laws. Covariant properties of
conservation laws are discussed. Section IV discusses the
idea of symmetry operations of a Lagrangian, reviewing
those important infinitesimal symmetry operations, the
infinitesimal coordinate and similarity transformations.

Section V ties together the two preceding sections by
showing how conservation laws may be derived from a
knowledge of the infinitesimal symmetry operations of
the Lagrangian. Examples of this procedure are given.
The converse problem of whether all conservation laws
follow from symmetries of the Lagrangian is discussed
in greater detail than has been done previously. The
section concludes with the description of a second
method of obtaining conservation laws which proves of
value in Sec. VIII.

Section VI proves Noether’s theorem (44), which
states that all the conservation laws characteristic of
generally covariant theories are strong laws. It explicitly
displays the superpotentials in greater generality than
has been done before.

Section VII draws upon the results of Secs. II
through VI and uses them to establish the conclusions.
It casts light upon the connection between the various
conservation laws in generally covariant theories, and
shows the limitations upon the usefulness of the values
of conserved quantities. Specifically, it shows the limita-
tions upon the use of these values as first integrals of
the equations of motion and as definitions of experi-
mental quantities. The most suitable use of these values
is found to be as indicators of the Schwarzschild mass,
a use possible only in certain limited cases. The con-
servation laws suitable for this use are explicitly in-
dicated. It then considers mathematical uses of con-
servation laws. Their uses in relation to the Hamiltonian
and the problem of motion are mentioned briefly. Then
in Sec. VIII three new mathematical uses of conserva-
tion laws are described—their use in finding the source

terms of the gravitational field, in showing a connection
between gauges and constraints, and in the Schwinger
formalism for quantum mechanics.

II. BASIC CONCEPTS
Nature of the Theories to be Discussed

The methods used here are sufficiently general to be
applicable to any physical theory likely to be en-
countered at the present time. But, in order to make
things definite, it is now stated just what sort of a
theory will be considered. First, the theory employs a
d-dimensional, locally Euclidean, topological space,
called physical space. This is just the sort of space that
is most familiar; Euclidean, Minkowskian, in fact any
Riemannian spaces are common examples. The points
in this space are labeled by a set of real coordinates
x# u=1, -+, d which vary continuously from point to
point. Certain theorems of topology show, in general,
that one nonsingular coordinate system does not suffice
for an entire space;instead, several coordinate “patches”
have to be employed. For example, a space having the
topology of the surface of a sphere or of a Euclidean
space with “handles” (or “worm-holes”) requires at
least two such patches. However, in the important case
of a space having the topology of Euclidean space, one
coordinate system is sufficient.

Second, the theory employs a set of quantities, the
field variables x4 which are defined at every point of
physical space. When necessary for clarity, dependence
of the x4 on the coordinates is explicitly shown: x4 (x*).
Although much of what is said is more widely applicable,
the discussion is limited specifically to classical (non-
quantum) theories for which the values which the
x4 (x#) may assume are real or complex numbers.

Finally, the theory distinguishes certain of the field
variables as being the fundamental field variables ®4,
A=1, .-+ F, and employs a certain specified function
of these fundamental variables and their derivatives
(with respect to the coordinate labels), the Lagrangian

L=L(x*)=L[d4 (xu);xu],

to obtain in a familiar manner* (which is reviewed
briefly below) equations of motion, which are differential
equations relating the ®4. In general, no assumptions
are made regarding the orders of the derivatives appear-
ing in either the Lagrangian or the equations of motion.

Riemannian Space

In order to illustrate many of the remarks made in
this paper, certain particular theories are chosen as ex-
amples. All these theories employ a four-dimensional
Riemanian physical space with metric signature
(1,1,1, —1). The next few paragraphs review some
pertinent facts about Riemanian spaces,® introducing

4 See, for example, Goldstein (33), especially Chap. II.

5There are many references on the subject of Riemannian
geometry. See, for example, Synge and Schild (55).
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the notations used. The role of spinors is given emphasis
so as to make it clear which of the several spinor for-
malisms in general use today is used here.® The dis-
cussion stresses the similarity between the treatment of
the derivatives of tensors and the derivatives of spinors.

Every object in a Riemannian space with spinors has
both a tensor character and a spin character. The tensor
character of an object determines its transformation
properties under coordinate transformations; its spin
character determines its behavior under similarity
transformations. As regards spin character, most im-
portant are nonspinors, which are unchanged by simi-
larity transformation; ordinary column spinors ¥,
which under similarity transformation by a matrix S
go to Sy; ordinary row spinors ¥, which go to ¥S—1;
ordinary matrices M, which go to SMS'; and spin
densities ¢ of weight W', which go to (detS)"'¢.

The basic geometric objects are the (nonspinor)
metric tensor g,, and the (ordinary matrix) metric
vector (the Dirac matrices) y,, which are related by the
anticommutation relation,

2.1)

where [ is the unit matrix. Indices are lowered and
raised in the usual fashion by g,, and its contravariant
form g**. The determinant of g,, is called g. The sum-
mation convention for repeated indices is used.

Since the partial derivative [symbolized with a sub-
script comma (,)] of a nonspinor tensor with respect to
a coordinate label does not, in general, transform like a
tensor, a covariant derivative [symbolized with a sub-
script semicolon (;)], which so transforms, is defined
thus:

For a scalar density of weight W,

{Yurvo} =28l

D,,=D,,—WDT (2.2a)
For a covariant vector,

Vv;n= Vv,p— V)\I‘vp)‘. (2.2b)
For a contravariant vector,

V9uw=V7 VA (2.2¢)

For a general tensor density, the appropriate formula
can be obtained by use of these formulas, and of the
fact that covariant differentiation is linear and dis-
tributive when applied to a sum of products. The
object T, is the affine connection (Christoffel symbol)
and is determined by the requirements that it be sym-
metric in yu and that

gl“’;)\Eg#”.)\_ganv)\K—gnI‘u)\“:O. (23)
This implies that
Tyt =38"(gew,ut gru,v— Gur,x)- (2.4)

6 This treatment is given by Bargmann (4).

Since the covariant derivative of an ordinary spinor
does not, in general, transform like an ordinary spinor,
a total derivative [symbolized with a subscript stroke
(|)], which does so transform, is defined thus:

For an ordinary column spinor (of arbitrary tensor

character),
Yu=vu—Tw. (2.5a)
For an ordinary row spinor,
Yiu=¥utyla (2.5b)
For an ordinary matrix,
M.,=M,,,—[T.,M]. (2.5¢)
For a spin density of weight W/,
Plu=Piu— W'(TtT)¢. (2.5d)

The second of these relations follows from the first, and
the third from the first two, in consequence of the re-
quirements that total differentiation is linear and dis-
tributive when applied to a sum of products and that
the total derivative of a nonspinor equals its covariant
derivative. The object T', is the affine spinor connection
(spin-Christoffel symbol) and satisfies

(2.6)

It is assumed here, in order to simplify the discussion,
that an irreducible representation of the v, is being
employed. Then (2.6) determines I', entirely, except
that an arbitrary multiple of the unit matrix may be
added to it. The explicit expression for I', is now given
without proof.”

First, it is necessary to define an operator ¢ which
acts on matrices:

EM=3%(dM—~v,M~"),

Voiu=Yru—[Lu¥»]=0.

(2.7a)

where d (as usual) is the dimension of the Riemannian
space. It can be shown that, for all matrices M,

T (s—B)M =0, (2.7b)

By employing this fact, one may find a unique poly-
nomial of degree (d—1) in the operator ¢ (symbolized
as 1/£) such that

1/8)(EM)=M— (TrM/TrI)1. (2.7¢)
One may now write the expression for I',:
I‘u=%(1/£) (yy;,,'y”)-i-'ieA,J. (2~8)

The vector 4, may be identified as the vector potential
of the electromagnetic field (which thus enters the
theory in a natural way) and e as the charge of the field
characterized by the spinors ¢ and .

Some other important geometrical quantities are:

7 Proofs are given by Fletcher (28).
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the Riemann curvature tensor,

Riyuy=T%" u—Tau o+ T T —T Tt . (2.92)
the Ricci tensor,?
Ru=RM»; (2.9b)
the scalar curvature,
R=gtR,,; (2.9¢)
the electromagnetic field tensor,
Fuv=Asu— Ay, (2.9d)

Typical Theories

The first general kind of theory to be used as an
example is a Lorentz-covariant theory (Riemannian
space is flat) in which no higher than first derivatives of
the fundamental variables appear in the Lagrangian.
Such a theory is called an ordinary Lorentz theory.
Specific examples are:

(1) The electromagnetic (or Maxwell) field. The
Lagrangian is

Lg=—1(—g)iF,,Fw. (2.10a)

The fundamental field variables are the covariant com-
ponents of the vector potential 4,.
(2) The lepton (or Dirac) field. The Lagrangian is

Lp= (=)} (—3¥v*1ut3uyy—minp). (2.10b)

The fundamental variables are the components of ¢
and y. The quantity m is a constant, the mass of the
field. If Lp is used alone, the vector potential must be
viewed as a given, fixed quantity. On the other hand,
Lp and Lz may be added to give the Lagrangian of an
interacting Maxwell-Dirac field.

(3) The neutral scalar meson (or Klein-Gordon)
field. The Lagrangian is

Li=—3(—)(g"¢.sptu¢).  (210c)

The fundamental field variable is ¢. The quantity u is
a constant, the mass of the field. In the theories men-
tioned in this paragraph, g., and 7, are given fixed
quantities.

The second general kind of theory to be used as an
example is a generally covariant theory with the
Lagrangian

Le=(—g)'R+Luy. (2.10d)

The term Ly is the Lagrangian of matter. It may as-
sume different forms depending upon the exact theory
under consideration. It may, for example, be equal to
zero; one then has the pure gravitational (or Einstein)
field. It may equal Lg; one then has the Rainich field.

8 The convention as to the sign of R, has been chosen so that
the curvature R of a d-sphere is positive. This is the convention
employed by Landau and Lifschitz (39) and Misner and Wheeler
(41). It differs from that employed by Bergmann (9), Einstein
(24), Synge and Schild (55), and Mgller (42). Misner and Wheeler,
and Mgller, incidentally, choose the sign of R%,, to be opposite to
that given here.

In fact it may be any one, the sum of any two, or the
sum of all three of Lz, Lp, and Lk, as well as many
other possibilities. The fundamental variables are the
fundamental variables appropriate to the Lagrangians
making up L plus the components of the contra-
variant metric. In addition, if a Lagrangian involving
spinors (such as Lp) appears in Ly, suitable independ-
ent variables describing the Dirac matrices must be
included among the fundamental field variables; the
components of the Dirac matrices may themselves be
so used, provided suitable precautions are made for
taking into account the fact that they are not all in-
dependent of one another nor of the metric tensor.

These Lagrangians have all been expressed in a sys-
tem of units so selected that the numerical values of the
velocity of light (¢), Planck’s constant divided by 2x (%),
and 16x times Newton’s gravitational constant (16xG)
are all equal to one. This means that the length unit is
1.1455X 1032 cm, the time unit is 3.821X10~% sec, and
the mass unit is 3.071X10-6 g.?

Lagrangian Formalism

Let an infinitesimal change or variation in the &4
as functions of the x* be considered. This variation is
symbolized by 6. A way to view this symbol is as fol-
lows: The &4 are imagined to be functions of a pa-
rameter o as well as of the x#; then §®4= (994/dc)d0.
Clearly, the variation of the Lagrangian will be linear
in the variations of the 4 and of the various deriva-
tives of the ®4; hence, by repeated use of the expression
for the derivative of a product, it may be written as!?

SL=A7 ,— M 4684, (2.11)

The condition that —M 4694 vanish for all 6&4 deter-
mines the equations of motion. If the 6&4 are all inde-
pendent, this implies that all M 4=0. If the 6®4 are
not all independent but have certain algebraic identities
among them (as, for example, is the case for g#* and
v*), the equations of motion are still uniquely deter-
mined and can be found, for example, with the use of
Lagrange multipliers.

Two facts should be noted regarding (2.11). First,
changing L by adding to it a term of the form L”, does
not change the equations of motion but merely adds a
term 6L” to A’. Second, A is not determined uniquely
by (2.11) but only up to an arbitrary additive term of
the form AU# . [A pair of square brackets enclosing a
number of indices means that the indicated expression
should be completely skew-symmetrized in the enclosed
indices, i.e., should be replaced by the sum of all ex-
pressions obtained from the indicated one by even
permutation of the indices minus the sum of all ex-

 These computations are based on the values of ¢ and % given
by Strominger, Hollander, and Seaborg (54) and on the value of
G given in Handbook of Chemistry and Physics (59).

10 The mathematics of Lagrangians with higher than first de-
rivatives of the field variables is discussed in some detail by
Chang (16).
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pressions obtained by odd permutation of the indices all
divided by the number of such expressions (equals the
factorial of the number of indices). Similarly, a pair of
parentheses enclosing a number of indices means that
the indicated expression should be completely sym-
metrized in the enclosed indices, an operation differing
from skew-symmetrization only in that the sum of the
odd permutations is added to, rather than subtracted
from, the sum of the even permutations.]

In the case in which L equals Lg (2.10d) with Ly
equal to Lg+Lp-+ Lk, the result for A” ! is

Ag= (—g)*g"*@(l‘x)‘”—%ﬁ,;"l‘)\“"—%5)\"1“,“‘)
+ (=) A ,—3(— Wy o+3(— )Py
— (=900 +3(— W
X{v,(1/8vuv Ny, (2.12)
while for M 4684 it is
M 4G54
=3(—g L—2(Ry— 38w R)+ (F 2 F 2 —1guF o F™)
F 8w (= YN 3 Y —mi)
T+ (D,uD,,— 381D, P N — 3 Lumi’D?) 108+
+(—g)i[Fu—iedy"y J0Ay
+ (== +mb o+ (— )Py u+my ]
+35 (=) vy +1{v., 1/ Oy v W1
- ‘;I v5’Y"¢+%\zlu{'Y": (1/5) [57",'71']}\0]
+ (= — ¢, uwtup 100, (2.13)

It is clear which portions of these expressions are con-
tributed by each portion of Lg; thus, in effect, the A”
and M 4694 appropriate to each Lagrangian (2.10) have
been indicated. The equations of motion corresponding
to 84,, 8J, 8¢, and 8¢ are obvious from (2.13). This is
not so for the equations corresponding to dg* and &y*,
since these quantities are not independent!?; however,
if Lp were absent, the equations corresponding to dg+”
would be obvious. As noted above, (2.12) is not unique.
For example, one might add (4#64”— A”6A*),, to it.
To do so would certainly render Ay into an unfamiliar
form, but it would be a form %o less valid than the one
given.
The most general form A” can take is clearly

A= pBQ@p’cdqC, (2.14)

where the @p’¢ are a set of constant quantities and p3
(called canonical momenta) and ¢¢ (called canonical
coordinates) are functions of ®4 and their derivatives.
In the special case of an ordinary Lorentz Lagrangian,
one finds that ¢¢=®C and pPQp’c= (6L/6®%C,,), but
these relations do not hold in general. The p4, ¢4, and

11 The only terms in (2.12) and (2.13) which require more than
trivial effort to obtain are those involving 8g** and 8y*. In regard
to the-terms involving 8¢, a simplified derivation is given by
Landau and Lifschitz (39, p. 297). For the derivation of the terms
involving 8v”, a useful relation is

oy =1ed A I+3{ (1/8) (670, T 1wty m T
12 This problem is discussed in Sec. VIIL.

&4 are all special instances of the field variables x4.
Hence, a list of x4, A=1, ---, *F, may be prepared,
which includes all $4, all ¢4, and independent algebraic
functions of all the ®4. Equation (2.11) may now be
rewritten as

0L= (xBQp"cdx®),»— M 45x*, (2.15)

where appropriate elements in the now enlarged matrix
@p’c vanish as do appropriate linear combinations of
the M 4. If one now defines the pseudo-Hamiltonian as

H=x3@p"cx¢,,—L, (2.16)
then it follows that
8H=0xB[2G8’c1x%,,+M35]. (2.17)

This last expression shows that H is a function of the
x4 only and not their derivatives. By applying the con-
dition M éxE=0, one obtains Hamilton’s equations of
motion which are satisfied if and only if the Lagrange
equations are satisfied. In particular, if all the &4 were
independent, Hamilton’s equations are

Np=2GCp’e1x°,,—0H/dxE=0. (2.18)

Hamilton’s equations may be derived as the Lagrange
equations corresponding to

*L=xB@p’cx®,—H (x*), (2.19)

with the x4 as fundamental field variables. By adding
the term — (x2@’¢)xC),» to *L, a new Lagrangian is
produced which yields the same equations of motion
but for which @’¢= @[5’¢;; such a Lagrangian is called
a Schwinger (51, 52) Lagrangian. It has thus been
shown that any set of equations of motion derived from
a Lagrangian can be derived from a Schwinger
Lagrangian.

The Hamiltonian variables x4 appropriate to the
Lorentz covariant Lagrangians Lz, Lp, and Lgx
(2.10a, b, ¢) are, respectively, F** and 4,, ¥ and ¥, and
¢ and p’=—g#p,,. The associated Schwinger La-
grangians are, respectively,

*LE=%F’"’Au.v_’%AuF’w,v‘l"%FquW; (2203‘)
*LD= _%J7”¢|,+%J|,7”¢—mw, (220b)
*Lr=3p"6,— 30" b+ 3 pu—hu6". (2.20¢)

Note that *Lp is identical with Lp. These have not been
written in a form suitable for immediate generalization
to generally covariant theories since the Schwinger
Lagrangian corresponding to L¢ is given here only for
Ly=0. The reader may consider for himself other
cases; when Lj includes spinors, the situation becomes
quite complex. For the Einstein Lagrangian the Hamil-
tonian variables are'

g~=(—g)k",
18 The choice of ®,,* instead of T',,* is found to be more conveni-

ent in the sequel (Sec. VIII). It is less convenient from the point
of view of familiarity.

= 1 1
w =T =26, 5 — 26, 5.
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The Schwinger Lagrangian is

*LG=%g“"@yv)\,)\_%g}w,)\@yv)"—g‘”@)\nk zv)\
+3107G MY, (2.20d)

There is no need to write out the A” nor the equations
of motion corresponding to these Lagrangians here,
since they can be obtained by inspection.

III. LOCAL CONSERVATION LAWS
Differential Form

A local conservation law is an expression of the form,
Sv,y=0,1 (3'1)

where S”, like the Lagrangian, is a function of the &4
and their derivatives at the point to which S” refers.
In order that both S” and Eq. (3.1) be generally co-
variant quantities (which is not, however, always re-
quired even in generally covariant theories), S* must
be a totally skew-symmetric contravariant tensor
density of weight one with » as one of its tensor indices.
It is a simple matter to construct an unlimited number
of quantities .S” satisfying (3.1). One merely has to pick
any function of the ®4 and their derivatives of the form
St#l s then the choice

Sr=S04 , (3.2)

will always satisfy (3.1). The quantities S"#! are called
superpotentials. If S” can be written in the form (3.2),
then (3.1) is called a sirong conservation law; otherwise,
it is called a weak conservation lawX* If S” is a totally
skew-symmetric contravariant tensor density of weight
one, then S"#! can be taken to be a totally skew-sym-
metric contravariant tensor density of weight one and
rank one higher than 5.

It might be supposed at first glance that all local
conservation laws are strong; this would seem to be a

reasonable generalization of the statement that a vector

of vanishing divergence can always be written locally

as the curl of some other vector. This supposition is, .

however, erroneous. All S” satisfying (3.1) can be
written as the divergence of a skew-symmetric quantity,
but this quantity is not necessarily a function of the ®4
and their derivatives at the point of definition of S*;
it may involve primitive integrals over the 4.

T Note added in proof.—It is perhaps well to point out that some
writers (e.g., Lichnerowicz, Bel) call an expression of the form
S”,, a conservation law. While such expressions are useful, they
do not possess a global form, and in any event are not under
discussion here.

14 The terms “‘strong” and ‘“weak” were originated by Berg-
mann (10). Their use here differs slightly from that of Bergmann,
however. Here a law is called strong if it can be written in the form
(3.2) when the equations of motion are satisfied, while Bergmann
seems to distinguish between strong and weak forms of writing
the laws here called strong laws, the strong form always holding,
the weak form holding only when the equations of motion are
satisfied. This seems an unnecessary distinction to the present
author, since a strong law may always be made artificially weak
in Bergmann’s sense by adding to .S* a function which vanishes
when the equations of motion are satisfied. Examples of strong
and weak laws are given in Sec. V.

Integral Form

There are two views of physical space which one may
take when applying the equations of motion. First,
there is what might be called the “broadside’ view. The
entire physical space, populated with the field vari-
ables, is examined point by point to see whether the
field variables satisfy the equations of motion. The
pleasant feature of this viewpoint is that it does not
destroy any symmetries which may exist among the
roles of the different coordinates. However, it is a view
of limited practical value. One is not often in the posi-
tion of being able to look at an entire physical space and
“check up” on it point by point to see whether the
equations of motion are satisfied. Rather, one usually
takes the second or “edge-on” view. A family of (d—1)-
dimensional surfaces is selected as constituting a dis-
tinguished set of surfaces, the initial'® surfaces. Each
initial surface divides space into two parts, a past and a
future. One observes the values of the field variables on
a particular initial surface and then, by assuming the
equations of motion to be satisfied, predicts the values
of the field variables in the future (and also infers their
values in the past).

Let there be defined now

S(w)= f S*ds,, (3.3)

where w is a (in general, bounded) (d—1)-dimensional
surface in physical space with differential extension do.
In order that the value of S(w) be a generally covariant
concept, S” must be a contravariant vector density of weight
one, and S(w) must therefore necessarily be a scalar*$ Of
the familiar examples of quantities S (w), namely, energy,
momentum, angular momentum, and charge,'” only
charge is a scalar. Hence, as mentioned in the intro-
duction, energy and momentum in generally covariant
theories are doomed to be quantities which are not
generally covariant. If S” is of the form (3.2), it follows
from Gauss’ theorem that

S(w)=8(8)= ¢ Srda,, (3.4)
8

where 8 is the (d— 2)-dimensional boundary of w with
differential extension do,.

In the usual interpretation of the local conservation
laws, (3.1) is integrated over a d-volume bounded by a
(d—1)-surface w which consists of three parts—parts of
two initial surfaces wr and wr, and a cylinder-shaped
surface wz, which joins wr and wr along (d— 2)-surfaces
Br and Br. From Gauss’ theorem it follows that

S(wr) —S(wr)=—>S(ww), (3.5

15 The objects here called “initial surfaces” also include the
objects more conventionally called ‘“final surfaces.”

16 See Synge and Schild (55, p. 276).

17 These quantities are discussed in Sec. V.



LOCAL CONSERVATION LAWS 71

where the sign conventions should be clear. Gauss’
theorem can be applied, and therefore (3.5) is true only
if S” is a contravariant vector density of weight one or
if only one coordinate patch is employed throughout
the region enclosed by « (or if some suitable combina-
tion of these two conditions is realized). Similar re-
marks apply to (3.4). The quantities S(wr) and S(wr)
are interpreted as the amount of a quantity S (e.g.,
energy, momentum, angular momentum, charge) con-
tained in wr and wr and S(wz) as the amount which
escapes through the surface wr. If (3.4) can be applied,
(3.5) becomes quite trivial.

Many important uses of (3.5) occur when wr and wr
constitute entire initial surfaces. When this is so, three
cases may be distinguished.

Case 1.—The surfaces wr and wr are closed. (81, Br,
and wz do not exist.) Then (3.5) shows that S(wr)
=S (wr) ;1.e., .S is conserved. This is the global conservation
law derived from the local conservation law (3.1). If,
in addition, the conservation law is strong [and hence
(3.4) applies ], then S is not only conserved, it vanishes
as well.

Case 2.—The surfaces wr and wr are infinite in extent
but coincide as infinity is approached. (8r and Br are
identical ; wz, does not exist.) In this case .S is also con-
served. However, in this case, when the conservation
law is strong, .S does not necessarily vanish.

Case 3.—The surfaces wr and wr are infinite in extent
and distinct at infinity. In this case S is conserved if
and only if S(wz) vanishes as wz recedes to infinity;
otherwise, S(wz) represents an escape of .S “to infinity.”
If the conservation law is strong in this case, then
whether or not S is conserved can be determined solely
by studying the behavior of S*# in the infinite reaches
of wr and wp. It is also possible that a combination of
the conditions of two or all three of the above cases
may occur, but such a situation leads to no essentially
new considerations.

It is often convenient to consider the initial surfaces
to be surfaces for which one coordinate is constant.
(This excludes case 2.) This coordinate (which labels
initial surfaces) is then called x°, the #ime; the remaining
coordinates (which label the points in these surfaces)
will be indicated by a Latin index, e.g., 2™ Repeated
Latin indices are summed over all values except o.
With this notation, it is easy to express a limiting case
of (3.5) as

(d/dx*)S (w)= (d/dx°) fS"dcr,,= - ‘é- Sdoon, (3.6)

where the negative of the right-hand side is called the
flux of S through B. If the conservation law is strong
[and hence S” is given by (3.2)], this expression
becomes

(d/dx°)S (w)= (d/dx°) -é Stemldg o,

=—fS["°1,oda,,,,, 3.7
8
which is rather trivial.

When S” is not a contravariant vector density of
weight one (as it is not for the energy, momentum, and
angular momentum laws), application of the foregoing
results is usually limited to spaces of Euclidean topology,
for which only one coordinate patch is necessary.
Mgller (43) has observed, however, that since in usual
applications there is no need to “patch” the time co-
ordinate, these results may be applied to the energy
law (no matter what the topology of the initial sur-
faces) provided that the corresponding S” is selected
so as to behave like a contravariant vector density of
weight one under coordinate transformations of the
coordinates within the initial surfaces (a behavior not
compatible with the characteristics of momentum and
angular momentum). He has explicitly displayed such
an S».18

IV. SYMMETRY OPERATIONS
Definition

Let it be supposed that a set of F functions &4’ (x*)
=4[ (x#)] of the field variables is found such that
the following relation holds for a suitable choice of the
function K” and of the x*" as functions of the x#:

Lo () 49 = L[&4' (") 142’
= L[®4 (%) T+ K04 (x%)],dQ,  (4.1)

where dQ and dQ’ are the differential extensions of
physical space in the coordinate systems of x* and x”,
respectively. The 4’ are then said to be related to the
&4 by a symmetry operation.

For example, for the Lorentz-covariant Lagrangian
of the electromagnetic field (2.10a), there are the follow-
ing symmetry operations: space and time inversions,
(inhomogeneous) restricted Lorentz transformations,
and electromagnetic gauge transformations. Among
these, an immediate distinction can be made: Space
and time inversions are discrefe operations; the others
are continuous. In consequence of the existence of dis-
crete symmetry operations, one may deduce certain
facts often called conservation laws. Space inversions,
for example, lead to the conservation of parity. These
conservation laws, however, are, on the classical level,
qualitatively different from the conservation laws (even
the global ones) described in the last section, for one
cannot assign to every field configuration, for example, a
parity value in the way one can always assign an energy
value. Discrete symmetry operations do not pertain to
the subject of this paper.

What do pertain are the infinitesimal symmetry opera-
tions corresponding to the continuous symmetry opera-

18 See Sec. VL.
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tions, i.e., infinitesimal changes 64 in the functional
dependence of the 4 on the x* such that

SL=L[®445d4]—L[®4]=K",,,

where here K” is an infinitesimal quantity. Note that
K" is not uniquely determined by this equation butmay
have any term of the form KI"¥ , added to it. If L is
replaced by an L differing from it by a term L” ,, then
6L’ is added to K”.

4.2)

Examples

The infinitesimal symmetry operations of most gen-
eral interest are undoubtedly the infinitesimal coordi-
nate transformations. For reference, some formulas re-
lating to such transformations are now given. Under
an infinitesimal coordinate transformation, a point
formerly labeled as x* is relabeled as x*+£*, where £*
is an infinitesimal vector. Let a scalar function ® be
considered; under transformation it becomes a new
scalar function @’ such that

P’ (&) =B(x#). 4.3)

By expanding the left side in a Taylor series, it follows

that

0P=¢'—d=— £, (4.4a)

For objects other than scalars, there are terms in the
expression for their variation in addition to the term
that appears for scalars. These terms arise from their
differing covariant transformation properties. For a
scalar density of weight W, one finds that

0D=—D £—WD§,,,

since —§&#,, is the infinitesimal part of the Jacobian.
For a contravariant and covariant vector, it follows,
respectively, that

SVi=—Ver o VoEr (4.4¢)
0Vy=—Vy,r— Vo£P e (4'4d)

The following may be verified directly: In Eqgs. (4.4a,
b, ¢, d) the partial derivatives may be replaced through-
out by covariant derivatives. From (4.4b, c, d) it is
clear what expression obtains for the variation of a
tensor of arbitrary rank and density. In Riemannian
space there is one important geometrical object which
is not a tensor, namely, the Christoffel symbol. The
variation of a Christoffel symbol, unlike the symbol
itself, is a tensor'? as the following shows for the case
of an infinitesimal coordinate transformation:

51‘10’)‘: - I',,.,,)‘,,,EP—I-P,,,”E)‘,,,—I‘,,p)‘.f”,,,
- va)‘gp,u—" E)‘.uv

(4.4b)

(4.4e)
= E)‘:MV—I—R)‘MVPEP‘

In a generally covariant theory, infinitesimal coordinate

transformations are symmetry operations for arbitrary

(coordinate dependent) choices of £; in a Lorentz-
covariant theory, however, £ must be limited to the

19 See Landau and Lifschitz (39, p. 297).

form a*+a,x*, where a? and a,® are coordinate inde-
pendent and @,, (the index being lowered with the
Lorentz metric) is skew-symmetric in pp.

Another important group of infinitesimal symmetry
operations is the infinitesimal similarity transforma-
tions of spinors, i.e., similarity transformations by a
matrix /42, where 2 is an infinitesimal ordinary ma-
trix. Under such transformations, ordinary column
spinors, row spinors, matrices, and spin-densities of
weight W’ transform as

=2y, (4.5a)
=—yz, (4.5b)
SM=[z,M], (4.5¢)
dp=W'(Tr2)é. (4.5d)

Also of interest is the behavior of the spin-Christoffel
symbol. In this instance its variation, unlike itself, is
an ordinary matrix, namely,

or,= [E:Pu:H'E.u =2\

Electromagnetic gauge transformations are included
among the similarity transformations as a special case,

in fact,?
(4.51)

(4.5¢)

84,=(—1/e TrI)(Tr2) ,=A,,.

The scalar A is defined for convenience in writing some
expressions in the sequel; it is the usual parameter for
describing electromagnetic gauge transformations. In a
generally covariant theory, infinitesimal similarity
transformations are symmetry operations for arbitrary
(coordinate dependent) choices of =; in a Lorentz-
covariant theory, however, it is necessary that co-
ordinate transformations and similarity transforma-
tions be performed together in such a way that the form
of the matrices 7* is preserved.? Thus, if

Er=ar+q, x", (4.6a)
then it necessarily follows that
Z=31ap,yPy +ieAl, (4.6b)

where A is an arbitrary scalar function. Infinitesimal co-
ordinate and similarity transformations are the only
particular examples of infinitesimal symmetry opera-
tions considered in this paper.

A common situation, which arises for all the par-
ticular examples considered here, is that the Lagrangian
is unchanged by any of the symmetry operations it
possesses, except that under coordinate transformations
it behaves like a scalar density of weight one. (This
means that the action integral /" LdQ is invariant under
all symmetry operations irrespective of the boundary
conditions on the integral.) Reference to (4.4b) shows

that this implies
4.7)

20 Careful consideration shows that the case e=0 causes no
difficulty.
21 See Jauch and Rohrlich (35, p. 52).

=L,
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V. GENERATION OF LOCAL CONSERVATION LAWS

This section describes two methods by which local
conservation laws may be discovered. The first is based
upon the considerations of Sec. IV and is therefore
called the symmetry method. This method has been
known for some time? and is described here for pur-
poses of review and of emphasizing points important
in the sequel.

The symmetry method depends upon Egs. (2.11)
and (4.2). The following two steps are taken:

(1) The variation appearing in (2.11) is selected to
be an infinitesimal symmetry operation; hence, L may
be rewritten by the use of (4.2).

(2) The quantity —M 46%4 in (2.11) is assumed to
vanish. The only situation of interest in this paper in
which this is so is when the equations of motion are
satisfied and the &4 are well behaved.

It follows that (2.11) becomes a local conservation
law of the form (3.1) with

S7=(1/¢)(A"—K), .1

where e is a constant infinitesimal quantity of the
order of é6#4. In other words, corresponding to every
infinitesimal symmetry operation (for which the 6d4
are well behaved), there is a quantity S” which is
locally conserved when the equations of motion are
satisfied. It should be noted, however, that the S” of
(5.1) is not unique. It is undetermined to within a con-
stant factor due to the lack of precise definition of ¢;
this indeterminacy corresponds to the fact that the
units in which the conserved quantity S is to be meas-
ured have not been specified. More significant, however,
is that S” is only determined up to an additive term of
the form S"¥ , since A” and K” are similarly undeter-

mined. On the other hand, changing L to a form which -

yields the same equations of motion by adding to it a
term of the form L”, has no effect on S”, since the re-
sulting change in A’ is exactly compensated by the
change in K.

The various infinitesimal symmetry operations pos-
sessed by a Lagrangian are characterized by certain
parameters epA. It is therefore convenient to express
the dependence of S” on these parameters as

S*=3 S(N)? 4™ pA sy (5.2)
N=0

where there are N indices 7--- and S(N)%47 -
=S(N)?4(m9. In practice, only the first few terms of
the sum over NV are nonvanishing. For infinitesimal co-
ordinate transformations, the ep4 are the £°; for in-
finitesimal similarity transformations, they are the
components of 2. For these two cases, (5.2) is written

Sr= (1/6)1§Z=0{S(N)”p""£".1...
+THSV) 22T,

* is a matrix.

(5.3a)
where S(N)?z™-

2 The originator of this method is unknown to the present
author. It is discussed, for example, by Pauli (46).

"The Lagrangians (2.10) are now considered. The
only infinitesimal symmetry operations they possess are
infinitesimal coordinate and similarity transformations
(of which the infinitesimal electromagnetic gauge trans-
formations are a special case). The conservation laws
which can be thereby found are now displayed. Actually,
all the nonvanishing S(N)*,":* and S(N)’s™ - corre-
sponding to the Lagrangian of general relativity, Le
(2.10d), with Ly=Lg+Lp+Lg are displayed; the
terms appropriate to the separate Lagrangians (2.10)
will then be clear. Equation (2.12) is used to determine
Av. The Lagrangians considered all behave as scalar
densities of weight one under the transformations con-
sidered ; hence, K” is determined by (4.7). The expres-
sions resulting from infinitesimal coordinate trans-
formations are

S(0)?,=Lgd,"+ (..g)%(_g)\uI‘)‘“v’p_thI'MMIp_.anA“,p
-3 -,p7v‘l/+%¢7y‘l’,p+gw¢,u¢.p
=307, (/ODvumy* )5 (5.3b)

S(1)7 7= (—¥(gThu0,"— 2g*T )"+ g"T ,  — F 4,
_Tlg_‘p{.yv’[,yp,,yv]}‘b) 3 (53(:)
S@r=(—DH =g, e ). (53)

In the case of the infinitesimal similarity transforma-
tions a curious cancellation of terms occurs such that
the only quantity of importance is Tr2; i.e., only elec-
tromagnetic gauge transformations are of any conse-
quence. The quantities of interest are

S(0)s=— (=¥ ¥I/(Trl); (5.3¢)
S(1)7z°= (—i/e)(—g)FI/(Txl). (5.36)

Although it may not appear so at first glance, in a
Lorentz-covariant theory, where the similarity trans-
formations are tied to the coordinate transformations,
these formulas still apply, as direct computation will
show.

In a Lorentz-covariant theory there are, in general,
ten conservation laws (corresponding to the ten pa-
rameters @, and @) which arise from infinitesimal
coordinate transformations, namely,

S(0)°,,=0, (5.4a)
L(S(1)7rr—S(1)"#)+(S(0) *27—S(0)*x#) ], =0, (5.4b)

which are known, respectively, as the energy-momen-
tum conservation law and the angular momentum
conservation law.”? The angular momentum consists
of two terms which are known, respectively, as the
“spin” and the “orbital” parts.?* As has been remarked,
however, the quantity .S” is only determined up to an
additive term of the form SU# ,. If a given choice for

2 There are clearly six angular momentum laws, while one is
accustomed to only three. The other three actually are related to
cgg)servatlon of the position of the center of mass; see Lanczos

% These terms are used by Papapetrou (45).
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S” is made and then the following term added to it,

Sti = (1/L(S(1)#,145(1) w1
+S)tu)Er] L, (5.40)

the new S(0)* is symmetric in the indices »p and the
“spin” part of the angular momentum vanishes; these
requirements are often made in order that the words
“energy-momentum’ and ‘“‘angular momentum” refer
to unique conservation laws.?® A Lorentz-covariant
theory may also possess the conservation laws arising
from the electromagnetic gauge. These are infinite in
number due to the complete arbitrariness of TrZ. The
one corresponding to TrZ a constant is the familiar
law of conservation of charge.

The laws (5.4a, b) are, in general, weak as is now
shown in a particular case. Consider a theory for which
S(0)°° is positive definite and where x° is the usual time
coordinate of Lorentz-covariant theories. The electro-
magnetic field is such a theory, as is the neutral scalar
meson; this may be easily verified. If (5.4a) were a
strong law, the integral of 5(0)° over a time-constant
surface could be rewritten by use of (3.4) as an integral
over the boundaries of that surface. Hence, if the field
variables vanished everywhere outside a certain region;
S(0)°° would have to vanish everywhere. It is a simple
matter to construct counter-examples to this conclusion.
Hence, (5.4a) for p=0is weak, at least for some theories.
On the other hand, the conservation of charge is a
strong law as is shown in Sec. VL.

Symmetry Method in the Converse

It is interesting to consider whether all quantities
locally conserved when the equations of motion are
satisfied can be found by the symmetry method. That
they can in a certain sense is easy to see: Given an S”
satisfying the conservation equation (3.1) when the
equations of motion are satisfied, let the 684 in (2.11)
be chosen such that M 4684 equals €S”,,. These 684 then
describe an infinitesimal symmetry operation with K*
=A*—S”, an operation which clearly leads to the con-
servation law S”,=0.26 But in general, the &4 so
selected are ill behaved when the equations of motion
are satisfied, and in general this must be the case.?’
There are, however, many special circumstances in
which the 6®4 that can always be selected to be well
behaved when the equations of motion are satisfied.
It is now proved that in a certain special circumstance,

25 Conservation laws in Lorentz-covariant theories are discussed
in great detail by Rosenfeld (48) and Belinfante (6, 7, 8).

26 This proof has been given by Noether (44). Her assumptions
specifically exclude the difficulties with which the subsequent
proof deals.

27 Consider a Lagrangian in a one-dimensional physical space
(coordinate x°): L=g(p,0)>+f(p), where the function f need not
be specified. Since (p,,)2=0 is an equation of motion, it follows
that p,,=0. Hence S°=p satisfies the local conservation law (3.1).
The symmetry operation leading to this law is =0, ¢=(¢/p,0).
When the equations of motion are satisfied, &g is singular. The
source of the difficulty is, roughly, that the conservation law being
considered equals the square root of an equation of motion instead
of a linear combination of equations of motion.

fulfilled by all the particular examples considered here
(as may be easily verified), the &4 can be so selected.

The theorem to be proved is: All conservation laws of
a theory may be found by the symmetry method using
6®4 which are well behaved when the equations of
motion are satisfied, provided that the following condi-
tion is fulfilled. There exist some linearly independent
linear combinations M 4’ of all the equations of motion
Mg such that

M4 =DA4(@4)—M " (®P) (5.5a)
(4 not summed). By D4 is meant a derivative of &4,
n4(>1) times with respect to a single coordinate label
™, The quantities M 4" and the coefficients used in
forming the linear combinations M4’ contain deriva-
tives of no % with respect to its corresponding x® to
an order #% or higher. The proof follows.

An S” is given; all that is known of it is its behavior
when the equations of motion are satisfied (namely,
that S”, then vanishes). Therefore, one is free to use
the equations of motion to replace in S” every occur-
rence of every ®4 which is differentiated at least »n4
times with respect to x4 with M 4"’ or a suitable de-
rivative thereof. This process may be continued until
no &4 is differentiated more than (#4—1) times with
respect to its corresponding x(4’; the quantities now
remaining in S” are unrestricted (at a point) by the
equations of motion. Now let S¥,, be computed for cases
in which the equations of motion are not necessarily
satisfied. Any derivative of any ®4 with respect to its
™) of the order #4 must necessarily appear linearly in
this expression. These can be rewritten as M +M 4"
or a suitable derivative thereof. By continuing the
process, S”, can be rewritten as a linear sum of the
M ' and their derivatives with coefficients which are
unrestricted by the equations of motion plus an addi-
tional term unrestricted by the equations of motion:

§7 = C(N)AT M, ... 4+C,  (5.5b)

N=0

where there are NV indices 7- - -. Since the M4’ and S”,,
all vanish when the equations of motion are satisfied,
C must be identically zero. By use of the expression for
the derivative of a product, (5.5b) may be rewritten as

LS+ > C'(N)& I M ' .. ,=C"4M 4. (5.5¢)
N=0

The C'(V)4*¢*) and C”4 are not necessarily unre-
stricted by the equations of motion. They may depend
on the equations of motion or their derivatives multi-
linearly; this means, however, that they are still
well behaved when the equations of motion are satisfied.
Thus, the choice §®4=¢C"’4 describes a symmetry
operation which leads to the conservation law repre-
sented by the vanishing of the left side of (5.5c). Since
the M4’ ... all vanish when the equations of motion
are satisfied, this is what was required.
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Commutator Method

The second method for arriving at local conserva-
tion laws is of relatively recent origin®; it is also based
on (2.11). Let the field variables appearing in that
equation be varied again with respect to a set of pa-
rameters different from those characterizing the varia-
tion & ; this new variation is symbolized by 9. The result

1S
06L= (0A”),,— M 40604 — M 4694, (5.6)

The two variations can be performed just as well in
the reverse order. That is, first, an equation like (2.11),
except that 0 replaces 6, can be obtained and then the
variation symbolized by § performed. The equation so
obtained can be subtracted from (5.6) to give

(DAY —8AY),,=0M 40D4—5M 404, 5.7

where A’ is the same function of 3®4 that A” is of 6®4.
Now, if the 6 4 and M 4 all vanish (and the é$4 and
0®4 are well behaved), then

S*=(1/€) (0A”—38A") (5.8a)
= (1/€) (3pBGp"cdg° —3pPQp’c0¢°)  (5.8b)
= (2/€) (0xP Q8 10x°), (5.8¢)

satisfies the local conservation law (3.1). The vanishing
of M 4 and OM 4 does not necessarily mean that the
equations of motion are satisfied. It means, rather, that
o®4 and 094 conform to the equations of motion, i.e.,
that the right-hand side of the equations of motion are
equal to quantities which do not depend on the pa-
rameters characterizing é and 9. Thus, to every pair of
infinitesimal changes which preserve the equations of
motion, there corresponds a conservation law. These
conservation laws are not unique just as the laws (5.1)
were not unique. This second method of obtaining con-
servation laws is called the commutator method, the
name referring to the crucial step in the derivation.

If one is making use of conservation laws by consider-
ing the values of the conserved quantities, the laws
obtained by the commutator method are superfluous,
since all laws may be obtained by the symmetry method.
The commutator method is not superfluous, however,
if one is making a mathematical use of conservation
laws, for the commutator method and the symmetry
method, in general, write the conservation laws in
different ways, one of which may be more useful than
the other. In Sec. VIII, two uses of the commutator
method are given. The results of the next paragraph are
of interest in that connection.

Let the Lorentz-covariant interacting Maxwell-Dirac
field be considered. The operation § is taken to be
arbitrary (except that it conform to the equations of
motion), while the operation 9 is taken to be an in-
finitesimal electromagnetic gauge transformation. Then
one finds [refer to (2.20a, b)]

28 The only reference known to the present author is Heller (34).

v= (1/&) (BF%5A ,— 8F»3 A, — D" -+30v"39) (5.92)
= (1/&)(—doFwA ,+ieAs[ Py ]), (5.9b)

which is, in a certain sense, the variation of (5.3, f). As
another example, consider the pure gravitational field.
Once again let 6 be arbitrary, but let 9 be an infinitesimal
coordinate transformation [refer to (2.20d)7]:

r=(1/&) (9g6®,” — G766 )
= (1/62)I:(@j“vmsp"'z@)\p’g".u_®)\up?,p+$y.)\u
—O\"EP o )0 - (— Mo EP—grege
+2g g ,)o®h,].  (5.10b)

A general variation in x? depending upon a set of
parameters, may be written

OxB=e€2 x(N)Bs(r=pd ..
N=0

(5.10a)

(5.11)

Thus, (5.8c) may be written in the form (5.2) with
S(N)? 4™ = (2/x (V)B4 @5 c1dxC. (5.12)

VI. ARBITRARY FUNCTION THEOREM
(NOETHER’S THEOREM)

Proof

An important conclusion may be drawn about the
expression for S” given by Eq. (5.2) in cases in which
the parameters p4 are completely arbitrary functions of
the coordinates. The p# that have this property are
called A4. Thus,

S*=3  S(N) 4™ A4 ...,

N=0

(6.1)

which is a special case of (5.2), satisfies the local con-
servation law (3.1) for all choices of the A4. It is now
shown that the S” of (6.1) can always be written in the
form (3.2),% i.e., that it describes a strong law. In fact,
the quantity S"# is explicitly displayed as®

S‘"“]=NZ=ZO AEOE(—I)M(N+1)/(N+M+2)]

X[S(N+M+1)”Aua~--r...
_S(N+M+1)#Avo'...-r...],UN'AA’T“. . (62)

The convention used throughout this section is that
there are V indices 7- -+ and M indices o- - -.

The verification that (6.1) and (6.2) satisfy (3.2) is
straightforward but requires some very careful book-
keeping. As a guide, the essential steps are now repro-
duced. The key to the proof lies in the realization that
(6.1) can satisfy the conservation law (3.1) for all
choices of the A4 if, and only if, the coefficient of each
derivative of each A4 in (3.1) vanishes separately. This
means that, for all ,

S(N=1)t4 I+ S(N) 47+ ,=0,

2 This was first proved by Noether (44).

% For the special case in which S (N)*47*** vanishes for all N >2,
the explicit formula for S*I has been given by Bergmann and
Schiller (14). See also Anderson (1).

(6.3)
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as may be seen by substituting (6.1) into (3.1). This
relation is used in the following proof in the special form,

[/ (V+ M+ IS O+
..I_NS(N_I_M)(TA-.o)vg'.-.+MS(N+M)(¢A.-.)VT...]
+S(NH+M41)#470 7+ ,=0. (6.4a)

The proof now begins. By substituting (6.1) and (6.2)
into (3.2), one finds that the relation to be verified is

> S(N)’A""A“i,,...=N§1 Mgo [(=D¥N/(N+M+1)]

X[S(N+M)VA""T"'—S(N+M)(TA"')W"'],a...
XA =2 2 [(=D)"(N+1)/(N+M+1)]

N=0 M=1
X[S(N+M)yAﬂ--.f-.._S(N+M)(ﬂA..-)yf-.o],a-...
XA4 ... (6.4b)

It would be convenient to rewrite this in a form in
which both double sums had the same range. Clearly,
there is no problem in extending the range of the first
double sum down to N =0, since the terms for V=0 all
vanish. In the second double sum, S(N4M)( )»7
vanishes by definition when M=0; so to extend the
range of that double sum down to M =0 means that
—> v=oS(V)?47 A4 ... would be added to the right
side of the equation. Providentially, this term already
occurs on the left side of the equation with opposite
sign, therefore, the relation to be proved may be

rewritten as

> X [(=)¥%/(N+M+1)]

N=0 M=0 .
X[=S(N+M) 477 = NS(N+M)(ry-2ro
+(NHDSN+M) a2 ] gAA 1. =0. (6.4¢)

Now, by differentiating (6.4a) with respect to o---,
multiplying it by (—1)#A4 ..., summing over M and
N, and adding the result to (6.4c), one obtains the
following, which can be easily verified:

S 3 (—D)MLS(N+HM) ey

N=0 M=0
FS(N+MA1)#40 7 ] oA 4. =0,
Application to General Relativity

(6.4d)

In a generally covariant theory, unlike a Lorentz-
covariant theory, the parameters describing infinitesi-
mal coordinate and similarity transformations are en-
tirely arbitrary functions. Hence, the above theorem is
applicable. Corresponding to the expressions (5.3), one
finds

Slvul = (1/6) (_g)%(gu:v_g;u
+ (A s {v oLy v ) Er— FHA).

One should #of overestimate the significance of this

(6.5)

precise expression. The quantity S” of (5.3) was not
unique in the first place. It could have had any term of
the form S , added to it. By judicious choice of this
undetermined quantity, one could cause S” to vanish
whenever the equations of motion are satisfied. The
important fact is that the conservation laws following
from general covariance are all strong laws.

It is interesting, however, that in the absence of
matter fields (¢, ¢, F*#, and 4, all vanish) Eq. (6.5) is
the same as one suggested by Komar (37). The method
by which (6.5) was derived tends to substantiate
Komar’s statement that his expression is closely con-
nected with the possible infinitesimal coordinate trans-
formations of the theory. The expression of Mgller
(43) is the special instance of Komar’s expression in
which £ is taken to be normal to the surface for which
one is calculating a global law ; this choice automatically
gives the expression the properties mentioned at the
end of Sec. IIL.

VII. SIGNIFICANCE OF CONSERVATION LAWS IN
GENERALLY COVARIANT THEORIES

Relation Between the Various
Conservation Laws

The last five sections have marshaled an array of
facts about local conservation laws. The present sec-
tion uses these facts to fulfill the aims outlined in the
introduction. The development begins by reviewing
certain of the points already made. First, all conserva-
tion laws may be derived by use of the symmetry
method given in Sec. V; in particular, in the special
examples considered here, the infinitesimal symmetry
operations used in that method are well behaved when
the equations of motion are satisfied. Second, the only
infinitesimal symmetry operations a generally covariant
theory must possess are infinitesimal coordinate trans-
formations and, if spinors appear in the theory, in-
finitesimal similarity transformations, both of which
are symmetry operations described by arbitrary func-
tions. Any other infinitesimal symmetry operations
would be characteristic only of particular theories.
Third, all conservation laws derived in consequence of
symmetries described by arbitrary functions are strong
laws. These three points together show that all con-
servation laws characteristic of generally covariant theories
are strong laws.

This conclusion illuminates the connection between
the various conservation laws which have been pro-
posed. They all represent different choices of the
quantity S# of Eq. (3.2). One could “rediscover”
these laws and arbitrarily many more just by choosing
suitable quantities S"#!. The difference between these
various laws is no greater than between the unsym-
metrized and symmetrized forms of the energy-mo-
mentum law in Lorentz-covariant theories. The unusual
feature of the situation is that there also is no greater
difference than this between any one of these laws and
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the trivial law consequent from the choice S*=0. As a
matter of fact, the choice S*=0 has been seriously
considered.’! (An interesting interpretation of such a
choice is as follows: The quantity —2R,,~+gu.R is
identified as the stress-energy tensor of the gravita-
tional field. According to the equations of motion, the
sum of this quantity and the well-known stress-energy
tensor of matter [see (2.12) and (8.1)] is zero; the
gravitational field carries energy as fast one way as the
matter fields carry it the other, so that the energy always
vanishes point by point.) The importance of the various
derivations used in obtaining the various proposed laws
lies in the fact that they each rewrite the equations of
motion in a different form; each form may reveal dif-
ferent mathematical consequences of the equations of
motion.

‘The whole range of possible conservation laws in
generally covariant theories is now exposed; they all
result from suitable choices of S in (3.2). The only
way to decide which of these laws is important is to
inquire what one wishes to do with the law. This sec-
tion examines possible uses of conservation laws one by
one to see which choices of SI*4, if any, are appropriate
for each use. It cannot be pretended that all possible
kinds of uses of conservation laws in generally covariant
theories are considered, since the only limit on the use-
fulness of something is placed by the ingenuity of those
who wish to use it. Only those uses which have been
widely mentioned are examined here.

First Integral

The basic use of conservation laws, for which they
were originally conceived, is to provide first integrals of
the equations of motion. If one can find, as a conse-
quence of the equations of motion, that the time de-
rivative of some function of the field variables vanishes,
then it follows that that function of the field variables
is a constant independent of the time, i.e., that it con-
stitutes a first integral of the equations. This result
represents a step toward solving the equations of
motion, i.e., toward expressing the field variables at
any time as a function of their values at an initial time.
It is now shown that such a use of a strong law can be
made only in special cases and even ‘then only in a
limited sense.

The local conservation law (3.1) does not directly
state that the time derivative of some quantity vanishes.
To obtain such an expression, one must go to the in-
tegral form (3.6), One then has an expression of the
required form if,” and onmly if, it is assumed that
— pS"do,n vanishes in consequence of the boundary
conditions imposed. These boundary conditions may be
specified either at the space-like limits of w (when it is
an entire initial surface) or at some boundary 8 isolating
the region covered by w from the rest of the universe.
Now suppose that a strong law is being considered, i.e.,

31 See Lorentz (40) and Souriau (53). \

that (3.7) applies. Then the boundary condition must
be imposed that (d/dx°) $sS1°"do,, vanishes. The “first
integral” that one obtains when this condition is im-
posed states that #3S°"ldg,, equals a constant. This
so-called first integral is nothing more than a restate-
ment of the boundary conditions; no information has
been gained about the field variables whose changes are
being investigated.

This result is not surprising if one considers a situa-
tion familiar in Lorentz-covariant theories. There one
considers the first integrals obtained from two con-
servation laws differing by a strong law (as do the un-
symmetrized and symmetrized energy laws) as essen-
tially the same, since they differ only by boundary
values.®? Thus, the first integrals obtained from strong
laws are all essentially the same as the trivial first
integral, zero equals a constant.

All uses of conservation laws that are really uses of
the first integrals obtained from them are also ruled
out by this result. First, there is, for example, the
““check-up service” cited in Sec. I: One judges whether
a set of final data is compatible with a set of initial
data by computing the values of the first integrals im-
plied by the two sets of data to see whether they are
equal. In the case in which the “first integrals” used are
obtained from strong laws, all one does when applying
this procedure is to verify that the two sets of data do
in fact fulfil the imposed boundary conditions. Second,
first integrals are also important in the ergodic hy-
pothesis. Here, once again, the “first integrals” conse-
quent from strong laws are of no value since they donot
limit the regions of phase space accessible to the chang-
ing field variables. It would seem that this fact
would have far-reaching consequences in any effort to
form a really complete theory of general relativistic
thermodynamics.®

At first glance it might seem that there must be a
“catch” somewhere in the arguments of the last few
paragraphs. They might seem to imply that the well-
known integral expressing the conservation of charge is
of no value. This integral is now examined in an effort to
explain further the result which has been obtained. For
definiteness, the theory described by the Lorentz-
covariant Lagrangian Lp—+Lx (2.10a, b) is considered.
The quantity appearing in the law of local charge con-
servation is [refer to (5.3e, f) and (6.5)]

r=dey'¥

=P,

(7.1a)
(7.1b)

When .S” is written in the form (7.1a), the first integral

corresponding to .S” looks like a result of some signifi-

cance. However, when the form (7.1b) is used, the

result is patently trivial. It seems that the manner in

which S” is written is crucial. A ready explanation of

this dilemma is that the form (7.1a) is misleading; the
3 See Landau and Lifschitz (39, p. 82).

3 The treatment by Tolman (56) is not sufficiently complete
for this matter to cause any concern.
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law has merely been written in such a form as to con-
ceal its triviality. This explanation is certainly correct,
but the matter does go somewhat deeper.

First, the Lagrangian Lp alone possesses the law of
conservation of charge in the form (7.1a) irrespective
of the behavior of the electromagnetic field variables.
This law corresponds to the infinitesimal gauge trans-
formations for which A is a constant. These trans-
formations constitute an infinitesimal symmetry prop-
erty of Lp alone even when the vector potential is
regarded as a fixed quantity. Now, since A must be a
constant, Noether’s theorem does not apply. In this

case, (7.1a) is not a strong law, and the first integral
obtained from it is not trivial. That is, a first integral
that is trivial in a given complete theory (e.g., that
described by Lg+Lp) is not necessarily trivial in a part
of that theory (e.g., that is described by Lp). To illu-
strate what it means to say that a first integral ceases
to be trivial when one shifts one’s attention from a
complete to a partial theory, let the “‘check-up service”
application be considered. Let it be supposed that the
initial and final sets of data that one is given are sets of
data only about the partial theory; i.e., let it be sup-
posed that the data consists of information only about
¥ and ¢ and not about A,. Then the conclusions one can
draw from the law of charge conservation (7.1a) are of
true significance; the first integral supplies information
that would normally be supplied by the now unknown
values of A4,. Unfortunately, this partial theory ap-
proach does not seem to have an immediate analogy in
the case of conservation laws consequent upon in-
finitesimal coordinate transformations. It seems that one
must look for conservation laws possessed by L (2.10d)
irrespective of the behavior of the metric. Such con-
servation laws would follow from a subset of the in-
finitesimal coordinate transformations which are sym-
metry properties of Ly even when the g,, are regarded
as fixed. That is, one must find an infinitesimal co-
ordinate transformation which leaves g,, unchanged, a
transformation described by a &* satisfying

£uvtE0u=0. (72)

But in general, no vector of this kind (no Killing vector)
exists.® The partial theory has no general symmetries,
no conservation laws. However, the analogy to electro-
magnetism just made may not be the only possible one.
There may be other situations when all the quantities
appearing in the equations of motion are not known.
(This often happens in experimental physics.) Then the
conservation laws may supply information which could
normally be obtained directly from the equations of
motion. This would have to be investigated in particular
cases. Thus, the first integral corresponding to the law
of charge conservation is useful for certain special kinds
of problems. How the first integrals corresponding to

% This suggests a topic which goes beyond the present in-
vestigation, namely, the problem of what symmetries Ly possesses
for certain definite solutions for the g,,.

other conservation laws can be used similarly is not
obvious and requires special study in each case.

A second point about the concept of charge is that it
is a physically measurable concept; the presence and
quantity of charge is experimentally detectable on a
local basis. In the case of a locally measurable quantity,
it is of interest that the total amount is expressible as
an integral over a bounding surface. This fact indirecily
gives some importance to the first integral, for the
boundary conditions then supply some information re-
garding measurements made within the boundary.
One is thus led to the discussion of a second possible
use of conservation laws.

Local Physical Significance

A local strong conservation law may supply useful
information if the quantity S” appearing in it has a
local physical significance (of its own, apart from its
definition in terms of the field variables). Any facts
about experimental quantities are likely to be of interest
in some way or other. This raises the question of whether
there are any quantities S’=S[# , characteristic of
generally covariant theories which have a local physical
significance (other than charge, which has already been
considered). It is enough to remark that no one has ever
thought of one; further, it seems unlikely that any one
ever will. As noted in Sec. ITI, the quantity .S* must be
a contravariant vector density of weight one if it and
its integral are to be covariant concepts, and it is
difficult to imagine how a noncovariant concept could
be experimentally measurable locally. But the quan-
tities .S* which one expects to find as a consequence of
general covariance (energy, momentum, and angular
momentum densities) are not vector densities.

An exception to the conclusions of the last paragraph
may perhaps lie in the suggestions of Pirani (47) that
the conserved quantities of physical significance might
be composed out of objects describing the field and
objects describing the observers. Some of the quantities
so formed could be contravariant vector densities of
weight one. For example, the quantity & in the ex-
pression of Komar (37) or in (6.5)% could characterize
observers in some meaningful way. There are clearly
elements of this approach in the expression of Mgller
(43) also, since the observers could be taken to define
somehow the surfaces for which the energy is to be
calculated. Further investigation will have to be made
before definite conclusions can be reached as to the
possibilities of this approach.

Schwarzschild Mass

The uses discussed so far are ones that one is likely
to consider in relation to any conservation law. The
use considered now is a rather peculiar and special one
to which a particular law, the energy-momentum law,

3 There is also a hint of a similar kind of expression in Lanczos

(38
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is often put in general relativity [the theory described
by Lg (2.10d)]; namely, it is used as a means of com-
puting the Schwarzschild mass of a system. The ex-
position of this use is given here in more detail than is
usual, so as to put the conclusions to be drawn on a
firm basis. The procedure outlined is somewhat analo-
gous to that for computing the total charge of a system
by integrating the electric field over a distant surface.

Physical space is assumed to be asymptotically
Lorentzian ; this means that one can cover all of space
with a coordinate system such that, in the limit as the
three space-like coordinates approach (plus or minus)
infinity, the metric tensor approaches its Lorentz value,
Guw. Usually the following somewhat more stringent
requirement is made:

8w = gwtorder(1/7),

=00

(7.3)

where 7=+ (gmsx™x")}, Latin indices running only over
spacelike coordinates. Attention is directed to space-
like three-surfaces which are asymptotically hyper-
planes, i.e., which become flat as r approaches infinity.
A certain quantity S is selected, and the quantity
S(w) [see Eq. (3.4)] computed from it when w is
asymptotically a hyperplane is called the energy in w.
Three other quantities S are also selected ; the S(w)
corresponding to them are the three components of
momentum in w. Collectively, these four quantities are
symbolized S,*¥1, where p=0 corresponds to the energy
and p7#0 to the momentum. The energy and momentum
are required to transform as a vector under Lorentz
transformations of the coordinates. A further require-
ment is that for the space described (for large 7) by the
Schwarzschild metric,

osm — (1= M /327 (1+- M/ 327,
Emn= mn(1+M/327rr)47

there exist a set of asymptotically parallel space-like
hyperplanes such that the energy computed for those
hyperplanes is the Schwarzschild mass M and the
momentum is zero. Thus, by applying the energy-
momentum computation to non-Schwarzschild spaces,
one has a way of generalizing the notation of Schwarz-
schild mass.

The problem of finding a suitable S, will now be
considered. The boundary surfaces 8 of the surfaces w
may be taken to be asymptotic spheres (surfaces 7
equals a constant):

mn=0;
=0 4

S,()=8,(8) = f Sjomngtde,  (1.5)
B

where w is a surface of constant x°, 9,, is normal to 8,
dQ is a differential solid angle, and 7 is approaching in-
finity. Clearly, it is the terms in S, of order 1/#?
(when averaged over angles) that are important. Now,
since S,(w) is to be nonvanishing for the Schwarzschild

metric, S, must involve at least one term which
does not vanish when the fields other than the metric
(i.e., the matter fields) vanish at infinity. Attention is
directed to this term, since a suitable S,#! can be found
if and only if this term can be suitably chosen. Since
S, must be a tensor density under Lorentz trans-
formations, this term must be a function of g, the
various derivatives of g#*, and the permutation symbol
e these being the only objects available out of which
to form tensors. Now the only quantities .S,[*#! that can
be formed out of these objects and which are at in-
finity of order 1/7? or greater for the Schwarzschild
metric are

S,ul =g, 8l (M 50

(7.6)

where a,"#1,("™ is a function of g#” and **. Actually,
there are other possibilities if one were willing to allow
S, to involve terms which are divided by Lorentz-
scalar quantities that vanish as infinity is approached.
These possibilities are rejected because the order to
which the scalar vanishes would differ for different
metrics; hence, S, would probably diverge for some
metrics and, even if it did not, would have a very ques-
tionable relation to the Schwarzschild mass. In any
event, all the well-known suggestions for energy ex-
pressions employ an S,"¥ of the form (7.6).

Because of the symmetries of the indices of a,"#1,*M
and g# and e, there are only seven distinct kinds of
terms (aside from multiplication by arbitrary powers
of the determinant g) which may comprise @,V
namely, §,00,41g", §,0g11 (45,1, 8, (g 6,4, g ,0g,pePr g™,
gpaea“‘(‘av)\),gvﬂeﬂ”‘("ap)‘), andgo_agpﬁ(eaﬂ"(lg)\)l‘—eaﬂﬂ(Kg))V).
Computation shows that only one linear combination of
these terms is nonvanishing for the Schwarzschild metric
and is unchanged by coordinate transformations of that
metric which are asymptotic to the identity and pre-
serve the conditions (7.3). For that linear combination,
one has

S, Hl= (_K)W/?'Dpy(gk)‘r = g‘“‘I‘.‘x*) _gy)\rp)\”
—5;»"(8“1'»0‘”—g”"Pxx*)'i‘g“XFM"l (7.7)

where the undetermined constant factor that could
multiply the expression has been chosen so that S,(w)
is indeed equal to M for the Schwarzschild metric. The
argument given below to show that the energy and
momentum calculated from (7.7) do indeed have the
proper behavior under coordinate transformations in-
dicates the nature of the arguments that show that
(7.7) is the only suitable expression.

The quantities (7.7) correspond to the infinite
number of mixed-index energy-momentum pseudo-
tensors given by Goldberg (32). The special case W=1
corresponds to the original expression given by Ein-
stein.? If the index p is raised, then the special case
W=2 corresponds to the expression of Landau and

" Lifschitz (39). These facts shed further light on the rela-

tion between some of the proposed energy expressions.
36 See Freud (29).
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The coordinate transformation properties of the
quantity (7.7) are now examined. It behaves as a tensor
density of weight W except for certain additional terms
arising from the Christoffel symbols, namely,

(=187 (g 2™, ox” Ja— g™ w* " n) +g" 0" ok on
_6ﬂu(gvxx7\'qxa"x)\_gx)\xv’oxa',x)\)

- gu)\xv,”xa’ ' 9)\];

(7.8)

where the derivatives of x% are with respect to #f and
conversely. These terms affect the value of the energy-
momentum only if they contribute to the integral (7.5);
therefore, interest settles on the case »=0, u=m and
on terms of order 1/7 to 1/72. Now derivatives tangent
to the surface B (i.e., with respect to the coordinates
other than x° or ™) always lower the order of the object
differentiated by one order of 7. Since the first deriva-
tives of the new coordinates with respect to the old are,
except for constant terms, of order 1/7 or less [so as to
preserve (7.3)7, the second derivatives in (7.8) which
involve at least one differentiation tangent to 8 are of
order 1/7% or less. Hence, the terms involving such
derivatives do not contribute to (7.5) as may be seen
by integrating by parts with respect to angles. For, to
order 1/72, those derivatives only multiply the Lorentz
values of g, which are constants. Hence, the only
terms which can contribute to (7.5) are the terms in-
volving %% o0, %% om, %% mm. Direct calculation shows
that such terms do not appear in (7.8) when »=0, u=m.

Hence the S, given by (7.7) may, for the applica-
tion considered here, be considered a tensor. There has
been no need to impose coordinate conditions in order to
establish this fact [except for the condition (7.3),
which is not only a coordinate condition but also a
limitation on the kinds of spaces to which (7.5) will be
applied]. In fact, coordinate conditions would be of no
help in the present problem. For the only objects avail-
able for imposing coordinate conditions are the same
objects (i.e., the components of the metric) whose
changes are to be limited by the coordinate conditions.
To limit the changes in, say, I'a’ the coordinate con-
dition that would be imposed would state that I'y\”
itself equaled some given value. Thus, to be effective
the coordinate conditions would have to fix at pre-
selected values the very objects one wished to use to
indicate the Schwarzschild mass.

Two cases will now be distinguished: the case in
which S, "y, involves no terms of order 1/7 and the
case in which it does involve such terms. In the first
case (which holds for the Schwarzschild metric), the
fact that S,I"#1 of (7.7) effectively transforms as a
tensor density means that under transformations
asymptotic to the identity, S,[*"ly, is unchanged to
order 1/7%. Hence, in this case the energy-momentum
has the properties required of it. This case includes as
a special case the situation considered by Einstein (23)¥

37 A similar discussion is made by Landau and Lifschitz (39,
p. 320).

in which all Christoffel symbols are of order 1/72. For
that situation, energy is conserved (the system does
not radiate), and one can use that fact to prove that
energy and momentum behave properly under coordi-
nate transformations. But the present case is more
general and includes, for example, the metrics con-
sidered by Trautman (57)3¢ for which the Christoffel
symbols involve terms of order 1/7 and for which energy
is not conserved.

In the case in which S,[o"ly,, is of order 1/7, it must
be required that the terms of order 1/7 vanish when
integrated over angles in order that the energy have a
finite value. Even when this requirement is fulfilled,
the situation is unsatisfactory, for coordinate trans-
formations asymptotic to the identity can affect the
terms of order 1/7% and thus change the energy value.
The fact that S, "y, dQ is effectively a vector is not
sufficient to assure a unique energy value because of
the noncovariant nature of the integral of a vector.
Thus, the expression (7.5), using an S, defined by
(7.7), may be used to define the Schwarzschild mass of
a system provided, first, that the conditions (7.3) are
fulfilled and, second, that S,[lo"y,, is of an order less
than 1/ for the hypersurfaces for which the calculation
is to be performed. To be able to perform the calcula-
tion of the Schwarzschild mass on any hypersurface,
S, itself must be of an order less than 1/7. This more
stringent requirement implies that, unless material
fields are nonvanishing at infinity, there is no radiation
(i.e., that S,(w) is conserved). This is now shown.

Direct calculation from (7.7) shows that if S, is
of an order less than 1/7, then, to order 1/7, g
=gusn- To see whether S,(w) is conserved, the time
derivative of (7.5) must be taken. This requires
Splom , to be computed to order 1/72. But to this order,
Splem , equals S, ,, for the derivative normal to 8
vanishes due to the skew-symmetry while the deriva-
tives tangent to 8 is of an order less than 1/#% In dif-
ferentiating S,["™l, terms are obtained involving prod-
ucts of two first derivatives of the metric; these are of
an order less than 1/72 due to the above condition on
guv Thus, the only terms of interest are those involving
second derivatives of the metric. Re-expressing these
derivatives with the use of the definitions of the Ricci
tensor and the scalar curvature (2.9b, c), one may write

Splem o= (—g)"*[2(R,m—36,"R)
+2g/mvgx)\g" (I‘PVJI‘K)\T—I‘pxUI‘v)\T)
+5p"‘g°‘ﬁg"xgn(I‘ax”rm\"—raﬁ"rd")] (7.9)
to order 1/7%. The terms involving products of two
Christoffel symbols are all of an order less than 1/72 due
to the condition on g, . Therefore S,[o" , vanishes to

order 1/72 if there are no matter fields at infinity, since
R,"—3%5,mR then vanishes in consequence of the equa-

- tions of motion. Radiation can occur only if there are

3 Trautman proves a result similar to the one given here, but
the present author feels that his proof lacks rigor.
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matter fields at infinity. However, when there are
matter fields at infinity, S,"" need not be of the form
(7.6), and further analysis is needed. These results also
apply if the index p is raised.

Concerning the expression of Mgller (43), even though
his expression is unchanged by transformations of the
coordinates within the initial surfaces, it does not fulfill
the requirements which are demanded here. Coordinate
transformations involving the time coordinate may be
made which do change the energy value. In fact, in his
paper Mgller shows that the energy calculated for any
hypersurface is zero if the metric is chosen (as it always
may be, even for the Schwarzschild space) such that
Zmo=0, goo=—1. The properties that Mgller demands
of his expression are incompatible with the properties
required here. The present author finds this fact inter-
esting and surprising.

A set of expressions (7.7) suitable for defining the
Schwarzschild mass, even in spaces which are not
Schwarzschildian, has been found. The question of the
physical significance of this generalized mass is a topic
for further investigation. Such an investigation (which
will ask the question, of what use is the calculated mass)
will perhaps be able to decide what is the value W
should assume in (7.7) and whether or not the index p
should be written in the raised position. In any event,
the limitations on the kinds of spaces in which the
calculation may be made must always be kept in mind.

Mathematical Uses

The uses of conservation laws considered up until
now have been uses of the numerical values of the con-
served quantities. It is now time to turn to the other
major class of uses, namely, those in which the mathe-
matical form in which the laws are expressed is the
thing of importance. It is not possible to even attempt
to catalog such uses. On the contrary, it is the author’s
belief that the possibilities inherent in such uses have
not been fully examined. In order to display some
possibilities, Sec. VIII presents three new uses of this
kind. In the interest of completeness, two well-known
uses, adequately discussed elsewhere, are now men-
tioned briefly.

One use is in the problem of motion in general rela-
tivity, i.e., the problem of inferring the motion of the
sources of the gravitational field from a knowledge of
the equations of motion of the gravitational field itself.
This problem was first satisfactorily handled by Ein-
stein, Infeld, and Hoffman (25, 26, 27).% More recent
work® has shown the intimate connection between the
way in which the equations of motion are rewritten in
the Einstein-Infeld-Hoffman treatment and the way
they are rewritten in certain conservation laws.

Another use, rather indirect, of conservation laws is
in the Hamiltonian form of the equations of motion.
This is a mathematical use since the functional depend-

# See also Scheidegger (49).
4 See Goldberg (30, 31).
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ence of the Hamiltonian on coordinates and momenta, is
important. Hamiltonian forms of general relativity are
discussed by Dirac (18) and Bergmann et al. (2, 10, 12,
13, 14). Some remarks on this subject are also made in
Sec. VIII.

Definitions

As to which law should be called the energy law, the
momentum law, or the angular momentum law, the
author prefers to let the reader decide. The only guide
one has in the assignment of a name to a quantity is
analogy with the ways the name has been used previ-
ously. The analogy in this case would seem to come from
Lorentz-covariant theory. But the discussion of this
section shows that the analogy is poorer than one might
have expected. The author finds himself unable to make
any analogy which satisfies him completely, but the
reader may feel differently. It should only be kept in
mind that if one defines the energy in one way [as, say,
being derived from one of the expressions (7.7) or as a
particularly suggestive expression used in the problem
of motion], it does not then follow that the expression
has any of the properties of energy familiar from Lorentz
theory.

VIII. THREE MATHEMATICAL USES
OF CONSERVATION LAWS

Stress-Energy of the Dirac Field

This section presents three mathematical uses of
conservation laws, i.e., uses in which the conservation
laws are employed to display in an especially simple
manner mathematical relationships between the field
variables. First, the problem of computing the stress-
energy tensor of the Dirac is considered. Here is meant
the symmetrized stress-energy tensor, the tensor which
is the source of the gravitational field. [The theory dis-
cussed here is described by (2.10d).] It is defined by

Tyy=2(Ru—3gwR). 8.1)

This expression is actually a set of equations of motion,
namely, those which follow from varying g’ [see
(2.13)]. As explained in Sec. II, because of the non-
independence of g#” and y*, T',, is somewhat difficult to
calculate directly when Ly involves spinors, as it does
when the Dirac field is present. It is now shown how the
calculation of T, for the Dirac field may be shortened
by use of a fact learned from the study of conservation
laws.

The desired result follows immediately from Eq. (6.3)
with N=1. As a guide, a few steps in the calculation
are indicated. The quantities that must be known are
S(0)?, and S(1)?,7; these have already been obtained in
(5.3b, ¢). (The case in which Ly=Lg+Lp is being
considered here.) It would be convenient to simplify
them by using the equations of motion which follow
from varying ¢ and ¢, since these are easily obtained
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directly. The result is
S(0> = (—g)%(RB,,”—%FX“FM pv_gknl")\“v,p_i_g)\vr“u'p
—F7 A, o+ 597Yo— 5017 tHedy A,

_ﬁJ{’YV’['Ym'Y)\]}K[/P)\P”)) (823')
S5 = (=g (4T~ 2T+ T oA,
+16{v" . [vey" ). (8.2b)

In the first of these expressions, vy,, has been rewritten
by use of the defining equation for I',, (2.6). If these
expressions are substituted into (6.3) with N =1, there
results (after the factor (—g)* has been divided out)

—Z(R,,”—%Ré,,")-l-(F”“F,,,,-—%B,,”F)\“F)‘“)

+%(‘p7"¢lp"‘l’lp7”¢+% v Lvey )10 =0.
This expression has been simplified with the use of the
equation of motion obtained by varying A4,. In this ex-
pression, the stress-energy tensor of the electromagnetic
field is easily identifiable as the second term; therefore,
the last term must be the contribution to the stress-
energy by the Dirac field. By employing once again the
equations of motion obtained by varying ¢ and ¢, this
may be simplified to give

T,= % (J"Yv\bln_ ‘ZI#’YV‘/"*"Z’YM‘//I v ‘/_/I zf'Yn‘/’)- (8~4>

Relation Between Gauges and Constraints

A second mathematical use of conservation laws is
now considered. The use of the “edge-on” view of Sec.
IIT raises the interesting problem of what constitutes a
sufficient set of field variables which, when measured on
an initial surface, enable one to completely predict the
future. There is an immediate answer: the Hamiltonian
variables, since Hamilton’s equations involve no higher
that first derivatives of these quantities. There are,
however, two features to be noted, namely, the phe-
nomena of initial constraints and of gauge. For con-
venience, the initial surfaces are here taken as surfaces
for which x° equals a constant.

Some of Hamilton’s equations express relations be-
tween the x4 which do not involve derivatives with
respect to x°. For example, one of Hamilton’s equations
for the electromagnetic field is Fo¢ ,=F°" ,,=0. Such a
relation among the x4 is called an initial constraint.
There are not only initial constraints which follow di-
directly from Hamilton’s equations but further ones
obtained by differentiating with respect to x° the con-
straints so obtained; constraints so derived are called
secondary. The existence of constraints shows that the
specification of all the Hamiltonian variablesonaninitial
surface is sufficient but not necessary for the prediction
of the future. However, to get rid of thisredundancy, one
usually must resort to specifying quantities which are not
field variables in the sense used here, since they are not
functions of a single point. For example, for the electro-
magnetic field, nonredundant quantities to replace Fo"

41 This result is the same as that obtained by a different method
by Brill and Wheeler (15).

(8.3)

are the “transverse” components of F°* a notion not
definable at a point.

Hamiltonian variables are not only not necessary for
the required specification but in a certain sense are not
sufficient either. The derivatives of some field variables
with respect to x° just do not occur in Hamilton’s equa-
tions; thus, there is no way to discover the future be-
havior of those variables. There is clearly nothing that
can be done to correct this circumstance; it must be
accepted that the future is to a certain extent unpre-
dictable. Specification of the Hamiltonian variables
enables the future to be predicted insofar as possible.
Thus, there are certain changes described by arbitrary
parameters which may be performed upon the field
variables in the future without violating the equations
of motion; such a change is called a gauge transforma-
tion in analogy with that famous example, the electro-
magnetic gauge. Other examples of gauges are co-
ordinate and similarity transformations in generally
covariant theories. Since all effects of physical sig-
nificance should be predictable, two field configurations
differing by a gauge transformation are assumed to be
of the same physical significance.

That there must be some relationship between the
existence of a gauge and the existence of initial con-
straints can be seen in a rough way: For every one of
the *F Hamiltonian variables which does not have a
derivative of it with respect to x° appearing in Hamil-
ton’s equations, there must be one of the *F Hamilton’s
equations involving no derivatives at all with respect
to x°.% This type of counting procedure does not, how-
ever, show how one might use one’s knowledge of the
existence of a gauge to discover initial constraints. The
following discussion shows how a conservation law
enables one to do this. More precisely, a method is given
for deriving, from the existence of a gauge, a set of
initial constraints on arbitrary variations in the Hamil-
tonian variables which conform to the equations of
motion.

The first part of the derivation of this method is
done in two ways. The first way shows that the ex-
pression obtained is a suitable rewriting of Eq. (6.3).
This way very definitely does not constitute a ‘“‘trans-
parent” derivation. Therefore, a second mode of
derivation is given, a mode which, although it obscures
the close connection of the result with (6.3), makes the
result far easier to “see.”

Let (6.3) be considered. By differentiating this equa-
tion, multiplying it by suitable factors, and then sum-
ming, one obtains

ZL(=DYWV+M) Y MINIJLS(N+M—1) g7
N=0

+S(N+M)* 4o, ] 7. =0.  (8.5a)
In this section, the convention is that there are V.

2 This argument is presented more rigorously by Bergmann
and Schiller (14).
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indices 7---; hence, there are M indices o -+ in this
last equation and the next. Equation (8.5a) may be
immediately rewritten as

L L=D"WV+M-1)l/(M—-1)IN!]

XS(N+M—1) @y =0, (8.5b)

This equation is specialized to the case in which the
indices o - - are all equal to the same value, namely o.
Then, if the derivatives with respect to x° are separately
noted, Eq. (8.5b) becomes

Y Y [(—1)HMN (L4 N—1)1/(L—M) (M —1) IN 1]
N=0 L=M
XS(NAL—1)%4" """ 4. =0. (8.5¢)

Here Latin indices (e.g., {) are summed only over
values not equal to o; there are L-M derivatives with
respect to x° on each term, and the index o occurs L
times in S(V+4L—1)°4 ¢, Note that o is a fixed
index and therefore not summed. If (8.5¢) is multiplied
by (M—1)!/(M—K—1)!K! and summed over M (for
M—1>K >0), the result is, after the summations are
rearranged into an equivalent expression,

S [(— )N (LN -1y

N=0 L=K+1 M=K+1
(L—M)\(M—K—1)INIK!]
XS(N4+L—=1)04" """ por.go.=0. (8.5d)

The sum over M vanishes unless L=K-1,% in which
case it consists of a single term. In consequence, the
sum over L also consists of just one term. So, it follows
that, for each K >0,

JEOE(—I)”(N-J-K)!/K!N!]

XS(N+K)24 " 1. =0, (8.6)

which is the expression which has been sought.

This last relation is now derived in another, less
straightforward, but far more transparent way. The
first step is to integrate (6.1) over a d-volume bounded
by two x° equals constant surfaces and a cylindrical
surface joining them. On the cylindrical surface and
one of the x° equals constant surfaces the arbitrary
parameters A4 together with a sufficient number of
their derivatives are assumed to vanish. By converting
the volume integral into a surface integral by means of
Gauss’ theorem, one obtains

> [ s@yoara4,..doy=0 (8.72)
N=0

% This may be seen as follows: Except for a factor independent
of M, (8.5d) equals

L
2 (—)MEYL—-K-1)l/(M—K—-1)!(L—M)!
M=K+
=(1—1)rx,
which vanishes if L>K-1.

on the surface on which the A4 do not vanish. Deriva-
tives with respect to the d—1 coordinates other than x°
may now be transferred from A4 to S(V)°4™ " by use
of integration by parts, since the A4 and their deriva-
tives vanish on the boundaries of the surface. The re-
sult is

Ig._: [(=1)¥(V+K)!/KIN!]
X f S(N+K)o4 " . A4 ,..do,=0, (8.7b)

where A4 is differentiated K times with respect to x°.
Since each A4 ,... may be arbitrarily chosen all over the
surface, the coefficient of each must vanish, from which
fact follows (8.6).

The significance of (8.6) is this: When S(NV)74™
is given by (5.12), then (6.1) and (6.3) refer directly to
gauge transformations of the Hamiltonian variables;
hence (8.6) is a direct consequence of the existence of a
gauge. But, when S(IV)?4™ - is given by (5.12), (8.6) is
a constraint on the x¢, since it involves no derivatives of
the 6x¢ with respect to x°. Thus, the existence of a gauge
has led directly to the existence of constraints on varia-
tions in the Hamiltonian variables which conform to
the equations of motion, namely,

22 [(=DNWV+K)!/KIN!]
N=0

X[x(N4+K)Bso 't @Qa°c10x%],e...=0. (8.8)

From these one can infer constraints on the Hamil-
tonian variables themselves. In general, each gauge
freedom has more than one initial constraint corre-
sponding to it; in fact, there is one initial constraint
for each derivative order (including the zeroth) to
which a gauge parameter appears in (5.1), though some
of these constraints may be trivial.

As illustrations of the results that may be obtained
from the relation just derived, consider the Lorentz-
covariant Maxwell-Dirac field and the pure gravita-
tional field. The easiest way to apply the relation is to
set »=0 in (5.9b) and (5.10b) and then transpose
derivatives (other than with respect to x°) as though
one were integrating by parts until no derivatives
(other than with respect to x°) appear on the param-
eters A and £7; the coefficients of these undifferentiated
parameters are the required initial constraints. For the
Maxwell-Dirac field one obtains

S[F™ tiedyp]=0, (8.9)

which is the coefficient of A. For the gravitational field,
on the other hand, there results

3[2g*®,*+g%,]1=0, (8.102)
o[ — g*Onu+ 282G’ — g™ m]=0,  (8.10b)
3LgM O, r— (8Os m— 7™ mr]=0, (8.10c)
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6[_ 2 (g)ﬂn@)\oa) ,m+ gmn'mn]_l_ (@M’msg)\u) -
+®)\u0,06g)‘n_ g)\n,06®)\p0= 0;

which are the coefficients of £, £, &7, and & re-
spectively.

It is of interest to consider whether every constraint
of the 6x¢ can be written in the form (8.8) with co-
efficients x (V4 K)B4o--*--+ which describe a gauge
transformation (as is the case for the examples just
considered). The answer is no.** Careful consideration
of just how gauges and constraints arise from the
equations of motion shows that the x(NV-++K)Bqo -t
corresponding to a constraint do describe a gauge if
they themselves satisfy the constraints. Examination of
this point does not make use of conservation laws and
therefore is not discussed here.*

It may be wondered whether the relations derived
above have any more than curiosity value. One might
feel, for example, that, while it is rather interesting
that the constraints (8.10) are intimately associated
with gauge invariances, it is not particularly useful to
express the constraints of the pure gravitational field
in the form (8.10). It is hoped that the following dis-
cussion of a third mathematical use of conservation
laws, which applies to above ideas to the Schwinger
formalism, dispels such feelings.

(8.10d)

Treatment of Gauge in the Schwinger Formalism

In order to set up the quantum theory of a physical
system, two basic items must be determined: first, the
equations of motion for the Heisenberg operators;
second, the commutation (or anticommutation) rela-
tions for these operators on an initial surface. Once this
has been done, “all” that remain are the mathematical
difficulties encountered when solving the equations of
motion in particular cases. The Schwinger formalism
(51, 52)*¢ is a prescription for arriving at these two
basic items, based upon the supposition that one already
knows the Lagrangian of the theory. An unfortunate
feature of the formalism, however, is that it does not
seem to be immediately applicable to theories possessing
gauge freedoms; when so applied, certain ad koc opera-
tions must usually be performed in order to obtain
proper results (3). The following discussion presents a
definite method for dealing with such situations, a
method which makes use of conservation laws.

Certain features of quantum theory are not related to
the basic objective of the present discussion but neces-
sarily intrude themselves and greatly complicate the
issue; there is, in particular, the factor-ordering problem.
In order to avoid such difficulties, the Schwinger for-

4“4 For example, the Lagrangian, L=2pq ,+rp+sg, in a one-
dimensional physical space (coordinate x°) has primary constraints
$»=0 and ¢=0 and secondary constraints »=0 and s=0. Clearly,
it possesses no gauges.

(1“7‘; This point is covered in a very different formalism by Dirac
46 Several of Schwinger’s remarks suggest, but do not discuss in
detail, the results obtained here.

malism is here described as a classical theory. It then
becomes a prescription for finding equations of motion
and, instead of commutators, Poisson brackets. By
this approach, the essential features of the technique
for treating gauge are brought out; there then remain
only the usual problems of converting from a classical
to a quantum theory, a subject outside the scope of
this paper.

One does, however, pay a price when one makes the
Schwinger formalism into a classical theory. By so
doing one makes it a highly artificial formalism ; certain
essential arguments made in establishing the quantum-
mechanical formalism have no classical analog. There-
fore, no attempt is made here to justify or interpret the
formalism. Rather, the two procedures, one for arriving
at equations of motion, one for arriving at commuta-
tors, which are derived in the quantum-mechanical
formalism, are taken over (in their classical analogs) as
postulates.

As shown in Sec. II, any theory derived from a
Lagrangian may be derived from a Schwinger La-

grangian [see (2.19)]:
*L=xBQs’cix°,,—H(x4). (8.11)

In order to use the Schwinger formalism, one must know
a priori the x4 and the *L appropriate to the theory at
hand. One can then write, upon varying *L in the
manner of (2.11),

M 46%4= (2xB,, Q15" c)+9H /3xC)oxC, (8.12)
A’=xB@5"c10xC. (8.13)

The expression for A” is unique, since it is required that
no derivatives of the x4 or dx4 appear in it. The first
postulate of the classical Schwinger formalism is that
the equations of motion follow from the condition
M 4684=0, as usual. This postulate is unaffected by the
presence of a gauge, and no more need be said of it.
The Poisson bracket (which is here symbolized with
angle brackets ()) is introduced into the formalism as
an undefined binary operation restricted by the require-
ments that it is skew-symmetric in its arguments, that
it vanishes whenever either argument is independent of
the x4, that it is linear and distributive if either argu-
ment is expressed as a sum of products, and that it
satisfies the Jacobi identity. These properties are so
similar to the properties of the derivative that it is
clear that the constraints (8.8) [and similarly (8.9) and
(8.10) ] hold if 6x€ is replaced by the Poisson bracket of
x¢ with any other variable; this already shows that
(8.9) and (8.10) have some practical value. An im-
portant use of the Poisson bracket operation is in
carrying out an infinitesimal canonical transformation of
the x4. Under such a transformation, the changes in

the x4 are

BXA=<XA7 G(w)>y (814)

where G(w) is a function of the x4 called the generator
of the transformation.
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The “‘edge-on” view is adopted. A canonical trans-
formation is, by its nature, a transformation on a given
initial surface; this accounts for the notation G(w). In
the present instance only local canonical transformations
are of interest, i.e., transformations for which G(w)
=/",G(*™ds,. The second postulate of the classical
Schwinger formalism is that there exists an infinitesimal
canonical transformation on any initial surface » such

that
x*' 9xB)=0 (8.152)

for all 4 and B and any two points on w (the prime on
x2 is to indicate that it is, in general, at a point dif-
ferent from 6x%) and such that

G(w)= ZfA"dO',E foB@[B"c]5xcdtro. (8.15b)

This second postulate enables one to calculate the
Poisson brackets of the x4 with one another all over w.
For, from (8.14) and (8.15), it follows that

dxA'=2 f X', xB)@p°c19xCdo.. (8.16)

Since the matrix ®(z°%; is in general singular, this di-

rectly determines only some of the (x4',xE). However, .

with the use of the equations of motion, the others may
be found. This is best illustrated by an example.

By applying the relation (8.16) to the neutral scalar
meson [see (2.20c)], one finds

a¢'=f (¢',p°00—(¢',$)0p)doo,  (8.17a)

ap°’=f (p”p°00d— (b $)p)dos,  (8.17D)

from which it follows that

@ By=(p"p)=0, (&,p)=3('—x). (8.170)

But nothing has been found about Poisson brackets in-
volving p”. However, with the use of the equations of
motion and the derivatives of (8.17c), they may be
obtained as

(" ,pm)={p",$)=0,
(P, p9)=—(8/9x")6(x'—x). (8.17d)

The skew-symmetry of the @g°c; assures the skew-
symmetry of the Poisson brackets.

The theory just considered as an example does not
possess a gauge. If one tries to carry out a procedure
similar to the one just used on a theory, such as electro-
magnetic theory, that possesses a gauge, two difficulties
appear : first, one is not able to find all Poisson brackets
(e.g., those involving 4, in electromagnetic theory),

*and, second, some of the Poisson brackets obtained are

incompatible with the equations of motion (e.g.,
(F°" ., A,y does not vanish, as it should). The reader
may verify these statements regarding the electro-
magnetic field; that field is discussed in some detail
after the statement of the modified formalism for use in
theories with a gauge (which reduces to the usual for-
malism in theories without a gauge).

A few remarks are now made to motivate this modi-
fication. In a theory without a gauge, specification of
the x4 over an initial surface completely determines the
x4 over all physical space. This is not so in a theory
with a gauge; the x4 are known all over space only “up
to a gauge.” It is therefore reasonable to postulate
that sets of x4 differing by a gauge are of the same
physical significance; the apparatus of the theory should
not be able to “know’’ the difference between x4 that
differ by a gauge. Hence in (8.14), the right and left
sides cannot be exactly equated; they are only equal
‘““up to a gauge.” Therefore the new second postulate of
the classical Schwinger formalism may be expressed as
the replacement of (8.16) by

oxA'= Zf x*',xB) @18°c10x °do, (8.18)

where = means that the expressions on the left and
right may be made equal by a suitable gauge trans-
formation of one of them.

It is now shown what this postulate means for electro-
magnetic theory. One has [see (2.20a)]

Iy f (A Y5 d— (A, Ao da,  (8.199)

pFne'= f (F Fn) Ay (' A, 355" do,. (8.19b)

. From these follow

(4. Amy=(3/3x")Am(2,2") — (3/32™) An(2'x)  (8.19C)
(Fno’ Fmo)=(), (8.19d)
(A Fmoy=5,75(x'—x)+ (8/9x ) Ay (x,2").  (8.19)

The A, and Ay are arbitrary functions. They arise
from two causes: first, the uncertainty implied by the
notation ==, second, the fact that 6F™°,=0, which
implies that if a gradient is added to a term multiplying
6Fme, the values of the integrals (8.19a, b) are unchanged
as may be seen by integrating by parts. (All fields fall

‘off “sufficiently fast” at infinity.) The fact that these

two causes lead to the same kinds of arbitrariness in
the Poisson brackets is a consequence of the relation
between gauges and constraints described previously, a
relation derived from consideration of a conservation
law: By use of the constraint equations of motion one
finds

(Fut! Frut)=0, (8.19f)
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(Fui!,Amy=— (8/0x™) (8/3x™) Ay (2 ,x)

+(8/0x™) (3/9x* ) An(x',x), (8.19g)
(Foui! ,F)=5;(9/x™ )8 (%' — )
—8,m(8/3x%)8(x'—x). (8.19h)

The Poisson brackets involving 4, cannot be found.
This is as should be expected, since 4, may be anything
“up to a gauge” on an initial surface. Hence, the
Poisson brackets involving 4, may each be equated to
an arbitrary function. There are some limitations on the
arbitrary functions due to the constraints; in fact, the
presence of these arbitrary functions assures that the
constraints may be satisfied. In particular, in (8.19),
since For ,,=0,

(8/0x™)[— b (x'—x)+ (8/0x™) A (x,2") ]=0.
One Ay™ satisfying this is
A= — (1/47) (3/dx™) (1/ |’ —=|).

Also, the time derivatives of some arbitrary functions
are related to other arbitrary functions when the equa-
tions of motion are solved. The arbitrary functions do
not appear in the expression for Poisson brackets of
gauge invariant quantities (F,i and F°) and hence do
not affect the physical predictions of the theory. In
practice, however, one usually fixes the arbitrary func-
tions, thereby ‘“‘choosing a gauge.”

The consistency which the modified formalism has
displayed in the case of the electromagnetic field is now
shown in greater generality. Two points have to be
made. First, that the arbitrariness in the (x4’,x%) due
to the meaning of = in (8.18) is the same as the arbi-
trariness due to the presence on constraints on the
0xC. Second, it must be shown that constraints on the
{(x*,xB) can be satisfied. In regard to the first point,
the symbol == implies that (x*',x?) is determined only
up to a gauge transformation of the x4'. Consistency
requires that it also be determined only up to a gauge
transformation of the x3, i.e., that the right-hand side
of (8.18) must remain unchanged when x? is gauge
transformed. The proof of this hinges on (8.8), which
was found from a consideration of conservation laws.
The difference between the values of the right-hand
side of (8.18) for two choices of x® may be written

2<XA’,ff6XB@[Boc]5xcdo'o>,

where 8x® is an infinitesimal gauge transformation and
is integrated between the two values of x5. By express-
ing 8x? with the use of (5.11), integrating by parts,
and then applying (8.8), it is verified that (8.20)
vanishes. In the examples considered here, all arbitrari-
ness in the (x*',x®) due to the constraints on the §x¢
is of the form of a gauge transformation on the XZ;
hence, the first point is established. As has been men-
tioned, however, there is, for some theories, further

(8.19i)

(8.20)

arbitrariness in the x2 due to the constraints on the
6xC¢ than follows from the existence of gauges. But it
has also been mentioned that such arbitrariness van-
ishes when the constraints are required to be satisfied.
The first point is thus proven in general.

In regard to the second point, the arbitrariness in
(x*',xB) arising from the constraints on the §x¢ is of
just such a nature to assure that there is sufficient
freedom for the constraints on x4’ to be satisfied. Be-
cause of the skew-symmetry of (x4’,xE) established by
the first point, this assures that the constraints on x®
can be satisfied also.

The procedure presented here is closely related to
procedures developed by Dirac (17, 18) and Bergmann
et al. (2,10, 12, 13, 14). In fact, it very likely produces
physical predictions equivalent to those procedures.
The relationship to those procedures has not yet been
explicated, however. The exact relationship is not im-
mediately obvious because of the great difference in
viewpoint between those procedures and the present
one. Dirac and Bergmann place arbitrary functions in
the Hamiltonian, while the present procedure does not
discuss the Hamiltonian and puts the arbitrary func-
tions in the Poisson brackets.

The application of the procedure given here to the
pure gravitational field is not as tractable from a
mathematical standpoint as was the application to the
electromagnetic field. For the electromagnetic field, the
procedure yielded a few Poisson brackets directly;
these were then used to find other Poisson brackets; the
constraint equations were then applied ; and finally, the
time development of the brackets was obtained. (This
last step has not been performed here.) For the gravi-
tational field, this step-by-step procedure is not pos-
sible; one does not obtain any Poisson brackets directly
but rather certain combinations of them involving
arbitrary functions. Because of these difficulties, the
Poisson brackets have not yet been entirely worked out
for the gravitational field. This section concludes by
making a few observations about the nature of the
gravitational field in the light of the present formalism.

An immediate result of the formalism is the (g*#",q*”)
=0 “up to a gauge” on the surface x° equals constant.
The phrase “up to a gauge” is important; it implies
that (g*#’,g*")=0, not for any two points on the surface
for which x° equals constant but rather for any two
points on the surface described by the constancy of
that function of the gauge-transformed coordinates
which equals x° in the original coordinates. The for-
malism is “trying to tell us” that the coordinates de-
scribing the initial surface are unimportant. It has led
to the conclusion that the Poisson bracket of the metric
tensor at one point on the initial surface of topological
points with the metric tensor at another point on that

surface vanishes.
When one considers another result of the formalism,

namely, that (Qas”,a#")=3%(8.405"+64"05%)8 (&' —x) “up
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to a gauge,” the mathematical difficulties become clear.
A gauge transformation of ((.s”,3*") involves Poisson
brackets of the form (@qs*',3*”), which must be found
by applying constraint equations to (Mas”,3*") and
(g*#',g#"). Thus, one must solve simultaneously a set of
equations in order to find ((.5*,3#"). It is hoped that
these calculations can be carried out in the near future.
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