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I. INTRODUCTION

REDUCED width for the emission of a single

nucleon in a transition between two specific nu-
clear states can be regarded as a product of two factors.
Of these factors, the first is a measure of the probability
that, in the initial nuclear state, all but one of the nu-
cleons will find themselves in an arrangement corre-
sponding to the final state; the second factor measures
the probability that, when this happens, the two com-
ponents will actually separate. The factorization is
formally expressed by

62= 5,2, (L.1)

It is clear that the “spectroscopic factor” 8, which
depends only on the wave functions of the nuclear
states involved, provides a useful basis for comparison
between experiment and the predictions of current
nuclear models.

There are two different sources of experimental infor-
mation on nucleon reduced widths. In resonance reac-
tions, they occur as parameters characterizing the rate
of decay of levels of the compound system into nucleon
channels (La58),! while essentially similar quantities
appear as multiplicative factors in the differential cross
sections of certain “direct” reactions in which a nucleon
is transferred, the simplest and best-known example
being the (d,p) reaction. For spectroscopic purposes, the-
second or “stripping” type of reduced width has certain
important advantages. Such widths can connect low-
lying levels which may be inaccessible to resonance
reactions but are of the greatest interest to current
nuclear models. Furthermore, a stripping width is a
rather easy quantity to measure experimentally and can
be extracted from the experimental cross section in a
very straightforward fashion, provided that a suitable
theory of the stripping process is available.

1 References to literature are listed alphabetically in the Bib-
liography at the end of the article.
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In the present study, the only empirical reduced
widths to be considered are of the stripping and pickup
variety. Apart from reduced widths from (d,p), (d,n),
(p,d), and (n,d) reactions, we give some consideration
to the possibility of obtaining nucleon reduced widths
from more complex processes, such as (d,t), (d,Hed),
(He?d), or (a,f), in which a single nucleon is trans-
ferred. On the other hand, the formal techniques
developed in our theoretical analysis of § are inde-
pendent of the origin and properties of 62, and are there-
fore equally applicable in a study of resonant reduced
widths.

Holt and Marsham (Ho53, Ho53a—d) were the first
to perform a systematic series of stripping experiments
as a means of studying the level properties of nuclei.
Since then, the work of many authors (for example,
La53, Sa54, AuS3, Fr56, Sa58) has shown that stripping
widths can yield wvaluable information about the
structure of nuclear states. In such studies, empirical
reduced widths are extracted from observed differential
cross sections with the aid of the original simple theory
of Butler (Bu51) or one of its variants (Bh52, Da52).
The major difficulty encountered is that these plane-
wave Born approximation theories produce disturbingly
small reduced widths. It is found that a Butler-Born
approximation reduced width is usually smaller by a
factor of four or five than would be expected on the
basis of some reasonable potential-well model of the
nucleon-transfer process, even in cases in which the
overlap factor § should be close to unity. In a few
instances, both resonance and stripping widths have
been measured for the same two states, the conclusion
again being that the (Born approximation) stripping
width is markedly the smaller. In other words, the
Butler theory overestimates cross sections.

The most obvious way of improving matters would
be to employ a better theory of stripping, wherein the
incoming and outgoing particles are represented more
accurately than they are by the plane waves of the
simple theory. It is, in fact, well established that such
calculations yield considerably smaller cross sections
(HoS53e, GeS3, To55). Nevertheless, these more sophis-
ticated theories do not provide a practicable basis for
the present study, wherein hundreds of stripping widths
are extracted and analyzed. Since optical-model wave
functions must be computed for the incoming and out-
going particles, the numerical solutions then being used
in calculating the differential cross section, the extrac-
tion of each reduced width would demand a sizable
machine calculation. Furthermore, the parameters
specifying the relevant optical wells must be regarded
as to some extent adjustable. We must therefore reckon
with the possibility that the resulting reduced width
would not be a sufficiently unambiguous quantity to
justify the effort expended in extracting it.

Let us, accordingly, agree to use the simple Butler
theory to obtain empirical reduced widths from
stripping and pickup reactions. We circumvent diffi-
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culties with the absolute magnitude of Born-approxi-
mation reduced widths by giving up all pretensions to
a priori knowledge of the single-particle reduced width
0¢; it is to be regarded as an empirical parameter to be
evaluated by direct comparison with experiment. The pos-
sibility of using the simple theory in this fashion depends
on the fact, as yet imperfectly understood, that its two
main sources of error seem to oppose each other sys-
tematically, at least so far as their effect on angular
distributions near the characteristic stripping peak is
concerned.? The tendency of the nuclear distortion is to
push this peak toward smaller angles, while Coulomb
effects act in the opposite direction; the net effect, as
revealed by an imposing body of experimental evidence,
is to leave the stripping peak very close to the position
predicted by the simple theory. The essential feature of
the original Butler theory is thus preserved ; the angular
distribution of scattered particles in a stripping or
pickup reaction may be used as an indicator of the
orbital angular momentum / of the transferred nucleon.

What we are trying to do is to absorb the various
shortcomings of the simple theory in a single parameter
0?. We must therefore expect our empirically deter-
mined single-particle reduced width to be a function of
the quantum numbers of the transferred nucleon, of
the Q value of the reaction, of the bombarding energy,
and perhaps of other parameters as well. Indeed, we
might hope to simulate the main Coulomb and dis-
tortion effects neglected in the simple theory by suitable
dependences of 8¢ on its parameters; in so doing, we
try to use the large amount of experimental data pres-
ently and potentially available to forge a powerful semi-
phenomenological tool for the analysis of stripping
widths.

Our analysis is subject to certain inescapable uncer-
tainties. In addition to experimental error, we must take
account of the uncertain reliability of reduced widths
extracted by means of the Butler formula. It is therefore
not possible, nor would it be of much interest, to give
a detailed error estimate in each comparison with ex-
periment. Instead, on surveying the quality of agree-
ment obtained between theory and experiment in the
entire study, we conclude that agreement to within
259, in any particular case must be considered satis-
factory. This does not prevent us from hoping, optimis-
tically, for something better in favorable circumstances.

To summarize, the three main objectives of this study
of stripping widths are:

1. to develop a formalism for the theoretical analysis
of nucleon reduced widths or, more precisely, of the
spectroscopic factor § defined in Eq. (I.1);

2. to use this formal apparatus and the reduced
widths extracted from available stripping and pickup
reactions in a detailed study of the structure of the
nuclear states involved ; and

2 This matter is discussed in more detail in a review article by
Austern (Au60).
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3. to apply the collected results of the preceding
study of empirical reduced widths to assessing and, if
possible, to increasing the power of the spectroscopic
tool furnished by the analysis of stripping widths.

We have already stated our reasons for using the
simple Born-approximation theory in extracting strip-
ping widths. The ultimate justification of this step
lies in the large amount of consistent information so
obtained about the structure of nuclei.

II. EMPIRICAL REDUCED WIDTHS

In this section we give formulas for extracting nucleon
reduced widths from the measured differential cross
sections of stripping and pickup reactions ; the empirical
reduced widths so obtained are then tabulated.

We are not concerned with the fundamental proper-
ties of the reaction process; such matters are discussed
in a number of review articles (Hu53, To56, Bu57,
Au60). Our approach is purely empirical. We use the
simple Butler-Born approximation theory, neglecting
antisymmetrization between the projectile and target
nucleons. We do not give a detailed derivation of the
Born-approximation differential cross section; for this
we refer the reader to a recent article by J. B. French
(Fr60, Appendix), which we follow closely in procedure
and in notation.

1. Born-Approximation Differential Cross Section.
Definition of Reduced Width

We consider the reactions

A[JoToM M 0]+ a(etemomio ]
=2A+DITMM s+ (a— V) [itmm,], (I1.1)

where [@] is the lighter of the two initial nuclei, and the
spins and isotopic spins are given in square brackets.
We sometimes prefer to treat neutrons and protons on
a separate footing, in which case the isotopic-spin
quantum numbers are omitted. The projection quantum
numbers are absent from the final cross section for
unpolarized beams.

Particular cases of (II.1) which are of practical
interest are

a=2 (deuteron-nucleon reactions) (d,p)(d,n)(p,d)(n,d)
(He?,d) (d,He?) (d,1)
(Hed o) (o, He?) ().
Forward arrows in (II.1) refer to true stripping, back-
ward arrows to pickup processes.

We then have the following definitions and kine-
matical relations (taking z=1):

a=3 (deuteron-triton reactions)

a=4 (alpha-particle reactions)

(do/dw)}, (do/dw)t: Center-of-mass differential cross
sections for the reaction A4(e,e—1)A+1 and its
inverse. '

E,: Kinetic energy of [a] in the rest frame of [4].
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E: Kinetic energy of [¢—1] in the rest frame of
[4+17.

Q: Q value of the reaction 4 (e, a—1)A+1. In terms of
the binding energies (e) of the four nuclei in (IL.1),

(I1.2)

Q=ess1t € 1—€s— e

M : Mass of a nucleon.

7o: Butler radius. .

ko: Relative wave numbers of the pair (4,a) in the
center-of-mass frame

k= 20EM[ A%/ (A+a)]. (IL.3)

k: Relative wave number of the pair (441, a—1) in the
center-of-mass frame

B=2a—1)EM[(A+1)¥/(Ad+a)?].  (I14)

q, x: Natural momentum variables for the reaction
(IL.1), g being the momentum-transfer vector

q=ko—[4/(4+1)Tk,

x=[(e—1)/aJko—k.
6=cos™*(ko-k/kok) : Center-of-mass scattering angle.
4S: Wave number corresponding to the binding energy

in [a] of the transferred nucleon. It is imaginary in
all cases of present interest. '

[a/(a—1)]- (S%/2M) = ea— 1. (IL.7)

it: Wave number corresponding to the binding energy
in [A+417 of the transferred nucleon. It is imaginary
for capture into bound states of [4-+17, for which

QO+ e—e€—1>0.
For both bound and unbound states, we have
LA+1)/A4]-(#/2M)= (Q+e—€1). (IL8)

To express the condition of conservation of energy
in the center-of-mass frame, we start from the usual
expression in terms of ko and £ and use (I1.5) and (I1.6)
to write

(IL.5)
(IL6)

2MQ=[a/(a—1)Je—[(4+1)/4]¢®.  (IL.9)
Substitution for Q from (I1.7) and (I1.8) then yields

Lo/ (a— D]+ =[(4+1)/4](¢*+#) (I1.10)

=[(A+1)/A4r¢](=*+y), (I1.11)

where, in the last step, we have introduced the dimen-

sionless quantities
(I1.12)

We now proceed to write down the Born-approxi-
mation differential cross section for the reaction (II.1).
Apart from kinematical and statistical factors which
are given explicitly, the final expression involves over-
lap factors connecting

[a']:[a’ -1 ] )

xX=qro, Yy=tro.

[4J=[4+1],
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respectively. Both of these overlap factors are essen-
tially reduced widths, although it is customary to use
this terminology only for the second.

To give an explicit definition of the reduced width
connecting [4] and [4+17, a convenient coupling
scheme must be introduced for the angular momenta
in the (4,e) channel. We can choose to specify either
the channel spin z or the total angular momentum j of
the transferred nucleon. The two representations are
connected by the simple unitary transformation
(I11.55).

Let us use a channel-spin representation and let

A

symbolize the antisymmetric wave function of the
relevant state of [47] (with a similar convention for
[4+17). The notation is described fully in Sec. IIL.3,
but for our present purposes it speaks for itself. The
overlap integrals which are encountered may then be
written in the form

RATIAY

(I1.13)

which is manifestly independent of .

A dimensionless single-particle reduced width 6¢ is
first defined in terms of the radial wave function R,;(7)
of the transferred nucleon, evaluated at the nuclear

surface by
002=%7’03R1(1’0)2. (1114)

This would be the correct reduced width if the nucleus
[47] could be regarded as presenting an inert potential
well to the transferred nucleon. The inert-well picture
of [A7] is almost always an inadequate approximation.
It is therefore necessary to take explicit account of the
degree of overlap of the wave functions of [4] and
[A41]. To do this we introduce the relative reduced
width or spectroscopic factor § defined by

8=(4+1) X[ 9(2)|? (IL15)

with 9(z) defined as in (II.13). The reduced width for
the transition is then

62 =865, (IL.16)

Our dimensionless quantity 62 is related to the reduced
width 2 of Lane and Thomas (La58) by

=3[ (A4 D)/ M Ard 0. (IL.17)

The analogous overlap factor connecting [¢] and
[a—1] is treated rather differently. Choosing our ter-
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minology to reflect this difference in treatment, we refer
to it as the stripping transform Pa(x). Let g denote the
position vector of the transferred nucleon relative to the
center of mass of [a—17], while { symbolizes a suitable
set of internal coordinates of [¢—17. Then the stripping
transform is

Pu)= [ exp(—ive pust ©)bultldtd's, (IL18)

where ¢a—1and ¢, are the internal (space) wave functions
of the nuclei [¢—1] and [¢].

In terms of these overlap factors, the Born-approxi-
mation differential cross section of the reaction
A(a,a—1)A+1, for a single value of /, is found to be
[(A12) of Fr60]

&o J" 3 @le=)(A+)* (27 +D)
dol 16 AA+a?  (20+1)

(a—1)Eq}
X[ ] {C[To%T;MTo, MT—MT0]}2
aE,

XLPa() LW i(2,9) 12 (6%/70),  (11.19)
where
3j1(x)  yiu(x) 9D (iy)
Wi(z,y)= . .
1(%,y) { x G o } (11.20)

For capture into unbound states of [4417, we simply
replace 7y by ¥ in (11.20). In (I1.19)

{C[TAT; Mo, M7— M1}

is a vector-coupling coefficient (Co35). The cross section
of the inverse pickup reaction is

do 1 (270+1)(2iot1) [ A%E, ]da l
dJ_ 27+1)2i+1) La+1)2(e—1)E)dw |

(IL.21)

If we wish to analyze a reduced width without the
isotopic-spin formalism, the diagram (I1.13) must be
slightly generalized, as discussed in Sec. IIL.7. The
separate question as to whether the isotopic-spin
coupling factor (C)? in (II.19) should be ignored or ex-
plicitly divided out in extracting ‘6> is discussed in
Appendix 1. :

2. Deuteron-Nucleon Reduced Widths;
Practical Procedure and Results

In evaluating the stripping transform P.(k) for
deuteron-nucleon reactions, we use the Hulthen form
of the deuteron internal wave function. We give only
the result, since the details have been described by
many authors (for example, Bu57, Au60, Fr60). From
(I1.18) the deuteron-nucleon stripping transform is
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found to be

ro [ [(45) (s

with $71=4.314 {.

Practical calculations may be greatly simplified by
the use of numerical tables, prepared by Lubitz (Lu57),
of a dimensionless function o'ras(#,y) which is related
to quantities appearing in (I1.19) by

] ,  (I1.22)

[Wi(x,9) = (2+*)Ho'ran(x,y).  (IL.23)
The effect of the term
H={1+[(441) (x>+92)/96Ar2S2]}2  (11.24)

is so slight that it may be taken into account very
accurately by giving 4 and 7, any reasonable values.
Lubitz took (4+1)/A =1 and 7o =5 {, so that

H*=14-0.008 (x2+75?). (I1.25)

The final expressions obtained by substituting from
(I1.22) and (I1.23) in (I1.19). and (II.21) are given in
(I1.29) and (I1.30). We first describe the practical
procedure for using our formulas to extract reduced
widths from experimental data. All energies are ex-
pressed in Mev, lengths in fermis, and the final dif-
ferential cross section in millibarns per steradian.

We consider the reactions

A+a=(A+1)+(a—1),

and postpone the restriction to ¢=2 unit the very last
step, since the procedure is the same for all the stripping
and pickup reactions we consider. We proceed as
follows:

(a) Either E, or E is given as the laboratory kinetic
energy of the bombarding particle. Calculate the other
by means of

(A+1)E= (A+06)Q+AE,. (I1.26)
(b) Choose values of 7 and 7,.
(c¢) Calculate y from
y=0.22r{[4/(A+1)]| 0+ ea—eaa|}}.  (I1.27)

For the various special cases of interest, e,— €,—1 takes
the following values:

Deuteron-nucleon reactions: e,— €,—1=2.23 Mev,
(d,f) reactions: €a— €,1=0.26 Mev,
(Hed,d) and (d,He®) reactions: e,— €,-1="5.49 Mev,
(,t) reactions: —€-1=19.8 Mev,
(e,He?) and (He?ja) reactions: e;— €,—1=20.6 Mev.
(d) For each center-of-mass angle 6, calculate x from
2=0.22r,4/(A+a){aEy+ (a—1)E

—2[a(a—1)EE T} cosf}?.  (I1.28)

(e) Obtain ¢’ran(x,y) from Lubitz’s tables® (Lu57).

3The tabulated values of a'rap for /=2 (unbound) are incorrect
(Ha59a); the errors in question involve multiplicative factors
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The function o'ras(#,y) contains the entire angular
dependence of the differential cross section. By appro-
priately selecting / and by varying 7o, we try to fit the
differential cross section near the first peak as well as
possible. Lubitz (Lu 57, pp. 125-126) gives a useful
graphical procedure (applicable for bound states with
15£0) which enables us to determine that value of 7o

which, for given /, places the first peak of the dxfferentlal
cross section at the correct angle.

The final step is to extract the reduced width. The
appropriate expressions are found by substituting from
(I1.22) and (I1.23) into (I1.19) and (II1.21). We obtain

dal 6i.10. (A+1)2 (2]+1|) (E)*
dol  (A+27 @IeFD) \E
X{CLToAT; Mo, Mr— M ]}?

Xa’TAB(x,y)ro302 (1129)
for (d,p) and (d,n) reactions, and
do A2 Eg\}
— | =183.6— (-——)
dw (4+2)?
X {C[To T; MTo,MT— .M'To:]}2
Xolpan (x,y) 70°0% (II.30)

for the inverse (p,d) and (,d) reactions. Contributions
from different / values simply add. In most cases there
are significant contributions from only one / value and
never from more than two. We repeat that, when 7o is
measured in fermis, (11.29) or (I1.30) gives the differ-
ential cross section in millibarns per steradian.

Since values of 7o outside the range 4 to 8 f must be
regarded as physically unreasonable, the foregoing
procedure usually leads to an unambiguous determina-
tion of /; however, for capture into weakly bound or
unbound states of (4-1), Butler curves for adjacent
! values are very similar in shape and it may be im-
possible to distinguish them experimentally. Also, for
nuclei with 4>40, difficulty is sometimes found in
separating adjacent values of /. In such cases the
! value may often be determined from other con-
siderations, either experimentally as by studying the
appropriate neutron or proton elastic scattering or with
the aid of theoretical arguments. By using the / values
so determined, we can then extract reduced widths in
the usual way.

It appears from consideration of many cases that 62
depends significantly on 7o only when there is some
difficulty in obtaining an acceptable fit to the observed
angular distribution and in a few special cases in which
capture takes place into a level of (441) very close to
the nucleon separation energy (Q-+es— €1 =0). Spe-
which do not seem to exceed 1.5. Numerous checks of entries in

other sections of the tables have failed to reveal any other dis-
crepancies.
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cifically, if 7o is allowed to vary by about 1 f on either
side of its “best” value, 6% is usually found to vary
by much less than 259, about its central value. Enge
(En59) has found reduced widths for K¥(d,p)K* de-
pending strongly on 7,. This is not in conflict with what
has just been said about 62, since Enge uses a reduced
width v which has the dimensions of an energy and
differs from our dimensionless quantity by a factor
proportional to %2/ Mrg.

Reduced widths extracted from the results of deu-
teron-nucleon experiments by the foregoing procedure
are given in Table I. Many of these experiments include
no measurements of absolute cross section; we then
give reduced widths in units of the ground-state reduced
width (column headed “Relative 62”’). When the spin
of the final state in a stripping reaction is not known,
we list (274+1)8=[J 6% Reduced widths are given to
two significant figures; we do so as a matter of arith-
metical consistency and do not claim that each entry
is significant to this degree of accuracy.

The practice of subtracting a constant isotropic
background from the observed differential cross section
to represent the “compound nucleus” contribution
seems to be without justification. No backgrounds have
been subtracted in extracting the reduced widths in
Table I. For 4>40, we have not divided out the iso-
topic-spin coupling factor (C)? in (IL.19). In such cases,
we list (C?)6? rather than 62 itself (see Appendix 1).

3. Deuteron-Triton Reduced Widths

The technique employed in Sec. I1.2 to evaluate the
stripping transform for deuteron-nucleon reactions is
the first of two alternatives. In the second, instead of
choosing explicit wave functions to describe the internal
structure of [¢] and [@¢— 1], we proceed in the following
two steps.

(1) The internal wave function of [¢] is expanded
formally in terms of the complete set of internal states
of [a—17. In the notation introduced in (II.18), this
expansion may be written

ba(§,0) =2 Arfr(p)par (), (I1.31)

where f,(p) describes the relative motion of the trans-
ferred nucleon and the mass center of [¢—1]. By sub-
stituting (I1.31) into the expression (II.18) for the
stripping transform, the integral over { can be carried
out immediately. Because of the orthonormality of the
functions ¢a—1" only the term in (II1.31) corresponding
to the ground state of [a—1] (r=0) contributes,
yielding

Pa(x)=Aof exp(—ix- ) fo(p)d%. (I1.32)

(2) Since we are interested in the behavior of [a]
as it dissociates into [¢—17] and a nucleon, it is reason-
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able to represent the dependence of the internal wave
function of [a] on the relative coordinate p approxi-
mately by its form at large separation. This asymptotic
approximation to the relative motion is correctly
achieved by setting

folp)~Ni(e=52/p), (I1.33)

where S is defined by (I1.7) and NV; is a normalization
constant. The stripping transform now becomes

Py(x)=[4w(N:40) ]/ (k®+S?) =4xN,/ (®+S5?. (11.34)

For a=3 and ¢=4, it is probably better to use the
asymptotic approximation than to represent [¢] and
[a—1] by explicit internal wave functions, such as
those of Irving (Ir51), which are designed to be reason-
able approximations for small separations of the com-
ponents but which do not have the correct asymptotic
behavior as p — <. For deuteron-nucleon reactions, the
difference between these two approaches is of no prac-
tical consequence.

Let us therefore specialize (I1.19) to the case a=3
and substitute (I1.34) for the stripping transform Pj (k).
It is again convenient to introduce the tabulated
function a’rap(x,y) ; we absorb the numerical constants
in a single factor A, where, in fact,

A=2545 N

The deuteron-triton differential cross sections are
then

w0 i)

X{CLTo:T ; Mroy M7— Mo ]}?

(I1.35)

X Holpan(x,y)re®0®  (I1.36)
for (¢,d) and (He?,d) reactions, and
)
dw 2/ (A+32\E

X{CLTAT; Mzo, Mo— My}
X Holpas(x,y)r0%0?  (I1.37)

for (d,f) and (d,He®), If 7o is given in fermis and A in
fermis™, (I1.36) or (I1.37) gives the differential cross
section in millibarns per steradian. H is given by (IL.25).

Many (d,f) reactions and a few (d,He?) and (He?d)
reactions have now been studied experimentally and
found to have angular distributions in good agreement
with the predictions of the Born-approximation theory.
In fact, there are indications that general agreement is
markedly better than for the apparently simpler deu-
teron-nucleon reactions.

The practical procedure for extracting reduced widths
from measured differential cross sections with the help
of (I1.36) and (I1.37) has already been described in
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Sec. I1.2. The quantity which is obtained directly from
experiment is not 62 itself but A6%. In order to obtain
the desired nucleon reduced width, it is necessary to
determine the normalization constant A. This we do
empirically by comparing deuteron-nucleon and deu-
teron-triton transitions between the same two states;
the deuteron-nucleon cross section gives 6%, the deuteron-
triton cross section determines A%, whence A may be
obtained directly. We hope to determine A with suf-
ficient accuracy to enable nucleon reduced widths to be
measured equivalently by deuteron-nucleon or deu-
teron-triton reactions. This would greatly increase the
power and flexibility of the analysis of stripping widths
as a spectroscopic tool; for example, information ob-
tainable from (d,n) experiments could be obtained from
the equivalent (He®d) experiments, which can be
performed with greater accuracy.

Whether this ideal situation can be realized in practice
remains to be seen. Present indications, as we see later,
are quite promising, although many more measurements
are needed, particularly of absolute cross sections. Our
empirical normalization constant A may be found to
vary with the quantum numbers of the transferred
nucleon, with Q, and perhaps also with 4, as a con-
sequence of the different effects of Coulomb and nuclear
distortions on deuteron-nucleon and deuteron-triton
cross sections. Since such distortion effects, although
different in the two cases, probably depend on the
relevant parameters in qualitatively similar fashion, A
is expected to vary to a considerably smaller extent
than 62. By the same token, we would not be surprised
to find a difference between the normalization factors
for (d,t) and (He?d).

The present method of analyzing deuteron-triton
stripping reactions has been discussed and applied to
specific examples by several authors (We56, BuS7,
Na58). The first systematic study is that of Hamburger
(Ha60a) to which we refer the reader for further details.

Table II contains deuteron-triton reduced widths
extracted with the aid of (I1.36) and (I1.37). The
quantity which emerges directly from the experimental
data is A6% If the reduced width 6* has been measured
by the corresponding deuteron-nucleon reaction, we
enter it ¢n square brackets in the appropriate column of
Table IT, and use it to determine A from A6%. When no
deuteron-nucleon reduced width is available, we some-
times enter a suitable value of A found in the manner
just described, in square brackets, in the appropriate
column of Table IT and use it to determine 62 from A2
Reduced widths for nuclei with 4 <26 are extracted
with the aid of the isotopic-spin formalism; for 4 >40,
we list (C)%? (see Appendix 1).

There are clearly far too few direct determinations of
A for us to say much about its dependence on its param-
eters. There are, however, definite indications of a
decrease in A between Li and Mg, but it is not clear
whether or not this apparent variation with 4 masks a
dependence on some other parameter. All the values of
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A quoted in Table IT are consistent with
A=190-+£40 {~ (11.38)

with the exception of the values obtained from
F(d,)F'8 and from the data on C3(d,f)C2 at 3.29 Mev.
Our reasons for regarding the F¥°(d,f)F'® determination
as unreliable are given in footnote h to Table II. The
fact that the peak cross section of the C3(d,f)C?
ground-state transition varies by a factor of 1.6 between
deuteron energies of 2.19 and 3.29 Mev suggests either
a resonance effect or an error in the measured cross
sections.

The foregoing values of A are sufficiently consistent to
suggest that it may indeed be possible to measure
nucleon reduced widths by means of reactions involving
triton and He® ions. On the other hand, it is obvious
that our knowledge of the normalization constant is
very primitive and that no firm conclusions can be
drawn without a great deal of further experimental
study. In particular, we must remember four im-
portant limitations:

(1) There is no direct information about A for I
values other than 1 and 2.

(2) The normalization constant A has not been deter- -
mined at all for 4>25. In view of the large number of
(d,f) studies (Ze60) now being undertaken in the mass
region 40< A4 <70, this is a serious shortcoming.

(3) The Li’(d,He®)He® and O%(d,f)O" results are
very puzzling. They are discussed in Sec. IV.

(4) We have already mentioned that the normaliza-
tion factor A for (d,f) reactions may differ from that
for (d,He®) and (He?,d) reactions. Thus, A; and Ages
should be evaluated separately. There is, at present,
insufficient data on (d,He®) and (He?d) reactions to
make this possible.

4. Area of Applicability, Limitations, and Possible
Refinements of the Simple Theory of Stripping

In our discussion of the empirical reduced widths, we
have bypassed a number of points which require further
comment. These concern such matters as the range of
bombarding energies to which our treatment is appli-
cable, some special situations in which the Born-ap-
proximation theory is inadequate, possible refinements
of the simple theory, and the significance of the em-
pirical constant A which normalizes the deuteron-triton
differential cross section.

(¢) Limitations on Bombarding Energies

It is well known that at very low bombarding ener-
gies, the differential cross sections of (d,p) reactions
lose their characteristic stripping form and, further-
more, vary widely in shape and absolute magnitude
with small changes in bombarding energy. Under such
circumstances, an empirical reduced width extracted
with the aid of the Born approximation would have
little meaning.
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TasLE I. Reduced widths from deuteron-nucleon stripping reactions.

Incident Final ‘
‘energy Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~ l 70 [Vl 6 [JJe 62 notes
Lis(d,p)Li"
(Jo=1%) ' (Ni54)
5027 0 3 1 4.1 1
0478 3 1 41 14
Li%(d,p)Li? (Ni54)
3 5027 0 - 1 41 1
0478 & 1 4.1 2.2
Lis(d,p)Li" (Ho53c)
8 5027 0 3 1 49 1
0478 i 1 49 15
Lis(d,p)Li? (Le55, Ha59)
14.4 5027 0 f 1 54 1 0.048
0478 i~ 1 54 1.3 0.063
14.8 4.63
7.47 5 1 4 0.83 0.040
Li"(p,d)Li¢ (ReS56) '
U=5)
17.5 —5027 0 1+ 1 55 1 0.053
2184 3+ 1 55 0.68 0.036
Li"(p,d)Li¢ (Be58, Be59)
18.6 —5.027 0 i+ 1 45 1 0.053 a
2184 3+ 1 5 0.52 0.027
3560  O* 1 5 0.54 0.028
Li’(d,p)Li® (Ho53c)
8 —0.192 0 1 49 0.011
Li? Ed, p)Lis) (Le55, Ha59)
14.4 —~0.192 0 2+ 1 42 1 0.053
0.98 1+ 1 42 0.53 0.028
14.8 2.28 3+ 1 4 0.28 0.015
Be?(p,d)Be8 (Sus8)
<12 0560 0 o+ 1 31 0.023 b
Be¥( p,d)Be; (Re56)
16.5 0560 0 o+ 1 3 o 0.024 b
Be*(d,p)Bel (Fu52)
"3 4585 0 o+ 1 45 1 0.046 0.046
13368 2t 1 45 0.17 0.041 0.008
Be(d,p)Bel® (E152)
7.7 4585 0 o+ 1 48 1
3368 2+ 1 48 0.23
Be*(d,p)Beld (Ze58)
8.2 4585 0 o+ 1 5 1 1
3368 2+ 1 5 1.1 0.22
Be(d,p)Beld (Gr56)
9 4585 0 o+ 1 5 1 1
3368  2* 1 12 1.1 0.23
596 (1) 0 4 71 24 c
616 cen cee .. “ee
628  (2) 0 45 116 23 c
737 (3 ) d
Be(d,p)Bel (Ze58)
9.2 4585 0 o+ 1 5 1 1
3368 2+ 1 5 1.5 0.29
Be(d,p)Bel0 (Ze38)
10 4585 0 o+ 1 5 1 1
3.368 2+ 1 5 1.0 0.20
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Incident
energy
(Mev)

(MQev)

Final
state

excitation J*

Relative Relative
70 [J e 62

Absolute

Absolute
[ 6

Foot-
notes

Be?(d,p)Bel?
119

Be?(d,p)Bel?
14.8

4.585

4.585

(gb54)

3.368  2F
(Rh54, Ca58)
0 o+
3368 2+
596 (1))
616 .-

6.28 (27)
1.37 3)

[Rreriy

NSO+ O

»on
2
-
-

el

| i .
Op:mom

ﬁ\O-OO:)

0.093 0.093
0.055 0.011
0.51 0.17
0.88 0.18
0.29 0.041

f=" )

Bed(d,n)B10
Vo=%")
34

4.358

(Aj52)

0 3+
0.72 1+
1.74 (U
2.15 1+
3.58 2+

[ Y SN

Lkt ol ol
Lt
SO

Ean~

BY(p,d)B°
18.9

B (%,d)Be®
14

—6.212

—4.358

(Re56)
0

14 +
2.326 ~

(Ri54)
0

1.75 i+
2.431 3~

L
L
-

45 ‘08
45 1
45 1.05

0.043
0.045

Blo (d’P)Bﬂ
(Jo=3%)
7.7

B0 (d, P)Bll
( -+

0=

9.234

(Ev54)

[T 7 XY
tntn

oo
SN
(5,8 ¢)
W 0o
ol
QAN O

BU(dn)CH
Uy=34)

B1(d,n)C1t

(o+3%)
7.55

Bu(d,p)B*
8

6.473

6.473

1.138

0
2.01 i
(Ce56)

0

2.01 i
4.24

4.75

(Ho53c)
0

0.95
1.67
2.62
2.72
3.38
3.76 2+
4.54 3-

1t

©

4.33 1

nencnon
00 00 00 00

NN
I NS

0.023

0.071 0.024
0.098
0.219

0.34 0.050

o =

O -

BU(d,n)C2
Jo=57)
8.1

13.731

(Gi54)

0 ot
4.435 2+

[y,

o
S
(=]
w
wn
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TaBLE IL.—Continued.
Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~ l 70 [J]e? 62 [JJe? 62 notes
Bl (d,n)C2 - (Ma56)
Jo=3%"
9 13.731 0 ot 1 4.3 1 1 0.26 0.26
4435 2+ 1 43 1.1 0.21 0.28 0.055
7.653 o+ j
9.63 2 4.3 1.0 0.26
C2(d,p)C1 (Be56)
2.68 2.719 0 5 1 7.1 0.022
C2(d,p)CB (Ho54a)
3.29 2.719 0 = 1 6.15 0.025
C2(d,p)Ct (Ro51, 51a, Ho53c)
8 2.719 0 - 1 4.2 1 0.056 k
3.09 + 0 42 3.1 0.18
3.68 - 1 4.2 0.1 0.006
3.85 + 2 4.2 1.7 0.098
C2(d,p)C13 (Gr56)
9 2.719 0 L~ 1 4.5 1 0.042
3.09 + 0 4.5 4.6 0.19
3.68 = 1 4.5 0.31 0.013
3.85 + 2 4.5 1.8 0.073
C2(d,p)C18 (Mc56, Ha59)
14.8 2.719 0 - 1 4 1 0.031 1
3.09 + 0 4 49 0.15
3.68 - 1 4 10.19 0.006
3.85 + 2 5.4 2.3 0.071
5.51
6.10
6.86 5+ 2 4.6 0.002 m
7.47
7.53
7.64 3t 2 4.6 0.005 m
C2(d,n)N1 (Be56)
2.68 —0.286 0 3 1 4.7 0.024
C2(d,n)NB (BeS56)
3.26 —0.286 0 i 1 4.7 0.021
C2(d,n)N® (Mi53, Cas7)
9 —0.286 0 ‘N 1 4.5 1 0.047
2.37 i+ 0 4.5 Cc
3.51 3~ n
3.56 2+
CB(p,d)C12 (Be58)
T=1)
17 —2.719 0 (0 1 4.2 1
4435 2+ 1 5 0.95
CB(d,p)C (Be53)
=1-
380 5047 0 0+ 1 48 1
6.09 1~ 0 48 44
CB(d,p)CH (Mc56)
14.8 5.947 0 1 5.4 1 0.063 0.063
6.09 1~ 0 4.5 3.2 0.59 0.20
6.59 o%) 1 5 0.007 0.006 o
6.72 3~ 2 5.4 0.47 0.07
6.89 0~ 0 4.5 p
7.01 (24)
7.35 2- 2 5.4 0.30 0.06
8.32 2+ 1 5 0.007 0.0015
N (p,d)N (St56, BeS8)
18.5 —8.324 0 i 1 54 1 0.046 q
2.365 i+ 0 5 0.03 0.002
3.51 3= 1 5 0.54 0.026
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Incident
energy
(Mev)

Q
Mev)

Final
state
excitation

Jr

Relative  Relative Absolute
e 6 [Vl

Absolute
02

Foot-
notes

NU(5,d)C8
14

NU(d,p)N1s
v o7= 1*)

NM (d’P)NIB
9

N¥(d,p)N1s
14.8

-5.319

3.335

3.335

(CaS7a)
0

3.68
(Shs5)

5.28
5.305
6.33
7.165
7.314
7.575

8.316
8.571

(Gr56)
5.28
5.305
6.33
7.165
7.314
7.575
8.316
8.571
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BNONO
omGba !

(1) see w 0.098

0.55 (0.14) 0.027

8.3 0.41

9.7 0.48
0.39 0.019
0.82 0.043

0.05
(0.16)

0.008
0.008

0.049

0.007

- e e

N (dn)01
(Jo=1%)
77

5.073

(o1

ol

ol

S =N
Lt
B RN A L ]

77
.32 0.08

C14 (d,P)ClB
(Jo=0%
149

—1.007

(Mo59)

0
0.745

34

N O
o
[A

1 0.19

0.093
0.045

C4(d,n)N%
(Jo=0%)
3.53

7.987

(Ri57)

5.28
5.31
6.33

I

+

9[00 0 3foneaf=
+

0.32

0.017

0.006

N5 (p,d)NM
U=%)
18.6

—8.615

(Be38)

0
2.312
3.945

1+
0+
1+

—
e
PSS

SO
=\
00 &

0.045
0.029
0.008

N15(d,p)N16
14.8

0.267

(Was7)
0

0.119
0.295
0.393

o-
3-
1-

OO
s
N N

0.054-
0.19
0.047
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Incident
energy
(Mev)

(M%v)-

Final
state
excitation

7o

Relative

[/

Relative

62

Absolute

Absolute
[JJe? 62

Foot-
notes

0'%(d,p)OV
2.1

0%(d,p )0i1
3.43

015(d, p)OM
3.49

0%(d,p) OV
4.11

016(d, )0V
8

Q1 (d, 5)017

01(d,p)Or
19

1.048

1.919

1919

1919

1919

1.919

1919

(Gr56a)
0.871

(St55)
0
0.871

(BasT7)
0
0.871

(Bas7)
0
0.871

5+

i+

(Bu51a, Ho53e)
0 5+

0.871

(Gr56)
0
0.871
3.055
3.846
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(Fr53)
0
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8
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0
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o
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o

0Y(d, )0
7.8
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(BiS7)
0
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3.55

NNON
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i = O

—OOm

F1(p,d)F18
18.5

—8.187

(Re56, Be58)
0 1+

0.94

1.042
1.087
1.129
1.699
2.105
2.525
3.063
3.131
3.352
3.727
3.790
3.841
4.116
4.227
4.358
4.400

3+
©07)
o+
5+
1+
24
3h
2+

S O NO

VY]

A & o

5.2
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(1.4)
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(Ri57a)
0
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0.017
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TABLE 1.—Continued.

Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~* 1 70 [JJe? 02 [J1e? 02 notes
FB(d,p)F20 (E156)
(Jo=%")
89 2.048 2 5.01 2.8 0.061
2.195 2 5.01 0.95 0.021
2.870 3 5.01 2.0 0.043
2.966 1 5.01 0.21 0.005
3.491 0 5.01 2.5 0.054
3.528 0 5.01 2.5 0.054
3.586 .
3.681 e cee cee .
3.961
4.079 0 5.01 0.70 0.015
4.275
4.310 0 5.01 1.2 0.026
5.04 1 5.01 0.24 0.005
5.19 1 5.01 0.33 0.007
5.27 1 5.01 0.57 0.013
5.72
5.87 1 5.01 1.4 0.030
5.95 1 5.01 2.8 0.060
6.25 cee cee v i’
6.63 1 5.01 1.6 0.034
6.81 1 5.01 34 0.074
6.98
7.20 1 5.01 24 0.053
F¥(d,n)Ne® (Ca55a)
(Jo+3%) ; )
9.06 10.645 0 ot 0 S 1 0.013 0.013
1.632 2 2 5 1.1 0.069 0.014
4.248 (4%)
4.969 (1) .. ces
5.631
6.745 ces ..
7.19 0 5
7.23 0 5 i
7.46 2
7.86
9.3 1- 1 5
Ne2(d,p)Ne2t (BuS56, Mi52)
(Jo=0%)
8.5 4.53 0 3+
0.34 5+) 2 6 6 1
1.735
2.79 3 0 5.5 6.4 3.2
3.73
4.58 2 5 2.7
4.81 1 5 8.6
5.43 2 5 3.2
5.63 2 5 29
5.78 1 5 3.2
5.8 vee cen een -
6.10 ..
6.72 2 5 3.1 i’
Ne’(* (d,p)llle” (Bu56)
0=
2.965 0 31 2 5.1 6 1
0.98 i+ 0 53 8 4
Na?(p,d)Na2 (Bes8) *
o=3*
18.0 —10.192 0 3+ 2 5.3 1 0.021
0.59 2 5.3 1 0.021
Na2(d,p)Na2 (Sh54)
Jo=43%
4.731 0 4+ 2 5.65 1
0.472} 1+ 2 5.65 3.9 k’
0.56 2+ 0 5.65 0.35 k’
1.341 1+ 0 5.65 2.5
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TABLE L.—Continued.

Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
2

(Mev) (Mev) excitation J~ l [JJe2 62 [JJe? o notes
Na?(d,p)Na (Da60)
8.9 0

0.472 1+
0.56 2+
1.341 1+
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0(2)
0 0.038

nn
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Incident Final
ener, - Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~ l 70 [JJe? 62 12 62 notes
Mg(d,p) Mg?s (Hi58)
8.9 2.56 3t 0 5.2 1.0 0.019 0.0096
2.74 I+
2.80 g+ 2 5.2 1.3 0.048 0.012
3.40 3 1 5.2 2.0 0.076 0.019
3.90 2 5.2 0.040
3.97} ) 3 5.2 1.1 0.080 0.010
4.05 ..
427 1 5.2 0.022
4.42 e cen e
4.72 3 5.2 0.019
4.86
4.96 e e
5.15
5.27 it 0 0.29 0.0056 0.0028
5.49 3 0 5.2 5.0 0.0945 0.047
5.79 p’
6.09 ... e
6.25 AN e
6.54 .. .. ..
6.80 1 5.2 0.014
6.85 >1)
6.95 e .. e
7.18 2 5.2 0.025
7.23 %) 3 5.2 0.079
7.40 1 5.2 0.048
;.58 1) 5.2 (0.042)
8.05 (2) 5.2 (0.032)
Mg (d,p)Mg* (Ha60)
14.8 5.107 0 §+ 2 5 1 0.0085 q
1.61 +
1.96 $+ 2 4.3 0.37 0.0031
Mg (d,n) Al (Go53)
4 0.06 0 p+ 2 5.3 1 0.0028 c
0.45 3t 0 5.3 2.5 0.0073 [
0.95 + 2 5.3 1.1 0.0030 c
1.61 + cee .o .o “en
1.81 &+ p’
2.51 + (0) r’
2.69 + (2) 5.3 r
272 + cee “oe
3.08 - ¢))] 5.3 r
Mg? (p,d)Mg* (Be58)
(=%
17 —5.107 0 o+ 2 5.2 1 0.0079
1.368 2+ 2 5.2 2.7 0.022
4.122 4+
4.24 2+ 2 5.2 1.2 0.012 s’
Mg?(d,p)Mg26 (Ho53d)
(Jo=%*
8.893 0 ot (2) 5.3 0.04) (0.04) t’
1.83 2+ 042 5.3 0.019 0.21 0.0038 0.041
2.97 2+ 0 5.3 0.17 0.034
3.97 0 5.3 0.17
4.35 2+ 0 5.3 0.19 0.037
4.86
4.92
527t 1>0 u’
5.32
5.50
6.15 0 5.3 0.12) v’
Mg?(d,p)Mg? (Ho53d)
(Jo=0%)
4214 0 3t 0 5.3 0.02 0.01 w’
0.987 2 5.3 0.02 )
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Incident Final .
energy ] state Relative  Relative Absolute Absolute Foot-
Mev) (Mev) excitation J* l 70 [J]e? 62 [/ e 62 notes

Mg?(d,p)Mg? (Hi58)
¢ 8.9 4214 0 b 0 5.3 2 0.045 0.022 x
0.987 2 5.8 2.1 0.048
(1.66) ? ? p’
3.50 b 0 5.3 1.8 0.040 0.020
3.56 (=) 1 5.3 6.5 0.14
3.76 2 5.3 4.0 0.09
4.75 1) P p’
Al’z(d,p)fslzs (Ho53a)
0=32
8 5498 0 3* 0 6.15 1 0.021 y’
8(9)\;1 2+ 0 6.15 0.72 0.015
1.02 3+ 2(0) 6.15 0.96(0.13) 0.020(0.0027) y’
AlP(d,p)Al28 (En56)
(Jo=3%%)
6 5498 0 3+ 0 6.6 7 1 0.15 0.021 2, a"
0.0gl 2+ 0 6.6 3.61 0.72 0.08 0.015
1.02 3+ 2(0) 5.4 6.27 0.90 0.13 0.019
(6.6)
1.37 cee cee
2.14 0 6.6 2.28 0.05
2.21 2 54 2.08 0.04
2.28 2(0) 5.4 5.37 0.11
2.49 0 6.6 0.42 0.01
2.59
2.66 2 54 5.13 0.11
2.99
3.01 oo
3.10
3.29 0 6.6 0.22 0.005
3.345 0 6.6 0.18 0.004
3.461 1 5.4 4.01 0.08
3.535
3.59 1 5.4 5.96 0.13
3.67 0 6.6 0.11 0.002
3.70 0 6.6 0.38 0.008
3.88 1 5.4 1.42 0.03
3.90
3.93 e s ce
4.03 2 54 4.28 0.09
4.12
424 0 6.6 0.21 0.004
4.32 2 5.4 1.59 0.03
438
4.46
452
4.69 1 5.4 7.28 0.15
474
471 1 5.4 5.72 0.12
4.85
4.90 1 5.4 3.80 0.08
4.93
5.00
5.03
5.14 1 54 3.84 0.08
Ai*(d,n)Si%® (Ru57)
Jo=%")
6 9363 O o+ 2 5.1 1 1
1.78 2+ 0 5.1 0.37 0.07
4.61 b”
5.0 b”
6.2 0 5.1 0.35
6.9 1 5.1 0.30
7.3 bll
7.9 0 5.1 0.36
56 ©
9.3 0 5.1 1.25 d”
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TABLE 1.—Continued.
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Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
Mev) (Mev) excitation J~* l 2 [ e 62 [ 62 notes
Ai?7(d,n)Si28 (Ca55)
o=%")
9.363 0 o+ 2 5.36 1 1 0.039 e’
1.78 2+ 0 5.36 0.15 0.03 0.001
4.61 b”
5.0 b"”
6.2
6.9 0 b"
7.2 0 5.36 0.73 0.028
8.
8.6} 0 5.36
9.3 0 5.36 79 0.31
Si28(d,n) P2 (CaS7)
(Jo=0%)
9 0.499 0 3+ 0 5.4 1 0.034 0.017
1.30 (3 2 5.4 0.55 0.037 0.009
1.92 (€] 2 5.4 0.26 0.027 0.005
Si?8(d, p)Si% (Ho53)
8 6.249 0 3t 0 5.4 1 0.044 0.022
1.28 + 2 5.4 0.86 0.076 0.019
2.03 + 2 5.4 0.21 0.027 0.005
2‘43 3+ coe ces cee cee cee
3.07 2 5.4 0.012
3.62 &) 3 54 (0.60) 0.102 (0.013) "
4.84 ..
490} ) 1 54 (1.31) 0.117 (0.029) 7 g
4.93 : ’ : - '8
6.38 C) 1 5.4 (1.04) 0.047 (0.023) i
Ps1(p,d)P® (Be58) '
°=
18.6 —10.108 0 1+ 0 5.6 0.013
0.685 ot 0 5.6 0.012 h”
0.707 (1)t
P3i(d,p)px (Da57)
(Jo=1%%)
8.9 5.695 0 1+ -2 5.53 3 1 i’
0.077 2+ 2 5.53 4.25 0.85 i
0.515 0 5.53 0.7
1.15 0 5.53 1.2
1.32 et cee cen
1.75 ces ..
253 0 553 0.6 b”
2.65 e ... ves
2.74 cos aee eee
3.00 . e e
3‘32} 1 555 8
3.45 b’
4.03 1 5.53 7
421 0 553 08
4.43 1 5.53 1
4.90 1 5.53 5
5.11 b”’
5.37 1 5.53 7
5.53 1 5.32 2
5.82 1 5.53 8
- 6.09 1 5.53 3
6.34 1 5.53 1
6.56 1 (or2) 5.53
p3 (d,j))P"f~ (Pas8)
0=
5.695 0 1+ 2 2 3 1
+(0) (7.5) (0.195) (0.065)
0.077 2+ 2 5.7 4.25 0.85
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TABLE I.—Continued.

Incident Final
energy ] state Relative  Relative AlEscal;te Absolute Foot-
J g2 2

(Mev) (Mev) excitation J~ l 70 [JJe? 62 o notes
p3 (d,n)S”+ (Cas5)

To=
' 6616 0 o+ 0 553 1 1 0.006 0.006
224 2 553 27 0.54 0.016 0.0003

3.81
4.30 0

4.47
4.70

5.76 2 5.53 5.58 0.033

S%(d, p)S® (HoS3)
(Jo=0%)
6421 0

&) 3 56 156 1.9 i
322 3 1 56 105 2.6

4.87
4.92 1 5.6 0.82
5.71 ) 1 5.6 7.3 3.6

6.51 K
6.53

(Mi53)
0

0.806
2.86
4.12

K% ((d, p)K20 (En59)

By
: 557 0 &

0028 3~
0795 2~
0885  5-
1.634
1,954
2082 @3
2064 (2
209 (1

2.256

2.286

2393

2415

2565 .-

2622 (00)

2743

2781 .-

2.802 1

2.048 e ces

2.983

3.021

3.104 0

3125 coe coe

3.144 1)

3.225 1

3.367 1

3.385 )

+

S%2(d,n)CI%
8 0.06

atled

3.0
(5.5) m'"’

T+ +
- oM
2R
o o

oo rojeors)

0.086 0.0096
0.073 0.010
0.055 0.011
0.10 0.0091
0.0007

0.086 0.012
0.078 0.016
0.053 0.018

0.0016
0.0010*
0.0026
1.8 0.018 0.018
0.0067
0.0018

O
O N =

—
o

—_ W Ww
oo uwo: oSuuw

~V .
[ SN NN
=z .
N L I T Y =
a Neg (=] ghmﬂ
ol
O Ww .

Dt
DR R R RO OO0

SO OWL W LlLnn . i

Lelem:
. -
)

0.11 0.0010
(0.16) (0.0015)
2.3 0.022
0.66 0.0063
(0.26) (0.0025)

g i
cooco o
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TABLE 1.—Continued.

Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~* l 70 [J]e? 62 [J]e? 62 notes
K3(d,p) K0 (En59)
(Jo=%%)
6 3.412 0 5.0 0.07 0.0007
3.479 1 4.0 0.51 0.0049
3.599 1 40 0.15 0.0014
3.629 1 4.0 3.1 0.030
3.657 ..
3.715
3.738
3.766 1 3.8 0.28 0.0027
3.790 0 5.0 0.13 0.0013
3.820 1 3.8 0.17 0.0016
3'838 cee cen “o cen
3.869 1 3.8 1.8 0.017
3.883
3.898
3.920 cee “en e cee
4.017 1 3.8 1.0 0.0097
4.102 1 3.8 1.7 0.016
4.253 1 3.8 3.5 0.033
4.396 1 3.8 1.8 0.017
4.462 1 3.8 1.8 0.017
4.539 1 3.8 1.8 0.017
4.582 1) 3.8 (0.66) (0.0063)
4.658 1 3.8 0.99 0.0094
4.788 1 3.8 0.76 0.0073
4.801 1 3.8 1.3 0.012
4.902 1 3.8 0.93 0.0089
K(d,p)K® (Das9) .
8.9 5.57 0 3 5.8 9 1 n”, o”
0.028 3= 3 5.8 7 1 o’
0.795 2- 3 5.8 5.5 11
0.885 5= 3 5.8 12.5 1.1
1.634 ..
2.042 (3 .
2064 (27) 1 5.0 23.7 p”
2.099 (17)
2.622 ) 1 5.8 2.7 2.7
2.743 1 5.8 0.66
3.225 1 4.5 3.2
3.367 1
3.335} 1 58 096 p
4.017 1 3.8 1.5
4.102 1 4.6 1.8
4.353 1 4.3 3.7
4.788 "
4.801} 1 49 22 p
4.902 1 44 1.7
5.14 cee e e
5.34
Ar(d,p)Artt (BuS6, HiS7, Gi52)
(Jo=0%)
8.5 3.88 0 o 3 5.87 8 0.08 0.01
0.57 1 5.87 1.7 0.016
1.1 2 587  0.56 0.005 q’
1.39 1 5.6 8.3 0.08
1.9 i+ 0 5.87 0.85 0.008 0.004 q”
2.46 1 5.6 1.9 0.018
2.79 1 5.6 1.7 0.016
3.01 1 5.6 1.8 0.018
3.36 1 5.6 3.3 0.032
3.98 1 5.87 3.2 0.030
Ca®(d,p)Cat (Ho53)
(Jo=0%)
8 6.139 0 = 3 5.87 8 1 0.114 0.014
1.947 i 1 5.87 5.6 1.4 0.079 -~ 0.020
2.469 1 5.87 2.2 0.032
3.95 1 5.87 1.0 0.015 r’’
4.76 2 5.87 3.5 0.050
5.72 2 5.87 3.1 0.045
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TABLE 1.—Continued.

B. FRENCH

Incident
energy
(Mev)

Q
(Mev)

Final
state
excitation

Relative
Vi

Relative

62

Absolute
Je?

Absolute Foot-
62 notes

Ca® (d7,1> )Catt

6.139

(Bo57a)
0

1.947
2.014
2.469
2.584
2.612
2.677
2.890
2.967
3.056
3.206
3.375
3.405
3.500
3.531
3.619
3.682
3.736
3.837
3.854
3.921
3.950
3.982
4.023
4.101
4.194

%+

%+

RIS CRERY

oo o0o

o

s
« XWN
[

0.07
0.12
0.08
0.36
0.22

2.2

0.034

0.042

0.114
0.080
0.005
0.027

0.001
0.002
0.0012
0.005
0.003

0.032

" 0.014 s

0.020
0.0005

0.0006

Ca®(d,p)Cat
! (]07= 0+)

(BoS7)

5708 0
0.373
0.503
0.991
1.304

A~
N
|

e rsfentd)

%+

~—

e e R R

o heh ke e e
. « . .

7.78

0.13

0.44

0.11

0.13

0.082

0.005
0.004

0.0026
0.080
0.001

0.008

0.005
0.003

0.005

0.010 t”
0.001

0.0013
0.080

Cat(d,p )gaﬁ

=

0.004
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Incident
energy
(Mev)

(M%v)

Final
state
excitation

J‘l

7o

Relative
[JJe? 62

Relative

Absolute
[V

Foot-

Absolute
62 notes

0=

Ca#(d,p)Catt
( )

5.188

(CoS7)
1.432
1.475
1.557
1.902
1.971
2.249
2.356
2.394
2.597
2.681
2.763
2.844
2.950
2.970
3.032
3.148
3.244
3.296
3.319
3.419

o

2.05

9.7

1.7

0.42 0.21

1.6

077

2.8

0.011

0.054
0.009
0.0025

0.009

0.004

0017

0.001

Tt (d,p)Tit"
(Jo=0%)

78

6.33

(Ri60)

el
. .

oo s

o
oo

Tit(d, p)Tié®
( *)

0=

5.92

3.26

%-—
&)

. e k)

- Y-Y-)

-

'y
ek
. nn

Vi (d,p)V®

0= )
8.7

5.075

(E158)

0
0.14
0.43
0.78
0.834
1.402
1.475
1.545
1.753
1.785
1.841
2.088
2.131
2.150
2.307

23"

6.25
6.25
6.25
6.25
6.25

6.25
6.25

6.25

6.25

" "

u”’, v

Vei(d,p)ve
8.9

5.075

(Da50a)
0

0.14
0.43
0.78
0.834
1.402
1.475
1.545
1.753
1.785

- e b e e e

S

;o s,
. W

0.32

0.015
0.18
0.023
0.12
0.048

u-w
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TABLE I.—Continued.
Incident Final
energy Q state Relative  Relative Absolute Absolute Foot-
(Mev) (Mev) excitation J~ l 70 [J1e? 02 [Je? 6 notes
Voi(d,p)V® (Da50a)
8.9 1.841 1 6.2 0.27 0.012
2.088
2.131 (¢))] 4.5 1.7 0.076 x"
2.150
2.307 1) 4.9 0.62 0.028
2.415
2.458 e
2.525 e .
2.76 1) 5.1 0.27 0.012
Cr%(d,p)Cr® (E158b)
(Jo=0%)
10 5.704 0 = 1 6.25 4 1 vy
0.57 1 6.25 21
0.97 (37) 3 5.6 4.0 0.66 2"
2.31 1 5.6 2.6
Cr3(d,p)Cr® (E158b)
Jo=%)
10 7.482 0 ot 1 6.25 1 1 y”
0.86 2+ 1 6.25 2.2 0.44
1.31 1 6.25 0.88
2.67 1 6.25 3.6
3.19 1 6.25 3.6
3.79 1 6.25 3.4
Co“(g (d,ﬁ)ICoBo (El158a)
0=172
5.227 0 5+ 1 5 17.5 a'’
0.058 2+
0.282 1 5 3.8
0.432
0.501 1 5 4.0
0.541
0.612
0.738 1 5 11.2
0.782
1.006 1 5 9.7
Zn®(d,p)Znss (Sh59)
(Jo=0")
10 5.650 0 & 3 6.6 6 1 b’
0.052 & 1 6.6 2.4 0.59 et
0.82 G) 1 6.6 1.1 0.53 g
0.82 9+/2) 4 6.6 11 1.1 b"’-d"""
1.28 €3 2 6.6 3.6 0.60 c”
1.85 3 0 6.6 0.80 0.40 c”
2.40
Zn®(d,p)Zn® (Sh59)
(Jo=0%)
10 4.689 0 & b’
0.092 2 3 6.6 6 1 b’
0.182 5 +1 6.6 2.3 0.57 "
0.38 3 1 66 1.7 0.85 g
0.38 9%/2) 4 6.6 16 1.6 b’"'-d"”"
0.88 3* 2 6.6 5.3 0.89 "
Zn®%(d,p)Zn®8 (Sh59)
Jo=3"
10 7.985 0 ot 3 6.7 1 1
1.11 2+ 1 6.7 0.40 0.08
1.88 cee cee cee
3.49
Zn®(d,p)Zn® (Sh39)
(Jo=0%)
10 4.266 0 5 1 6.7 2 1
0.44 9*/2 4 6.7 18 1.8
0.82 C) 2 6.7 5.9 c”
Zn®8(d,p)Zn® (Eb54)
11.9 4.266 0 5 1 6.7 2 1
0.44 9*/2 4 7.1 11 1.1
0.82 £%) 2 7.1 5.6 ¢
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Notes to Table I. *

s Absolute values of the reduced widths were estimated from the
ground-state data of Re56.

b The ridiculously low 7o needed to fit the angular distribution is probably
connected with “internal” or ‘‘volume” effects.

°Levels at this excitation lie close to the nucleon separation energy
(0 +-2.23 =0), where the behavior of the Butler formula is sometimes erratic.

d Both! =1 and ! =2 give a reasonably good fit, with ! =2 slightly favored,
particularly in the case of Ca58. Both relevant experiments were originally
fitted with I =1. See Sec. IV for further discussion of ths point, which was
brought to our attention by E. W. Hamburger (private communication).

e Although the curve shows a peak in the characteristic ! =1 location,
the direct /=1 transition is forbidden by conservation of angular mo-
mentum. The background is very high, however, and there is a marked
backward maximum. The mechanism of this transition has been analyzed
in terms of the so-called ‘‘exchange’” and ‘‘spin-flip’’ stripping. (See Au60
for discussion and references.)

f These levels are not resolved in Ev54. An upper limit of 15% is set in
Co57 to the contribution from the 6.81-Mev level, enabling us to give a
rough reduced width for the 6.76-Mev level.

& Reduced widths relative to ground-state reduced width, as usual.

b Neutrons to eight other levels below 9 Mev were observed, two strong
unresolved ! =1 groups being found. No quantitative reduced-width data
could be obtained.

. 1No measurements for 8 c.m. <35° so that no reliable reduced width
could be extracted.

i The neutron group corresponding to this transition was too weak to be
analyzed.

kOnly the ground-state cross section was remeasured in Ho53c. Since
no measurements were reported for 8 c.m. <20°, the Butler curves, particu-
larly for this I =1 transition, had to be fitted at undesirably high angles,
and the reduced widths are, accordingly, subject to large errors.

I McGruer et al. (Mc56) quote an error of +50% in the absolute cross
sections. Recent measurement by E. W. Hamburger and S. Mayo (quoted
in Ha59) indicates that the cross sections of Mc56 are too high by 30%,.
This correction has been made in extracting the relevant reduced widths.
It also affects the C13(d,p) C! results of Mc56.

m These levels life far above the neutron separation energy (Q +ez=0).
The Butler curves for different (=0, 1, 2) are no longer very different.
The I values, however, are obtained unambiguously in C2(%,2)C!? experi-
ments (Wi58). The 7.47- and 7.53-Mev levels do not appear in the neutron
experiments. These matters were brought to out attention by E. W
Hamburger (private communication).

a Unresolved. Probably a superposition of I =1 and Il =2.

o The best fit (not a good one) to the angular distribution is obtained
by a superposition of I =1 and I =3 (Wa58a, Table IX). However, an [ =1,
1 =3 admixture is ruled out by conservation of angular momentum since
the target spin is $~. We take ! =1 as the most satisfactory assignment.

»l =0 gives the best fit to the angular distribution (Wa58a, Table IX).
Detailed agreement, however, is poor and no reduced width could be
extracted.

a Absolute cross section measured in St56 and used in Be58 to ‘‘nor-
malize’’ measured relative cross sections.

r The =1 curve, which fits the data very poorly, leads to a reduced
width at serious odds with the result quoted in Be58 for the mirror transi-
tion. The (p,d) data seem to be much more trustworthy.

s Since the transition to the N8 ground state was not analyzed in either
Sh55 or Gr56, we have to modify our usual procedure and normalize relative
reduced widths so that [J ]2 for the 5.28-Mev level is unity.

t Concerning the 042 mixture in this transition, the / =0 component is
too doubtful to justify the extraction of a width. Gr56 discard the I =0
component as arising from O16 percent in the target while Wa57 also consider
that their / =0 component can arise from this source. Sh55 (unpublished)
make no comment.

u Gr56 did not resolvet his doublet of levels. This was done in preparing
the table with the aid of results of Sh5S.

v The tentative [ =1 assignment of Gr56 is almost certainly incorrect.

w To facilitate comparison with Sh55 and Gr56, the entries in the relative
[J 162 column were normalized by multiplying the corresponding absolute
[J 162 by the same quantity (20.3) used in the results from Gr56.

x For comparison with N4(d,n)O!5, the bracketed entries in the relative
62 column are expressed relative to the ground-state reduced width as unity.

¥ Not analyzed in this experiment.

z Several transitions to higher levels, all well above the neutron sepa-
ration energy, were observed. As noted in footnote m, the Butler curves
then do not distinguish between ! values (0 to 3).

a’ At low energies the ground-state transition does not behave in the
characteristic “‘stripping’’ fashion. This is not true for the I =0 transition.

b’ Insufficient low-angle data to justify the extraction of a reduced width.

o’ Energy levels measured at Chalk River by O 6(Hes3,y) (Ku58).

4’ This quartet of levels was unresolved in Be58. The reduced widths are
accordingly tentative and are bracketed.

¢’ The combined angular distribution for this unresolved triplet of levels
has a peak intermediate between the characteristic =1 and ! =2 locations.
No adequate fit is possible.

# A good I =2 transition is seen to one or more levels (possibly the lowest)
of this unresolved quartet.

&’ Data too poor to justify any curve fitting.

b’ Originally analyzed (Br53) as an ! =0-+2 mixture. It appears (Se57)
that this was unjustified. No evidence for any stripping to the F2 ground
state has been found.

i’ Despite the fact that Q +eq =0 in this vicinity, the Butler formula shows
no sign of behaving oddly. We note that no ! =0 transitions are involved.

i’Unresolved group corresponding to at least three levels in Ne2,

k’ Unresolved. Separation and the I =2 assignment were made on the
basis of known positions and spins, although the secondary maximum is
intermediate in position between I =1 and I =2 locations.

I’ The angular fit, especially at low angles, is poor. Since the absolute
cross section is given at 14°—far below the peak—no absolute reduced
width can be quoted with confidence. . . X

=’ Unresolved. Separation was again made on basis of spins, which are
known otherwise.

n’ The ! =2 component is subject to large errors.

o’ Other studies leave open the possibility that there may be levels other
than those listed in the table, in the 4- to 8-Mev region.

» Angular distribution could not be analyzed accurately because of
contaminants in the target.
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a’ At a deuteron energy of 14.8 Mev, Ha60 find a sharp rise in the angular
distribution of Mg2(d,p)Mg?é (ground state), suggestive of an /=0 con-
tribution; ! =0 is clearly excluded by conservation of angular momentum.
No such anomaly is observed at a deuteron energy of 8.9 Mev (Hi58).
Ha60 show that the deuteron energy is reduced from 14.8 to 9 Mev, the
anomalous peak slowly dies away. o

 No satisfactory fit could be obtained to these angular distributions.
This is not surprising since the outgoing neutrons are of 1 Mev or less. No
reduced widths can be quoted with confidence.

s’ Unresolved. The quoted width is 424022, i

¢ The proton group is too weak for angular-distribution analysis. We
expect [=2, however, so that, with this assumption, we can use the
measured cross section to give us an upper limit to the corresponding
reduced width.

v’ Unresolved group of levels. No ! =0 components.

v’ Superposed on I =0 group from C2(d,p)C!s, Since the amount of Ci?
in the target was not known, the accuracy of the subtraction procedure is
doubtful. . .

w’ The error in this reduced widths is large since the transition appears
as a minor admixture in Mg%(d,p) Mg?5 (0.98 Mev).

x’ Several levels studied in this experiment are not listed in En57.

¥’ The ground-state doublet was not resolved in Ho53a, nor was the
doublet around 1 Mev. The separation was made with the help of EnS56.

#’ Isotropic backgrounds were subtracted in calculating relative reduced
widths in the quoted reference. We have simply accepted these values but
corrected for the background.

e’ The results of Ho53a were used to normalize the relative reduced
widths of En56. X

b’ Could not be fitted in reasonable fashion by any superposition of
Butler curves.

¢’ Unresolved. Probably mostly from the 8.6-Mev level (Ru57).

d” May be the unresolved doublet-analog of the Al® ground-state
doublet. In this case we have listed 76732 +507-2% X

e’ The listed energy levels were taken from En57b. They are sufficiently
different from those given in CaS5 to cast slight doubt on level identifi-
cation in the 5- to 8.6-Mev region. X
. ¥ Bracketed spins are assigned on the basis of the large reduced widths,
identifying these with large components of fr2, ps/2, and pi2.

&'’ Unresolved. We mean that (at least) one of these levels contains a
large ps/2 component.

b This number is, in fact, 367-02+60s.1% since Bennett does not resolve
the doublet. (The factor of 4 comes from the isotopic-spin coupling.)

i The ground-state doublet was not resolved by Da57. This has been
done in the table using the cross-section ratio of PaS8. X

i’ Unresolved levels, the combined angular distributions being well fitted
by ! =3. Any appreciable admixture of lower ! would, if present, obscure
an [ =3 distribution. One of the three levels is, perhaps, predominantly f7/a.

k" Unresolved. No reasonable fit could be obtained to combined dis-
tribution.

1" Mi53 suggest ! =1 for this transition. The spin $* for the level at
2.86 Mev, which is convincingly established by S#(p,y)Cl3 (Le56), rules
out ! =1. Possibly, as in the corresponding region of the:S# spectrum, we
are dealing with an unresolved group of levels. :

m’ The fit to the observed angular distribution is poor.

n’’ We list only those transitions for which definite I values and relative
cross sections are given in Da59. (With the exception of the levels at 1.634,
5.14, and 5.34 Mev). Several transitions studied in En59 are not reported
in Da59. The excitation energies quoted are those of En59.

o The ground-state doublet being unresolved in Da59, only
[J =3102+[J =416+ could be extracted directly. The reduced widths in
the table were separated by setting 632 =642, which is expected theoretically
and borne out well by the results of En 59.

»’’ Unresolved levels. The entry in the [J162 column is Z[JJ62

a’’ Improved measurements, confirming the tentative conclusions of
Bu56, are given in Hi57. The reduced widths were normalized with the
aid of Gis2

*’ The indicated transitions have angular distributions peaked at angles
intermediate between those characteristic of adjacent ! values. In each
case we have chosen the smaller value of /, for reasons (mainly theoretical)
which are discussed in Sec. VI.

8’ Only relative cross sections are given in Bo57a. We have used the
results of Ho53 to normalize roughly.

¢/ In Bo57, the Ca#(d,p)Ca® cross sections are given relative to the
Cat0(d,p)Ca*! ground-state cross section (Bo57a). We can use this and the
absolute cross sections of Ho53 to normalize roughly. A similar comment
applies to the Ca%(d,p)Cats results of Co57.

v’ Energy levels from Sc53, Q values calculated from the atomic-mass
excesses tabulated in Wa58.

v’ The spin of V5 ground state is doubtful, existing data leaving open
the possibility of both 2+ and 3*+. In the table, the relative reduced widths
are normalized—completely arbitrarily—to the value 7 for [J]6%.

W'’ Five more strong stripping transitions, to levels of V52 up to 4.43 Mev,
are reported in Da60a. The ! values, while probably ! =2, are not clearly
identified by the Butler theory. The matter is discussed in Sec. VI.

x'" These angular distributions almost certainly contain large [ =3 com-
ponents.

¥"" () values are calculated from Wa58.

#’* The spin assignment is based on the supposition that the major com-
ponent in this level is the fs/2 single-particle state.

2/'" Co%(d,p)Co® is currently being studied by H. A. Enge at MIT
with much higher resolution. The excitation energies of the various levels
of Co% given in the table (some of which are unresolved in E158a) are taken
from a preliminary report of this work (Mass. Inst. Technol. Lab. for
Nuclear Sci. Ann. Progr. Rept., June, 1956-May, 1957). With better reso-
lution it seems that some of the ! =1 groups of El58a contain substantial
1 =3 admixtures.

b/’ Although the transitions to the various bracketed levels are not
resolved, it is known, from the fact that the target nucleus has spin zero
in each case, that the different ! values correspond to distinct transitions.
An ! =143 superposition, for example, cannot be obtained in transitions
involving a spin-zero target.

¢’”” Spins which are given in round brackets have been assigned on the
(reasonable) assumption that we are dealing, successively, with fragments
of the 1fs/2, 2p3/2, 2P1/2, 1892, 2ds/2, and 3s1/2 single-particle levels. See Sec.
VI for further discussion.

4" Pajrs of levels of opposite parity are found near 0.82 Mev in Zn®
and near 0.38 Mev in Zn®7, probably 2p1/2 and 1ge/2 single-particle levels.
The relative positions of these levels are not known.



590

Many careful studies have been made of the low-
energy behavior of deuteron-nucleon cross sections,
nearly all of them referring to (d,p) reactions on light
nuclei (4 <30). [See, for example, Sm57, Re51, CaS2,
and Co57, in which the proton angular distributions
from Be®(d,p)Be!® have been measured at 19 deuteron
energies from 0.1 to 3 Mev.] Such studies indicate that,
at a deuteron energy of 5 Mev, we are usually clear of
the region of rapid energy variation, the cross section
being reasonably stable, in both angular distribution
and absolute magnitude, as the deuteron energy is
further increased. Close to the nucleon separation
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energy (Q=—2.23 Mev), stable stripping peaks appear
at rather lower bombarding energies (Wi57), sometimes
as low as 1 Mev.

We take the position that a meaningful reduced
width can be extracted from a measured differential
cross section only if it possesses a stable “‘stripping”
form and can be reasonably fitted by a suitable Butler
curve (or superposition of Butler curves). The results
of the foregoing low-energy stripping experiments then
indicate that our analysis of stripping widths is ap-
plicable to transitions in light nuclei (with 4 <30) in
which the energy of neither the incoming or outgoing

TaBLE II. Reduced widths from deuteron-triton stripping reactions.

Incident Final

energy (0] state Relative Foot-
(Mev) (Mev) excitation Jo™ l 70 AG? 6 A 6 notes
Li"(d,He®)He® (Le55, Ha59)
15 —4.512 0 o+ 1 7 5.8 1 230] 0.025 a
1.7 2+ 1 7 1.9 0.33 230] 0.008
Li?(d,)Li® (LeS5, Ha59)
15 —0.994 0 1+ 1 5.6 1.1 1 230 [0.048] b
2.184 3+ 1 5.6 8.0 0.73 225 [0.036] c
3.560 o+ 1 6.5 7.4 0.66 [230] 0.032
4'52 2+ cee cen “oe cee cee
5.35 2+ 1 5.6 5.7 0.52 [230] 0.025
5.4 1+ ..
C1(d,1)C2 (Ho54)
(=%)
2.19 1.313 0 o* 1 4.5 4.5 205 0.024] d
3.19 1.313 0 ot 1 73 290 0.025] d
C%¥(d,t)C'? (Ma60)
14.8 1.313 0 o+ 1 .6 59 1 190 [0.031] e
4.435 2t 1 4.5 0.76 [190] 0.024
7.653 o+ 1 0.24 0.04 [190] 0.0012
C4(d,)C' (Mo58)
J=0*
14.9 —1.915 0 ¥ 1 5.5 10.4 1 165 [0.063] f
3.09 3t 0 0.28 0.027 E165} 0.0017
3.68 3= 1 59 7.0 0.68 165 0.041
3.86 3t 2 1.2 0.18 [165] 0.011
018(d,£)0% (Ke60)
J=0*
149 —9.396 0 1 438 24
01(d,t)0Y (Ar60)
(J=0*
14.9 —1.810 0 5 2 5 5.7 1
0.871 3+ 0 5 2.2 0.39
3.058 3 1) g
3.846 3 3 5 0.21 0.038
4.555 3 1 5 0.22 0.038
5.08 gt 2 5 0.25 0.044
5.22 3 1 5 0.38 0.065
F“‘((;,I)F18 (Ha60a)
15 —4.155 0 1+ 0 1.7 105 [0.017] h
Na?(d,t)Na? (Vo58)
(=5
14.8 —6.16 0 3+ 2 6 33 1 160 [0.021] i
0.59 2 6 11 0.33 [160] 0.007
0.89 2 6.5 1.9 0.57 [160] 0.012
1.54 2 6.5 0.61 0.19 [160] 0.004
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TABLE IL.—Continued.
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Incident Final
energy Q state Relative Foot-
(Mev) (Mev) excitation Jo™ ! 7o AG? i A 62 notes
M%f;(d,thg“ (Ha60)
14.8 —-1.07 0 o+ 2 5.4 1.3 1 150 [0.0085] j
1.368 2+ 2 6 2.6 2.0 [150] 0.017
4.122 4+ 2 6 0.42 0.33 0.0028
4.24 2+ 2 6 0.11 0.09 0.0008
5.24
6.01 . . . .
7.33
7.60
Mg?6(d,t)Mg25 (Ha60)
(=0
14.8 —4.86 0 5+ 2 6 4.6 1 [150] 0.031 k
0.58 1+ 0 7 0.37 0.080 0.0025
0.98 3+ 2 7 0.06 0.013 0.0004
1.61 I+
1.96 §t+ 2 7 0.27 0.058 . 0.0018
2.56 i+ 0 7 0.11 0.023 0.0007
2.74 I+
2.80 3+ 2 7 0.14 0.029 0.0009
3.40 3-
V‘“f;i,t)V50 (Ze60)
21.5 —4.78 0.4 3 71 3.5 I,m,n
1.1 3 71 2.9
3.1 3 71 2.5
Crb2(d,t)Cr® (Ze60)
J=0*
21.5 —5.79 0 ¥ 3 7.1 5.7 m,n
. 0.75 3 71 0.78
Mn;s (d,t)%\c[n"4 (Ze60)
21.5 -3.95 0 1 7.4 5.7 lL,m,n
1.1] { 1 74 1.0
: +3 71 1.9
2.7E|| 1 74 1.0
4.0 3 7.1 0.39
Fe®(d,t)Feb®(Ze60)
(J=0+
21.5 —4.94 0 3 1 74 3.1 1, m,n
0.42 G 1 74 0.78
14] 1 7.4 0.40
: +3 71 2.7
2.0% 1 7.4 0.20
2.5 3 71 0.20
Fe%(d,t)Fe“ (Ze60)
21.5 —1.38 0 ot % ;i (};4 L, m,n
0.845 2 {+3 71 14
2.085 4+ v .. ees
2.660 2+ .. .. cee
2.9% 1 7.4 3.5
40 3 71 1.8
Co®(d,t)Co®® (Ze60)
U= 1 74 10.3 1
_ . . ,m,n
21.5 424 03] { +6) I a3
Zn®(d,t)Zn® (Ze60)
(J=0*
21.5 —5.59 0 &) 1 7.4 6.4 l,m,n
0.19 3) @3) 7.1 <29
0.64 1 74 1.8
1.1] 1 74 0.78
. +@3) 7.1 <0.40
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TABLE II.—Continued.
Incident 0 Final
energy state Relative Foot-
(Mev) " (Mev) excitation Jo™ l 70 A6? 62 A 02 ngges
Cu(“(d,g)C)u“ (Ze60)
J=%"
1 7.4 12.5 1, m,
215 ~3.65 04] e 1t & m,
an;(d,t)Z)n“ (Ze60)
=0+
1 7.4 7.3 1, m,
215 —4.77 0] +3) T <46 ™R
1 4 L5
0.86] +3) 71 <01
Zn(“(d,t)Zn66 (Ze60)
J=%" .
215 —0.80 0 0+ 3 1 048 m, n
1 4 0.68
1.05 2 {+3 71 0.39
2‘40 4+ . .7. . “en
1 4 1.3
2.75 {+3 71 18
3.41
1 7.4 2.9
3.78
4.10} {+3 7.1 1.5
ans(d,t)Zn‘”
J=0%)
215 ~3.93 03] {43 T4 88 Lm,n

a We use the value of A obtained from Li7(d,t)Li¢ (Ha59).

b g2 from the Li®(d,p)Li? ground-state data of Ha59.

¢ 62 from the Li’(p,d)Li¢ data of Re56.

d g2 from the C12(d,p)C18 data of Ho54.

° g2 from the C12(d,p)C!8 data of Ha59.

£92 from the C1(d,p)C4 data of Mc56 and HaS9.

8 Although this triton group is obscured by elastically scattered deuterons,
it is clear that there is a strong stripping transition. By conservation of
angular momentum, such a transition must have I =1,

b There is a discrepancy (involving a factor of two) between the reduced
width determined from the F1(p,d)F!8 data of Re56 and Be58. The value
of A obtained is accordingly uncertain. We use the data of BeS58.

projectile is less than 5 Mev. This lower limit, which
obviously has only qualitative significance, should
probably be somewhat higher for reactions on heavier
nuclei (4>30) or for deuteron-triton reactions.

All available data on- deuteron-nucleon reactions
involve deuterons of 15 Mev or less. At the highest
energies studied, the simple theory gives a satisfactory
account of the observed angular distributions, so that
we are not in a position to set an upper limit to the
range of usable projectile energies. There are, however,
indications (Ze60a) that the proton angular distribu-
tions from the bombardment of Be?, Be®, and C? by
21.5-Mev deuterons, although exhibiting very clear
“stripping”’ peaks, cannot be fitted by the simple theory
with reasonable interaction radii. In contrast, the simple
theory works very well for the triton angular distribu-
tions from (d,f) reactions induced by 21.5-Mev deu-
terons (Ze60). Experimental study of these matters
would be worthwhile.

(b) Ambiguities in Determining |

We sometimes encounter transitions which exhibit
very marked ‘‘stripping” peaks but from which it is
impossible to determine / unambiguously.

ig2 from the Na2(p,d)Na2 data of Be58.

i 92 from the Mg (d,p) Mg?% data of Ha60.

k We use the value of A obtained from Mg?8(d,t) Mg, .

I Individual states of the residual nucleus not resolved. We use the
1symlbol &] to signify the mean excitation energy & of a group of unresolved
evels.

m () values are taken from As59.

n For A >40, we have not divided out the isotopic-spin coupling factor
(C)Qd'm 1()II.I‘)). In such cases we list (C?)§2 rather than 62 itself (see Ap-
pendix 1).

The first type of situation where this occurs involves
capture into unbound levels of the final nucleus. In
such cases, Butler curves for adjacent ! values are
almost identical in shape (see Mc56). The ! values can
sometimes be determined indirectly, either by argu-
ments concerning reduced widths or by carrying out the
appropriate neutron or proton elastic-scattering ex-
periment.

Secondly, (d,p) experiments with 6- to 8-Mev
deuterons on heavier nuclei (4>40) (for example,
Bo57, BoS7a, Da60a) have repeatedly encountered
difficulties in distinguishing /=1 from /=2, or /=2
from /=3. The trouble here may stem from the rather
low deuteron energies used; it would be interesting to
see if the ambiguities persist in experiments with 15-Mev
deuterons.

(¢c) Capture into Weakly Bound Levels of
the Residual Nucleus

The simple theory encounters serious difficulties in
dealing with /=0 capture into levels of the final nucleus
close to the nucleon separation energy. There are
numerous indications [for example, in F°(d,p)F?
(E156) and Mg*(d,p)Mg? (HiS8)] that the simple
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theory remains adequate close to the nucleon separation
energy for / values other than 0.

The examples most often quoted in the present con-
nection are (Ca57, MiS53)

C2(dn)N® (2.37 Mev), Q-+es=—0.425 Meyv,
0%(d,n)FY7 (0.51 Mev), Q-+es=-40.085 Mev,

both /=0 transitions. Here the difficulty is particularly
pronounced ; the angular distributions predicted by the
simple theory bear little resemblance either to the
usual stripping curves or to the experimental cross
sections. Not surprisingly, the reduced widths so
extracted are valueless, since they vary wildly with the
angle at which we normalize the theoretical curve and
with 7.

No comparably extreme cases have been found among -

(d,p) reactions, probably because no (d,p) transitions
with /=0 have been observed so close to Q4 e;=0;
however, in

Be®(d,p)Bel® (6.28 Mev),

where Q+¢;=0.565 Mev (Gr56, Rh54), the fact that
the /=0 reduced width varies strongly with 7, (by a
factor of more than two as 7 varies by 1 f about its
“best” value) indicates that all is not well, although an
acceptable fit to the angular distribution can be
obtained.

Butler (Bu57, p. 70; see also Au60) has shown that
a very simple Coulomb correction rectifies matters in
the case of (d,n) transitions to weakly bound final
states. The correction in question concerns the second
term in the form factor W,(x,y) (I1.20), which contains
the logarithmic derivative

(L1 (itr) 1(8/ 09 ® (itr)y r=r,  (IL.39)

evaluated at the nuclear surface, of a free-particle wave
function. This factor is introduced by matching the
free-particle logarithmic derivative at r=7¢ to that of
the radial wave function R;(r) of the captured nucleon
in the potential well of the capturing nucleus. Now in a
(d,m) reaction, the captured nucleon is a proton and the
solution of the appropriate radial wave equation beyond
the range of the nuclear potential is not a free-particle
function but a Coulomb function. For the limited
purpose of evaluating the logarithmic derivative at
r=r9, we may simulate this Coulomb correction by
replacing ¢ in (I1.39) by £, where

P=2+{24M/[(A+ D]} (Ze*/re)  (I1.40)

and Ze is the charge on the target nucleus. It is obvious
that this correction, which involves replacing the value
of ¢ determined from the binding energies by an
“effective” value in calculating the form factor (I1.20),
is a step in the right direction. In fact, as can be seen
from Figs. 6 and 7 in Appendix I of Ma59, it provides
an excellent fit to the experimental data on C2(d,n)N
(2.37 Mev), O'%(d,n)F" (0.51 Mev) and other similar
transitions, with reasonable values of 7.
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It should, in fact, be appropriate to use the modified
procedure for all (d,n) transitions; however, it appears
(Appendix I of Ma59) to make little practical difference
whether or not we use it unless Q€4 is close to zero
(Q+ea<1 Mev). Accordingly, we use (I1.40) only when
compelled to do so.

The approximate Coulomb correction (I1.40) is inap-
plicable to (d,p) reactions; however, its success and its
character suggest that, in considering (d,p) reactions
to weakly bound levels, it might be appropriate to
replace the value of ¢ obtained from (I1.8) by a suitable
effective value. In other words, as suggested by Austern
(Au60), it might be better to fit (d,p) cross sections
by fixing 7o and varying ¢.

We have preferred not to adopt this course in the
present study. For (d,p) transitions with /=0 and
Q-+ es=0, we proceed, as usual, by choosing a best-fit
radius and extracting a reduced width on this basis.
Since the reduced width so obtained is abnormally
sensitive to 7o, we do not place much reliance on /=0
reduced widths close to the nucleon separation energy.

The first Born-approximation calculation for deu-
teron-nucleon reactions was performed by Bhatia et al.
(Bh32). They obtained a result which differed from
the Butler formula in the occurrence of a simple Bessel
function j;(gro) in place of the factor Wi(xy) given by
(I1.20). This came about because, in evaluating the
relevant radial integral, Bhatia ef al. assumed that
71(gr) varies so slowly that it may be replaced by its
value at 7o. This is known to be a poor approximation.

For most transitions, the Bhatia and Butler formulas
predict very similar angular distributions, provided
that a somewhat larger radius is used in conjunction
with the former. Reduced widths extracted by means
of the two theories, on the other hand, sometimes differ
markedly. The apparent superiority of the Bhatia
expression in dealing with transitions to weakly bound
levels stems from the fact that their approximate
evaluation of the relevant radial integral introduces
errors which simulate the correction (II1.40). This being
fortuitous and the approximation unnecessary because
the integral in question can be evaluated exactly, we
argue against the use of the Bhatia formula as a sub-
stitute for the Butler formula.

In the preceding discussion we have referred speci-
fically to deuteron-nucleon reactions. It is clear that
similar comments apply to more complex reactions in

which a single nucleon is transferred.

(d) Amado’s Procedure for Extracting Reduced Widths

Amado (AmS59) has recently described a modified
procedure for extracting stripping widths, also relying
on the simple Born-approximation theory. Both
measured and Born-approximation differential cross
sections are first plotted as functions of cosf. The value
of the quotient

(do/dw) (measured)/(do/dw) (B.A.) (I11.41)
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extrapolated to the (unphysical) value of cosf which
satisfies

¢+£=0 (11.42)
is then taken to be the correct Born-approximation
reduced width. Since the Born-approximation cross
section has a pole at the value of cosf satisfying (I1.42),
while other contributions to the observed cross section
remain finite, it is hoped that the Born approximation
is then exact.

It is clear that, when the appropriate Butler curve
fits the experimental data at forward angles very closely,
the quotient (I1.42) is essentially constant and the
extrapolated reduced width does not differ much from
the value obtained by the procedure of Sec. II.2.
Amado’s technique leads to significantly different
results only when the Born-approximation angular dis-
tribution deviates markedly from the experimental
cross section. In such cases, however, the reduced width
obtained depends quite sensitively on the exact way in
which the extrapolation is performed, a matter which
involves considerable ambiguity.

Thus, although Amado’s procedure may turn out to
be very useful (quite apart from its theoretical impli-
cations), we have preferred to base our study of
stripping widths on the simple method of Sec. II.2.

(e) Empirical Normalization Constant in Deuteron-
Triton Cross Sections

The expressions (I1.36) and (I1.37) for the deuteron-
triton differential cross sections contain an empirical
constant A. This factor is related by (I1.35) to the
asymptotic normalization constant N3 of the ¢=3
internal wave function. In view of the crudity of the
entire Born-approximation procedure, we do not believe
that our empirical value of N3 can tell us much about
the structure of the a=3 nuclei.

It should be observed that the reaction

d+d—s t+p (11.43)

is both a (d,p) and a (d,f) reaction. If we assume that
the a=2 stripping transform is known, (I1.43) provides
a direct measurement of the =3 transform. We refer
the reader for discussion of this point to Ham-
burger’s paper (Ha60a). Notice that Hamburger uses a
normalization constant B? which is related to the
quantity Ng? used here and in Fr60 by

B=4zNg. (I1.44)
In conclusion, we observe that (I1.19), with the
stripping transform Pa(x) given by (I1.34), can be

specialized immediately to the case =4 when occasion
arises.

(f) Limitations of the Present Study

In this study we do not give any systematic discussion
of the spectroscopic information to be obtained from
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(d,py) angular-correlation studies or from measurements
of the polarization of protons from (d,p) reactions. The
latter restriction is a natural consequence of our decision
to use the simple Butler theory, since plane-wave Born-
approximation theories predict zero polarization.

We have confined our attention to “light and inter-
mediate nuclei” (4 <70) simply because available data,
with few exceptions, involve such nuclei. It seems
certain that stripping and related reactions will even-
tually be used to probe the structure of heavier nuclei,
although it is far from certain that our simple Born-
approximation procedure, as it stands, will provide an
adequate means of analyzing the data.

III. THEORETICAL ANALYSIS OF
REDUCED WIDTHS

1. Introduction

A reduced width 6 for the emission of a nucleon in a
transition between two nuclear states was introduced
in Sec. I and emerged in Sec. IT as a factor in the dif-
ferential cross section of stripping reactions. This
reduced width is a product of two factors, the single-
particle reduced width 8¢ and the spectroscopic factor
8, which are defined explicitly in (I1.13)~(I1.15). We
have agreed to treat 6, as an empirical parameter. We
now study the spectroscopic factor 8, which contains
the information we seek about the structure of the
nuclear states involved.

As is later seen explicitly, the evaluation of § con-
sists in calculating overlap integrals between the
initial and final nuclear states. The present section is
largely devoted to an explicit consideration of such
overlap integrals, wherein the nuclear states are repre-
sented by the wave functions of appropriate nuclear
models. Although the bulk of our detailed applications
involve various species of shell model, we also examine
the weak-coupling collective model and the rotational
model.

It should be emphasized that the present analysis of
8 is independent of the use of the Butler formula. Our
results are equally applicable in studying reduced
widths extracted on the basis of more sophisticated
theories of the stripping process or from the analysis of
resonance reactions. A more descriptive and less explicit
account of many of the considerations of this section
may be found in a recent article by French (Fr60).

2. Nuclear Shell Model

The basic assumptions, the predictions, and the
limitations of the nuclear shell model are discussed in
detail in a number of excellent monographs and review
articles (Fe55, Ma55, El57). Such matters do not
concern us here. Suffice it to say that the many successes
of the shell model in the mass region of most interest to
us (4<70) make it a natural choice in calculating
relative reduced widths.
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The main physical content of any shell model,
whatever its degree of sophistication, resides in two
basic assumptions:

(1) There exist single-nucleon orbits, each being
characterized by a radial quantum number # and an
orbital angular momentum /.

(2) A strong spin-orbit interaction depresses each
j=I+3% level relative to the corresponding j=I—3%
level, where j=s+1. These basic postulates are given
formal expression by writing the nuclear shell-model
Hamiltonian in the form

H=H0+H0+Hso (III'l)

=f V(r)+ f Hu-l—af:li-si. (11.2)

=1 1<7=1 i=1

The central “shell-model potential” V(r) is assumed
throughout to possess a harmonic-oscillator radial de-
pendence. This assumption is made because it is known
to be a good approximation for light nuclei and because
harmonic oscillator eigenfunctions are particularly con-
venient in calculations. H;; is an effective two-body
interaction operator, while H,, is a one-body spin-orbit
potential.

The two-body interaction parameters and the
strength @ of the spin-orbit potential are adjusted so
that the model Hamiltonian (III.2) gives as good a
description as it can of the observable properties of the
nucleus. It is therefore to be expected that the appro-
priate values of the various parameters will vary with
A, n, I, and possibly with other quantities (e.g., N-Z).

No experimental data has been found, to date, whose
interpretation demands conclusively that H;; be any-
thing other than central, static, and charge-independent
(neglecting Coulomb forces). There is no reason why
the effective two-body interaction should bear a close
resemblance to the interaction experienced by two free
nucleons in a scattering process. For heavier nuclei, the
assumption that H;is central is not very strong, since,
in most cases of interest in j7 coupling, it can be shown
that any two-body interaction is effectively central.

H,, is diagonal in a jj representation, the diagonal
elements being evaluated by direct comparison with
experiment. We can therefore avoid introducing H,,
explicitly when working in a jj representation, ab-
sorbing its effects in specifying the single-particle level
spacings. We often discuss the positions of single-par-
ticle levels in our subsequent analysis of stripping
experiments.

The eigenfunctions of H, provide a complete set of
antisymmetric 4-nucleon functions. Since a number of
operators commute with H, the functions of such com-
plete sets may be characterized by the corresponding
good quantum numbers, amongst which we always find
the total angular momentum J, the parity =, and (as
long as Coulomb effects are reasonably small) the
isotopic-spin 7. We do not discuss the important
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problem of finding such additional quantum numbers
as may be necessary to furnish a complete specification
of the basic functions of a representation.

Ideally, we would use the representation so con-
structed to set up and diagonalize the matrix of H.
This energy matrix is a direct sum of disjoint sub-
matrices, each block corresponding to one set of values
of J, m, T'; however, this ideal procedure encounters
enormous complications and it is necessary, in practice,
to restrict the number of basic states which enter the
calculation. This restriction is achieved by including
only the states of a few of the lowest “configurations,”
regarding the A nucleons as filling the single-particle
states of V(r) in ascending order and in atcordance
with the demands of the exclusion principle.

The eigenvalues and eigenfunctions of this restricted
energy matrix are then used in comparisons with the
spectra and other observable properties of nuclei. The
parameters in H, and H,, are adjusted—largely by trial
and error—so as to produce optimal accord between
theory and experiment. :

We refer repeatedly to “equivalent nucleons” and to
“configurations,” terms which ought to be defined with
some care. Several nucleons are said to be equivalent
if they have the same value of #, /, and also of j if we
use a representation wherein 7 is specified. A configura-
tion is a definite set of values of (nl) or of (nlj) if 7 is
specified. , ‘

At the outset of a shell-model calculation, we must
decide which configurations to take into account. In
practice, we rely on experience tempered by the neces-
sity of keeping the dimensions of the matrices involved
within reasonable bounds. In Sec. III.11 a formalism is
presented whereby many reduced widths can be ana-
lyzed independently of any choice of configurations for
the nuclear states involved. It is then seen clearly that
a reduced width measures an amplitude corresponding
to a given value of /, and often also of j, of the trans-
ferred nucleon, quite apart from the success or failure
of any model in describing the relevant states.

It should be remarked that the choice of repre-
sentation is a matter of convenience. Thus, for example,
the use of a jj representation has nothing whatever to
do with the validity or otherwise of j; coupling, the
latter statement being concerned with the properties
of the nuclear wave function. The use of a jj repre-
sentation may not be convenient unless the nuclear
states under consideration are reasonably “close to 77
coupling.”

It is seen from what has been said that one! of the
main formal problems of shell-model spectroscopy

4 The other two main problems involve the evaluation of the
matrix elements of symmetric one- and two-body operators
n n
T=2T@G), G= Z G(@) (IIL.3)
i=1 i<i=1
between antisymmetric #-particle states. We do not give a system-

atic discussion of such matrix elements and their evaluation in the
present study.
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is the construction of antisymmetric n-particle wave
functions. This problem is discussed in detail in Secs.
II1.4-6, with particular attention to the unambiguous
specification of all (relative) phases. Section IIIL.3
contains a preliminary exposition of our notation, while
in Sec. II1.7 we apply the antisymmetric #-particle wave
functions to the central task of calculating the spec-
troscopic factor 8.

3. Notation

The conventional way of writing a wave function is
simply to exhibit every quantum number necessary
for its complete specification. In treating the spectros-
copy of several particles, especially if more than one
configuration is involved, such a procedure can be
incredibly cumbersome. We prefer to introduce a
symbolic notation wherein the structure of a wave
function is compactly delineated, often describing
groups of quantum numbers by a single symbol. What
is gained by so doing becomes apparent on translating
some of the considerations of Secs. IT1.6 and III.7 into
conventional language. Many features of our graphical
notation® have previously been described by Halbert
(Ha56) and by French (Fr60).

Let us start by considering two commuting angular
momentum operators j; and js, with ji+j.=J. We
then write, for the function obtained by vector coupling
i 1and j2;

J
V(I M) = (I11.4)

The diagram on the right-hand side of (ITI.4) does not
merely indicate the mode of angular momentum cou-
pling in ¢, it-is an alternative symbolic expression for
 itself. This is the central feature of our notation.

If it is now desired to couple # commuting angular
momenta, the diagram of the same type as (IIL.4)
which springs to mind is

J3

J2 Ja

Jl J5
JM

But this function exhibits only %42 angular-momentum
quantum numbers, whereas 2z are needed for a com-
plete specification, as can be seen by considering the
“direct product” (Ra42) JiM:, JoMs---J .M, repre-
sentation. It is easy to prove that any set of #—2 non-

5 A diagrammatic notation for wave functions seems to have been
first used by Fano (FaS1).
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intersecting coupling lines constitutes a permissible
way of completing the desired specification.

Taking the preceding specific case by way of illus-
tration, two possible sets of internal coupling lines are

J3
J; Ja
Ji Js
J

We nearly always omit the projection quantum number
M, since it has no bearing on the considerations of this
section. In addition, it is clear that only one arrow
need be drawn in any diagrammatic wave function.

Functions with the same ordering of the J; and the
same internal coupling lines, where the internal quantum
numbers run through all possible values, constitute a
complete set of orthogonal functions in the appropriate
IT:=1"(2J:+1)-dimensional vector space. We demand
that each such function be normalized.

The complete sets of orthonormal functions belonging
to any two schemes for the same angular momenta must
be connected by a suitable unitary transformation. Any
such transformation may be expressed explicitly and in
a finite number of steps in terms of the three funda-
mental recoupling rules

A L
= (—1)eto—e (IIL5)
c

c

b
aZd =3 U(abcd: ef) u&d (I11.6)
c ’ c
b b
°&d=§: U (abed; ef)oZd. (II1.7)
[

U(abcd: ¢f) is a normalized Racah coefficient (Ra42,
EdS7, Ro57, Fr58).

When a wave function is antisymmetric, we indicate
this by a circular arc. For example, an antisymmetric
state of the configuration (#l) in a TSL(MsMsMy)

representation is written as
@ @ (I11.8)
' 'T . (II1.9)

FNAN
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It is usually unnecessary to exhibit the particle numbers
explicitly, but this may be done as in (III.9) if there
is any danger of ambiguity. The antisymmetrization
symbol refers to the entire wave function and not to its
separate space, spin, and isotopic-spin parts. In general,
let us agree that antisymmetrization symbols appearing
in the same wave function act together (in the
preceding sense) if and only if they refer to the same
particle numbers.

Finally, a “direct product” notation is introduced
which enables us to carry out most of our formal manip-
ulations independently of the particular representation
to ‘be used. Expressions so derived apply to both LS
and jj representations, with or without the isotopic-
spin formalism, with one exception to be noted in the
following.

Let us write

4 AqH-A
@G o

p={nl,8} or {nl,8;} or nlj or {mlji},
B={L,S} or {L,S,T} or J or {J,T}.
Greek letters are used consistently to refer to such com-
posite quantum numbers.
The recoupling techniques based on (II1.5)—(II1.7)
can be adapted to the direct-product notation, in pre-

cisely their original form, by means of an appropriate
interpretation of the coefficients. For example,

4

Y
8 =:Z U(ﬂ’yrat GT)B S

r T
(IIL.11)

=ZC[LSJ;ML;M—ML]@ @s :
Mz LM, \/M-M_

JM

Although each separate function on the right-hand side
of (II1.14) fits the direct-product notation, the vector-
coupled function does not, since a linear combination
of products is itself not necessarily expressible as a
product. Nevertheless, we can introduce the symbolic

convention

J

B)
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provided that the Racah coefficient has the significance

U(ByTs: er)=U(BryrT1éL: eL7r)
XU (BsysTsds: ests) (II1.12)

in the particular case of an LS representation. In the
same representation

(— D)= (~1rm+ss,
[81= (2641 =[LS]= 2L+1)2S+1).

The corresponding statements for the other representa-
tions in (II1.10) can be written down in the same way.
The compact symbol [8] for the frequently occurring
factor (28+41) is particularly convenient and is used
throughout. .

The complete specification of a state may demand the
presence of quantum numbers which are not angular
momenta (e.g.,spacesymmetry). In such an eventuality,
the additional quantum numbers may either be written
out explicitly

(II1.13)

x,B

or, in a further foreshortening of the notation, simply
absorbed in 8. In writing out composite symbols, such
as Racah coefficients or (— 1)#, which have been assigned
a meaning only for angular-momentum quantum
numbers, we must ignore the nonangular-momentum
part of 3.

The functions

D @

of an LSJ representation do not fall naturally into a
direct-product notation. This can be readily understood
from the explicit expression

(IT1.14)

the additional vector coupling, whose presence prevents
the use of the ordinary direct-product notation, being
symbolized by the bracketed J.

The formal modification (III.15) owes its usefulness
to the circumstance that the manipulations we wish to
perform commute with the process of vector coupling.
These manipulations—recoupling, and, as we see later,
antisymmetrization—involve the formation of specific
linear combinations, and the order of two finite sum-
mations can always be interchanged.

By introducing the notion of “multiple tensor”
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(Ra42), we can calculate the matrix elements of
operators in a direct-product notation.® Let 7, U* be
irreducible tensor operators in disjoint spaces. We may
then define the ‘“double tensor”

(TU)TS: TrUs

whose rank is specified by the pair of numbers (rs) and
which operates in the direct-product space. A tensor of
any multiplicity can be introduced in the same way.

It is natural to write 74 for such a multiple tensor in
the direct-product notation, the composite rank being
designated by the set of numbers A. Since the various
factors of 74 operate independently, each in its own
space, matrix elements can be calculated by means of
the standard formulas (Ed57, Chap. 5), written in the
direct-product notation. In particular, the Wigner-
Eckart theorem becomes

(o] T2 o'my)
(-
[

Often T does not operate in some of the component
spaces of the direct-product manifold, the corresponding
factors of T4 being unit operators in their spaces. In
evaluating the reduced matrix elements (o||72||p’) in
such cases, we must remember that the reduced matrix
element of a unit operator, defined according to (I11.16),
is not simply unity, being given, instead, by

Gll"y=CiJe(45. (IIL.17)

Suppose, for example, that we require the reduced
matrix element of a spherical harmonic ¥,®—the
prototype spherical tensor—in the direct product of
orbital and spin spaces.

Then p={I8} with §=%,

TyA=T,, "=V, % (1),

(eIl )= @Y ) 11]3)
=2 r ).

The extra factor so introduced (V2 in the example) is
canceled by a similar factor in the denominator in the
Wigner-Eckart theorem. This minor irritation can
therefore be avoided by agreeing that, when Latin
indices are written explicitly, leaving out unit operators
(e.g., T¢* instead of T2 or T,¢*?), integrations in the
omitted spaces are ignored.

CLo"Ap; myym, Xp|| T4lp).  (IIL.16)

4. Antisymmetric States for Nucleons
in the Same Shell

Let us consider # equivalent particles or “particles in
the same shell.” We wish to construct completely anti-

61t is worthwhile to complete our discussion of the direct-
product notation by applying it to the calculation of matrix
elements of tensor operators, in spite of the fact that we evaluate
no such matrix elements in our study.
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symmetric states

%8 (I11.18)

of specified 8 and x. Suppose that the corresponding
problem for n—1 equivalent particles has been solved,

that

YY
is known. The functions
n
pln) (IIL.19)
B
are antisymmetric in particles #1, 2, - - -, »—1. They

are not, in general, totally antisymmetric, nor do they
have specified «. It is, however, clear that the antisym-
metric functions (III1.18) belong to a restricted sub-
space of the linear vector space spanned by the functions
(I1I1.19). We may therefore write

X B =2 (p":xB|p" 1 : yy) P(n),
yY

(I11.20)

The expansion coefficients are called “coefficients of
fractional parentage” or simply “cfp.” The concept of
fractional parentage was introduced by Goudsmit and
Bacher (Go34) in atomic spectroscopy and was sub-
sequently developed in a far more general form by
Racah (Ra43, Ra49). We often adopt the abbreviated
notation

(om 8| tiyy)=(p"Blpy).  (IIL21)

Orthonormality of functions of different x yields the
sum rule

‘; ("B | o™ L iyy ) (o™ 8| oL yy) =5 (ax”).

Since 3 is a good quantum number on both sides of
(TI1.20), there is no sum rule expressing the orthog-
onality of functions of different 8. The abbreviation
(TI1.21) thus must be used with this reservation in mind
when dealing with sum rules.

If the cfp are known, (IILI.20) establishes an in-
ductive chain, starting from z=1, which determines
the functions of p» for n=1, 2, -, (2p+1). The

(I11.22)
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relative signs of all such functions are thereby com-
pletely specified ; the only freedom left by the parentage
expansion is that of a single undetermined sign, referring
simultaneously to all functions of the p shell. For all
practical purposes, this single free sign is irrelevant.

Conversely, the functions (III.18) for n=1, 2, ---,
(2p+1) define, by (II1.20), a set of cfp leaving no signs
undetermined ; however, it is usually both cumbersome
and unnecessary to give a specification of shell-model
wave functions more explicit than that implied by the
appropriate parentage expansion.

Before proceeding, let us settle the matter of relative
phases for functions with the same 8 and x. When we
wish to refer to that unique and fully determined anti-
symmetric state of # equivalent particles, with a given
B and x, which is defined by a particular set of cfp, we

write
2 =123 -n)

with the particle numbers in ascending order. The over-all
sign which the cfp fail to specify is of no consequence
here, since we are interested in the relative signs of
functions arising from the same set of cfp.

By operating on (III.23) with any permutation
PeS',, another antisymmetric state of # particles, with
the same 3 and x, is generated. This new function is
identical to (IIL1.23) if P is an even permutation and
differs in sign if P is odd.

What we have done is to attach a meaning, including
a sign, to a function symbol wherein the particle
numbers are written out explicitly, in any order.

For example, consider the symbol

(I11.23)

xB'

Since {1432} = P{1234}, where P= (42) is odd,

In a complete logical development of the theory of
fractional parentage, we would now have to discuss
two further topics. :

(1) The precise meaning of the additional quantum
numbers x in various representations. We have occasion
to make some comments on this subject in Sec. IIL.S5,
although no systematic treatment is attempted.

(2) Techniques for calculating the cfp which contain
all our knowledge of the wave functions. This important
subject is bypassed. The cfp are regarded as already
calculated and at our disposal.

These facets of the theory of fractional parentage are

n
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treated in detail by Racah (Ra42, Ra43, Ra49, Ra51),
by Jahn and van Wieringen (Ja50, Ja51) for LSJT
representations and by Flowers and Edmonds (F152,
EdS52) for jj representations. These references include
extensive tabulations of cfp, including the cases

(")LST: 1p shell, all # (JaS1),
(3T : =%, %, %, all » (Ed 52),
(GMIT: j=%,all n; j=%,n<4; j=1%, n=3, 4 with
maximum 7" (Ed 52).

Concerning the cfp in Ja51 and the question of phases,
see the discussion at the end of Sec. IIL.S.

There is no reason why some particle other than ##
should not be separated in the parentage expansion
(II1.20). The conventional usage of selecting one par-
ticular particle—usually ##»—in this connection has
the advantage of eliminating ambiguities in sign. If we
wish to separate some particle other than ## in a
parentage expansion, we say so explicitly.

The concept of fractional parentage can be adapted
without difficulty to the removal of more than one
particle. Since the present study is confined to processes
wherein a single nucleon is transferred, the extended
theory is of no interest to us.

5. Holes, Particles, and Phases

A shell is characterized by the quantum numbers p
of its constituent nucleons. In this section, a detailed
formulation is given of the hole-particle correspondence
for states of a given nuclear shell. For such purposes,
the most convenient representation is one in which the
magnetic quantum numbers m, of each nucleon are
specified. We use a direct-product notation, as described
in Sec. IT1.3. Our general results hold for both LS and
47 representations, with or without the isotopic-spin
formalism.

The general notions of the hole-particle correspond-
ence were discussed by Condon and Shortley (Co35),
while the first formal development was given by Racah
(Ra42). We start from a tentative definition (III.24)
of “complementary states” appropriate only in an m,
representation. Proceeding to a more general repre-
sentation by a suitable unitary transformation, we are
led quite naturally to the relation in terms of which
Racah formulated the hole-particle correspondence
(Ra42). This relation [our (IIL.35)] is thereafter
adopted as a definition of “complementary states.”

There are [p_| available states for each nucleon. It is
helpful to think of each such state as a cell or slot,
which, because of the exclusion principle, can contain
no more than one nucleon:

L | 1 1.
[p]=5

States of p” can then be constructed by distributing the
n nucleons among N=[p] available cells. Let us refer
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to each such choice of # cells as a “distribution for p».”
A distribution determines one and only one antisym-
metric state of # particles, a unique linear combination
of the #! distinct product functions obtained by per-
muting the particle numbers associated with the
occupied cells. Thus, every antisymmetric state of p*
can be labeled, in the m, representation, by a distribu-
tion N and possesses a specified value of the total pro-
jection quantum number B=Zm, By counting the
number of distributions of » particles among N cells,
it is seen that the number of allowed antisymmetric
states of p” is given by the binomial coefficient

(+)

Since the number of nucleons cannot exceed the
number of available states, it is clear that the p shell
is “complete” or “closed” when it contains N=[p]
particles. There is only one distribution for p¥ and,
accordingly, only one allowed antisymmetric state.
This closed-shell state, which is unique to within a
sign, has all angular-momentum quantum numbers 0
and is denoted by ¥ (S*).

The N—# cells left unoccupied in any distribution A
of p* determine a distribution A¢ of p¥—», Thus, to
every antisymmetric state ®\%(n), there corresponds
one and only one antisymmetric state &« B(N—n), a
one-one correspondence which is reflected in the relation

()-(.2)

between binomial coefficients. The two states
B\B(n) of pn, B B(N—mn) of p¥—

are said to be ‘“complementary.” It is to this corre-
spondence that we allude when we refer to the states
of p¥=" as “n-hole” states. The word hole can thus be
interpreted in a rather literal fashion, a feature which is
all but lost in passing to a representation other than
the m, representation.

The relation of complementarity is clearly symmetric
in the sense that (\,B) is the complement of its own
complement (A¢, — B).

The allowed antisymmetric states of p" span a
certain linear vector space £, ® being the corresponding
space for p¥—, The unique closed-shell function ¥ (5*)
can obviously be expressed as a linear superposition of
products

(IT1.24)

B\E(n)®y B (N—n) (I11.25)
of vectors from £ and ®. Only those products in which
Ne=\¢ can occur in this expansion, since, otherwise,
terms would appear with more than one nucleon to a
slot. We can therefore write

‘I’(S*) =Z qu))\B(n)(I))ﬁ_B (ZV“%), (11126)
Y
and each term (A\,\°) in (II1.26) corresponds to one pair
of complementary distributions.
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In order to evaluate the coefficients , it is necessary
to study the behavior of the terms in (II1.26) under
permutations of the particle labels. This is done most
naturally in terms of the ‘“‘order-preserving permu-
tations” introduced in Sec. II1.6. We simply state the
result we require, referring the reader for proof to
Appendix 3 of Ma59. The desired expression for the
closed-shell wave function is

w<s*>=(iv)_%§<—>3—3m >

BB (n)
{\: B\=B}

X&y—B(N—n), (IIL.27)

where the symbol {\: By= B} stands for “the set of all
distributions A such that By=B,” and B,=p, the
largest possible value of B.

Equation (II1.27) exhibits ¥(5*) as an invariant
product of two vectors, one from £ and one from @®,
and is invariant in the sense that, since the closed-shell
function is unique, it must retain the form (II1.27)
under suitably related changes of basis in £ and ®.
Functions arising from (II1.24) under these related
transformations are then defined to be complementary

in the new representation. The “suitable relation”

which must hold between the changes of basis in £ and
®, such that the expression for ¥ (S*) retains its form,
is clearly” that of contragredience. Indeed, this is pre-
cisely the manner in which the transformation contra-
gredient to a given transformation is defined.

Let us, then, perform a unitary change of basis

= X Cpga®dB(n) (IIL28)

XBB {\: B\=B}

in £, introducing a new representation specifying the
total angular momenta B whose projections are B.
x symbolizes a set of quantum numbers chosen in any
suitable fashion so as to complete the specification of
the state. Since C is unitary,

> Copa'Criwp =0(x2")8(88"),
{\: B\=B}

where, as usual, Ct= (C*)T.

7 Let u:eU, v;eV be vectors in two different spaces. Defining the
“inner product” (We31, p. 12) #;v; of these vectors, we ask how
changes of basis

(I11.29)

i’ =Agur, v'=Bav ]

in U and V, respectively, must be related in order that the inner
product remains invariant. In fact, #;"s;"= A Bauwvi=wuv; if and

only if
A;1Bi="0x. (ii)
ATB=] or B=(AT)™. (iii)
This matrix (or transformation) B, constructed explicitly so that
the inner product is invariant under a ehange of basis in U and a
suitably related change of basis in V, is referred to as the matrix
(or transformation) contragredient to A.

If A is unitary, as is the case in quantum-mechanical applica-
tions, we have, by definition (A7)*=A4"1, and the contragredient
matrix (or transformation) (iii) becomes

B=(AT)1=A4*

In matrix form,

@v)
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The contragredient change of basis must now be
carried out in the linear vector space ® We therefore
define the state of p™ " complementary to (II1.28) to be

W = 2 Ca*&B(N—n).
XCB'B {A\e: Bye= —B}

It might be argued that (IIL.24) already implies a
definition of complementary states in a general repre-
sentation, simply by taking the same linear com-
binations of states of p* and p¥—* which are comple-
mentary in the m, representation. We would -then have
defined the same term in two different ways, not ob-
viously equivalent. Two attitudes are possible.

()’

(ITL.30)

D2 (=P
2, 0
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(1) We may regard (II1.24) as applying specifically
and exclusively to m, representations and refuse to
admit the word ‘“‘complementary’” has any meaning in
more general representations. We are then at liberty
to assign such a meaning through (III.28) and (III.30).

(2) We can, alternatively, treat (II11.24) as a ten-
tative definition of complementary states to be super-
seded by (II1.30).

It is not important which of these attitudes we adopt.
Our main concern is with showing that the intuitive
picture of the hole-particle correspondence in the m,
representation leads to Racah’s relation (III.35). Our
subsequent work uses (II1.35) exclusively.

Equations (III.28) and (III.30) can now be inverted
and substituted in (II1.27) to obtain

:B\=B B -B
N -3
=( ) ST (- 1>ﬂa<xﬁx'ﬁ'>’ '
n ’B’ °8-8
Oz €
n B

(IT1.31)

(IT1.32)

noting that (C*)t=C7 and using (II1.29) to obtain (ITL.31).

We introduce, finally, a coupled representation

N\—3
(5% = (n ) = (- 1>B—ﬁC[ﬁﬂo;B,—B]
0

N\ .
N (n %‘; L1 % A
[0}

-(;) ze

Equation (II1.33) is obtained from
C[880;B,— B]=(—1)*2[5],

while (ITI1.34) emerges on noting that the summand in
(ITI1.33) is independent of B, 3 p giving the number
[8] of distinct values of B for a given 8. In abbreviated
form,

N\ %
\p(s*)z( ) Y [a? (117.35)
n a

(II1.33)

% ) (IT1.34)

o]

Equations (IT1.34) and (III.35) are identical to the
expression in terms of which Racah (Ra42) originally
formulated the hole-particle correspondence.

In (II1.28), a new representation is introduced in the
linear vector space £ spanned by the allowed states of
p" by means of a transformation which is unitary and
specifies the angular-momentum quantum numbers 3,
but which is otherwise arbitrary. Once a choice of
representation in £ has been made, however, (II1.34)
or (II1.35) completely fixes the contragredient repre- |
sentation in the vector space & spanned by the allowed
states of p¥ . In other words, although the relation
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between representations in £ and ® is uniquely deter-
mined, considerable freedom remains in selecting either
one.

The customary way of constructing the antisymmetric
states of the p shell involves the use of a parentage
chain and has been described in Sec. III.4. In this
section we have been proceeding quite differently. The
functions of p” have been formed explicitly by writing
them in an m, representation and then applying a
specific unitary transformation of the form (III.28).
It is obvious that the hole-particle theorem just derived
ddes not depend on how we choose to specify the states
of p*. If we do so in terms of a given set of cfp, then
(II1.34) or (IIL.35) specifies the contragredient repre-
sentation in p¥—*, just as before. As » runs through all
values appropriate to the p shell, so does N—#, and
(I11.34) or (II1.35) implicitly defines a “‘contragredient”
set of cfp in terms of the original set. We shortly express
this relation between cfp quite explicitly. The single
sign, pertaining to all functions in the p shell, left free
by the original set of cfp, can now be regarded as that
of the closed-shell function ¥ (S*).

Let us therefore suppose that we possess a standard
set of cfp covering the entire p shell. A complete set of
functions, to which we refer as the “normal” or £ set,
is thereby defined, to without a single unimportant
sign, for all values of » appropriate to the given shell.
A general function of the £ set may be written

¥, L (n)= = . (IIL.36)
a xB

Equation (II1.34) or (II1.35) defines a second complete
set of functions, the ‘‘contragredient” or ® set, in
terms of the £ set. A general function of the contra-

() 500

Ny}
—_ (n Z [a]§<pN—nac,pN——n—lec>(R(_ 1)n+1
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gredient set is

T A (N—n)= = (IIL.37)

a¢ X

¥, ®(N—n) is the complement of ¥,£(#).

Let us now extract from (IIL.35) an explicit ex-
pression for each ® cfp in terms of the cfp in £ con-
necting the complementary states. The desired ex-
pression is independent of the sign of ¥(S5*). We start
from (II1.37) by separating particle ##-1 from the
function

at

To do so, let us observe that

{n+2,n43, -+, N—1, N, n+1}
=P{n+1,n+2, ---,N—1, N},

where P is a permutation operator which passes #+1
over the other N—#—1 numbers. Thus, P is a product
of N—n—1 interchanges and its parity is

(= D)¥-mi= (= 1y

Thus, according to the prescription described in Sec.
II1.4, following (III.23),

]
’.(-ww ’, (111.38)

We therefore have, from (II1.35),

(&

Pin+1)

Pin+1)

Ny~
=([) D mar] o e aptesea) (e ,
n aee’
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where the first step utilizes (II1.20) and (II1.38), and the last is a simple application of the recoupling rules
(IIL.5) and (II1.7). But the Racah coefficient is given by U (apO¢: €'a) =5(e€’), whence

N\ —# !
\I,(S*) —_ (n ) § [aJ}<pN—nacle—n+lec>(_ 1)p+e—a+n+l % .

Pine)
(IT1.39)

o

Observe that, since the pairs (cxe) and (a‘e) are in one-one correspondence, we can omit the superscript ¢ in

summations over a°, €.

Let us now replace # in (II1.35) by #+1 and apply (II1.20). We obtain

() 500

) (111.40)
Pln+1)

¥
= € [}p"He | pra)® .
("+1 L A@

It is clear that (ITI1.39) and (III.40) have the same
form. Equating coefficients, we obtain the desired
expression

(pN-—'nac l pN—n——lec>(R
(p™Hle| p"a)®

= (_ 1)n+1+a—e—p[

(n41)(2¢+1)

3
—-———] . (IIL41)
(N—1)(2a+1)

A considerable freedom of choice has been left in
definining the functions of the normal or £ set, cor-
responding to the many possible ways of defining the
nonangular-momentum symbol # in a= (x8). We might
try to turn this freedom to advantage by demanding
that the entire set (for all #) of basic functions
V,%(n) be characterized by the same array of
quantum numbers o as the entire set of functions
¥, (n).

Let us state this requirement in a different way. Each
state of p” in the £ representation is characterized by a
set of quantum numbers a= (%8). The complementary
state of p¥ " in the ® representation then has the
quantum numbers o°= (x%3). We demand that x be
so defined that (x¢8) also labels a state of p¥—" in the £
representaiion. If this can be done for all states (x8) in
the p shell, then the basic functions in £ and ® can
differ only in sign. It is not obvious that such a choice
of representation is possible.

In practice, the symbol x nearly always refers to
irreducible representations of the unimodular unitary

o

group or of one of its orthogonal and symplectic sub-
groups (Ra49, Ja51, Ra51, F152).% The desired relation
between bases in £ and ® is then fulfilled as a direct
consequence of the way in which complementary repre-
sentations are defined. A full discussion of this point
would require a description of techniques (Li50) for the
reduction of outer products of representations into
irreducible components, and is therefore omitted.

Representations which do not satisfy this extra
requirement are very inconvenient and are therefore
seldom used. Each list of cfp employed in this study
defines a normal set £ and, by (IIL.35), a contragredient
set ® whose basic functions are labeled by the same sets
of quantum numbers.

All allowed states of the p shell now fall into two
classes according to whether

(4) ¥ (n)=¥a(n)
or (TI1.42)
(B) ¥.°(n)=—¥,%(n).

This classification is uniquely defined by (II1.35) (for
suitably specified «x), independently of the sign of ¥ (S*).
Reversing the sign of ¥(S*) interchanges the two
classes (4) and (B) but leaves the division into classes
invariant.

It would be quite practical to express the ®& cfp in
terms of the £ cfp simply by listing explicitly the

8 The space symmetry quantum number is included in this

statement by virtue of the intimate connection (We28, Bo55)
between irreducible representations of the unitary and symmetric

groups.
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assignment of each state in the shell to the appropriate
class (4) or (B). This, we prefer not to do; Eq. (II1.41)
turns out to be a more useful link between £ and ®.
In fact, we are less interested in possessing two alter-
native representations than in making the cfp of one
standard set, for < 2V, suffice in all our considerations
throughout the entire shell. We now examine this pos-

sibility in more detail.
In Sec. ITI.2 it was remarked that the three central

problems in performing shell-model calculations are the
construction of antisymmetric functions and the evalu-
ation of the matrix elements of symmetric one- and
two-body operators. Having discussed the hole-particle
correspondence in the light of the first of these problems,
let us, for completeness, turn our attention briefly to

the other two.

&

a result first obtained by Racah (Ra42).

(TS e
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Consider, then, a symmetric one-body operator

N
TA=3" T2(3).
i=1
If we define
n N
TALe]=3 T%(G), T[®]= X T(3),
=1 t=n+1
then
TA=T LT+ T ®], (I11.43)

where T'4(z) is a multiple tensor of rank A in the
(product) space of the ith nucleon, and the bracketed
£ and @ refer to the vector spaces and not to the par-
ticular bases selected therein. Starting directly from
(I11.35), it is easy to derive a relation® between the
reduced matrix elements of T2[£] evaluated in the £
set and those of T2[®] in R:

Tﬁl' > (IT1.44)
a (4

Equation (IIL.41) leads to a similar relation for the symmetric two-body operator

N
G= 3 Gy

i<y=1

a

where

i N
GLel= X Gy, G[R]= X Gy, g,®=

1<j=1 1<j=n+1

and the summation extends over all the allowed states
of p%. Notice that G[£] is a scalar operator so that all
matrix elements nondiagonal in the angular momentum
part of a vanish. Furthermore, the diagonal elements
are entirely independent of a and are, for many pur-
poses, of no consequence.

We conclude this section with a summary of the
procedure to be followed in shell-model calculations
within the p shell. The first step is to define a complete
set of antisymmetric states in terms of a suitable
standard set of cfp. This we define in the following
fashion:

(1) n< 4N In the first half of the p shell, the standard
cfp are taken to be those of some suitably chosen
normal or £ set.

(2) n>%N. In the second half of the p shell, the
standard cfp are those of the corresponding contra-
gradient or ® set, given explicitly in terms of the com-
plementary standard cfp for < 3N by (II1.41).

s, " > =6<aa'>[2~"];—N];mg¢¥>+ <

e y e
AR

In the 1p shell, the standard cfp for #< 6 are conven-
tionally taken to be those given by Jahn and van
Wieringen (JaS1), with the amendments enumerated by
Elliott, Hope, and Jahn (E154). These amendments
must be made both vertically and horizontally in the
original table of cfp. For various configurations j», we
use the cfp tabulated by Edmonds and Flowers (Ed52).

Having thus specified a suitable basic set of antisym-
metric states of the p shell, we proceed in the usual way
to construct and diagonalize the matrix of the Hamil-
tonian (III.2) and to use the eigenfunctions so obtained
to calculate the matrix elements of operators of physical
interest. All the necessary calculations in the second
half of the shell can be reduced to the complementary

¢ Strictly, (II1.44) holds only for Hermitian tensor operators,
those whose components satisfy T,tk=(—1)2(T,*)!. For non-
Hermitian tensors, the right-hand side of (IT1.44) should be modi-
fied by TA[®R]— TH[®]and (|| [y)—(|| [)*. We do not have
occasion to deal with non-Hermitian tensors, so that (II1.44)
is of adequate generality.
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ones in the first half of the shell with the aid of (II1.41),
(II1.43), and (III.44). It is therefore clear that standard
cfp need be tabulated only for < 3N.

Some specific examples of the techniques and
theorems of this section are given in Sec. ITI.9. Possible
ways of checking calculations against phase errors are
discussed. In particular, we demonstrate the value of
LS — jj transformations in locating errors in calcula-
tions performed in an LS representation.

6. Antisymmetric States for Nucleons
in Different Shells

Let us now consider a group of particles not all of
which belong to the same shell. In principle, we could
construct antisymmetric states by adapting the paren-
tage formalism of Sec. III.4. We use, instead, a hybrid
procedure wherein fractional parentage is used within
the equivalent groups, while antisymmetry between
these groups is handled directly.

We start with the set of functions

, (I11.46)

r

which are mutually orthogonal and normalized. It is
important that p and p’ define orthogonal single-particle
states. This would not be the case, for example, if p
referred to neutrons and p’ to protons, and a different
radial dependence were assumed for neutrons and
protons.

The antisymmetrizing operator for the symmetric
group S, is

1\}
A,,=(— > (=)P,. (I11.47)

n! reSn

We can construct an antisymmetric function from
(IT1.46) directly by applying the antisymmetrizer
A pym for Snym. But of the (n+m)! functions which are
generated from (II1.46) by permutations of Syym, all
those sets wherein the same # particles are in the p shell
and therefore the same m particles are in p’, contain

- [(:::i) I

The extension of this technique when there are more -

r

than two groups of equivalent particles can be carried
out immediately.

In practical applications—those which involve the
setting up and diagonalization of energy matrices—the

605

functions identical to within a sign. This fact, which
stems from the antisymmetry of the separate equivalent
groups, suggests that a simplified antisymmetrizer can
be found in this case.

Let us, therefore, define an order-preserving per-
mutation as one which, when operating on ®,(12- - - %)
X®Pa(n+1- - -n+m), leaves the integers inside ®; and
®, separately in ascending order. Thus, if all (n+m)!
permutations of S.i» be divided into sets such that
two permutations belong to the same set if and only if
the functions arising through them from (II1.46) are
the same, then it is obvious that each set contains one
and only one order-preserving permutation. Spym

contains
n+m)
n

order-preserving permutations with respect to the
partition {12---n:n+1-- -ntm}.
Let us introduce the operator

nlm! 7}
Quim= " (- T-Pr,
* [(n-f—m)'] r::_n:m( )

where 3’ indicates a summation over order-preserving
permutations in Suim. The composite permutation
operator

(IIL.48)

CnimAnAm (II1.49)

consists of a linear combination of permutations of
Snym- Manifestly, each term is distinct and there are

(n.:m>n!m!= (n+m)!

terms. Since the parity (—)” looks after itself, the terms
in the linear combination (III.49) are identical with
those in Anym. Finally, the normalization factors are
the same, yielding the operator identity

an—{-m»A nA m= A n4-me

However, since the wave functions for the groups p*,
p'™ in (II1.46) are separately antisymmetric, 4, and
A reduce, effectively, to unit operators. Thus, @uym is
itself a simplified antisymmetrizing operator for the
function (II1.46), yielding for the desired normalized
antisymmetric function,

(I1I1.50)

S (=), . (IIL.51)

reSn+m

large dimensionalities encountered render (III.51)
somewhat academic, with two important exceptions:

(1) when one of the shells contains a very few (<3)
nucleons or holes;
(2) when n+m itself is small (<3, or 4 at most).
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In the first case, (IT1.51) is both usable and convenient.
In the second case, (II1.51) is also quite practical, but
it may be preferable to use an extension of the parentage
techniques of Sec. II1.4 [see, for example, the work of
Elliott and Flowers (EI55a) on A=18 and 4=19].

We also see, in Sec. III.7, that (IIL.51) and its
generalizations can readily be used to set up general
expressions for relative reduced widths.

Y

I(n) and 8$(n) refer to the transferred nucleon, ¢ 2 and
co symbolize the precise representation used in con-
structing wave functions, and z.is the channel spin. # is
the number of antisymmetrically coupled particles in
the heavier nucleus identical to the transferred nucleon.

In this and ensuing sections we solve the problem of
evaluating 8 with a variety of assumptions concerning
the shell-model wave functions. Simple explicit ex-
pressions are given. It is important to bear in mind
that the simplicity involved refers to the calculation of
relative reduced widths from wave functions which are
already known. Often, the more difficult problem is
that of calculating reasonable wave functions. There are
therefore many transitions for which we cannot obtain
reliable relative reduced widths, in spite of the existence
of very general expressions for 8.

The task of constructing shell-model wave functions,
particularly for nuclei with 4> 30, is frequently made
easier by treating neutrons and protons on a separate

<

The necessary change of representation is achieved by

| m Sm=2 (FVHTURT 5)
J
J

Substituting from (II1.55) in (IIL.52) and (IIL.53),
we have

S)=n3 9(2)*9(2)
=n Z,(— 1)U (3] : 72)
XUILToT : j'2)9%(5)9()
=n2 (=1)778(j7)* (NI,

10 This meaning of ¢ should not be confused with its significance
in connection with complementary states.
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7. Shell-Model Expressions for §

It is recalled that the relative reduced width, or
spectroscopic factor 8, was defined in Sec. II, Eq.
(I1.15), as

8D=n2 |9(2)|* (I11.52)

with

(111.53)

footing. The definitions (II1.52) and (II1.53) can then
still be used, with these qualifications:

(1) The isotopic-spin coupling factor (C)? in
(I1.19) must be handled in the fashion described in

Appendix 1.
(2) The diagram in (IIL.53) or (IIL.54) must be

generalized [see (II1.78)].

(3) Due regard must be paid to the fact that », in
(TI1.52), signifies the number of antisymmetrically
coupled particles identical to the transferred nucleon. If
we are using the isotopic-spin formalism, # is the total
number of active nucleons in [4+17. Treating neutrons
and protons on a separate footing and considering, for
example, a (d,p) reaction, » is the number of active

neutrons in [4+1].

Another convenient representation is that in which
j(n) rather than z is specified. (z) is then replaced by

(I11.54)

1(n)

sm.

making use of the unitarity of the transformation
induced by normalized Racah coefficients. Performing
the summation over j yields

sO=n3 [5G,

(IIL55)

(1I1.56)

with no interference between different values of j. We
often rewrite (II1.56) in the form

s)=X s(tj) (111.57)

or some modification thereof.
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General expressions for § are now derived which apply
to the antisymmetric states of any pure configuration.
We use the j rather than the z representation. Some
special cases of interest are mentioned explicitly. It is
then demonstrated that the separate treatment of
neutrons and protons introduces no new complication,
and a very simple prescription is given for dealing with
mixed configurations. Throughout, the direct-product
notation of Sec. ITL.3 is used. Although the same might
be achieved by means of an appropriate formal modi-
fication [see Sec. IIL.3, Eqgs. (II1.14) and (III.15)], we
prefer to consider separately the case of LSJ repre-
sentations.

A case which is sufficiently general to embrace most
situations of practical interest may be symbolized by

5(pa)=/
N

Let us first manipulate the wave function on the left:

= @mi+natns 2 (ps™az | ps"s~lorg

o3

o3y

The appropriate antisymmetrizer is defined, as in
(II1.48), by
@n1+n2+na=[ >

reSn1+na+4ns

mlnglng! P
] (=1)rP..

(n1+n2+n3)!

= Qny+n2+(n3—1)

NUCLEI

607

(IIL.58)

where { X }r indicates vector coupling to a resultant T,
and, as explained in Sec. III.3, p stands for either of the
cets Nlj or Nijt. Let us emphasize that the single-
particle states pi, p2, and pszare taken to be mutually
crthogonal. From (II1.54) and (IIL.56), the relative
reduced width for this transition is given by

8(p3)= (m1t+nat+ns)| (ps) |3

: (IT1.60)
s) /

(I11.59)
where

r

=@ (ps"“aalps"““‘a.e)U (BosTps: yas)

(ITL.61)

r

The last two steps leading to (III.61) involve, suc-

cessively, application of Eqs. (II1.20) and (IIL.7).
Again modifying (III.48) in a suitable way, the

function on the right-hand side of (III1.60) becomes

&

; (I1T.62)

T

(7
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where

Qny+ng+(ng—1)

Z/ (—')SP&

m!nz!(m— 1)' :r
seSn1+natns—1

—[(n1+n2+n3— 1!

It only remains to decide how many of the regular
permutations on each side of (III.60) can contribute,
and to add all contributions. Let us do so in five steps.

(1) In the wave function on the left-hand side of
(I11.61), only those regular permutations can con-
tribute which leave particle (#;+#n2+#3) in the ps shell.
This is a direct consequence of the orthogonality of

different single-particle states.
(2) For the same reason, all contributions to the

overlap integral are diagonal in the permutations P,.
(3) These diagonal contributions are all equal since
they cannot depend on the particular way in which the
particles are labeled.
(4) According to (1), the contributing terms on the
left-hand side are simply those permutations which are
order-preserving relative to

{1,2,3, -+, ni:m+1, ny+2, -+, nytn,:
nitngtl, - oo, mtnatns)

and leave #1+#5+n3 invariant. These permutations are
obviously order-preserving with respect to
{1, -y mimt1, -y mtnet 1, o mabngtng—1},

and are therefore in one-one correspondence with the
terms, given by (II1.62), on the right-hand side of
(II1.60). There are, accordingly,

(m1tnetns—1)/nlnsl(ns—1)!

equal contributions.
(5) Each equal contribution involves the overlap

integral of the wave functions on the right-hand side of
(I11.61) and (II1.62), and this is clearly equal to
8 (u101)8 (a8 (8B")8 (0305 )6 (vy").

Collecting points (1) to (5) and remembering the
normalizing factors in the antisymmetrizers, (II1.60)

leads to

21 n9l0,!

nylng! (n3—1)! ]*
(n1+n2+ﬂ2) ! (%1+7L2+%3“‘ 1) !

(n1+n2—l-n3— 1)'
—_— UZ; (ps™as| ps™s~o3)

9(P3)=[

%1!%2!(%3—' 1)’
XU (BasTps: yas)
X&(aiasBoyy: ar'ar’B'os’y’).  (II1.63)
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We have introduced the abbreviated notation
6(a1a20;5- - - : aaday’ - - )= (6(a1a:")6(a202)6(asay’) - - -

for a product of Kronecker deltas.
The summation in (IIL.63) can be performed ex-
plicitly, and the final result is

9(p3) = [n3/ (m1+ns+n3) 146 (crasB: ar’as’8’)

X{ps™asz| ps" oy’ YU (Bos'Tps: y'es).  (111.64)

From (IIL.59), the desired spectroscopic factor is

$(p3) =ns{ps™as| ps" oy’ )2

X U(ﬁlo'gppai 7’&3)26(0(101261 al'ag’ﬁl). (III65)

That an orthogonality condition for the quantum
numbers of the inert groups of nucleons must emerge
is obvious. All the relative reduced widths which we
write down in the remainder of the article are diagonal
in such quantum numbers.

With this minor reservation, we see from (II1.65)
that the inert groups of nucleons (p;™ and p,”2) influence
the spectroscopic factor § only through their total
quantum number 8. In particular, although the total
number of antisymmetrically coupled particles appears
in the original definition (II1.56) of 8, it is the number
of equivalent nucleons in the group to which the trans-
Jerred nucleon belongs that emerges as a multiplying
factor in the final expression. In other words, with an
obvious notation,

”"*PJ

=5{ “"B X ps}-

If the inert groups happen to be coupled to zero
(8=0), it is obvious that the relative reduced width for
the transition (II1.58) reduces to

X, }

(00—

Thus a set of zero-coupled inert groups of nucleons is
devoid of influence on the relative reduced width. The
most frequently encountered case of zero-coupled
groups is that of a number of closed shells.

A slightly modified version of the general case just
treated might emerge if we wished to transfer a particle
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from the p; or ps shells. Consider, then, the transition

(IT1.66)

A few applications of the basic recoupling rules
(I11.5)-(II1.7) suffice to reduce this case to the one
whose general solution has just been obtained. Substi-
tuting from (II1.65), we encounter a one-parameter
sum over products of three Racah coefficients, which
may be carried out with the aid of Biedenharn’s sum
rule [Ro57, Egs. (I1.6)—(II1.15)]. Let us recall that,
because of the commutativity of finite summations,
recoupling can be carried out inside the antisym-
metrization symbols.

The results are

9(p1)=[m1/ (mi+ngtng) J}(—1)=T=or"+’
X {p1ma1 | priloy YU (Basproy : art’)

X U(pl‘r'l‘aa : B‘y') (III.67)
and

8(p1) =n1{pr™a1| p1™ a1 Y2U (Basproy : art’)?

X U(p17'Tasz: fy')2.  (IIL.68)

It is easy to carry out a similar calculation for the
case of transfer of a ps nucleon or, more simply, we can
apply the necessary coupling transformation (only a
phase factor) to bring us back to the situation covered
by (I11.67) and (III.68).

() Role of Closed Shells

We have already remarked that any set of inert
groups of nucleons, whose total angular momentum
quantum numbers are zero, has no influence on relative
reduced widths. The commonest case of this type, where
the relevant inert groups are closed shells, is worth
writing down explicitly.

If ni=[p1]=Ni, ne=[p2]=Ns, we have seen in Sec.
ITT.5 that the p; and p; shells are closed. Equation
(II1.58) then reduces to

(I11.69)
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The Racah coefficient in (II1.65) being unity, we have

S(p3) = n3{ps™asz| ps+ 1oy’ )2 (I11.70)

This, however, is precisely the relative reduced width
for the transition

1 G o
3 .

as follows immediately on equating both #; and #. to
zero in (IT1.65). We conclude that, in evaluating relative
reduced widths, we are justified in ignoring inert closed
shells. We do so consistently in the rest of this study.

The preceding conclusion is even more apparent if
only the p; shell in (II1.58) is closed. In this case, the
very form of (III.65) is unchanged.

(b) Addition of an Inegquivalent Particle
to an Equivalent Group
If, in (II1.58), we put
m=0 ne=n nz=1 }
pe=p ps=p" |’

Eq. (II1.65) gives the spectroscopic factor for the
transition

~( €fsrtom

Since the Racah coefficient and the cfp in (ITIL.65) both
reduce to unity, we obtain the well-known result

8(p")=1. (II1.73)

In practice, the equivalent nucleons p” in (p"’)r usually
do not couple to a single value of s, the extra particle
p’ having the effect of exciting the equivalent group.
Instead, we have

ch A |
r
and the relative reduced width for transfer of p’ becomes
$(")=|K(0)|?< 1. (I11.73")

Thus, from a reaction wherein an inequivalent nucleon
is separated from (or added to!) an equivalent group,

- we obtain a direct lower limit for the corresponding

single-particle reduced width.

11 Here we are discussing only excitations within a single con-
figuration. We see repeatedly that there is no difficulty in cal-
culating 8 between linear superpositions of states. The intro-
duction of mixtures of excited configurations is only one such case.
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The case $=1 occurs when p” contains a unique state,
as in all cases where the p shell contains a single particle
or a single hole. If several amplitudes K (o) occur in
the wave function of [4+417], but all except one are
very small, then 1. In such a case we may say that
the inequivalent nucleon is “weakly coupled” to the
equivalent group. We develop this idea of weak coupling,
first discussed by Lane (La55a), in detail in Sec. IIL.11.

While dealing with (II1.72), we should also consider
the closely.related transition

A - xp

r
(I11.74)

This is one of the special cases embraced by (III.68),
whence -

$(p)=nlp|p"7')2U (07'T0’ : y)?
which, apart from the notation, is the same as (II1.20)
in Fr60. ’

(II1.75)

(c) Hole-Particle Theorems for Reduced Widths

The hole-particle correspondence described in Sec.
III.5 leads us to expect a simple connection between
the relative reduced width for the transition

-

(A — | Gl
a

and that for the complementary transition

~v

— X :
ag a® Pf c
Qo

To derive the relevant hole-particle theorem, let us
use (II1.70) to write

S(na— n—1, o)

S(N—n+1, a® > N—n, af)
n<pnalpn—la0>2

_(N— 1) (p¥—Hay?| pV-ne)?

If we now express the wave functions for p™ and p™* in
the normal or &£ set, those for p™—*, p¥—7+! in ®, we can
use (IT1.41) for the ratio of the cfp, whence

S(N—n+1, as® = N—n, a°)
=[a/a]$(na— n—1,a0) (IIL76)

agreeing with (II1.29) of Fr60.
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Equation (II1.76) reduces the calculation of reduced
widths for transitions in the second half of a shell into
the complementary problem in the first half. As such,
it rounds out the considerations of Sec. III.5.

In addition, (IIL.76) is very useful in Sec. IIL.11,
where we discuss sum rules. :

It is easy to see that the presence of inactive groups
of particles in different shells does not disturb the
foregoing hole-particle theorem. In fact, the relative
reduced widths for the transitions

(G,
(R

are related by the appropriate modification (II1.76’) of
(II1.76). The presence of the group p’” only produces
an extra recoupling factor, which is U(Baolp: ya)? in
the first case, and

U (Baryp : Tag)*= [Tao/vaJU (Baolp : ya)?,

in the second. For the p nucleons, (II1.76) holds, so
that, taking account of the minor difference in the
recoupling factors, we have

and

S(N—=n+1, apy = N—n, aT)

=[T/y18(n, ol = n—1, agy). (IIL.76")

The appropriate modification therefore consists solely
in introducing the total quantum numbers I' and # in
the multiplicative factor. Otherwise, the inactive groups
are devoid of influence. It is interesting to notice [see
Sec. I11.8, Eq. (II1.102)7] that a hole-particle theorem
of precisely the same form as (III.76) and (II1.76)
emerges in LSJ representations.

(d) Separate Treatment of Neutrons and Protons

The general results (II1.65) and (II1.68) can be
applied directly only to transitions connecting initial
and final states which are antisymmetric in all particles
involved. Suppose, next, that a neutron is added to a
state of the configuration

[{“’1"“"2’2}1»{P1"1P2"2} n:l-
Specifically, let us calculate

8(p2)= (m1+n2)| g (p2) %, (IIL.77)
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e

where

611

(I11.78)

It is immediately obvious that the inactive group of protons influences 8 only through the total quantum number
Bp. Let us then contract the proton portion of (IT1.78) to its bare essentials and consider the overlap integral

o= <,/ &?
) r

In order to reduce this to a case covered by (IIL.65),
it is only necessary to specify 8, rather than v in the
right-hand wave function. According to (IIL.7), the
necessary transformation is expressed by the Racah
coefficient U (Bpelps: vB,). Use of (II1.65) with n;=0
then yields

8(02) =na(pz"az| po" 02U (Bpelp2: ¥Bn)?
XU 10983+ €as)?.  (TT1.80)

This example is sufficiently general to demonstrate
that the separate treatment of neutrons and protons is
covered by the general results (II1.65) and (IIL.68), to
within a recoupling transformation which can be written
down at sight. Let us note that in the direct-product
symbols in (IIL.78) and (IT1.80) no isotopic-spin factors
appear, since we are using wave functions in a language
which treats neutrons and protons as separate entities.

(e) Superpositions of Basic States

In this section we have shown how to calculate
overlap integrals and reduced widths connecting basic
states of jj representations. In practice, we usually
wish to deal with wave functions which are linear com-
binations of basis elements. This can be handled very
easily, as we now demonstrate.

The overlap integral, and hence, by (II1.56), the
relative reduced width, for the transition

®r(r) — {¥ro(s)Xp}r

connecting basic states of our representation can be
calculated by the methods of this section. We obtain
thereby an expression for

rs(p)=(@r(r) | {¥ro(s)Xp}r).  (IIL81)

Let us now suppose that the states ®r and ¥r, in
which we are interested are linear superpositions of the
states of the representation, according to

$r=Y K, *or(r), ¥ro=3 K,"¥ro(s). (ITL.82)

| ‘é(n,onz) >

(II1.79)

Simply substituting (II1.82) in (II1.81) yields the
desired result

9(p)= Z KrPKsrogrs(P)- (11183)

Since we always deal with real coefficients K, the
complex conjugation on K,® in (I11.83) has been
omitted.

This procedure is by no means restricted to j4 repre-
sentations. It applies to all transitions connecting states
whose wave functions are linear combinations of con-
stituents which are connected by known (i.e., cal-
culable) overlap integrals. Indeed, the process of taking
linear combinations is so simple and obvious that we
usually content ourselves with an evaluation of the
individual overlap integrals to the right of (II1.83),
taking the final step for granted.

We are now in a position to calculate the relative
reduced width for any transition connecting states for
which shell-model wave functions are available. This
last proviso is, as we emphasized at the beginning of
this section, an important one, since the problem of
obtaining suitable wave functions may well be harder
than that of calculating the resulting spectroscopic
factor. From a reduced width, however, we can some-
times deduce an amplitude directly, particularly in the
case of transitions involving two contributing / values.
An example of such a determination is given in Sec. IT1.9
(see also Pa58 and Fr60, Example 15). Thus, even in
mass regions which are spectroscopically obscure, a
reduced width may give us information about the
nuclear wave functions.

Since -the relative reduced width is proportional to
the square of g(p), it is clear from (II1.83) that the con-
tributions from the various basic states add coherently.
This- has the important consequence that a small
observed reduced width may not be recognizable as due
to the operation of some general selection rule.
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8. Calculation of § in LSJT Representations

The cases of practical interest to which the results
of Sec. IIL.7 are directly applicable are those of jjJ
representations, with or without the isotopic spin 7.
We now show how to handle the calculation of relative
reduced widths when the relevant overlap integrals
involve wave functions in an LSJT or LSJ represen-
tation. As we saw in Sec. II1.3, such representations do
not permit the use of a simple direct-product notation,
but can be accommodated by a straightforward formal
modification (ITI.15). We prefer not to use this adapted

J(@)=

M. H. MACFARLANE AND ]J.

B. FRENCH

product notation here, although it would be entirely
feasible to do so.

No formal advantage is gained by specifying the
value of j for the transferred nucleon when LS wave
functions are used for initial and final states. Further-
more, in situations where the use of an LS representation
is more convenient, we usually expect the two different
7 values for each !/ to participate on a more or less equal
footing. We therefore prefer to use a channel-spin repre-
sentation [ (II1.52) and (IT1.53)], the relevant overlap

integral being
d .'(ﬂ> )

S(n)

(111.84)

where a and g label the quantum numbers necessary, in addition to LSJ, in a complete specification of the

states involved.

It is now easy to see why things are a little more complicated than they were in Sec. III.7. The difficulty is
simply that when we proceed, as usual, by inserting in (III1.84) the parentage expansion

¢ g = X
A @ ag’ Lo’ So’ T/

J

for the wave function on the left, we see that neither
z nor Jy is specified. An extra recoupling is therefore
necessary. Observe that the parentage expansion
(IT1.85) has not been affected by specifying J.

With the aid of the recoupling rules (II1.5)-(III.7),
Eq. (II1.85) can be suitably transformed to yield, for
the wave function on the left of the overlap integral
(111.84),

Z (— 1)Z+L“I+L<aLST|Ol(]IL()IS(),T()’>
ao’L?",&)'Tn’
2'Jo

U(lLo’]S: LZI)U(LUISOIZSZ ]()IS)

' . (111.86)
t(n)

The overlap integral between the wave function in
(T11.86) and that on the right-hand side of g(2) in
(I11.84) is

5(&0L050T0]oz . ag,Lo,So/To'Jo/Z’).

<aLST'a0,Lu’SOIT0,> |l\-|

I (n) e

’

QoL

® (I1L85)
TI1.85
t(n)

E} T

so that
9rs(2) = (= 1)HLALLST |aeLoSoTo)

XUQLJS: Le)U (LoS28: JoS), (I11.87)

where r= {aLST}, §= {OLoLoSoTo}.
In all cases of interest we deal with wave functions

of the form
Bry(IM)= > Karsr'®arsrs ()

aLS

(ITL.88)

with a similar equation for ¥re/o(l*!). The overlap
integral g(z) between such states can be written down
from (II1.83), the J.(z) between basic states being
given by (ITI1.87). We conclude that

8§(D=n2 9(z)* (I11.89)

and

9(z)=

Jo(_ 1)l+Lo+L
apLoSoTo

2. Kast’'K

aLSagLoSo
<aLST‘a0LoSoTo>U(lL0]S: La)U(LoS28: ]oS) (I11.90)

This expression has been given by Lane (La53),
Satchler (Sa54), and Auerbach (Au54, 55). In the
latter reference and in Fr60, our §(z) is referred to as 8..
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Since z= Jo+8 and $=4, there are at most two terms

in the sum over z in (II1.89). For example, in the case
Li’(d,p)Li8 when Jo=$%, we can have =1 or 2, provided
that the spin J of the state in Li® is such as to satisfy
A(2lT), with I=1. For example, a state with J=3 could
only be attained by z=2. When Jo=0 there is only
z=1. .

The fact that contributions from the two different
channel spins add incoherently has the consequence
that measurements on angular distributions alone
‘cannot distinguish between channel spins. In order to
measure relative values of different terms g(z)?, recourse
can be had, in principle, to studies of (d,py) angular
correlations. We encounter an example of this later in
our discussion of the 4 =38 polyad.

It is useful to regard (I11.90) as a matrix equation

J(2)=K(8:)*K", (I11.91)

where K is a row vector, K7 is a column vector, and
(B2)* is the rectangular matrix

(B4 = (—1)HEot (o LST | oL oSoT o)

XU(ILoJS: Lg)U (LoSe28: JoS). (111.92)

The rows and columns of these matrices are labeled by
the sets of quantum numbers

r={aLST} and s=/{aeLeSeTs}.

There is a separate matrix (8,)* for each pair of values
u=(JJo) of the spins of the nuclear states involved.
For every u, 7 and s can take all sets of values satisfying
the triangle conditions A(LSJ), A(LeSoJo).

The matrix (8.°)*, whose rows and columns corre-
spond to the sets of complementary quantum numbers
r° and s°, is given, according to (II1.92), by

(Bzc)"__‘ (— 1)1+HL°<ao°LoSoT0|a°LST>

XU(ILT0So: Lex)U (LSx8: JS,). (I11.93)

A striking relation exists between 8, and 8,°. In order
to obtain this relation, we need two auxiliary results.
The first of these involves specializing (II1.41) to the
case of an LST representation:

(¥ @y LoSoTo| N5 a*LST)
<Z"OLLS T , l"-laoL()S 0 To>

= ( — )n+l+1+L+S+T+L0+So+To

% { n[LST]

3
} . (111.94)
(N— n-l— I)EL()S()T()]

Secondly, let us write the Biedenharn sum rule [ (Bi53,
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Ro057 (6-15)7]in terms of normalized Racah coefficients:

U(ZL]()SO : Lox)U(LSx% ]So)
JLoSo7E
= (..)L—l—S+J+Lo+So+Jo+1[ ]
JoLS
X3 U(JolsT : x3)U(ILoJS: L3)
X U(LoSoz%: JoS) (111.95)

noting that §=3%. . .
Collecting (III1.94)-(I11.95), and rearranging the
phase factors,

¥ 3
(B2) pos= (_)n+z+1+J+Jo+T+T°("—11—“) [ = ]
N—n+17 LIT,

X2 U(Jol3T : x3)
X[ (=)ot L{fnq LST | I*~tao LoS| 0T o)
X U(lLo]S LZ)U(L()S(]Z% H JOS)]

We see from (I11.92) that the bracketed term is simply
(B2)r#. The desired relation between corresponding
matrix elements of complementary B matrices is
therefore

7 ]*
N— n-{— 1 JoTo
X3 U(Jod3T : 23) (B.)rs*.  (IIL.96)

3
) (—)m+ l+1+J+Jo+T+To[

(8:),eu= (

The inverse relation follows immediately, by the uni-
tarity of the U function:

N— n+ 1 3 JoTo 3
e —— (_. 1)n+l+1+J+J0+T+To
(8:)rs I

n

XX U(Jol3T : 23) (B2°) rese.  (II1.97)

Since there are, in general, two allowed values of the
channel spins z and x, the unitary transformation
(I11.96) and (IT1.97) connecting complementary ele-
ments of the 8 matrices can be regarded as a rotation
in a two-dimensional space. We now derive the corre-
sponding relation between the relative reduced widths,
bearing in mind that 8¢ and §, with the same amplitude
vectors K and K7, are not usually of interest simul-
taneously, since, if ¥ represents a state I* (or /1), ¥e
does not, in most cases, represent a state of V" (or
{N—nt1) which is physically interesting.

We wish to evaluate the relative reduced width §¢

of the transition
W=ty J T —s [N=n: JT (T11.98)

expressing the respective state vectors K,, K,® of the
states of /N~ and /¥="*1 in the ® set. Equations
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(T11.89)-(IT1.91) then yield
8= (N—n+1)3 9°(x)?
=(N—n+1) z KK KK
XL (B:)rs(B:)r v

(IT1.99)

But, from (II1.96),
2 (Ba)rs (B2
B 7 [‘ JT 1
N—n—+1LJ T
XUJod3T : 22') (B2)rs(B2) e
n [ JT 1
JoTo ]

2 U(Jol3T 2 a3)

2 (B)rs(Ba)rrs (I11.100)

C N—n+1

where the final step makes use of the unitarity of the
transformation (IIL.6). Finally, we use (III.100) in
(I11.99) to give

- JT

80:[ ]’ﬂ X KrKr’KsoKs’o Z (ﬁz)rs(ﬁz)r’a'y (III.lOl)
J()To rlsl z

v's

which can be written in the compact form

SN+ JoTog— IN—n JT)

JT
= [ ]s (r, JT — 1", JoTy). (II1.102)
0L 0

8’ is, by definition, the spectroscopic factor calculated
according to (I11.89) and (IT1.90) using (1) the am-
plitudes of the state vectors (in ®) for the nuclear
levels connected by the transition

IN=wHL J Ty — N~ JT,

and, (2) the 8 matrices (in £) for the complementary

transition
Z", JT — l"—l, JoTo.

In view of (IT1.96) and (II1.102), we require B
matrices only for the first half of the / shell. The con-
siderations of this section leading to (I11.102) may
therefore be regarded as augmenting our collection of
hole-particle theorems [ (II1.41)-(111.45), (IIL.76),
(I11.96), and (II1.102)]. Appendix 2 of Ma59 contains,
in numerical form, the more useful 8 matrices for the
first half of the 1p shell.

9. General Comments : Specific Examples

A reasonable first step in analyzing the empirical
reduced widths given in Tables I and IT would be to
seek general selection rules to explain the smallness of
the reduced widths for certain transitions. Apart from
the requirements imposed by conservation of angular
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momentum and parity, we would be particularly
interested in selection rules having their origin in the
detailed structure of the nuclear states concerned.

Various selection rules are discussed in this way in
Fr60. Here we demand an explicit expression for each
reduced width rather than a qualitative statement as
to its order of magnitude. Particular selection rules
are mentioned when and where they are encountered.

A few numerical examples are now examined. These
are useful later in their own right, but serve in this
section to demonstrate how we intend to use the formal
expressions for reduced widths derived in Secs. ITI.7
and IIL.8.

Example 1.

C2(d,p) — CB¥(g.s) l=1 0,:2~0.04
o+ i
— C1(3.68 Mev) I=1 6%*~0.01.
;—

These reactions were first discussed from the viewpoint
of the shell model by Lane (La53).

Let us introduce the symbol 8, for the relative
reduced width of the ground-state transition, the cor-
responding quantity for the §— excited state being $*.

In extreme jj coupling, the C ground state is
represented by the closed-shell wave function (p35%)o.
The C® ground state is, similarly, (p3%)ops, yielding

8=1,

with the aid of (TII1.73). The jj-coupling wave function
for the 3~ excited state must involve excitation of the
ps closed shell, so that

8$*=0.

From the small value (=%) of the observed reduced-
width ratio 6°*/6,%, we might be tempted to conclude
that j7 coupling is a good approximation for the rele-
vant wave functions. We would not be justified in
drawing such a conclusion, since, as we shortly prove
and illustrate in Fig. 2, the calculated reduced-width
ratio remains small for considerable departures from
extreme 77 coupling. This and several other examples
show that it is dangerous to make statements about
modes of coupling on the basis of single numbers,
unsupported by other evidence.

We now examine the behavior of §, and 8* as functions
of the spin-orbit parameter {=|a|/|K| 1 considering,

2 The “single-particle spin-orbit” shell model has been used
extensively in studies of the 1p shell (In53, La53, LaS4, and
many others). The formalism of the model is discussed, for
example, in E157 and Fr58. The matrix elements of the two-body
central interaction in the 1p shell have been given explicitly by
Racah (Ra50) and by Elliott e al. (EI54), completing earlier
work of Hund (Hu37) and of Feenberg, Wigner, and Phillips
(Fe37, Fe37a). These central-force matrix elements can be
expressed in terms of two radial integral parameters L and K
(In53, Fr58). The results of calculations of quantities of interest
—for example, energy spacings and reduced widths—are insen-
sitive to changes in Z and K around the values 5 to 7 for L/K
and —1 Mev for K. We use L/K=6, K= —1.25 Mev unless we
state otherwise.
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first, the ground-state transition
IN=ntl Jo T« IN-n JT,

where n=4, J=T=0 and Jo=To=3%. The rather
peculiar step of labeling the final state of a (d,p) transi-
tion with a subscript zero is taken in order to conform
in every detail with the notation of (II1.99).

The relevant basic states of (1p48) and (1p°), in an
LST representation, are

C2. 11S[44] 13P[431] 115[422] 15D[422] 13P[332]’ (III.IOS)

C13: 22P[441] 22P[432] 24P[432] 24D[43Z] 22S[333]’

where [a] labels the space symmetry (Fe37, Ja5i,
Fr58).

The calculation of wave functions and reduced widths
is carried out in the standard representation defined
in Sec. IIL.5. This representation is spanned by the
functions of the normal or £ set for < 6 and by those
of the contragredient or ® set for #>6, where # is the
number of 1p particles and the £ and ® sets were
defined in Sec. II1.5. The most important property of
this standard representation is that its defining cfp
satisfy the Racah hole-particle relation (III.41). Con-
sequently, in calculating matrix elements and reduced
widths in the second half of the shell, we usually do
not need explicit cfp for #> 6, instead expressing each
quantity of interest directly in terms of its complement
in the first half of the shell by the appropriate hole-
particle theorem.

Using this procedure, we first construct and diag-
onalize the matrix of the Hamiltonian (III.2). The
appropriate hole-particle theorems in this case are
(I11.44) and (II1.45), the results being presented,!® in
the form of tables covering all configurations 1p”, in
Appendix C of Fr58.

By using a Rosenfeld exchange mixture (Ro58, EI57,
Fr538), with L/K=6, K=—1.25 Mev, we obtain the
wave functions for a few values of ¢:

[ 1 0 0 0 0 ] ¢=0
(LS limit)
—0.065 0.039] ¢=3
—0.190 0.115] ¢=5

—0.497 0471] >

C2: K=[0.945 0.309 0.084
[0.823 0.500 0.151
[0.249 0.609 0.314

(47 limit)
1 0.930) [ 0.805) [ 0.430)
—0.044| | —0.214| | —0.359| | —0.544
Cl: Kff=| 0 0.148| | o0.212{| 0.272
0 0.257| | 0.415|| 0.609
Lo —0.038) [ —0.087) [—0.272
(=0 =3 =5  (ow
(IT1.104)

8 Our standard representation corresponds to the “comple-
mentary” or (C) phases of Fr58, Appendix C.
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The rows and columns of these vectors are labeled by
the basic states ordered as in (I11.103).

The C? wave functions are taken from Bennett’s
thesis (Be58), where they are given!4 in a representation
defined by the cfp of Ja51 without the modifications of
El54. To express the C? functions in our £ set, we
must make these modifications, which, as can be seen
from Appendix 2 of Ma59, involve a change of sign in
Bennett’s 115144 and 3P4 amplitudes relative to the |
other three. Since all five states belong to the same
class [ (B) in Appendix 2 of Ma597], no further changes
of sign are necessary in passing to ® and therefore to
our standard representation.

The C'? wave functions are given by Auerbach and
French (AuS56) in the £ representation. Passage to ®
is achieved (Appendix 2 of Ma59) by reversing the sign
of the 2#D¥] and 25333 amplitudes.

The transition in which we are interested,

(1p), (ToJ0)= (3 3) < (1p%), (TJ)=(00),

obviously has only one channel, with g=3%. Instead of
computing the relevant 8 matrix (I11.92), we make use
of the hole-particle theorem (II1.102) in order to go
over to the complementary transition

(1%, (T7)=(00) < (1p%), (ToJ0)= (3 3),

which also has only one channel, with channel spin
x=1.

To evaluate the matrix B¢ in our standard represen-
tation for the complementary transition, we insert the
modified (El54) cfp of JaS1 in (II1.92). The result,
from Appendix 2 of Ma59, is

22P[3] 22P [21] 24P[21] 24D [21] 22S[111]
uSwl (—y/3/3 0 0 0 0
BPEI | —0/2/3 £/5/6 —/5/12 —1/4 0
usel| 0 4/3/3 0 0 0
Bpe| 0 +/30/12 +/6/4 0
BP0 4/3/6 £/3/12  —/15/12 \/3/3

(IT1.105)

The rows and columns of this matrix are labeled by the
states complementary to (II1.103) with unchanged
ordering.

To evaluate 8, as a function of ¢, we follow (I11.92)
and (II1.101), forming the matrix product

JM)=K(B)K,"

operating fore-and-aft on (III.105) with the row and
column vectors (II1.104). Then, following (I11.102),

8,=[IT/JiToJ8'=}-49(1)*=g(1)?

14 Strictly, the C2 wave function in the LS limit should contain
a small admixture of S¥2]  arising from the weak central inter-
action between states of the same LST and different [a]. The
relevant minute amplitude would not influence the normalization
to the necessary accuracy, and since, in addition, the corre-
sponding element in the 8 matrix vanishes, is without influence
on the value of §.
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F1c. 1. Spectroscopic factors for 4 =12=13 as a function of the
spin-orbit parameter 7.

or
8,={K (59K} (I11.106)
The procedure involved in evaluating 8* is precisely
the same as that just described; we do not go into it
in detail. On performing the necessary matrix multi-
plications, we obtain the results shown in Fig. 1, where
8* and §, are plotted as functions of n=¢/({+6).
Figure 2 exhibits 8*/8, as a function of the same param-
eter. A number of points demand further comment.

(A) We observe that

§—1 as {—

§—0 as {—

agreeing with the values otherwise obtained in the jj
limit at the beginning of this discussion. The agreement
so obtained furnishes a valuable check on

(1) the correctness of the 8 matrices given in Ap-
pendix 2 of Ma59,

(2) the consistency of the phases of wave functions
and B matrices.

(B) It would be just as easy to calculate 8, for the
transition

(19%), (ToJ)= (3 3) < (189, (T7)=(00)

directly from (II1.93), using the cfp which we have
agreed on as standard. For the second half of the 1p
shell, as in this example, the standard cfp are those of
the @ set, obtained from the complementary (4|3) cfp
in £ with the help of (III1.41). 8, would then be ob-
tained, by (II1.91), on matrix multiplication by the
row and column vectors—K and KT of (II1.104). The
results are the same as before.

In every calculation of reduced widths in an LSJ
representation, it is desirable to check consistency of
phases and the correctness of the 8 matrices by going
to the jj limit. The relative reduced width under con-
sideration should be computed by substituting the
appropriate eigenvectors of the spin-orbit matrices for
(1p)* and (1p)7 ! in (IT1.91) and comparing with the
value of 8(77) obtained by an independent calculation
in a j7 representation. This was done in Example 1.
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Fic. 2. Ratios of spectroscopic factors for 4=12=13 as a
function of the spin-orbit parameter n. Experimental 62*/6,2(d,p)
=0.2540.06; experimental 62*/0,2(p,d)=~0.95; experimental
6%*/6,%(d,£)==0.78.

Example 2.
047(d,p) — 0'*(1.98 Mev) 1=0+2
6%(2)/6%(0)=4.4.

Our analysis is very similar to that of Bilaniuk and
Hough (Bi57) who first studied the preceding transition.
It illustrates how a reduced-width ratio can lead to a
direct determination of an amplitude in a wave function.

From the structure of O'7, which has a $+ ground
state, a 1t state at 0.872 Mev, and no 37 states until
5.08 Mev, we expect 1ds and 2s; to compete closely in
the low-lying levels of nearby nuclei, 1d; being relatively
unimportant. Let us, therefore, write for the wave
function of the preceding 2+ state in O3,

Ass(d5t) ot A5.(dssy),

neglecting the small amounts of (dyds), (dssy), and (ds?)
which may be present.

Since the O ground state is simply ds, it is obvious
that

(I11.107)

S(I=0)=|4s|%, S(I=2)=2|4s/2 (II1.108)
Remembering that 62=80¢?, we have
6*(1=2) Ags|? 02(1d)
_pAul® B (IT1.109)

02(l=0)— fA51l2. 902(25)‘

The single-particle reduced widths are, unfortunately,
not known very precisely in this mass region; however,
the results of various O'(d,p)O' experiments (see
Table I for references) and indirect evidence from
other nearby nuclei strongly suggest that

042(2s
2< o ) <3

. (I11.110)
So2(1d)

By using (II1.110) and the observed value 4.4 of the
reduced-width ratio in (I11.109), we find

043> |A51] 2036, 0.89<|A455|<0.93. (IIL.111)
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In other words, the relevant 2* state in O contains
between 139, and 189, of (dss;).!5 This is to be com-
pared with the rather larger value of around 409,
which emerges from intermediate-coupling calculations
(Re54, Re58). The neglect of the small amplitudes
involving ds has no effect on this disparity. Bilaniuk
and Hough (Bi37), who used a different method of
accounting for the difference between the /=0 and /=2
single-particle reduced widths, found

(|4ss], | 451|)=(0.81, 0.48),

which is not very different from (III.111). The ampli-
tudes are quite insensitive to the uncertainty in the
single-particle widths and similarly to inaccuracy in the
measured reduced-width ratio.

Experimental results (BiS7) are available only for
the transitions to the three lowest states in O, at
0 (0%), 1.99 (2%), and 3.55 (4t) Mev, respectively.
A determination of the position of the next 2+ state,
whose wave function is approximately

— A5 (dg) 2+ A51(dssy),

would yield an estimate of the interaction matrix
element

Hy= <(d§2)2 lHl (dis%»‘b

The relevant 2+ state could be identified by its domi-
nant /=0 stripping component from O, the small /=2
admixture being, in all probability, too weak to be
detected. If the observed separation of the two 2+
levels is AE (we know that AE>1.5 Mev), first-order
perturbation theory yields

Istll N[AEII/AE:

the amplitude being measured by the reduced widths.

In the preceding example it is of no consequence
whether or not we use the isotopic-spin formalism,
since we are dealing with states of maximum isotopic
spin.

Example 3.

K#(dp)—> Ko
%é-

(4-,837,27,57)

1=3.

Four /=3 transitions are observed leading to the
ground and first four excited states of K* (En59). In
considering these transitions it is most convenient to
work without the isotopic-spin formalism.

The work of Goldstein and Talmi (Go56) and of
Pandya (Pa56) has demonstrated that the four K*levels
in question may be identified, to considerable accuracy,
with the quadruplet

{L@®31oX[frsedn}s, J=2,3,4,5. (I11.112)

This wave function has the form of an fy2 neutron
coupled to the K¥ ground state (dy proton hole)

function. The closed shell (ds%)o of neutrons has been

15 Percentage refers to the square of the amplitude.
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TasrE II1.
Excitation (Mev) 62
in K% Jr ! (relative to 6,%)
0 4~ 3 1
0.028 3~ 3 1.1
0.795 2~ 3 1.2
0.885 5" 3 0.95

ignored; we see later that this involves no additional
physical assumption because of the uniqueness of the
proton and neutron states concerned. Since the number
of antisymmetrically coupled neutrons is simply 1, it is
obvious from the definitions (II1.54) and (IT1.56) that
each of the four /=3 transitions in question has §=1.
This result is also contained in (II1.80), as can be seen
by putting #:=0, z.=1 and observing that each of the
Racah coefficients and the cfp has the value unity.
That these predictions agree quite well with what is
observed for the transitions in question is apparent from
the list of experimental results in Table III (En59),
taken from Table I.
 Of the four states listed in Table III, those with
spins 4~ and 5, the ground and 0.885-Mev excited
states, respectively, of K%, cannot be reached from K%
by /=1 transitions because of angular-momentum con-
servation. For the 2~ and 3~ levels, however, the possi-
bility of /=1 components is open and might arise by
interaction with the appropriate members of the tetrad

{L@)31pX[(2p3)Tn}s, J=0,1,2,3~. (IIL.113)

The major portions of these 2p; states are found to lie
around 2 Mev in K%, as evidenced by prominent /=1
stripping (En59).

The /=1 admixtures found in the /=3 transitions to
the levels 0.028 Mev(3~) and 0.795 Mev(2~) of K%
are certainly small. For the 3~ state, En59 give, as a
result of a very careful analysis, a lower limit

2(1=3)/¢2(1=1) > 50,

with an even larger limit for the 2~ state.
If we write

KAL@)11oX [ frr2dn}s=st+KoA[ (@53 1pX [203]n} s
for the K% (0.028 Mev) wave function, it is clear that
8(=3)/8(=1)=|K.|?/|K.|2. (III.115)

Now, as we see in Secs. V and VI, an analysis of many
transitions in the mass region 24 < 4 <70 indicates that

00 (2)/6¢*(1f) =2

is a reliable estimate, whence, using (IIL.114) and
(I11.115),

(II1.114)

| K1|%/| Ke|22 100.
We therefore conclude that K;<0.1 and that the
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relevant 3~ state contains less than 19, of

{[ds* 1o frs2]a} =37,

an upper limit which applies @ fortiori to the 2~ state.

In order to produce a 19, /=1 admixture in the 3~
transition by interaction with the appropriate 2p;
level, which appears at 2.042 Mev in K%, a matrix
element of the order of magnitude of 200 kev is neces-
sary, as follows from the first-order perturbation theory.
A plausible calculation of this matrix element (Pa57b)
yields a value of 330 kev. The difference between these
two values is not surprising in view of the uncertainty
as to the exchange character of the effective two-body
interaction.

It is important to observe that the separate proton
and neutron states in (II1.112) and (III.113) are
unique. Thus, it is not necessary to make an additional
physical assumption to the effect that the neutron and
proton angular momenta are each good quantum
numbers. This is to be contrasted with the situation in
Example 5, Sec. III.10.

By treating neutrons and protons separately in this
example, we were enabled to ignore the closed d3 neutron
shell. The problem was thereby reduced to the simplest
of two-body cases (strictly, one hole and one particle),
where we do not have to worry about antisymmetry
between the two particles concerned.

Example 4.

Ni5(d,n) — O¥(gs.) I=1.
3= o+

This reaction has not yet been studied experimentally.
Adopting a jj representation (the result is the same
with an LS representation, as we see later), this transi-
tion involves filling a hole in the 1p; shell. It follows at
once from the uniqueness of the states concerned that
the appropriate cfp is unity. Thus, from (III.70),

S(closed shells — py 1) =4, (I11.116)

the number of nucleons in the p; shell. In Sec. III.10
we have more to say on the subject of large spectro-
scopic factors for transitions wherein a shell is com-
pleted.

Without isotopic spin, the foregoing transition fills
the p; neutron shell, for which, by the same argument,
S=2.

The apparent discrepancy is removed on recalling
the isotopic spin coupling factor in the Butler formula
(I1.19). In the present instance it is

{C[330;3 —30]p=43.

If we are not using the isotopic-spin formalism, the
coupling factor would, naturally, be ignored. The

reduced width 6 extracted with the isotopic-spin

formalism is thus twice what is obtained without it, a
factor which is reflected in the preceding 8 values.
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The N'¢ ground state is a single-hole p; state in the
77 picture. There is a similar p; state at 6.33 Mev in
N5, A transition connecting this p; hole state to the
ground state of O, which could be realized experi-
mentally by O'%(%,d)N*5, would have

8(closed shells — ps~1)=8. (II1.116%)

In an LSJT representation, (II11.116) and (II1.116¢’)
are trivial consequences of (II1.103). The two transi-
tions we have just discussed are

(1p)%, (ToJo)=(00) — (1p"),
with J=% and §. The complementary transitions are
(), (T =(GT) — (1p)°,

where, obviously, §=1 for both values of J. Since the
relevant states are unique and there are therefore no
amplitudes to take into account, (II1.103) immediately
gives

8(closed shells — p; ) =[JT/JoTo]-1=2(2T4+1),
(ITL.117)

(T)=(37),

a result which includes both (III.116) and (II1.116")
as special cases with J=1%, , respectively.

Equation (III1.117) is also obtained, perhaps in a
more revealing fashion, on consideration of the extra
recoupling transformation which, as we saw in Sec.
II1.8, is the one extra complication which led to the
separate treatment of LSJT representations. The ap-
propriate Racah coefficient is

U(LSsh: JSo)t=U (131} JO) = (2J+1)/6.

It is obvious that the remaining Racah coefficient and
the cfp in (IT1.92) are both unity. The relative reduced
width is therefore given by the product of the recoupling
coefficient and the number of particles (12) in the
complete 1p shell:

8(closed shells — p;1)=12-[(2J+1)/6]=2(2J+1),

which agrees with (II1.117). It is instructive to observe
the combined effect of the extra recoupling factor and

‘the difference in the number of nucleons in LS and jj

closed shells.

Example 5.

Ca®(d,p) — Ca* (g.s.)
Ca®2(d,p) — Ca® (g.s.) pl=3.
Cat4(d,p) — Ca® (g.s.)

The lowest levels of the Ca isotopes are expected to
belong to the configurations fr2". As in Example 2, it
is immaterial whether or not we use the isotopic-spin
formalism, since all states concerned would have

maximum 7. )
The ground-state transitions, with their respective
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relative reduced widths, are

frj2 < [closed shells], §=1
(frif)2 <= (fur)o, 8=3(fus* 3| fu? OP=1%
(fr112®772 < (fr72%) o, 8="5(fr;2% 3| fos2* 0)2=%

obtaining the necessary cfp from the tables of EdS2,
with the help of (III.41) for the last one. These spec-
troscopic factors can also be obtained very simply from
the sum rules to be discussed in Sec. IIT.10. (See
Example 2 of Sec. II1.10.) The observed ground-state
reduced widths (Bo57, CaS7, BoS7a) are seen, from
Table I, to be in the ratio

4:2.9:1.6,
in satisfactory agreement with the predicted values
4:3:2.

These transitions furnish useful illustrative examples
in a preliminary discussion of single-particle levels.
Although there is a variety of possible definitions, the
underlying physical picture is the same in all of them.
We think of a nucleon moving in a potential well
generated by the other constituents of the nucleus [4].
These other constituents must be well described as
being in some definite state of the nucleus [4—17. A
state of [4] which can be represented in such a fashion
lends itself very naturally to the description ‘‘single-
particle level.” It is characterized by a specified value
of / (or both / and j) of the extra particle and can be
identified by its prominent appearance in transitions
involving the transfer of a single nucleon. According to
the intuitive description of a reduced width given in
Sec. I, a single-particle level of (4] would be one which,
by definition, has §=1 and 6?=60y* for decay to its
particular parent state of [4—17]. Single-particle levels
are naturally encountered in nuclear reactions on
[4—17] as target. The term ‘“‘single-particle level” is
usually confined to states of the foregoing description
whose parent is the ground state of [4—17]. We follow
this custom in the present study since we deal with
target nuclei in their ground states. The case of excited
parent states could be of interest in connection with
the decay of levels of the compound nucleus in resonance
reactions.

In expressing these ideas more precisely, we can
distinguish two different situations according to whether
the effective potential field does or does not number
among its generating nucleons some which are equiva-
lent to the loose ‘“‘single” particle. At the very outset,
we demand freedom to express our definition in a
number of different ways, since which one is most con-
venient depends on the context. The various alterna-
tives do not conflict with each other.

Bearing in mind the ground states of the Ca isotopes,
let us define a single-particle level of the first kind as
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one whose dominant configuration is (727t ;.;.!¢ Tran-
sitions leading from (27), to such levels do not neces-
sarily have 8=1; however, as in the foregoing examples,
the reduced widths for the single-particle transitions,
'(]‘2”4-1)1 =j,o=1 " (jZ")Jo =0, 20=0, (III’118)

are usually of the same order of magnitude as the
single-particle width, and, in fact, we always have
8< 1in such cases. On the other hand, transitions of the
type

(.7.2"+2)J =0,v=0 <" (.7‘2"+1)Jo =7, v0=1, (111118,)
wherein a nucleon is added to rather than removed
from a single-particle state, do, in fact, have!” §>1.
Explicit spectroscopic factors for the foregoing transi-
tions are derived in Sec. III.10, Example 2.

The configuration 72#*! contains several states other
than the lowest-seniority single-particle state. It would
be natural to refer to (2")J =7 or (2*H)J=7, v=1
as “multiparticle” states. The configuration (72#%1);
cannot be reached from (;2#)o by a stripping transition
because of angular-momentum conservation, the same
being true for (2**)J=73, v5%1 as a result of the
seniority selection rule'® Av=1. For (f7/2)2"t! (identical
nucleons), no states with J= 7, 51 occur, asis also the
case for j=% and §. An example of a multiparticle
level is the 0.373-Mev level in Ca®, whose dominant
configuration is probably (fz2%)s and which shows no
stripping from the (f7/2%)o ground state of Ca®.

The basic idea of the Mayer-Jensen single-particle
model (Ha49, Ma49, Ma50, Ha50), where the notion
of single-particle levels originated, is that the properties
of low-lying states of odd-4 nuclei are determined by
the last odd nucleon. We might try to express this
formally by assigning a wave function (72%)¢ j(# 2n-+1)
to a single-particle level of 727+, As was realized in the
very early stages of the single-particle model (Ma50a),
this would violate the exclusion principle. On antisym-
metrizing (52%)of components involving (2*) s appear.
The natural substitute for (727)¢f is (72%*1) s v=1,
which has many of the characteristic properties of states
of the Mayer-Jensen model and satisfies the primary
demand of antisymmetry.

16 This definition applies to a configuration of both neutrons
and protons, or to an odd group of particles of one kind (neutrons
or protons) only. If the configuration j27*1 contains more than
one state with J = j, the single-particle level is defined to be that
of lowest seniority. (v=1. See Ra49, F152, E4d52.)

17 An absolute upper limit on all spectroscopic factors is
provided by the inequality 8§ <%, where % is the number of
nucleons in the heavier nucleus equivalent to the transferred
nucleon. The case of equality, wherein the upper limit is attained,
corresponds to the transition (II1.118').

18 For stripping from (j27)o, this seniority selection rule does
more than forbid transitions already forbidden by angular-
momentum conservation only when j72#*1 contains J=j, v>1.
We must then make the assumption (which is probably reason-
able) that seniority is a good quantum number.
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On the other hand, the wave function

,

which we may abbreviate to (j2”)5’, contains no com-
ponents wherein the 27 equivalent j nucleons are
coupled to nonzero spin. This state is of precisely the
sort envisaged by the Mayer-Jensen model, and may
be referred to as a single-particle level of the second
kind. It follows from (II1.73) that the transition

(72")07"  (7#")o

has 8=1, its reduced width being the single-particle
width 8¢ (7 7").

We expect to find single-particle levels of the second
kind, with configurations (fr2*®)e2p1, (f1/22™) 0293, among
the low-lying® levels of the Ca isotopes. Instead of the
expected two such levels, we find in each of Ca®, Ca%,
and Ca%, some half-dozen /=1 transitions, most of
which are far short of single-particle strength. Indeed,
the only two levels which can possibly be predominantly
(27" are the py levels at 1.947 Mev in Ca* and at
2.048 Mev in Ca*®, The appearance of appreciably more
transitions of given ! than would be expected on the
basis of simple counting is not necessarily indicative of
a failure of the model used for the relevant nuclear
states. Interactions between final states can give rise
to a fragmentation of single-particle levels into several
components, each of which may show a sizeable stripping
width. This idea of spreading out a single-particle
reduced width over a number of levels is the basis of
Lane, Thomas, and Wigner’s (La55) treatment of cross
sections averaged over many resonances.

From the viewpoint of this study, the most significant
property of a single-particle level (of the second kind)
of a nucleus [ 4] is that it is connected to [A—1] by a
transition with §=1. Our discussion has, until now,
been confined to the case where A is odd and the
relevant state of [4—17is coupled to zero. It is clear
from (II1.73) that we can have transitions with §=1,
involving an inequivalent nucleon, wherein neither of
the restrictions just mentioned applies. It would be
desirable to include such cases in our definition of
single-particle level. For example, we would like to
think of the K¥(d,p)K*% transitions discussed in Ex-
ample 3 as leading to single-particle levels. The neces-
sary generalized definition, still in accordance with the
physical picture discussed earlier, is given in Sec. ITI.10
in a manner which does not rely upon definite configura-
tion assignments. It contains (j2%)¢j’ as a special case
and does not conflict with (/2»t);_;.

19 By “low’”” we mean at an excitation of 5 Mev or less.
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Concluding Remarks

In Secs. IIL.7-9, especially when working in jj
representations, we concentrated much of our attention
on the calculation of relative reduced widths between
single basic states of pure configurations. It should now
be clear that this imposes no limitations on the appli-
cability of our results. If we can calculate these ele-
mentary constituents of reduced widths, the general
case follows without difficulty by taking linear com-
binations in the manner described at the end of Sec.
II1.7. It is to be noted that the various contributions to
the reduced width are coherent.

Finally, it is of interest to mention the possibility of
working in a mixed LS and jj representation. For
example, the $+ and 2t levels near 8 Mev in BY,
which we discuss in detail at the beginning of Sec.
IT1.11, may be described in terms of a 1dj or 253 nucleon
coupled to the ground state of BY, whose wave function
can be given in an LS representation.

10. Sum Rules and Related Topics

By using normalization and factorization properties
of cfp, various sum rules for relative reduced widths
can be written down from the expressions given in Secs.
IIL.7 and IIL.8. In this section we discuss such rules,
once again treating jj and LSJT representations
separately. The sum rule which we use most frequently
emerges from the weak-coupling formalism to be
described in Sec. ITI.11.

77 Representations

To begin with, let us use the direct-product notation
described in Sec. II1.3 and adopted throughout Sec.
II1.7. We deal with transitions between states of a
single shell, phrasing our results so as to apply either
to j7 or to 777 representations. Specifically,

p=(j,t=%) or j,
I'=(,J,7) or (xJ),
To= (xo,]o,To) or (xo,.]o),

where x and xo symbolize all necessary nonangular-
momentum quantum numbers.
Rewriting (II1.70), we have

S(n, I — n—1, To)=n{p"T'|p" Ty (II1.119)

The condition that the relevant wave function (o™)T" be
normalized yields, as in (II1.22),

2 ("' |p"To)*=1.
Ty

Using this to sum over I'q in (II1.119), we obtain our
first sum rule:

> 8(n, I ->n—1,T¢)=mn. (I11.120)
To
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From the standpoint of a (d,p) reaction, (II1.120)
involves a summation over initial states. It is, accord-
ingly, of interest mainly® in connection with pickup
reactions. More interesting would be a sum rule in-
volving summation over I in (II1.119), since this would
concern final states in true stripping reactions, to which
most available experiments refer. (See Table I.) A sum
rule of the desired nature can be deduced from (I11.120)
with the aid of the hole-particle theorem (II1.76) for
relative reduced widths. In fact, rewriting (II1.76) and
summing over I', we have

2 [T]8(n, T — n—1,T4)
T
=[Po:] Z S(N—n—l—l, Tye— N—%, I‘c)
T

The summation over I' on the right-hand side can now
be carried out by (II1.120), giving a second sum rule

S [T]8(n, T — n—1, To)= (N—n+1)[To], (IIL.121)
r

where N=[p]is the number of particles in the complete
p shell.

Let us now adopt a jjT' representation, wherein
further sum rules can be derived by expressing the cfp
as products of spin-orbit and isotopic-spin factors. The
factorized sum rules can be combined to reconstruct
(I11.120) and (II1.121), as is seen explicitly in Example
3. Thus, the new sum rules really contain the ones
already written down.

The wave functions for j» are characterized by xJ T,
where x symbolizes irreducible representations of the
symplectic group (F152) together with any additional
quantum numbers which may be necessary. The value
of T determines the transformation properties of the
isotopic-spin part of the wave function under permuta-
tions in charge space and hence, through the exclusion
principle, also the symmetry of the spin-orbit function.
In fact, the isotopic-spin function transforms according
to the irreducible representation of the symmetric group
8, corresponding to the partition [3n-+7T, 32— 7] of n,
while the symmetry of the spin-orbit function is charac-
terized by the partition [2}#—7, 1277 obtained by inter-
changing the rows and columns of [3n+47, 3n—T"].
The dimension of either of these irreducible repre-
sentations is easily found from We46 (p. 201) to be

n!(2T+1) '
y= . (I11.122)
Gn+T+1)!Gn—1)!

We now express the full wave functions as sums of
products of spin-orbit and charge functions, each of
which is separately normalized. Correspondingly, spin-
orbit and charge cfp are defined by the appropriate

2 Equation (II1.120) also refers to a stripping reaction if the
summation over I'y reduces to a single term which corresponds to
a ground state. We encounter such a situation, for example, in
Mg?(p,d)Mg? (g.s.), described in pure jj coupling.
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modifications of (III.20), the full cfp also appearing as
products.

This factorization procedure is well known in both
LS and 77 representations (Ja51, Ed52), following from
a theorem enunciated and proved by Racah (Ra42).
The description given in Secs. 2-4 of JaSl is very
thorough and readable; although it applies specifically
to LST representations, only minor modifications in
notation are necessary in carrying it over to the jjT
case. The results we need are given in Ed52, Egs. (1),
(2), and (4). In using these equations, it should be
noted that the summations over the symmetry quantum
number for j7 (A in the notation of Ed52) in Egs.

(2) and (4) are redundant. This comes about because

(again using the notation of Ed52) the Yamanouchi
symbol %k labeling the spin-orbit and charge functions
for » particles determines the #— 1 particle Yamanouchi
symbol &’ which is obtained from it by removing particle
label # ».2' &/, in turn, determines the irreducible repre-
sentation A’ of .S,—; to which it belongs. Thus the sum-
mations over N’ each reduce to a single term. In par-
ticular, the isotopic-spin function is defined by Eq. (4)
of Ed52, which reduces to a simple product. In fact,

(") 7,5= T |t T) (1" D) To,0X 1t (1) Jr, (111.123)

where the Yamanouchi symbols % and ko label particular
functions of the basic sets which span the relevant »,
vo-dimensional representations in isotopic-spin space of
S» and S.-1, respectively. Since the isotopic spin
functions are normalized, we have

(T Toy=1. (II1.124)

The full ‘cfp can then be written in the factorized
form (Ja51, p. 503)

(jraJ T| j=wod o Toy= (vo/v)XjxJ (T)| j* x0T o(T0))
X (T |#1Tg), (II1.125)

where, according to (IT1.124), (¢*T|¢{'T,) has only
two possible values, namely, +1 or —1. The bracketed
symbols 7" and T in the spin-orbit cfp label the sym-
metry of the corresponding functions in the manner
just described. The dimensions » and »o of the relevant
irreducible representations of the symmetric group are
given by (1I1.122).

Again we start from (IIL.70) using (IIL.125) to
express the spectroscopic factor in the form

S(n, xJT — n—1, x0J oT0)
=n(vo/v) (G2 (T)| j*weTo(To))2.  (IT1.126)

By using (II1.124) and the normalization condition
(e (T)] 5ol o(To)) = |

z0J o
of the spin-orbit functions, we can sum over xoJo in

2 Yamanouchi symbols and their significance in the present
context are described in Sec. 1 of Ja51.
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(ITI1.126) to obtain a third sum rule

> 8(naJT — n—1, x0J0T0)=n(vo/v). (1I1.127)

z0J 0

Another sum rule follows from (II1.127) in the same
way as (III.121) was obtained from (I11.120). Re-
writing (II1.76) and summing over xJ, we have

Z []]5(%, xJT — n— 1, xojoTo)
zJ
]oTo
= [—T——J > 8(N—n+1, %S eTo— N—n, x°JT).
xJ

Equation (II1.127) can now be “used to perform the
summation over xJ on the right-hand side, giving a
fourth sum rule:

> [JI8(n, xJT — n—1, %0J0T)
zJ

c

14 ]OTO

Yo
(N—n)!2T+1)
T BWN—m AT+ —)—T1
c (N—n+1)1(2To+1)
T N =t D+ T LI (N =t D—To ]!

where

VG

The sum rules (II1.127) and (III1.128) can be further
refined by splitting the spin-orbit cfp into two factors.
We have already stated that x stands for irreducible
representations ¢ of the symplectic group-Sp(254-1),
together with any other quantum numbers which may
be necessary. In other words, = (ca;). The factorization
in question, which follows from a theorem of Racah
(Ra49), is expressed by Edmonds and Flowers (Ed52)
in the form

(G (T)| 77" 'wo o(T0))= (o (T)|a0(T0))

X (oo |coaoo), (II1.129)

where the first factor is independent of « and J, the
second of the representation (7) of the symmetric
group to which o and J belong. The two terms in
(II1.129) are exhibited separately in the tables of cfp
in Ed52. They obey the normalization conditions

2 (o (D) |oo(To)?=1, (I11.130)
2 (o |eoao]o)*=1, (II1.131)

agJo

which combine to give the normalization condition for
(72 (T)| j* @0 o(T0)).

On substituting (I11.129) for the spin-orbit cfp in
the expression (II1.126) for the relative reduced width,
and summing over aoJo by means of (IIL.131), we
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obtain a fifth sum rule:

Z 8(%, oo T — n— 1, ano]oTo)

aoJo

~ 1 (T)|ou(To)Y.  (ITL132)

The technique whereby a sixth sum rule can be
obtained from (II1.132) has already been described
twice, following (II1.120) and (III.127). We need
reciprocity theorems connecting the factors of the
spin-orbit cfp with their complements. Such theorems
depend on the fact (We28, p. 281; F152) that #-particle
spin-orbit functions which spread out the irreducible
representation of the symmetric group labeled by the
partition [23%~7 1277 also transform according to that
irreducible representation of the unimodular unitary
group SU(2741) which is characterized by the par-
tition in question. They are special cases of a general
theorem connecting the coefficients which reduce a
product of contragredient representations with the
coefficients reducing the original product representation
(see Ja51, p. 518). In the present case, we have

(ooco®T o] o) J P sd (o0)\ !
—-——=(—1)J+"ﬂ+"[—-] ( ) , (I11.133)
(00T | goao] o) Jod \d'(0)

(0 (T9)|o=(T)) _ @ +1(Te) (o) )*
(@(D)]oo(Te))  \&*+(T) (o))’

where d@*)(T) is the dimension of the irreducible
representation [2#»~T 1277 of SU(25+1), d'(s) being
the dimension of the irreducible representation o of
Sp(25+1).

On multiplying (II1.133) and (I11.134), we obtain
the reciprocity theorem satisfied by the spin-orbit cfp.
It contains no reference to the dimensions of repre-
sentations of the symplectic group. If we then multiply
this reciprocity theorem for the spin-orbit cfp by the
corresponding result,

(V=T | (T ) (T | 1T )= (— 1) T+To+, (TI1.135)

(IT1.134)

for the isotopic-spin cfp, introduce the correct weight
factors as in (II1.125), and use (III1.122) and We28
(p. 383) for the various dimension factors which occur,
we arrive at the hole-particle theorem (III.41) for the
full cfp. This provides a useful check on our procedure.

To obtain the sixth and final sum rule, we write
down (IIL.76) summed over oJ, using (II1.132) to
carry out the summation on the right-hand side of the
equation. a symbolizes all quantum numbers necessary
in addition to ¢, J, and 7. We have, then,

> [J18(n, 00 T — n—1, aoasoTo)
aJ

J()To ve
=(N—n+ 1)[——]‘—]—;(000@ o) |oo(T))2.  (I11.136)

Vo
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For transitions in the second half of a shell this result
is convenient as it stands. In the first half of a shell we

can use (II1.134) to write, alternatively,

Z [J]S(n,aonT —n—1, anoJoTo)
aJ

JoTo7v° d@HD(Ty) d' (o)
T ]Z d@HY(T) @ (0)
X{o(T)|oo(To))>

=(N—n+ 1)[
(111.137)

The dimensions of irreducible representations of
SU(2j4+1) and Sp(25+1), which are commonly of
interest in practical applications, are listed by Flowers
(F152), Tables I and III, respectively.

In a true stripping reaction, the differential cross
section is proportional to [J 6% Only if the spin of the
relevant final state is known can the actual reduced
width be extracted. On inspection of the sum rules,
however, we see that (I111.121), (I11.128), and (I11.137),
which refer to final states in stripping reactions, already
have the spin factor [J] inside the summation. They
have the form > [J]8. On the other hand, no spin
statistical factors appear in the expression for the dif-
ferential cross section of a pickup reaction, the reduced
width 6% emerging directly. Correspondingly, the pickup
sum rules (II1.120), (II1.127), and (II1.132) contain
no spin factors, having the form Y_ 8.

Thus, the statistical factors in the cross section and
the internal spin factors in the relative reduced width
are intimately related. We encounter this connection
in other parts of this study, notably in connection with
hole-particle theorems for reduced widths and in the
discussion of Example 2 in this section. The various
factors combine in such a way that the sum rules can
be applied even if the spins of the final states concerned
are unknown. Indeed, the possibility is opened of using
our sum rules in discussing unresolved or poorly
resolved groups of final states. It should also be noted
that sum rules can sometimes be used when, because
of ignorance of spins, we cannot proceed by calculating
individual spectroscopic factors.

Sum Rules for More Complicaied Configurations

We saw in Secs. I11.7 and IIL.8 that the form of the
hole-particle theorem for relative reduced widths
[(IIL.76) and (IIL103)] is the same in jj and LS
representations, and that, moreover, it is not disturbed
by the presence of inactive groups of nucleons with
nonzero total spin. Let us now examine the correspond-
ing situation for sum rules. We find again that the
extra recoupling coefficients have the effect of replacing
the spins of the active groups by the total spins, the
form of the sum rules remaining the same as before.
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Consider the transition

A _.{ )-( 8 }r' (IIT.138)
r L

for which, according to (I11.64),
8=n2U (018:Tp2: Poa2)2<pz"2a2!p2"2—1ﬂ2>2. (I11.139)

The summation over I'q is immediate, yielding

2= 8(na, asl' — my—1, BaT'0) = na(ps™as | po™B2)%
To

We can now sum over B; as before, using the nor-
malization of (ps"2)ss, whence

;SZI‘ 8 (2, aol' — ny—1, BoT'o) = s,
2T

of the same form as (II1.120).
To obtain the sum rule for as and T, let us first note
that
U(aiBel'pz: Toaz)?=[Toars/TB2 U (asspal’: T'82)?,

so that
ZP: [T]8(ns, asl’ — n2—1, BoT')
=n9[ Toas/TBs (pa" etz | po™1B2)?
= (Ny—np1)[ T o N2 mr418,0 | pyNem2ye)?,

the second step using (III.41). The normalization of
the cfp then leads to

:2 [T]8(ns, @el' — ma—1, BaT)
= (No—na+1)[T], (IIL.141)

of exactly the same form as (II1.121). The four addi-
tional sum rules obtained by factorizing the cfp can
obviously be derived as before.

We conclude that the way in which statistical factors
in the cross section keep step with spin factors in the
reduced width is not spoiled by the presence of inactive
groups of nucleons, even if these are not coupled to zero.

Example 1.

Mg%»(p,d) — Mg

0+ 2+ 4+

(II1.140)

1=2(ds).

The transitions in question to the three lowest states
of Mg?* have been studied experimentally by Bennett
(BeS8). The transition to the 4+ level, however, was
not definitely resolved. We assume that Bennett’s
third deuteron group corresponds entirely to the 4+
state for the purposes of this example.2? We use the

2 We return to this matter in Sec. V. (a) Physically, this may

not be a good approximation. Our main interest here is in showing
how the sum rules work.
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isotopic-spin formalism and assume that jj coupling is
a reasonable approximation. This is a procedure of
uncertain accuracy in the mass region in question, but
we can hardly avoid adopting it in order to be able to
treat the foregoing reactions within the framework of
the shell model.

The transitions in which we are interested are

(d5)5,7=3 — (d5%) 70, To=o0.

The unfactorized sum rule (II1.120) does not interest
us here because it includes To=1 states. We therefore
start by considering the first factorized sum rule
(I11.127), which connects states of fixed isotopic spin.

(d§?) 73,73 contains two states, with o= (100) and
(210) (F152). We further assume that symplectic sym-
metry is a good quantum number and agree to describe
the Mg? ground state by J=%, T'=%, ¢=(100).22

(@5 1,, 7o =0 includes thirteen states:

so=(000) J=0
(110) 24 (II1.142)
(220) 0223425628,

Let us, then, apply (II1.127), with =9, and
v/vo=v(n=9, T=4%)/vo(n=38, Ty=0)=% from
(I11.122). Therefore,

(To=0)
> 8(coJ0)=9-%3-1=3,

a0 o

(IT1.143)

the summation extending over all 13 states (II1.142).
We omit the additional symbol ag in (II1.143) because,
as we see, oo= (220) does not enter, the remaining states
being completely specified by oo and J,.

Next we pass on to the doubly factorized sum rule
(III.132), which connects states of fixed isotopic spin
and also of fixed symplectic symmetry. First, consider
T=1%, ¢=(100) = T9y=0, oo=(000). The final state
being unique, we obtain a direct evaluation of a relative
reduced width. We have already evaluated all the
factors in (III.132) except ((100) [547]|(000) [447),
where we introduce the partition [3n+7T, in—1"]
instead of 7. With the help of (II1.134), Tables I and
III of F152, and the cfp of Ed52, we have

((100)[54]| (000)[447)*
d©®[(217)d’ (000)
4o ([22])d' (100)
—70/156-3-1=1.

((000)[22][ (100)[21]y

Thus

S[(000)0]=8p=1%-3=1. (II1.144)
Similarly, for T=%, o= (100) — T,=0, oo=(110), we
need

((100)[54]] (110)[441)*=8/9,
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whence
82+8:4=8/3. (III.144")

Equations (II1.144), (II1.144'), and (II1.143) then

yield
(To=0)

So+$2+84=3= Z S(O’o]o).

a0Jo

(TTL.145)

It is clear, from a comparison of (II1.143) and (III.145),
that the other 10 states in (II1.142) do not contribute.
Obviously, the transitions (100) — (220) must be
forbidden by a selection rule. The nature of this
selection rule, however, is easy to find; quite generally,
from the reduction of the direct product

(0’10’20’3' . O'k)X(IOO . 0)

of irreducible representations of Sp(2%), (c10903: - * o)
can only be connected to those representations of the set
(”1+1) 02, *° " ‘7’0), (0'1, 02+1) Y O'k), (‘711 02y °°°, 6k+1)
which are allowed® (see F152, also We46, p. 218).

The observed ground-state reduced width (Be38) is
0,2=0.008, whence, using $,= % from (III.144), we have
60*(1d)=~0.024 for the relevant single-particle reduced
width. This value is in satisfactory agreement with
other estimates in this mass region.

The situation is much less satisfactory for the 2+
and 4+ states. The observed reduced widths (Be58) give

024+62=0.022-+0.012=0.034~24.56,
which is to be compared width
82+ 84= 880

from (II1.144) and (II1.144%). It is not clear to what
extent this discrepancy is due to the crudity of the
model or to uncertainties in the experiment and its
interpretation. A remeasurement of the Jo=4 reduced
width, resolving the two levels around 4.2 Mev in
Mg?, would be valuable.

If we wanted to treat neutrons and protons sepa-
rately, we might make the further approximation, a
very common but doubtful one, of neglecting excitations
of the even group of protons in the Mg isotopes. The
transition in question would then be

% 0,2,4

Applying the unfactorized sum rule (II1.120) without
isotopic spin yields

So'+85'+84'=3, (I11.147)
quite different from (III.145). The difference is due to

the fact that, in (II1.146), the relevant states are repre-
sented by wave functions quite different from the ones

2 (g109- - +0) is said to be allowed if o1 202 >+ 2ok In 75T
representations we are interested only in cases where o; 2.
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used in the earlier part of this discussion. They are, in
fact, unacceptable because they do not possess definite
isotopic spin. We encounter a similar situation in
Example 4.

Example 2. Fluctuations in reduced widths. The sum
rules (III1.120) and (II1.121) yield expressions for in-
dividual reduced widths when the summations reduce
to a single term. Let us make use of this property to
demonstrate fluctuations in § throughout a shell.

Consider identical nucleons without isotopic spin.
The essential point is that (72")s—.—o is linked, in both
stripping and pickup, to the unique seniority v=1 states
with J=j of the adjacent odd configuration nuclei.

Apply (II1.121) to the transition (72**!)s——(52")o,
where we omit the seniority labels. Noting that
N=2j-+1, we have

27+1)$(2n+1— 2n) = (2j+1)— 2
or (IT1.148)
8S2n+1— 2n)=1—[2n/(25+1)].

Equation (II1.120) yields, in similar fashion, the relative
reduced width for the transition (72%)o— (72" 1)s=;:

821 — 2n—1)="2n. (I11.149)
Thus, for the chain of transitions
(nJ)=(00) <= (1) «= (20) <= (37) - - -etc.,
expressions (II1.148) and (II1.149) combine to give
S(m— n—1)=n (n even),
S(m—n—1)=1—[(n—1)/(254+1)] (» odd).
For j=1%, the sequence of § values so obtained is

S=17 27 %7 47 —%7 6’ i_’ 8'

(I11.150)

We have, incidentally, rederived two earlier results.
(1) Putting n=N=(2j+1) in (II1.123), we find S=N
for a transition in which a shell is completed. This was
pointed out in connection with Example 4, Sec. III.9.
(2) The chain of 8 values for j=7% includes the three
. 8 values (1, £, %) connecting ground states in the Ca
experiments, mentioned in Example 5, Sec. IIL.9.
Although a transition in which a hole is filled has
8=N, it does not have a correspondingly larger cross
section than a transition involving a single particle.
This comes about through the influence of the spin
factors in the expression for the differential cross section
(see Sec. I1.2). Let us, then, compare single-particle
and single-hole transitions at opposite ends of the j
shell. On omitting everything but the relative reduced
width and the spin factors, we have, at the end of the
shell,

ad’p(jN+l+j—>jN) e (2j+1)‘18(N—>N—- 1)=1’
oP (N — N4 < (N — N—1)=2j+1, (IIL.151)

the p,d cross section involving no spin factors. For the
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corresponding transitions involving a single particle,
ob? (47 — j) = 27+1)8(1 —0)=25+1,
074 — ) xS(1—0)=1.,

The cross sections, from (II1.151) and (III.152), are
therefore in one-one correspondence in spite of the dif-
ference in reduced widths. Notice that in a pickup
transition involving a single hole no cancellation can
occur and the large reduced width manifests itself as a
correspondingly large cross section.

In a true stripping reaction, on the other hand, the
compensation by spin factors of the large reduced width
associated with the filling of a shell is inescapable. To
make this point clear, consider the transition®

—'{ >'< JZ}J', (IT1.153)

wherein we might hope to avoid the cancellations of

(II1.151) and (II1.152). Expression (II1.139) can be

reduced to the case 72V2— j,¥* '+, by means of a

single recoupling whose Racah coefficient is
U(jrj2j1j2:70).

The relative reduced width for (II1.153) is, accordingly,

(IIL.152)

S(le1_17 j2N2a jl - lel_l) j2N2_1) J)
=[J/j15d052]=1J/5:] (1IL.154)

using (II1.139) and the explicit value of the squared
Racah coefficient. The differential cross section for the
transition (II1.153) is therefore

otre[71/T]8:1=1,

from (II1.154). Thus, although cancellation can no
longer be supplied by the total spin factors, the de-
ficiency is made up by the additional recoupling coef-
ficient.

Experimental results with a bearing on the predictions
of (II1.136) are disappointingly scarce. The predicted
large reduced width (8=8) does seem to be observed
in B'(d,n)C2 (g.s.) (Ma56), but not, apparently in
Al?"(d,%)Si?® (RuS7) ; or P3(d,n)S% (Ca55). The ground-
state reduced width for Mg?(d,p)Mg?® is between five
and six times that for Mg?(d,p)Mg? (HoS3d). The
8 values predicted by (IIL.150) for the tail of the j=4
chain being % and 6, the observed fluctuation is in the
expected direction but considerably smaller. In view
of the approximations involved (see Example 1, Sec.
II1.10), this result is quite encouraging.

2 The ensuing argument is the same if we replace 7i¥r1 by ji.
The essential point is that the separate neutron and proton states
are unique, the doubtful “odd-group assumption” (see Example 4)
being, therefore, unnecessary.
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The best prospect for improving this situation and
of testing (II1.150) is probably furnished by the Ca
isotopes. We have already seen that the (d,p) experi-
ments on Ca®, Ca*, and Ca* yield ground-state reduced
widths in satisfactory agreement with the 8 values of
1, 4, and % predicted by (II1.150) with »=1, 3, and 5,
respectively. Expression (III1.150) gives $=2 and §=4,
respectively, for the ground-state (p,d) or (d,f) transi-
tions on Ca® and Ca*. These transitions should be
quite easy to observe.

By assuming that symplectic symmetry is a good
quantum number and considering transitions connect-
ing unique states of lowest symplectic symmetry, we
could exhibit similar fluctuations throughout a shell
containing both neutrons and protons, using the
isotopic-spin formalism. We do not go into this matter
here because of the lack of pertinent experimental data
and because the qualitative features are the same as in
the case of identical nucleons.

Example 3.

Ca®(d,p) 1=3.
7/2-

—  Cat
J=0,2, 4,6
We first use (III.121) without the isotopic-spin for-

malism. Noting that (f72%)72 necessarily has good

seniority v9=1 (there are no other % states in fy/s%),

the transitions are
(frre) o <= (172 vt

The selection rule Av=1 limits the f7/,! states of interest
to v=0, J=0, and v=2, J=2, 4, 6. Noting that n=4,
N=38, (II1.120) yields

2. [J1ss=40.

J=0,2,4,6

(TIL.155)

Since 89=4 (from Example 2), we have also a sum rule
for v=2 states:
(v=2)

2. [J]8s,=36.

J=2,4,6

(IIL.156)

Let us now verify that, introducing the isotopic-spin
formalism and applying the factorized sum rule (111.128)
to transitions between states of maximum isotopic spin
(T=2, Ty=%), we simply rederive (II1.155). The result
is so obvious that we are really checking the con-
sistency of our sum rules.

On applying (II1.128) to

(fus 1 =2, 7 =0 < (f112®) 1o =3/2, Jo=1/2-

we note that the summation again contains J=0, 2, 4,
and 6. Since N=16, n=4, and

/vy = (N—n=12, T=2)/ps*(N—n-+1=13,Tp=32)
=25/4.13
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[from (II1.122)], (II1.128) gives

8.4 25
Y [J18r=13-— ——-1=40, (ITL156")
5 413

J=0,2,4,6

which agrees with (IIL.155).

There is a similar sum rule for transitions to T'=1
states, which would appear in Ca®(d,n)Sc*. Expression
(I11.128) gives, for the transitions

(f7/24)T=1 «— (f7/23) To=3/2, Jo=17/2,

8.4 27
S [JI8r=13-———1=72. (IIL157)
3 413

J(T=1)

We conclude our discussion of this example by veri-
fying that the T’=1 sum rule (II1.157) and the T=2
sum rule (II1.156) combine to give the result obtained
with the aid of the unfactorized sum rule (II1.121). In
fact, from (II1.157) and (TII1.156),

2 [TISyr=3 3 8;+5 X 8s

J,T=1,2 J(T=1) J(T=2)

=216+200=416, (IT1.158),

while (II1.121), with [Ty ]=[J¢T]=8.4, yields
> [JTIS;r=13.32=416, (IIL159)

J,T=1,2

the same result as before.

Example 4.
Sc(d,p) — Sct¢  [=3.
/2=

There is no pertinent experimental data, although
Sc®(d,p)Sc*®(g.s.) has been observed. (See Wa35 for
references.) Using the isotopic-spin formalism, the
transitions under consideration are

(f1728)1=2 < (f172%) 7o =3/2, Jo=1/2, o0 = (1000)5

connecting states of the lowest isotopic spin (3 and 2,
respectively) in Sc* and Sc'. We assume that sym-
pletic symmetry is a good quantum number. Possible
final states are (F152)

o=(2000) J=1,3,5,7
o=(1100) J=2, 4, 6.

Other T'=2 states of f7/,® are forbidden by the sym-
plectic selection rule encountered in Example 1 and,
in some cases, by conservation of angular momentum.
Expression (II1.128) then yields, with an obvious

notation,
7

5 84
S [JT8r=11——=32,
11 5

J=1

(II1.160)

We notice that none of the final states in (III1.160)
has J=0; in fact, (f72%)r—2 contains no J=0 levels.
Since Sc* has T'=2, we are interested only in 7=2 and
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T=23. The unique state (f72%)r—3 s=0 is thus the only
J=0 state of Sc*® which can arise from f7/55.

Let us now consider the /=3 transitions in Sc**(d,p)-
Sc* without the isotopic-spin formalism. In order to
write down comparably simple wave functions for the
relevant nuclear states, we assume that the total
angular momenta J, and J, of protons and neutrons
are, separately, good quantum numbers. This assump-
tion was mentioned briefly in Example 1. The transi-
tions in question are now represented by

K A% i A% . (ITL161)

J 7
2

The relative reduced width for this transition is
SU(30J%: 3T 0)*(f12%7 u| f15°0)?,

:and is zero unless J,= 7. There are, accordingly, eight
final states with J=0, 1, 2, 3, 4, 5, 6, 7, each being
cconnected to the five-particle state in (II1.161) by a
transition with 8$=%. We have the sum rule

i [J]8,=1% 27_ [J]=32. (111.162)

In spite of the fact that the right-hand sides are the
same, the sum rules (II1.160) and (II1.162) are quite
different. In particular, (II1.162) contains a J=0 state
which does not appear in (II1.160).

Since, as we have remarked before, there is only one
J=0 state of f7/,% with T=2, this unique state having
T=3, we must have

f = (fr/2%) r=3,7=07=2% (IIL163)
[+]

Now this state cannot be attained by transfer of a
single nucleon from any state with To=$; furthermore,
we have seen that it is connected to

f, %
=9

7,
%

(IT1.164)

by a transition with §=%. We are therefore forced to
the conclusion that the function (II1.164) is not a pure
=$ state. The relative reduced widths can be used,
as we now show, to evaluate the percentage of T'=%
in (TI1.164).
Start by writing a(f7/2%) 1o=3/2+8(f7/2%) 1e=5/2 for
(I11.164). Only the To=$% component can contribute
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to the relative reduced width. Thus,
8={C[$%3; % 3 218L(f12) xnr=aoy
(f112°) (xore) =572 1/2)]- B2
=56/ (30)| fur (3 D= 582,

The second step uses (IIL1.70): The third step follows
from the fact that the cfp is of magnitude unity because
of the uniqueness of the states involved. The isotopic-
spin coupling factor takes account of the difference in
the spectroscopic factors appropriate to reduced widths
extracted with and without the isotopic-spin formalism.

We have already found, by direct evaluation, that
this relative reduced width is simply %. By using
(I11.166), then, we have

B= . (IT1.167)

(IT1.165)
(111.166)

The conclusion is, in other words, that the wave function
(TI1.164) is 90% T¢=% and 109, To=3%.

It is interesting to verify this result by considering
the operator 72, which, operating on #z-nucleon wave
functions, can be written in the form

T2=%[n(4—-n)]— i Piiy

1<j=1

(IT1.168)

where P;; exchanges the space and spin coordinates of
nucleons ¢ and j. This form for the “square of the iso-
topic-spin operator’” has a meaning even if the isotopic-
spin formalism is not used. The eigenfunctions of
(II1.168) are, by definition, “states of definite isotopic
spin.”

The expectation value of 7% in the state (II1.164)
can now be calculated in straightforward fashion. The
result, which we state with proof because the details
are of no interest to the present study, is

(T%)=17/4. (TI1.169)
By inserting ay (To= %) 4By (To=13) instead of (II1.164),

we find
(T?)= (15/4)02+ (35/4)82, (I11.170)

since the expectation value of 72 in To=3$, 5 states is
15/4 and 35/4, respectively. By using (II1.169),
(IT1.170), and the normalization condition, we have
two simultaneous equations,

(15/4)a2+ (35/4)8=17/4, +f=1, (IIL171)

for the squared amplitudes. The solutions, a?=9/10
and $2=1/10, are exactly what was obtained in the
foregoing from the reduced width connecting (IT1.163)
and (IT1.164).

It should be noted that the possibility of obtaining
the percentage isotopic-spin composition of a wave
function by considering only a single reduced width,
or by evaluating only the expectation value of 72 in
the state in question, depends on the existence of only
two possible values of 7. When there are more than
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two possibilities, or whenever we wish either to evaluate
the amplitudes rather than their squares, or, equiva-
lently, to construct explicit states of definite isotopic
spin in terms of functions such as (II1.163) or (IT1.164),
we must construct the matrix of 72 and diagonalize it.

The example illustrates the point that a wave func-
tion in which neutrons and protons separately possess
specified angular momentum may not have a definite
isotopic spin. Since there is no evidence to suggest that
isotopic spin is not an approximately good quantum
number for the low-lying states of all nuclei of interest
in the present study (with A4 less than about 70), such
functions may be unacceptable. (In the example just
discussed the isotopic-spin impurity is quite small.)
There is no reason why such functions may not be
used as the basis of a representation, if it be so desired.

Practical applications of the 77 sum rules we have
been discussing are severely limited by the lack of
pertinent experiments. We have seen that, for true
stripping reactions on even-even targets, our sum rules
result in the direct evaluation of the relevant ground
state reduced width. To find cases with more content,
we must consider pickup reactions or stripping on odd-4
targets. It can be seen from Table I that most of the
experiments which have been performed in the mass
region of potential interest involve stripping on even-
even target nuclei. Some of the exceptions, for example,
P(d,p)P®2, K¥(d,p)K®, V3(d,p)V®, connect nuclei
whose lowest configurations are too simple to be of
much interest as far as sum rules are concerned. Experi-
ments such as Ca®(d,p)Ca*, Sc*(d,p)Sc*®, and Sc®-
(He?d)Ti* are quite feasible and present interesting
possibilities. We do not discuss, at this point, the use
of our j7 sum rules in connection with (d,p) studies of
low resolution.

Sum Rules in an LST Representation

It would now be easy to write down the LS analogs
of the six sum rules, factorized and unfactorized, which
were derived in a jj representation. Such sum rules
would be of no more than formal interest because LS
coupling is a reasonable approximation only for the
very lightest nuclei. We therefore seek LSJT sum rules
by attacking the general expression (I11.89) and (II1.90)
for the relative reduced width. This expression, in-
volving as it does two sets of mixing coefficients, can be
summed explicitly only in special cases.

One such case has been discussed by French (Fr56a)
and applied to stripping and pickup reactions in the
A =14 polyad. It involves transitions connecting two-
and one-hole states

N2 ToJy = I¥-1 T,

where T'=1%, J=Ix%. Here we can perform the sum-
mation over J because, in view of the uniqueness of the
one-hole states, the corresponding mixing amplitudes
do not intrude.

MACFARLANE AND ]J.

B. FRENCH

Let us start from (III.103), which becomes
S(ZN_Z, To]ollN_l, %j) = ([To]oj/Z[f]S,(l, %]le, To]o),

where the prime indicates that we must use the ampli-
tudes K zoso70/0 for the states (7Jo) of IN—2:

> [VI8(ToJo: 37)
J
=[TU]0] z KLOSOTUJOKLO/SOITDJO

zL0So
Lo'So'J

X U(lL]oSo . LoZ)U(lL]oS()’ : L[)IZ)
XU (tsh: TS)U (B3} : JSy') (— 1) ot

from (III.103), since S=3%, L=/, and the cfp are
obviously unity. First, we sum over J using the uni-
tarity of the transformation (IIL.7), obtaining 6(SSy’).
Using this to eliminate Sy/, we can then sum over z,
obtaining §(LoLo"). The summation then reduces to

[ToJo] 2 (Krose™/0)*=[ToJ,],

LoSo

since the state (T0Jo) of /¥~ must be normalized. We
obtain the sum rule

S LTSN AT — I1v=2 ToJo)=[ToJo], (111.172)
J

the summation extending over the two values /43 of J.
It is interesting to notice that (III.172) enables us to
deduce, from a measurement of the ratio of the two
relevant reduced widths, the absolute values of their
spectroscopic factors. If the absolute reduced widths are
also measured, we obtain a direct determination of the
single-particle reduced width 6¢?(/). Thus, information
which cannot be obtained directly from a single reduced
width because of ignorance of the amplitudes in its
spectroscopic factor has been gained by considering two
related widths.

In the case of the 1p shell, there are two types of
transitions :

(ToJo)=(01); N¥(d,p)N15, N1 (d,n) 015
(ToJo)=(10); C¥(d,n)N1s '

—1
]'—"Z.y

wfco

Following Fr56a, let us denote the relative reduced

widths of the four transitions under consideration by

8o, S0, 81, 81%, where the subscript indicates the J value

of the target nucleus, and the asterisk implies that the

transition proceeds to the excited one-hole state with
=3, Expression (II1.172) then becomes

8:4284=3 (IIL.173)

for z=0 and 1.
The sum rules discussed in this section have all

referred to transitions connecting low-lying states of

the same configuration of equivalent nucleons. In most
experiments, such transitions are in a minority. The
weak-coupling formalism of Sec. ITI.11 leads to a dif-
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ferent type of sum rule, involving the transfer of a
nucleon inequivalent to the constituents of the target.
This sum rule asserts that a basic single-particle
reduced width can be broken into fragments by final
state interactions but cannot be augmented or dimin-
ished thereby. Some further sum rules, in which the
summations extend over all observed transitions of
given /, are discussed at the end of Sec. VL.

11. “Weak-Coupling” Formalism

The considerations of Secs. III.7-10, whereby it is
shown how to compute relative reduced widths in the
language of the shell model, are not useful when explicit
shell-model wave functions cannot be obtained. Since
this is true in many cases of practical interest, it is
desirable to develop a formalism for analyzing reduced
widths with as little reliance as possible on model wave
functions.

Lane (LaS55a) has studied levels in light nuclei of
parity opposite to that of the ground state. He suggests
that levels of this kind which are excited strongly in
reactions involving the transfer of a single nucleon can
be well described by vector coupling the appropriate
single particle to the ground state of the parent nucleus
and antisymmetrizing. 'We refer to this process as
“weak coupling.” For example, the 3+ level at 3.09
Mev in C* may be regarded as mainly

Leo(C2) X 253 ]+ =A (00(C?) X 2533+,

where (X)y* symbolizes vector coupling to spln 3t and
4 is the antisymmetrizing operator.

In most cases, the extreme weak-coupling assumption
is too restrictive; several low-lying levels of the parent
nucleus contribute significantly to the states under
consideration. The idea of weak coupling can, however,
be extended so as to take such possibilities into account.
The weak-coupling formalism which emerges was first
used by Lane, Thomas, and Wigner (LaS55) in their
discussion of average cross sections.

We proceed by letting two simple examples speak
for themselves, concluding with some general comments.

Example 1. BY(d,p)B". In B¥(d,p)BY, a group of
1=0 and !=2 transitions is observed leading to levels
around 9 Mev in B!, The relative reduced widths in
Fig. 3(a) were obtained from the data of Bilaniuk and
Hensel (Bi59), the spins having been determined inde-
pendently (see AjS59).

The spin and the large /=0 reduced width of the
9.19-Mev level strongly suggest that it is predominantly
[ 0o(B9) X 253 17/2+2% It can be seen from the spins and
spacings of low-lying levels of BY [Fig. 3(b)] that the
only other weak-coupling states which can be expected
to contribute appreciably are [ ¢oX 1ds] and [ o1 X 1ds].

25 No absolute cross sections have been measured for the levels
in question. We know that their reduced widths are of single-
particle size from their measured ratio to the B*(d,p)B" ground-
state reduced width, whose approximate size is known [from
BY(d,n)C1].
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(] 8
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For a sizeable component of such a state (more likely
the first) to be present in the 9.19-Mev level in BY, it
would have to be nearly degenerate with [ ¢oX 2s3]. The
two members of this interacting doublet would then be
separated by an amount of the order of magnitude of
twice the interaction matrix element, so that a second
%+ level in B" would be expected close to 9.19 Mev,
certainly within 1 Mev. This expectationis strengthened
by the fact that d-s interactions are not, apparently,
very strong?®; in fact (Aj59), the nearest Z* level in
B! to that at 9.19 Mev, is at least 1.2 Mev away and
probably further. We conclude that the B! level in
question is well described by [ @oX 53172+

Similar arguments apply to possible mixing of §*
weak-coupling states. In this case, however, two levels
with J=47% are found in B! only 350 kev apart; the
=042 admlxture in the stripping to the 8.93-Mev
level confirms that we are dealing with an interaction
between [¢oX 1ds s+ and [@oX 2s3]s+. We therefore set
up the 2X2 Hamiltonian submatrix

[El H 12]
H 12 E2
between the states

x1=[ooXdyls, xo=[eoXs3ls

Diagonalizing this submatrix, we obtain the eigen-
vectors and energies

¥i=ax1+Bxs,
Vo= —Bx1taxz,

of the observed B! levels.

The ratio of the /=0 and /=2 reduced widths of the
8.93-Mev level provides us with a measure of the am-
plitudes in (III1.175); in fact,

0:(1=0) 5(0)02(25) 6202(2s)
02(1=2) $(202(1d) o*02(1d)

(TIL.174)

81:- 8.93 MCV,
8=9.28 Mev (IIL175)

(IT1.176)

The ratio of the 2s and 1d single-particle reduced widths
can be obtained directly from the transitions to the two
$+ levels in question, whence

°(1=0:9.28) o®02(25) 6.6
#(1=2:8.93) o6°(1d) 4.6

% See, for example, Halbert’s calculations (HaS57) for the
positive-parity levels of 4 =15.



630
s —
570 /2~
712 -
T — ' I
4553 a/2- b ez 2
13848 o s 814 5
’, | 6.06 (<23
4 .
o* PA 3.055l 2~ "
7 0 ————— 0+
o'é Y ‘ o'
(a) (b)
F16. 4.

On using this and the observed ratio of the /=0 and
I=2 reduced widths of the 8.93-Mev level, (II1.176)
yields 82/a?=0.30, whence

la| =088, |8]=0.48.

We now know, not only the diagonal form of the matrix
(I11.174), but also the matrix which carries out the
diagonalization, namely,

[0.88

— 0.48]
0.48 ’

0.88

making an arbitrary choice of the relative sign of «
and 8. We can therefore solve for E;, E,, and Hy. A
change in the relative sign of o and 8 merely reverses
the sign of His; the reduced-width ratio tells us only
the magnitude of the interaction matrix element.

The results are
H12= 150 kev, E2= 9.20 MCV.

(IIL.177)

E;=9.01 Mev,

We could equally well use the /=0 reduced width of
the 9.19-Mev level to obtain the ratio of the 2s and 1d
single-particle reduced widths. This leads to results
slightly different from (III.177), reflecting a 209, dis-
crepancy in the total /=0 reduced widths of

[<P0>.<2s%:];+ and [ @oX 2sy |72+

measured by the relevant experiment (Bi59). On using
the second normalization, we have

H;=160 kev, E;=9.04 Mev, E,;=9.17 Mev.

(II1.178)

It is interesting that [ 09X 3]s+ lies nearly degenerate
with or below [ ¢oX 3 ]7/2+, although, as a result of the
interaction between % states, the §* level is observed
to be 100 kev higher. Any reasonable effective inter-
action seems to place the 5t below the Z+ member
of the s; doublet. This matter and what it implies
about the effective interaction will be discussed in a
forthcoming paper by Bilaniuk and French (Bi60).

Example 2. l=1 and 1=3 transitions in 0(d,p)O".
Here we have a larger number of competing weak-
coupling states than was the case in Example 1. We
can do no more than enumerate the states which can
contribute, using this and the observed level structure
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of OY to make quantitative statements about the §—,
37, and §~ states in question.

The relevant states of O, together with the next
known levels of the same spin and parity, are shown in
Fig. 4(a). The level-structure of O'® below 8 Mev is
illustrated in Fig. 4(b).

We consider the 3~ levels first. The large /=3 reduced
width of the 3.846-Mev level indicates that it contains
a large fragment of the [¢0(0%)X f72] single-particle
component. Although no stripping data is yet available
on the next 3~ level, the fact that it is at 5.70 Mev is in
itself a compelling argument that the lower %~ level is
a good single-particle state.?” For, ‘“spreading” meas-
urable /=3 components over 2 Mev would, in this case,
demand existence of a weak-coupling state close in
energy to [¢oX1fs2]and an interaction matrix element
of 1 Mev. This is improbably large, particularly in view
of the fact that such an interaction would involve
inequivalent pairs (f and d, or f and s). We predict,
then, that the 5.70-Mev level will show weak stripping;
the corresponding reduced width, if measurable, would
give an estimate of the interaction matrix element.

The existence of a 1fy, single-particle level only 4
Mev above the 1ds ground state of O is surprising. On
the basis of the potential-well model of the interaction
of an extra nucleon with the nucleons of O, using the
customary harmonic-oscillator radial dependence, the
dsjs— fr725eparation is expected to be more than 10 Mev.

From the spins and parities of low-lying levels of O,
we see that only [@:X1ds], [¢2X2s3], and [@aX 1ds]
can possibly give Z~ states low enough to interact with
[@oX1fy2]. To estimate the relevant energies, we note
that the expectation value of the nuclear Hamiltonian
in the weak-coupling state [o;Xu;] breaks into two
parts:

{internal energy of ¢;}
-+{energy of interaction of nucleon u; with ¢;}.

The first term is simply the observed energy of the
state ¢; of the parent nucleus; to estimate the second,
we make the crude approximation that the interaction
energy of u; is roughly the same as its interaction energy
with the ground state ¢o, which can then be obtained
from the observed single-particle level position. On
applying this procedure to the 7~ levels of OY, we find
that the preceding three ds and 53 weak-coupling states
are expected about 2 to 3 Mev above [[¢oX1f7/5]. This
is consistent with our conclusion, based on the O level
structure, that the 3.846-Mev level is a good single-
particle f, state.

Let us similarly consider §~ levels. The sizeable /=1
reduced width of the 4.553-Mev level indicates a
[¢0X2ps] component. It is, at present, not clear what
proportion of the whole this component constitutes.
Firstly, the next §— level is only about 800 kev away,

27 For a definition of “single-particle level,” see the discussion
following the examples.
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quite close enough to permit substantial mixing. In the
second place, although we know very little about 6¢*(2p)
in this mass region, data later in the ds shell (4 2> 20;
see Sec. V) indicate that the /=1 reduced width of the
4.553-Mev level is considerably smaller?® than the full
single-particle value.

Weak-coupling states with J= 3§~ which might inter-
act with [peX2p3] obviously include [¢,Xds] and
[esXds]; however, since the 6.92-Mev 2+ level of
0%(3) almost certainly involves excitation of the 1p;
shell, [¢3X 1p;] must also be considered. ¢; is probably
well represented by

es~a(1p72)0(1ds) 2 +B (19572 0 (1d525y) 2
+v1p12p5, (IIL179)

while (EIS7b)
e~ (1py™1) (1ds) + (minor components),
ea~(1py™) (253)+ (minor components).

We therefore see that [ o3 X 1p;], which is given by
a(1p5™) (1d?)e+B(1p57) (1d5251)2+72p1,

has large overlaps with [@oX2p3], [¢2Xds], and
[¢sXds]. The weak-coupling states, in other words,
are not orthogonal, in fact, they are not linearly
independent.

This difficulty, which comes about because the rele-
vant excited states of O'® belong to configurations other
than that of the ground state, is a central one in con-
structing a formal theory of weak coupling. We can
clearly proceed by step-by-step orthogonalization, con-
structing a new set of functions x; as follows:

xo=LeoX2p1], x1=[eaX1dy], x2=[sX1dy],

xs=N{LesX 193] (xo, [esX1ps)x0— - - -
- (X2: [¢35< 1?%]))(2} 0y etC.,

where 91 is a normalizing coefficient. This new set is
orthonormal because we have made it so, but no longer
has the property of unique parentage, in that a state
X: 1s not associated with a unique state ¢; of the parent
nucleus; however, the ground state ¢ is still uniquely
associated with xo, a significant fact in the discussion of
stripping reactions.

On using the crude energy estimate described in
connection with the £~ levels, we find that any of x1, xz,
x3 may well interact significantly with [¢oX2p3], as is
suggested by the stripping data. We therefore expect
appreciable reduced widths for one or more 3§~ levels
between 5 and 6 Mev in O'.

The salient feature of known £~ levels in O' is the
existence of an isolated low-lying level of this nature
at 3.058 Mev, which apparently shows no stripping
from O. No data are available concerning the reduced
widths of higher 3~ levels. Our rough energy estimates

28 From F¥(d,p)F?® we obtain the lower limit 6,2(2p) >0.02,
while the OY /=1 reduced width in question has the value 0.013,
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suggest that [¢sXds]— may lie 1 or 2 Mev below
CooX2p3].
Further O%(d,p)0'7 or O%(He?d)F'? experiments,
studying levels up to 7 or 8 Mev, are clearly needed.
Leaving the examples, we now briefly formalize the
arguments which we have been using. Consider the
stripping reaction.

[41(d,p) —[4+1]

expressing the wave functions of [4+41] levels in a
representation spanned by the weak-coupling states
[e:Xui], where ¢; (=0, 1, 2, - - -) are the actual states
of [47] and the #; are the single-particle states which
belong to the unoccupied subshells in the ground state
of [4].

The restriction to nucleons #; inequivalent to all
those in the ground-state configuration of [4] is made
because the idea of weak-coupling loses its special
character when applied to equivalent nucleons. For
example, direct antisymmetrization of (ds?)¢ds intro-
duces components of {(ds?):Xds}s. In dealing with the
transfer of equivalent nucleons, the techniques of Secs.
II1.7-10 are most convenient. ’

The functions [ ¢;X ;] are not linearly independent.
This difficulty was illustrated in Example 2 and is liable
to be encountered when the states ¢; belong to con-
figurations other than that of the ground state ¢o of
[47]. We therefore construct an orthonormal set xir
from the functions [¢;X#:] by the direct procedure
described in Example 2. We have

(I11.180)

xor= [ poX 1z ] (T11.181)

for all 2. The new states x;x do not, in general, corre-
spond to unique parent states in [4].

The matrix of the Hamiltonian of [4-1] is now set
up in the representation spanned by the states xix.
Diagonalizing the submatrix 3¢77, we obtain the wave
functions of states of [4+1] with the given T and J

in the form

Ypr®=3 Ca™ (xix)rs, (T11.182)
ik

where s labels the different eigenvalues and eigen-
vectors of 3CTV.

Only those states ¥r;¢ of [4+41] are observed in
the stripping experiment (II1.180) which contain appre-
ciable components of some xor. The reduced width of
Wry @ for capture of uy is obviously

8(ur)=[Cor® |2 (IT1.183)

A single-particle level of [A41] is now profitably
defined as one for which the expansion (II1.182) contains
one predominant term, Cor(®~1. In other words, a
single-particle level is one for which the weak-coupling
approximation is good. If we restrict 4 to be even and
represent the ground state ¢o of [4] by (52%)o, we
obtain, as a.special case, the second type of single-
particle level introduced in Example 5 of Sec. IIL9.
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The first type, belonging to a configuration of equivalent
nucleons, corresponds to a situation explicitly excluded
from our discussion of the weak coupling formalism.

In certain cases, a nucleus [4-+17 can be reached by
(d,p) and (d,n) experiments from nuclei with the same
A and different T',. Let us consider, as an illustration of
such a situation, the levels of N, since both C* and
N* are available as targets. The C" ground state is the
analog the first excited state ¢; of N**. Thus, not only
[oXux] but also [ @1 X ux] can be reached by stripping
experiments. A slight extension of the preceding de-
finition of single-particle component is desirable to
accommodate [ ;X #;]. A weak-coupling representation
of the levels of N*® must be based on N* and cannot be
based on C™. '

We now write down, from (III.183), an obvious but
important sum rule which simply reassembles the
various fragments into which a single-particle reduced
width has been split by final-state interactions. The
matrix Ci;(®) which diagonalizes the Hamiltonian sub-
matrix JCT7 is unitary. This implies, for the column
labeled by ¢=0, %, that 3> ,|Cox|2=1. Thus, from
(111.183),

> 8@ (w)=1, (IT1.184)
the summation embracing all states of [4-+17] with the
given T'J which contain components of [ oXuy Jrs.

In applying the preceding sum rule, we simply add
the observed values of [J]6? for transitions involving
the single-particle % in question. Then (II1.184) yields,
on further summation over J,2

(Zk) [V16*=060%(u) }J: [J1=[770106*(w). (IIL.185)

Much of our information concerning the 2p, and 1f
single-particle reduced widths is obtained in this
fashion.

In practical applications of (III.185), we encounter
a difficulty illustrated by the I=0 transitions in
Ca®(d,p)Ca%, discussed in Sec. VI. In this case, I=0
transitions to low-lying levels in Ca* contain, in prin-
ciple, both 2s; and 3s; contributions, the former because
of possible core excitation in Ca®. If we now sum [J 6
over all observed /=0 reactions, > [J]6? includes, in
addition to the 3s; terms to which (II1.185) applies,
extraneous 2s; contributions. Since we cannot disen-
tangle 2s and 3s, we cannot, strictly, apply the sum
rule; however, even if the low-lying /=0 transitions
were pure 2s;, they would contribute less than 5% to
>_[J]62.3 Such contributions are of no importance. We
conclude therefore, that the sum rule (II1.185) can be

2 Jo is the spin of the target nucleus, and j the transferred
7 value. If, for example, one cannot distinguish between p3 and
b3, we further sum over j.

% The 3s transitions in Ca®(d,p)Ca#! have not been observed;
however, it is known (Sc59) that 6,2(35)=62(2d) and the 2d
transitions have been observed.
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applied to /=0 transitions in Ca®(d,p)Ca® and, almost
certainly, to other cases of interest also.

Taking into account the fact that some weak con-
tributions to stripping involving #; may escape de-
tection, (II1.185) should be replaced by

2 8@ (m)< 1.

8
This inequality applies @ fortiori to any one transition
involving an inequivalent nucleon. This point has
already been made in Sec. IILI.7 (IIL1.73'). When we
have reason to believe that a given transition or set of
transitions involves almost all of the relevant single-
particle component, we often omit the inequality and
quote a direct estimate of the single-particle reduced
width rather than a lower limit.

In the formalism just developed, an orthonormal set
of functions x. has been introduced at the expense of
the uniqueness of the parentage relation. A state x.x
may be associated with several different states of the
parent nucleus [4 7], although for the special functions
Xox, corresponding to the ground state of [4], the
uniqueness of the parentage relation is preserved. Since
stripping reactions involve these very components xox,
the introduction of the set x is appropriate and con-
venient in the study of stripping. In contrast, a pickup
reaction reveals all possible parent states (in [4]) of
the ground state of [4+417. Such a situation is not
covered by the formalism of this section.

(I11.186)

12. Calculation of 8§ from Rotational-Model
Wave Functions

Several recent studies (Sh56, PaS7, RaS7, Br57,
LiS8, Br58) have indicated that the rotational model
—direct descendant of Bohr’s strong-coupling collective
model (Bo52)—is capable of describing with some
success many aspects of nuclei in the ds shell. The mass
region to which these studies refer—19< 4 <31—is of
direct interest to our analysis. Various features of
stripping and collective models have been analyzed by
Yoshida (Yo54), Satchler (Sa55, SaS58), and Sawicki
(Sa58a). The following discussion is closest to that of
Satchler.

It is recalled that one of the main assumptions which
led to the form (IT.19) for the differential stripping
cross section demanded the spherical symmetry of the
nuclear potential acting on the transferred nucleon.
Without this assumption, separation of the radial and
angular portions of the integration in the transition
matrix element could not have proceeded in the
manner of Sec. IT. But the very use of a rotational wave
function presupposes that the nucleus so described
possesses a sizeable equilibrium deformation, auto-
matically excluding any chance that its potential field
can be spherical. Thus, strictly speaking, it would be
self-contradictory to insert rotational wave functions
for the nuclear states in the overlap integrals (II1.53)
and (II1.54).
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Analysis (Sa58b) of these “geometrical” effects has
indicated that they are, in general, quite small. We
therefore ignore geometrical effects and adopt the ap-
parently illogical course of using rotational wave
functions, while retaining the assumption that the
transferred nucleon experiences what is, to all intents
and purposes, a central potential.

Let us proceed to discuss the overlap integral (I11.54),
with the intention of representing initial and final
nuclei by means of rotational wave functions.

All forms of rotational model which have been used
to date begin by segregating the constituent nucleons
of a nucleus into two groups. The first group is treated
as a whole and referred to as the core of the nucleus.
The nucleons of the second group are described as
“active” or ‘“extra-core’ nucleons. As a result of the
competition between the preference of the core itself
for a spherical shape and the “polarizing” efforts of the
extra-core nucleons, the nucleus assumes a nonspherical
equilibrium shape. The deformed nucleus can execute
motions of a rotational type which have, as their asso-
ciated dynamical variables, a suitable set of Euler
angles ¢ specifying the orientation of a body-fixed set
of axes relative to a frame of reference whose orientation
is fixed in space. The motion of the active nucleons in
the field of the core is described, in a manner to be
discussed, by an “intrinsic” wave function x(z), where
i signifies the set of all coordinates of the active nucleons
referred to the body-fixed axes.

The internal degrees of freedom of the core are dis-
cussed, if at all, in terms of a collective vibrational
model. We follow the accepted procedure in studies of
the rotational model, assuming throughout that the
core is in its vibrational ground state, described by the
wave function ¢ (£).

We adopt Nilsson’s model of the intrinsic structure
(Ni55), wherein each active nucleon moves in - a
spheroidal potential well. Each Nilsson orbit is charac-
terized by the principal quantum number #, and by the
projection © of the single-particle angular momentum
7 on the body-fixed z axis. Nucleons fill these orbits
four at a time, in accordance with the exclusion prin-
ciple, most of the filled orbits being lumped together as
the core. 7 and j are no longer good quantum numbers.
x(¢) is thus a normalized antisymmetric product of
Nilsson functions.

Assuming the independence of the particle motion in
the deformed nuclear field and the rotation of this field,
we can write the wave function of the nucleus [4] in
the form

Wroxonre(£,8,1) = [ (2 04-1) /167 Ji; (£)
X{Daoxo”* () xx0(2)+ (—1)79"27 Dary —xo70x —K0}.
(I11.187)

Diox¢’® is the matrix representative of the rotation
operator R(#) (RoS57, Ed57). The precise definition of
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the D7 which we use is that of Bohr (Bo52), the complex
conjugate of the D functions introduced in Ro57. The
requirement of axial symmetry implies that @=K,.
Finally, the phase operator (—1)7 must be interpreted
according to the equation

(=Dxe=2(=1)%a;x . (I11.188)

A detailed discussion of the wave function (III.187)
will be found in the review article by Moszkowski
(Mo57). Questions concerning the validity of the adia-
batic assumption from which it emerges or the precise
significance of the division of nucleons into “core” and
“particles outside the core” constitute one of the major
unsolved problems of nuclear spectroscopy.

The rotational wave function for the nucleus [4+41]
is

Brrm(d,8,iv)=[(2T+1/16x*Ti¢;(¢)
X{Dux’ (#)xx(iv)

+(—=1)7 724Dy _xIx_x}, (II1.189)

where » is the set of all coordinates of the transferred
nucleon referred to the body-fixed axes.

Let us now consider the problem of calculating rela-
tive reduced widths. The overlap integral in terms of
which 8 is defined in (III.54) and which emerges from
the considerations of Sec. II, can be written

g (lj) = f‘bJKM* (E’ﬂ’iyl)

KXW r0x0(£,8,8) X¥ni;(v')} rudédddidy’, (111.190)
on suitably modifying the notation of (IIL.54). ¥n;;(»")
is the wave function of the transferred nucleon referred
to the space-fixed axes. We observe, in particular, that
9(l7) is independent of M. This, indeed, was why the
spin summation could be performed explicitly.

On the other hand, the overlap which presents itself
more naturally in the present context is

(JKM |JoKoMo)= f‘?JKM*(é,l’,iV)‘I’JoKoM o(&,8,)
Xddsdi, (IIL.191)

a function of the coordinates of the transferred nucleon.
We now prove that 9(/j) can be deduced simply and
directly from (JKM|JoKoMo). It is, accordingly, un-
necessary to recalculate the differential stripping cross
section ab initio.

Indeed (I11.190) may be rewritten

s(lj)= f &S CLTojT; Mo, M—My]
Mo

X(TKM| JoKoMoW[M—Mo; nlj]. (IIL.192)
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This suggests that we make the formal expansion:

<]I<Mf]oK0Mo>=Z Dll]C[]oj]; Mo, M—Mo]
%)

XY M—Mo;nlj](»). (111.193)

Our assumption that ome # can contribute in any
instance is in the spirit of Nilsson’s calculation. If we
now multiply (IT1.193) by

WM —Mo;nlj’ IC[JojJ ; Mo, M—M,y],

integrate over »’, and sum over Mo, we obtain, com-
paring with (I11.192),

. ay=9 (17):
ie.,

<]KMlJoKOMo>=Z g(l])CEJ()]], M,, M-Mo]
i

XYM —Monli](v'). (111.194)
Thus, in order to obtain J(/j), we must evaluate
(JKM|J.KoMy) and select the coefficient of ‘

C[JofT 5 Mo, M—Mo WM —Mo; nlj1(v').

We wish, therefore, to calculate the overlap of the
wave functions (II1.187) and (III.189). Let us make,
in this connection, three manipulations.

(1) Depending on the @ value of the transferred
nucleon, there are four possible kinds of transition
between (II1.187) and (TI1.189). These we may write
symbolically

K=K '
]|m=|K—K01,
—Ki=—K
Ki=—K
— K=K

It is clear that, whichever case we are handling, the
two terms in the overlap integral (JKM|JoKoMo)
must be equal. Let us consider, first, the case |Q]
= |K—Kjy| ; the result for K4 K, follows by changing
the sign of K, in the relevant final formula. As a result
of what has just been said, it is permissible to calculate
(JKM|JoKoM,) with simple product wave functions
of the form

L(27+1)/8x* 1 (£) Dux’ (9)xx,

allowing for the occurrence of two equal terms by a
compensatory change in normalization.

If either K or K,=0, (II1.195) is the correct wave
function, and there is only one term since —Ko=K,.
Our general result holds in this special case, provided
that we include a multiplicative factor of V2.

(2) Both xx(ir) and xxo(z) are antisymmetric in all
active nucleons. Let # be the number of active nucleons
in the heavier nucleus [4+1]. We may evaluate

(T11.195)
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(JKM |JoKoMo) by writing xx (¢,#) as a simple product,

XK(i,V)‘=XK~—SZ(i)XQ(")(V), (TI1.196)

where xx—_q(7) is an antisymmetric function of the first
n—1 nucleons, provided that we multiply by the nor-
malization factor »~* associated with the antisymmetri-
zation of (II1.196). It is clear that xx(7,») and xxo(7)
have zero overlap if they differ in the orbital of more
than one nucleon.

(3) It is seen from (II1.194) that the wave function
of the transferred nucleon should be referred to axes
fixed in space. This can be achieved, with the aid of the
rotation matrices, on expanding xe(») in (II1.196) as a
sum of functions of definite j. Explicitly,

xg(v)=‘l; @n1i (D)X n1;%()

=Z anlj(Q)Dmg*j(l?)lﬁnzjm(vl). (111197)

lim
The aqy; are given in terms of the coefficients dqia
tabulated by Nilsson (Ni55) by the simple transforma-
tion
A

Then, from (II1.191) with the help of (II1.196)-
(IIL.198),
[J

Jo '
Pl D

<JKM!JOKOM0>= %_%'p

XDmﬂjDMoKoJOdlya (Ko, K— Q)

X @n1j( QY m; nlj ("), (111.199)

where (f|3) is the core overlap, and
p="2 if either K or K, is zero (II1.200)

=1 otherwise.

The integral over the Euler angles yields [Ed57,
4-6-2)]

[87%/ (2T +1)C[JojJ ; Mo, M—M,]
XC[JojJ; Koy K—K,]

X&(m, M—M)8(Q, K—Ko). (II1.201)

The summation over m can now be carried out ex-
plicitly, and (III1.199) becomes

(JKM| JOKOM()):;{""%P' (fI1DHLTo/T T

XC[JojJ; Koy K—Kolan;(2)8(2, K—Ko)}
XC[]()]], Mo, M—Mo:]
S M —Mo; d7](7/).  (II1.202)

The overlap integral for the case |Q|=K+K, is
obtained from (II1.202) by the replacement K—Kq;—
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K+4K,, as discussed in the foregoing. Comparing
(I11.202) with (II1.194), we obtain an expression for
the overlap integral in which we are really interested:

g(lj)=n"1-p-(f|0)[Jo/J T}
XC[JojJ; FKo, K£KoJau;(|2])
- X8(|Q], |K£Ko|). (IIL.203)

Finally, let us recall the definition (II1.56), $(I)
=n9(l7)?, whence

8(7)=pXfliPLIo/ 7]
XC[]()]J, :FK(), K:tKO]ZanljZ(IQI)

X5(|Q|, | K+Ko|). (II1.204)

The core overlap

liv= [ @odoae

defies exact calculation. Crude estimates based on the
approximate vibrational wave functions of Bohr and
Mottelson (BoS53) suggest that

(fliy~1

is a reasonable value provided that, as is nearly always
the case in practice, the nuclei concerned have similar
equilibrium deformations (Sa58).

In all cases of interest to us, excited bands are based
on intrinsic states of single-particle excitation. The
influence of the mixing of bands (R.P.C.) on relative
reduced widths can be analyzed as described in Sec.
II1.8.

Let us conclude this section by deriving a sum rule.
We can use the orthonormality of the Clebsch-Gordan
coefficients to sum over all states J in the rotational
band K in (II1.204). The sum rule is

g I8 =p[Todan2(|Q]), (I11.206)

(II1.205)

where we have set (f]|7)=1 and omitted the Kronecker
d.

The normalization of the intrinsic wave function,
expressed by
2 auf=1,
1

yields a further sum rule

2 [718(5)=p"[To].

Ji7

(I11.207)

These sum rules were first given by Satchler (Sa58).
Their application is discussed in Sec. V, where stripping
reactions in the ds shell are analyzed.

Lastly, in the second sum rule, let us put J,=0,
J=7j, p=V2, and n=1, the case of an even-even target
nucleus.
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We obtain

> [718Gh)=2, (II1.208)
1

which is the sum rule written down and used by
Litherland et al. (Li58).

13. Calculation of S from Vibrational-
Model Wave Functions

Another important type of nuclear collective excita-
tion involves shape oscillations about a spherical equi-
librium (Bo52, Mo057). The reduced widths of vibra-
tional levels were first discussed by Satchler (Sa58),
whose treatment we follow quite closely.

In the most important case of quadrupole or ellip-
soidal vibrations, the shape of the nucleus at any
moment can be described by

2
R(0,¢)=Ro[1+ ¥ .V, (8,¢)], (II1.209)
p=2

where Ry is the normal radius of the nucleus and (6,¢)
describes the direction of R relative to a set of axes
fixed in the nuclear shape. The o, can now be used as
dynamical variables in the shape oscillations, the
relevant “vibrational” Hamiltonian being

H=} T{Bla/+Claly.  (TL210)
m

B and C are parameters which may either be calculated
on the basis of some more detailed nuclear model or,
preferably, treated as empirical constants. H describes
a set of uncoupled oscillators, whose quanta we refer
to as ‘“phonons.” Each such phonon carries two units
of angular momentum and possesses an energy
=4[ C/BJ}.

If we confine our attention to states involving on
more than three phonons, then the eigenfunctions of
(I11.210) can be completely specified by (VR), where
N is the number of phonons and R is the total angular
momentum.

Once again let us start by separating the nucleus into

“a core and a number # of “loose” nucleons outside the

core. Correspondingly, the nuclear Hamiltonian may be
written

H=H,+H+Hi,. (IT1.211)

H, is the ordinary shell-model Hamiltonian for the
loose nucleons, the core being described by the vibra-
tional Hamiltonian H. given by (II1.210). The inter-
action energy can be expressed (Bo52) as

n 2
Hint= k Z Z a/.l,Y;l,(2) (0,',(]5,') (111212)
i=1 p=—2

where % is a constant of the order of magnitude 20 Mev
for light nuclei. We take

Hy=H.+H, (I11.213)
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as a zero-order Hamiltonian, treating H in, by first-order
perturbation theory.

We begin by discussing reduced widths connecting
zero-order states (eigenfunctions of Hy). The perturbed
wave functions (eigenfunctions of H) are linear com-
binations of these zero-order states; the corresponding
reduced widths can then be obtained from the zero-
order overlap integrals by the method described at the
end of Sec. ITL.7.

Reverting to the notation described in Sec. IIL3,
the eigenfunctions of Ho may be written

J
I1e: 1o (37) =2 U(RoIoJ 7: JoI') NR g
T
J

where g5™-(l7) is the overlap integral of the shell-model
states. Expression (II1.215) agrees with Satchler’s
result [Sa58, Eq. (8)]. As might have been expected,
the overlap integral is diagonal in the vibrational states,
whose only effect is to multiply the shell-model overlap
by an angular-momentum coupling factor.

For a nucleus in its ground state, the zero-order
vibrational wave functjon has N=R=0. The vibra-
tional selection rule AN=0 then implies that stripping
and pickup reactions select members of the ground-state
vibrational band in the residual nuclei.

The first-order effect of H iy is to mix states whose
phonon-numbers differ by one. Such admixtures give
rise to small reduced widths for one-phonon states.
Two-phonon states only have nonzero reduced widths
in second and higher orders. The mixing coefficients are
calculated (EIS7) by standard perturbation theory.
9(1j) is then expressed in terms of Jia:rao(lf) as in
(I11.83) and the shell-model overlap calculated with
the help of the tecnhiques described in Sec. IIL.7. The

final relative reduced width is
S(l7)=n9g(j)>.

Situations may be encountered wherein perturbation
theory is not valid. This would happen, for example, if
an excited level of the ground-state vibrational band
lay close to a one-phonon state of the same spin and
parity.® The states in question could then interact
strongly, producing two levels with sizeable stripping
widths.

3 Satchler (Sa58) cites, in this connection, two close 27 levels
in Cd'4,

(I11.216)
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with the eigenvalues N#w-+E(nla). ¢ symbolizes an
antisymmetric shell-model wave function for the # loose
nucleons.

The desired overlap integral is

grec 1oall)= QR Noaosm >

(TI1.214)
On applying the recoupling rule (IIL5) to the right-
hand wave function,

NoRo J(n)> =8(NNo)8(RRo)U (RoIoJ j: JoI)g*=-(17),
(IT1.215)
]

There are strong indications (Mo57) that nuclei in
the region 70K A< 150 exhibit some of the features
predicted by the vibrational model. Not nearly enough
is known about this region experimentally; stripping
and pickup reactions provide a good means of improving
the situation.

IV. STRIPPING AND PICKUP REACTIONS ON
1p-SHELL NUCLEI

We now analyze the reduced widths given in Tables
I and II, on the basis of suitable nuclear models. This
section deals with nuclei in the 1p shell, with 4< 4 < 16.

In this region, many IJ=1 transitions involving 1p
nucleons are discussed in terms of the intermediate-
coupling shell model (In 53, Ku56), using the techniques
described in Sec. II1.8. For the effective two-body inter-
action we assume either a Rosenfeld (Ro48, Fr58) or
an Inglis (In53, Fr58) exchange dependence. These two
forms of interaction lead to almost identical results in
most cases of interest to us®; in practical situations we
select whichever is more convenient. Later in the 1p
shell, beyond A=11, it is worthwhile to examine the
77 coupling predictions.

We also encounter transitions involving 2s, 1d, and,
possibly, 2p nucleons. In such cases it is most convenient
to use the weak-coupling approach of Sec. ITI.11.

Reduced widths in the 1p shell have been discussed
by Lane [La54: C2(d,p)C¥], Auerbach and French
(Au55: Li, C, and N), French (Fr56: 4= 14), French

# See, however, our discussion of the channel-spin ratio in
Li’(p,y)Be® (17.63 Mev).
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and Fujii (Fr57: 4=6—10), and Bennett® [Be58:
C(p,d)C2; N5 (p,d)NM].

When we have occasion to use experimental evidence
not concerned with stripping reactions, we do not, in
general, give explicit references, referring the reader for
such matters to the review article of Ajzenberg-Selove
and Lauritsen (Aj59).

A=6=7
Lis(d,p)Li7

The ratio 62*/6,2 for the two levels of the ground state
P doublet shows no variation as the deuteron energy
increases from 2 to 14.4 Mev (Fig. 5).

With the use of a Rosenfeld interaction, we now cal-
culate the ratio 8*/8, of the P doublet spectroscopic
factors as a function of the spin-orbit parameter {.%
The low-lying level spectra of both Li® and Li” are well
reproduced with {~1.2; accordingly, let us set {(Li®)
={(Li") in studying 8*/8,. The results are (AuS6)

¢ =0 1.2 24 3.6
$*/8,=1 1.2 14 1.6,

with a Rosenfeld interaction. The observed ratio
67%/6,2~1.4 (Le55) leads to 1.8< < 2.8, slightly larger
than the values determined from the spectra. On using
the lowest admissible value of {=1.8, we have §,=0.8.
With the absolute ground-state reduced width of Le55
we then have

8:2(1p) =0.060. (IV.1)

The 4.63-Mev level is almost certainly the %~
member of the F doublet. The corresponding stripping
transition from Li® is forbidden by angular momentum
conservation. The transition to the 5~ member of the
doublet is L-forbidden.? Since all the evidence indicates
that for A=7 we are close to LS coupling, we can
expect that the predominantly #Fy level of Li” will not

appear in Li®(d,p)Li".

‘.7.47___5,2.
| A A
/
!
!
1
! ae3
! 46 7/2-
IO
F16. 5. J
!
/
/
/
/
! 2s1 ’&Qm__—llg.
,' /:,-——-—1——3/2-
1+ L= 2 Li

3 Bennett’s analysis of C3(p,d)C2 is incorrect. He uses dif-
ferent phase conventions (i.e., different basic sets of states) in
his C22 and C® wave functions.

3 Defined in Example 1 of Sec. ITL.9.

35 The transition /7, L — [, Ly is L-forbidden if the triangle
condition A(Lg/L) is not satisfied.
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The sizeable reduced width of the 5~ level at 7.47
Mev is thus compelling evidence (Fr57) that it is not
predominantly *Fy, but that, instead, 24Pj is the main
component, as is now well known (Me56, Ma57). For
§=1.8, the corresponding relative reduced width is
§**=0.65, whence §**/8,=0.81, in excellent agreement
with 62%%/6,2=0.83.

The resonant width of the 7.47-Mev level has been
measured by elastic scattering of neutrons on Li(Wi56).
The ratio of resonance to stripping widths is found
(Ha59) to be

62 (res)/6%(str)=0.21/0.04=5.2. (Iv.2)

Li’(p,d) Li®; L7 (d,f) Li®

There are two relevant (p,d) experiments and one
(d,p) (Fig. 6). The ratios of the reduced widths so
obtained agree to within 209%,. The (d,f) 3¢ reduced
widths are normalized as described in Sec. III.3.

Let us consider the two lowest T'=0 states first.
Once more let us take {(Li®)=¢(Li"). We have (Fr57)

¢ =0 12 24 36
$%/8,=0.48 0.69 0.89 1.12 2.33,

with a Rosenfeld interaction.

The observed® ratio 62*/6,2=0.704-0.03 38 is con-
sistent with the previous predictions in the reasonable
range 0.8<¢< 1.2,

Serious difficulties are encountered with the T'=1
levels. The ratio of the spectroscopic factors for the
ground and 0+, T=1 levels is given by (Ha59)

¢ =0 12 24 36
§¥/8,=1 106 1.17 133 2.78,

using a Rosenfeld interaction. These values, all greater
than one, are to be contrasted with 62**/6,2=0.66
extracted from the (d,f) data (HaS59). The (p,d) meas-

¥ Li"(d,)Li® and Li"(d,He’)He® were analyzed by Ham-
burger (Ha59), his methods and conclusions being similar to ours.

3 We regard the value for this ratio obtained from the (d,f)
experiment (Le55) and the (p,d) work of Re56 as being most
reliable.

% We frequently use this way of writing the value of a quantity
of which we have several separate determinations (experimental
or theoretical). The quoted ‘“errors” indicate the limits within
which the various determinations are consistent, and should not
be taken to imply that the value so obtained is reliable to this
accuracy.
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urement of this ratio is, unfortunately, subject to large
uncertainties. The statement §2¥%/6,2=0.5+0.3 is prob-
ably trustworthy and suggests that the difficulty is not
mainly due to our technique for extracting (d,f) widths.
A more accurate (p,d) measurement of this ratio would
be valuable.

The reduced width for the 2+, T'=1 level at 5.35 Mev
is hard to measure accurately because of the presence
of the nearby broad D, level. The “measured” value
of 0.5 for the reduced-width ratio is only a rough
estimate. We therefore cannot attach much significance
to the fact that a satisfactory value of 8$/8, can be
obtained only with an unreasonably large value of {.

In the LS limit, which should be a satisfactory ap-
proximation here, the 8§ values of the D levels at 4.52
and 5.5 Mev are 0.15 and 0.02, respectively. The nonap-
pearance of these levels in Li’(p,d) is thus to be

expected.
The absolute ground-state reduced widths measured

by Li?(p,d)Li® and Li®(d,p)Li? agree well. The estimate
(IV.1) of 6¢2(1p) is therefore consistent with the pickup
results on Li’.

Li(d,He') Hed

The first two levels in He® are the analog of the I'=1
states at 3.56 and 5.35 Mev in Li® (Fig. 7). The (d,?)
and (d,He?®) reduced widths for these levels should be
identical. In fact,

- 02(d,He?)/602(d,1) =0.8(J = 0%),
62(d,He?)/62(d,1) =0.3(J = 2).

The discrepancy for the 2+ state is striking, even allow-
ing for a possible uncertainty by a factor of two in the
(d,f) reduced width.

The statement that the predicted reduced widths for
the T=1 levels in Li® are markedly smaller than the
observed values obviously applied @ fortiori to the
analog levels in He®. For the 1.71-Mev state the dis-
agreement involves the alargming factor four.

We regard these difficulties as very serious and can
offer no satisfactory explanation. Indeed, they are
perhaps the severest single trouble which we encounter
in our study. Any (He?,d) or (d,He?) studies would help
indirectly by revealing whether or not our difficulties,
if genuine, stem from an incorrect treatment of the
mechanism of (d,He?) reactions.

.71 24
R’l/
i
/
I
1
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/
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A=7=38
Li'(d,p) Li®

The 8- and 14.4-Mev experiments lead to conflicting
values for the ground-state reduced widths (Fig. 8).
We favor the 14.4-Mev datum since the implied value
of 6:2(1p) agrees well with values obtained elsewhere
in the 1p shell.

The known level spacings of Li% Li?, and Li® can be
adequately fitted with the same two-body interaction
with values of ¢ which vary very little. It is therefore
reasonable to set {(Li")=¢ (Li®) when computing spec-
troscopic factors 8,, 8*, §** for the three lowest levels
in Li® On using a Rosenfeld interaction, we have
(Fr57) for the values of ¢ of most interest:

¢ 8 8*/8, §**/8¢
0 10/9 0.60 0.36
1 1.09 0.50 0.31
2 0.98 0.43 0.34

Since the observed ratios 62*/6,2 and 62**/6,2 are 0.53 and
0.28, respectively, good agreement is obtained for any
of the values of { in the range considered. The absolute

2.28

. 3
2=/
/
/
/.
/ 9 I+ F16. 8.
// /e
/ /
1) ——2e
1/ P Li
3/2- A4

value 6,°=0.053 implies

0.05<62(1) <0.06, (IV.3)

consistent with our earlier estimate (IV.1).

Hamburger (Ha59) examined the region between 2
and 8 Mev excitation in Li$, without finding any other
sharp levels than the ones discussed afore. It was
estimated that levels with widths less than 100 kev,
attained by transitions® with cross sections larger than
0.6 mb/sr," would have been detected.

An intermediate coupling calculation using a Rosen-
feld interaction with {=~1.2 indicates that there should
be at least seven levels of the configuration 1p* in the
2- to 8-Mev region, several of which have § values of
the same order of magnitude as those for the three
lowest levels of Lis.

The nonappearance of these states, at first sight

® Relative to the T=0 reduced widths for which agreement
seems to be good.

“ The word “‘transition” as a synonym for “‘reaction” seems to
be appropriate for direct interaction processes.

“t The 2.28-Mev level shows a peak cross section of 11 mb/sr
(Ha59).



LIGHT AND INTERMEDIATE NUCLEI

surprising, can be naturally explained on recalling that
levels above 2.034 Mev in Li® are unbound against
neutron emission. The total width of such a level can
be easily estimated.* For example, a level as low as 3
Mev in Li® with §~0.5 and 6(res)~0.4 already has
I'>0.5 Mev. The widths clearly tend to increase with
excitation. :

Thus the expected levels with sizeable 62 must be
broad and overlapping. The proton spectrum obtained
by Hamburger (Ha59) is consistent with such an
interpretation.

We have seen that the 8 values in Li’(d,p)Li® to the
first three levels of Li® are very insensitive to the spin-
orbit parameter. However, on closer inspection of the
interaction matrices and the tables of 8, appropriate
to the 0.98-Mev level of Li® (Appendix 2 of Ma59), we
see that the channel-spin ratio®

x=9(2)¥/9(1)? (Iv.4)

is quite sensitive to { for any reasonable interaction.
This arises from a strong interference effect between
the 33PBU and #PB multiplets, which are expected to
be quite close.

The spacing of these two multiplets is itself a param-
eter of considerable interest in connection with the
effective two-body central interaction in the 1p shell.
We can express all central interaction matrix elements
in terms of the two-body multiplet energies 1.5, 13:81D,
1P and #P. The channel-spin ratio is a function of these
multiplet energies and {. Examination of a whole range
of 1p shell data reveals that we can determine all the
multiplet energies quite well with the sole exception of
1P whose position is related to the preceding Li® dif-
ference by

A= (LP—8P)= 2(31P[31]_33P[31])
+ (11/6) (*D—*D)+ (5/6) (*S—15)

~)EPBI—8PE—11 Mev. (IV.5)

In the second equation, we have used the values of the
S and D multiplet separations obtained from the Li®
spectrum. '

All but two of the parameters upon which x depends
have now been fixed. It is therefore worthwhile to study
the behavior of the channel-spin ratio x as a function
of { and A.

In principle, # might be measurable by the Li’(d,pv)-
Li¢ (0.98 Mev) angular-correlation experiment, which
has not been done. The same parameter has, however,
been determined by Li’(p,y)Bed. The 17.63-Mev res-
onant level of Be® which is reached in this reaction is
the analog of the 0.98-Mev level in Li%. The angular
distribution of v rays to the ground state of Be?is given

2 See Ha59, p. 46.

4In general, we define the channel-spin ratio x to be
9(25)2/9(2<)%. In this case, where Jo=%, 3.=2 and z.=1. 9(2)
is defined in terms of (8;) matrix elements by (IIL.91).

639
1= Ec=3
| !
[ !
! !
Fo.9. a4 | e
oL |
L _;/V
ok--
|
by
1+[(5—w)/(5+7x)] cos?. (IV.6)

The most recent study of this angular distribution
(Ne58) yields
3.0<x<3.6. v.n

In Fig. 9 the shaded region contains points ({,A) which
yield values of # within the allowed range (IV.7).

If we accept the restriction 1<{<3 imposed by
other data in this region of the 1p shell, it is clear from
the diagram that the measured channel-spin ratio
(IV.7) implies

0.3<AK2.75 Mev.

The Rosenfeld interaction, which has been widely
used in 1p shell studies, gives Ag=35.5 Mev, far above
the allowed range. On the other hand, the Inglis inter-
action gives the acceptable value A;=1.4 Mev. The two
interactions differ very little in other respects.

It may be objected that such a complete determina-
tion treats the effective interaction too literally. Even
if this be the case, the example is useful in illustrating
how a channel-spin ratio may be able to measure a
quantity inaccessible to reduced widths.

In conclusion we remark that the resonant reduced
width of the 2.28-Mev level in Li® has been measured
by elastic scattering of neutrons on Li7(Wi56). The
ratio of resonant to stripping reduced width is (Ha59)

6*(res)/6%(str) =0.072/0.015=4.8, (Iv.8)

very similar to the value (IV.2) found for the 7.45-Mev
level in Li’.

A=8=09
BeS(p,d) Be®

It is now certain (Aj59) that the only states in Bed
below 10 Mev are the O+ ground state and the broad
2% level at 2.90 Mev. Only the ground-state angular
distribution has received accurate experimental study,
the two available measurements of the absolute reduced
width (Re56, SuS8) being in good agreement.

Let us use the wave functions of Fr55 for the Be?
ground state and treat Be® in the LS coupling approxi-
mation, which should be reasonably accurate. With
¢=3, which seems (Fr35) to be a reasonable value for
Be?, we have §,~0.4. The ground-state reduced width
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being 6,2=0.024, we have
05> (1p)~0.06
in good agreement with (IV.1) and (IV.3).

(IV.9)

A=9=10
BY(p,d) B

Transitions to two of the three lowest states in B?
have been studied (Re56) (Fig. 10). The spin assign-
ments are based on evidence concerning the mirror
nucleus Be®, but do not contradict anything known
about B? itself.

If the 1.4-Mev level has, in fact, spin 1*, the transi-
tion to it is I-forbidden ; experimentally, no stripping is
observed.

In Table IV are given* values of $/8, for the 5~ and
2~ levels with various pairs of spin-orbit parameters
¢(B°) and ¢(BY).

The B* wave function near the LS limit varies very
rapidly with ¢, a fact which is reflected in the behavior
of 8/8,. Apart from this the ratio 8/8, is insensitive to
variations in the spin-orbit parameters. For all values
of ¢ in Table IV, except the first and possibly the fifth,
agreement with the observed ratio 62/6,2=0.8 is ade-
quate. In view of the complexity of the wave functions,
the general agreement found for the reduced width
ratio is pleasing. The favored values of the spin-orbit
parameters are {(B%)~~1.8, (B)~3.8, but the wave
functions are too complicated for us to place much
reliance on this.*
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4 From Table III of FrS3. .
4 If the spin of the first excited state of B? and Be® is ™, as
seems to be the case (Aj59), a value ¢ (B?)=23 is preferred. On the

B. FRENCH

There is a general lack of experimental information
concerning the 4=9 polyad. Higher levels in Be® and
B9, their spins, parities, and positions should be studied.
In this (and other) connections, careful B(d,f)B® and
BY(d,He?) experiments would be valuable.

B"(5n,d)Be?

The results of this experiment (Ri54) are in satis-
factory agreement with those of the mirror experiment.
The observed value of 62/6,2 for the 5§~ level is 1.05,
slightly larger than the (p,d) value (Fig. 11).

The theoretical discussion of B(p,d)B? is equally
applicable here. The larger value of 6?/6,2 improves
agreement with the calculated 8/8, for higher {(Be?)
and correspondingly strengthens the argument in favor
of ¢(Be?)~3.

The absolute ground-state reduced width of 0.043
leads to

0.04<622(1p) <0.06, (IV.10)

in satisfactory agreement with earlier estimates.

Be*(d,p) Bel

The I=1 transitions to the first two states of Be!®
have been examined at various bombarding energies
[Fig. 12(a)]; most observers, unfortunately, did not
measure absolute cross sections. The reduced width
ratio does not seem to vary with energy [Fig. 12(b)];
on the basis of the 3.6- and 14.4-Mev data, it is tempting
to suggest that 6¢?(1p) increases with bombarding
energy. Systematic measurements, in .this or other
cases, are badly needed to clarify the behavior of reduced
widths as a function of the energy parameters (bom-
barding energy and Q value).

Calculations of relative reduced widths for the first
two levels of Be! predict a strong ground-state transi-
tion (8~2) and an excited-state transition which is
weaker by a factor of 10 (8~20.2). These predictions
are in satisfactory accord with the experimental reduced
width ratio of 0.184+0.07. On using the absolute ground-
state width at 14.8 Mev, we have

0.04<642(1p)<0.05, (Iv.1)
which agrees with earlier estimates.
TaBLE IV.
c®B)  ¢(BY) Sq s 8/8s
0 0 0.0012 1.84 ~1500
14 14 1.18 1.35 1.13
2.8 2.8 1.12 1.24 1.11
3.8 3.8 1.09 1.24 1.14
5.7 5.7 1.03 1.26 1.22
14 3.8 1.03 0.95 0.92

other hand, a 3~ assignment would favor the smaller value {=<1.8.
See Fr55 for a fuller discussion.
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The calculation for the 2+ state predicts that channel
spin 2 should dominate ; measurements of (p,y) angular
correlations (AjS9) confirm this prediction, giving a
value of nine for the channel-spin ratio x defined by
(IV.4).

We now turn our attention to negative parity levels
of Be®. Two strong /=0 transitions proceed to the
5.96- and 6.26-Mev levels of Be. Since Be® has Jo=§7,
these levels must have spin 1~ or 2—. The y-decay
branching ratios to the first two states of Bel® (Me58,
Aj59) indicate definitely that the 5.96-Mev level has
J=1" and the 6.26-Mev level J=2". It is likely*® that
these levels are the members of the T'=1 2s doublet

Coo(Be?) X 2537172~ (IV.12)

Since we are dealing with levels within 800 kev of
the neutron separation energy, we cannot place much
reliance on the exact values of the reduced widths. It is,
however, interesting that

[J762(6.26)> [T 16*(5.96) (IV.13)

in agreement with the foregoing spin assighments, in
spite of the fact that the observed peak cross sections
(Rh54, Gr56) are in the ratio

7(5.96)/0(6.26)~1.5. (IV.14)

The intermediate-coupling calculations of Inglis
(In53) and Kurath (Ku56) predict that, for any reason-
able interaction, the first four 7'=1 levels of 1% should
have J=0%, 2+, 2+, and 3+. The $ values for the second
2+ and the 3* states are zero in the j7 limit and are very
small for reasonable values of $(Be?) and ¢ (Bel). The
6.18-Mev level, whose stripping width is unobservably
small, may well be the second 2* state.

The 7.37-Mev level has attracted much attention.#”
From Be?(n,n) (Wi55) the spin of this level is definitely
three ; the angular distribution of neutrons is best fitted
on the assumption of p-wave formation (and therefore
positive parity), although d-wave capture cannot be
ruled out (Wi55, Aj59). The 3*+ assignment was ap-
parently confirmed when Green and Middleton (Gr56)
obtained a good fit to the stripping data with /=1; the
14.8-Mev data, however, are not nearly as well fitted
by /=1 (Ca58).

Fic. 12.

46 The absence of any other levels below 7.5 Mev in Be! with
measurable /=0 reduced widths suggests that the 2s states
(IV.12) are not subject to strong final-state interactions.

47 We are indebted to Dr. E. W. Hamburger for much of the

nsuing discussion.
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Assuming that the /=1, J= 3% assignment is correct,
we would have

62 (ves),/62 (str) =0.015/0.042=0.36,

smaller by an order of magnitude than the ratios
[(1V.2) and (IV.8)] found for the 7.47-Mev level in Li’
and the 2.28-Mev level in Li®, which are quite typical.
This contradictory situation, whereby the same transi-
tions is strong from the stripping viewpoint and weak
as a resonance reaction, constitutes a serious objection
to the /=1, 3+ assignment. Furthermore, the /=1
reduced width from the stripping data is larger by an
order of magnitude than what is expected for the 3%,
T=1 state.®®

On closer scrutiny, /=2, J=3~ is much more at-
tractive. Both the elastic neutron scattering data and
the stripping distribution of Green and Middleton are
not inconsistent with such an assumption, while
Cameron’s (d,p) results favor /=2 quite strongly. We
would then have

6*(res)/6%(str) =0.136/0.041=3.3,

a very reasonable result. -

If the J=3" assignment is correct, the level must be
predominantly [¢o(Be®)Xds]s-. The § value for the
corresponding transition from Be’ is then close to unity,
whence

(IV.15)

8:2(1d) > 0.04, (IV.16)

which is satisfactorily consistent with other p-shell
estimates of this quantity. We conclude that available
data strongly suggest that the 7.37-Mev level in Bel
has J=3".

Beé(d,1) BV

Only a low-energy experiment (Aj52) with no ab-
solute cross sections is available (Fig.13). For this
reason, and because of the great complexity of the
relevant wave functions, we do not consider it worth-
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_ #8The I=1 transition to this level is forbidden in both LS and
7 j coupling. For {(Be?)=1.5 and { (Be?)=4, 5 we have $=0.012,
0.011, respectively (Fr55).
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while to undertake a detailed comparison of observed
reduced widths and calculated 8 values.

Since only the lowest I'=1 level has so far been
studied in Be®(d,#n)BY, no direct comparison can be
made between the ratios of the reduced widths of T'=1
levels in BY and of their analogs in Bel. However, the
absolute reduced widths of the ground (3+, 7=0) and
second excited (0, T=1) states of B have been
measured by BY(n,d)Be’ and Be?(d,p)Bel, respec-
tively. The ratio of the reduced widths so obtained,
0.093/0.043=2.1, is to be compared with the value 1.4
measured directly by the (d,n) experiment. In view of
the low energy of the (d,%) deuterons, this agreement is
perhaps all that could be expected.

An experiment at higher deuteron energy, including
absolute cross sections,” would be valuable. We have
already noted the existence of possible weak-coupling
253 levels in Be'., In the 5- to 10-Mev region in B we
expect to find strong /=0 transitions to four such levels,
two with 7=0 and two with 7'=1.

A=10=11
B(d,p) B1; B (d,n)C1:

The reduced-width ratios for mirror (d,p) and (d,%)
reactions (Ev54, Ce56) to levels below 7 Mev, in B!
and CU, respectively, are in good agreement (Fig. 14).
No absolute (d,p) reduced widths have been measured.

Quantitative intermediate coupling calculations of
spectroscopic factors are of doubtful value in this
complex region and are not attempted. It is worthwhile,
however, to consider the jj-coupling predictions. In this
approximation the low-lying levels of B and C" belong
to the configurations p;” and p3%p; which contain, for
T=1%, the following states:

J=G* (3% (B3 i (Iv.17)

Three of these states can be reached from(p;%) (7J)
= (03), the levels in question having J=3%, §, and %
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49 A preliminary report has appeared of a Be”(He“i,d)Bm ex-
periment, using 25-Mev He? ions (We60).
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TABLE V.

B! excitation J~ 6>rel  CM excitation J* 62 rel
0 = 1 0 3 1
2.14 3 e 1.99 'l .
4.46 (37) 0.25 4.26 (37) 0.2
5.03 (37) 0.17 4.75 3) 0.14
676  (37) - 07 '
6.81 (37) e
7.30 G7) ?

7.99

with 8=7/4, 1 and, 1, respectively. The spins (Aj59,
Table 11.1) and /=1 reduced widths of negative parity
levels below 8 Mev in B! and C" are listed in Table V.

Agreement with the simple jj predictions is fair.
The number and what is known of the spins of the
low-lying negative parity levels is consistent with the
enumeration (IV.17). The reduced-width ratios, al-
though they indicate mixing of the basic §~ and §~
states, are also in qualitative agreement with the values
1:0.57:0.57 predicted in jj coupling.

We do not discuss the reactions to the first excited
states of B! and CY, which appear to have the charac-
teristic /=1 angular distribution although the spins
(3*—%7) forbid /=1 stripping. To resolve this dif-
ficulty, various authors® have invoked a spin-flip or a
nucleon exchange effect. We later remark on a number
of cases where a similar mechanism might have been
expected to be important.

The large /=0 reduced widths of levels at 9.19 and
9.28 Mev in B! suggest an interpretation in terms of
the weak coupling of a 2s nucleon to the ground state
(o) of BY, In fact, since the relevant spins are known
(Aj59) to be Z (9.19 Mev) and § (9.28 Mev), we inter-
pret the levels in question as [@oX2s; 2t and
[0X 253 ]s+. The small energy separation of these states
and other aspects of s doublets in light nuclei are dis-
cussed in a paper by Bilaniuk and French (Bi60).

The transition to the 8.93-Mev level (J=3%) is
identified by Bilaniuk and Hensel (Bi58) as /=2 with
a smaller /=0 admixture. If the positive-parity assign-
ment so obtained is correct,® it is clear that we are
dealing with a major fragment of the 1d single-particle
state [@oX 1ds Js*. The /=0 admixture in the 8.93-Mev
angular distribution then indicates an interaction with
[0X2s3 ]5*. In Sec. IIL.11 we saw how the ratio of the
I=0and /=2 reduced widths of this level can be used to
determine the mixture of the basic single-particle states
in the observed §+ levels.

The fact that no absolute (d,p) cross sections have
been measured tends to weaken our arguments in favor

% See Au59 for discussion and references.

51 Recent work by Wilkinson (Wi60) on the reaction B9(d,p)B!
at low deuteron energies (3 to 4.5 Mev) suggests negative parity
for the 8.93-Mev level; in a study of Be®(He3,»)B!, Hinds and
Middleton (Hi60b) reach a similar conclusion. If the parity of
the level in question is indeed negative, Example 1 of Sec. III.11
should be regarded merely as an illustration of the weak-coupling
procedure.
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of the single-particle nature of the levels in question. In
this particular case, however, the high spin of the BY
ground state leads us to expect weak coupling of 2s; to
be a very good approximation for J=%* and quite
good for J=4§+.

The foregoing interpretation of the stripping data for
levels near 9 Mev in BY(Bi®®) implies 6¢*(1d) ~0:?(2s),
whereas, in other cases of capture into weakly bound
levels of the final nucleus, we find 6:2(2s) >6¢*(1d). The
measured BY(d,#)C! ground-state reduced width
(Ma56) is smaller than expected on the basis of jj
coupling, by a factor of two.

Measurements of absolute cross sections in B(d, ) B!
and independent determinations of the parity of the
8.93-Mev level would be valuable.

Bu ( P’ d) B

No pertinent experimental data are available.
In jj coupling we have

P17 (TT)= (5 %) = ps°: (ToJ o),

the spectroscopic factor for which follows immediately
from (II1.76) and is

8(ToJo)=%[ToJ0].

We thus expect to see four /=1 transitions, the states
of p3® and their relative reduced widths being, from
(Iv.18),

(IV.18)

ToJi=03 01 10 12
8(ToJo)=7/4 3/4 3/4 15/4.

The jj prediction is therefore that the first three
levels of BY should show strong reactions, while the
other positive parity levels except the lowest with
T=1, J=2 (probably at 5.16 Mev) should be weak.

Transitions to negative parity levels of BX are
forbidden by configuration selection rules and should
be weak. Any measured /=0 or /=2 width would indi-
cate components from higher configurations in the B!
ground state.

Fic. 15.
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A=11=12
BY(d,p) B2

The reliability of the reduced widths from the only
available experiment (Ho53c) is doubtful, especially for
transitions to the second and higher excited states,
because of a lack of low-angle measurements (Fig. 15).

We first inquire whether ;7 coupling can predict the
main features of the observed /=1 transitions. Since
£3® contains no T'=1 states, we must have

13’03 = (37 70—t
We therefore expect two strong /=1 transitions ($~1)
proceeding to levels in B2 with J=1+ and 2+.

Two strong /=1 reactions proceed to the first two
states of B! the relative values of the reduced widths
being consistent with 2% for the first excited state. The
absolute reduced widths, however, are smaller than
expected by a factor close to two. A weak =1 level is
found at 3.76 Mev by B"(%,2)B1(Wi55). If there are
no other strong /=1 transitions, the j; coupling picture
is qualitatively correct.

The !=0 reduced width of the 1.67-Mev level is
subject to considerable uncertainties because no meas-
urements were made below 14°. The strength of the
transition suggests [ ¢o(B™) X 253 1 or 2-.

The 3.38-Mev transition was assigned /=1 by Holt
and Marsham (Ho53c). This assignment is uncertain
because they did not measure the differential cross
section below 23°. In fact, if we compare the 3.38-
and 1.67-Mev angular distributions for 6 > 23°, we see
that they are very similar. Thus /=0 is a definite pos-
sibility for the 3.38-Mev level. At any rate, the 2.62-,
2.72-, and 3.38-Mev levels probably include at least
one strong /=0 state, corresponding to the second
member of the [¢oX2s;] doublet. The situation obvi-
ously needs experimental clarification.

The I=2 assignment for the 3~ level at 4.54 Mev,
not convincing from the stripping data, is confirmed by
BU(%,z)B! (Wi55). The next level with J=3 is at
5.73 Mev in B, the [ value from B! (n,%) being either
one or two. It is not clear whether this level, whose
resonant reduced width is small (see Aj59, Table 12.2)
for either I value, is a 3*, T=1 level of $® or a 3~ level
containing a fragment of [¢o(B1)Xds]. In any case,
we expect weak coupling to be a reasonable approxima-
tion for the 4.54-Mev level, since the first excited state
of B, with J=1%-, is 2 Mev above the ground state. The
absolute reduced width for the 4.54-Mev level indicates

0.05<6¢2(14) <0.06. (IV.19)

BU(d,n)C®2

The two available experiments (Gi54, Ma56) yield
reduced width® ratios for the first two levels of C2

8 The reduced widths extracted from the data of Ma56 and
given in Table I differ from those quoted in Table 12.8 of Aj59
by a factor of two. The discrepancy arises from the isotopic-spin
coupling factor which here has the value 3.
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differing by a factor of 2.6 (Fig. 16). The ground-state
angular distribution in the 8.1-Mev experiment is,
however, very crude and the disagreement is probably
not significant.

The 77 predictions for the /=1 transitions are rather
interesting. The ground-state transition fills the eight
particle pj shell and therefore has §=8. (See Example 4
of Sec. II1.9.) A very large value is, in fact, observed
for 6,2. Two other /=1 transitions to 7=0 levels are
expected; each involves the addition of a p; nucleon
and has §=1. The reduced width for the 2+ level at
4.435 Mev is in apparent agreement with such a pre-
diction. The corresponding J=1% state has not yet
been identified.

The strong /=2 transition to the 9.63-Mev level
indicates that it is predominantly [ ¢o(B%)Xds]. The
spin of the state is probably 1~; 2~ would give a value
of 6,2(1d) more in line with other determinations, but
seems to be excluded by the data concerning C®2(e,¢’)
and N“(d,e) (see AjS9).

Considerable interest centers on the 0% level at 7.653
Mev; intermediate coupling calculations within 1p?
(Ku56) predict that the first 0 excited state should be
at least 3 Mev, and probably 5 Mev, higher. It is
therefore of interest to find out what are the dominant
configurations in this level. In addition to 1s*1p%, we
could have the doubly excited configurations 1s41p%2s%
154198142, and 15*1p%251d, and the “breathing modes”
15*1p"2p and 1531p82s.

Both 15158 and 15*1p72p components can be reached
by B!(d,n)C®. Unfortunately, present experimental
information can only give the upper limit #2<0.02 on
the reduced width, and this is too crude to give us useful
information about the configurations.

A careful study of the level under consideration has
been made by C®(d,f)C? (Ma60). The reduced width
62=0.0012 so measured implies §~0.025. The simplest
interpretation of this § value is that the 7.653-Mev level
is about 109, s*p%.5 A component of this size could arise
by the interaction of a 0* state from s*p® with a similar
state belonging to excited configurations. Stripping data
on this and other levels up to 14 Mev would be interest-
ing and might best be obtained by a careful B! (He?,d)

rather than B"(d,n) experiment.

5 An accidental cancellation is possible but unlikely.

M. H. MACFARLANE AND J. B. FRENCH

A=12=13
- Cr(dp)Cn

Relative and absolute differential cross sections for
C2(d,p)C® have been measured at deuteron energies
between 2 and 14.8 Mev. (Fig. 17). There is no definite

_indication of an energy variation in the reduced widths,

although the ground state reduced width seems to
increase slightly between 2.7 and 9 Mev. The experi-
ments at 8,9, and 14.8 Mev are in reasonable agreement.
We regard the latter two as more reliable® and use the
corresponding reduced widths in the following analysis.

For the /=1 transitions® to the ¥~ and §~ levels, we
have §,=8*=3} in LS coupling and §,=1, §*=0 in the
77 limit. The experimental ratio 62*/6,2=0.2540.06
then indicates immediately that we are far from LS
coupling (as is well known anyway). A plot of the §
values and their ratio, covering the transition from LS
to 77 coupling is given in Fig. 1, where we have calcu-
lated 8, and $* as functions of { (assumed the same for
each nucleus) with an Inglis interaction. The reduced-
width ratio is not well enough determined experimen-
tally to fix a value of {, but the range 3< ¢ <6 is satis-
factory. For ¢=5 we find §,=0.7, whence, using
6,2=0.036-£0.006, we have

0.043<002(1p) <0.06,

which agrees with other estimates.

Because the lowest states of C'? are widely separated,
the levels at 3.09 and 3.85 Mev must be nearly pure
single particle 2s; and 1ds levels. This expectation is
confirmed by the corresponding strong /=0 and /=2
transitions, from which we obtain reliable estimates of
the single-particle reduced widths:

002 (25) ~0.17, (1Iv.21)

052(1d) ~0.07. (1V.22)

McGruer et al. (Mc56) studied several unbound
levels between 5 and 9 Mev in CB%, but could not

assign / values because the relevant Butler curves with
1=0, 1, and 2 are very similar. The correct values of !

(Iv.20)

385 5/2+

Fic. 17.

5 See Table I, footnote k.
85 These were first studied by Lane (La54), who also discussed

weak coupling for the positive parity levels of C1¥(LaS5).
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have now been determined by elastic scattering of
neutrons on C2. (See Table 13.5 of Aj59.)

The 5.51- and 6.10-Mev levels are not seen either in
the stripping or in neutron scattering experiments. One
of them is probably the §~ level of ° which grows from
the 2FU4) multiplet.

At 6.86 Mev there is an /=2 level with J= 3t whose
small stripping width 62=0.0018 indicates a fragment
of the basic single-particle state [ ¢o(C™)X 1ds ], whose
major component belongs to the 5t level at 3.86
Mev. The 6.86-Mev level must be®® predominantly
[¢1(C™2:4.435)X 53] (or perhaps dj), the reduced widths
implying that the [ oX ds ] component amounts to only
2.5% in intensity. Such an admixture demands an
interaction matrix element of about 600 kev.

A weak [=2 level with J=3* is found at 7.57 Mev
by C2(n,1n)C' and another such level, with a very large
resonant width, at 8.33 Mev. The latter level appears
very strongly in C'2(d,p)C%, but it is too broad to yield
an identifiable angular distribution. It is probable that
we are dealing here with single particle d3 components,
which would indicate A

[d3y]—[ds]~4 Mev. (IV.23)

for the d doublet splitting in C®, comparable to the
value (=~5 Mev) found in OV,

C2(d,n)N®

This experiment should yield very similar results to
the mirror (d,p) experiment, since the spectra of C1
and N* agree very closely. Because of the much poorer
resolution in the (d,%) case, no meaningful comparison
can be made, apart from noting that the absolute ground
state reduced widths agree tolerably well.

C13 (p’d)cm; CIS (d,l) C12

There is a large discrepancy between the absolute
ground-state reduced widths measured in the only
available (p,d) experiment (Be58) and the (d,p) experi-
ments (Fig. 18). The (d,p) reduced width being con-
firmed by several experiments, we suggest that the
(p,d) cross section quoted in Be58 is incorrect.

The ratio of reduced widths for the first two states
of C2is found to be 0.95 on the (p,d) experiment (Be58)
and 0.76 in the (d,#) experiment (Ma59). The two deter-
minations agree well.

In Fig. 1, again calculated with an Inglis interaction,
it is clear that

$%/8,>1.2,

and that the ratio does not vary appreciably for ¢>5.
This agreement is mediocre and no value of ¢ can be
fixed.

5 [ 03X 13, where o, represents the (1-) state at 9.63 Mev in
C®, would appear energetically to be an even stronger possibility.
However, we have already seen that s (py?)Xd;], so that
LosX1p31~[ 00X ds].
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We have already pointed out, in discussing

B (d,n)C®, that the (d,f) reduced width (0.0012) of
the 7.653-Mev level probably indicates a component of
s'p8 about 109, in intensity. Nothing further can be
said about the structure of this state until further
experimental data are available, concerning stripping
from B! to the level in question and both stripping and
pickup to higher levels of C2,

In spite of the very small reduced width, a clear I=1
angular distribution is observed (Ma59) to the 7.653-
Mev level. The background in this weak transition is
itself surprisingly low, about 0.02 mb/sr. There is, in
fact, some evidence that the background in deuteron-
triton reactions tends to be lower than in the corre-
sponding deuteron-nucleon reactions. Further experi-
mental study of this point, which could be very sig-
nificant, is essential. A very interesting experiment in
this connection would be the “spin-flip” transition
BY(He?d)C"' (2.01 Mev). If the nonstripping con-
tributions to deuteron-triton and deuteron-nucleon
cross sections differ markedly, this is obviously an ideal
case to examine.

A=13=14
C(d,p)CH

All low-lying /=1 transitions are forbidden in jj
coupling except that to the ground state, for which $§=2.
The only strong /=1 transition observed is, in fact, the
ground-state transition, as predicted (Fig. 19). The
6.59-Mev level is probably weak !=1, possibly the
J=2% (T=1) level expected in this vicinity.

The level at 6.09 Mev is known to have J=1~
(Aj59), and shows a strong /=0 stripping transition. It
is undoubtedly [¢o(C®)X 2s3]i-, there being no nearby
1~ levels to suggest strong interactions. From the
reduced width we obtain the value

802 (25) ~0.20. (IV.24)

We do not expect the 0~ member of the s; doublet to
be far away. The only level below 11 Mev with a
strong enough stripping transition is a J=0 level, of
uncertain parity, at 6.89 Mev. This level was assigned
/=1 in Mc56; however, the reduced width would then
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be anomalously large for an /=1 transition (42~0.09)
and incredibly so for a forbidden one. It is found that
1=0 gives an acceptable fit to the angular distribution
of the transition in question and must surely be the
correct assignment. (See Table I, footnote p.) Be-
cause of a lack of low-angle measurements, a reliable
reduced width could not be extracted. The transition,
however, is strong and the 6.89-Mev level probably
Leo(C)X 253 ].

The strong /=2 transitions to states at 6.72 and 7.35
Mev suggest the presence of large components of
[poXds]s-s-. We expect weak coupling for the 1d
single-particle states of C. The lowest states in the
weak coupling representation (Sec. III.11) which can
interact with[poX ds Jo-,57, [ 02X ds ]o-,5-, and [p2X 253 Je-,
where ¢ represents the §~ second excited state of C%,
are probably about 3 Mev higher, since the excitation
of ¢ is 3.68 Mev. The assumption that the 6.72- and
7.35-Mev levels are the 3= and 2~ members, respec-
tively, of the doublet is supported by the reduced-

width ratio
[J16%(6.72):[J J62(7.35)=1.55:1,

very close to the statistical ratio of 1.4:1. The absolute
reduced widths yield

0.06 <8¢2(1d) <0.07.

A broad level at 11.9 Mev in C** appears very strongly
in CB(d,p)C™. Although no / assignment is possible, it
is probable that this transition involves one (or both?)
single particle dj states with J=1~ and 2~. This would
indicate

(IV.25)

[dg:]— [d;]ﬁs Mev, (IV.26)

similar to values found for the d doublet splitting in
C® and OY. A firm / assignment might be possible by
CB(n,m)C",

M. H. MACFARLANE AND ]J.

B. FRENCH

C®(d,m) N"4

There is no data concerning reduced widths, although
a few low-energy experiments have been performed (see
Aj59). In jj coupling, we expect only two /=1 transi-
tions, both with §=2, to the first two states of N,
Negative parity 2s; and 1ds levels appear with both
T=0 and T=1. The T'=1 levels, analogs of the C*
levels discussed previously, have been identified by
CB(p,p)C8 (Table 14.8 of Aj59). A high resolution
C3(He?,d)N' experiment, studying levels in N* up to
10 Mev, would be well worthwhile.

CH(d,1)C1
The calculated ratio for the /=1 reduced widths to
the ¥~ and %1~ levels is found to be insensitive to the

spin-orbit parameters, except near the uninteresting
LS limit (Fig. 20). With {(C8)=¢(C¥), we have

=0 2 5 16
8§*/8,=2 147 1.15 120 1.23.

Reasonable separate variations of {(C¥) and {(CY) do
not change these results appreciably.

The experimental reduced-width ratio (Mo38) is
02*/6,2~0.7, significantly smaller than 8*/8, for any
value of {. This disagreement may perhaps indicate a
variation in 6¢(1p) between the ground and 3.68-Mev
states, which, in turn, may be due to the fact that the
reaction is (d,f) rather than the simpler (p,d).

Since the 3.09- and 3.86-Mev levels have been iden-
tified as single-particle 2s3 and 1dj states, the measured
1=0 and /=2 reduced widths give a measure of ad-
mixtures of $%2s* and %1d? in the C* ground state.
The technique for estimating such admixtures is
described in connection with N*(p,d)N®. We work in
77 coupling and assume 6¢*(2s) =0.17 and 65*(14)=0.07
for the relevant single-particle reduced widths. The jj
coupling assumption implies neglect of 1p82s1d, since
(1p3%)02s31d5 contains no states with J=0. The meas-
ured reduced widths imply that, assuming

Y(CH)=alp+B8(1p59 25+ (1919 olde,

1/ Fic. 20.
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the intensities of the various configurations are

o?=0.92 (92%), B*=0.005 (0.5%),
v2=0.07 (7%). (IV.27)

An analysis similar to the foregoing was first given
by Baranger and Meshkov (Ba58), who obtained a p%?
intensity of 129, about twice that given in (IV.27).
Their result differs from ours because of a different way
of handling the data. The discrepancy of a factor of two
in the p3@? intensity is within the reliability claimed by
Baranger and Meshkov and does not influence their
qualitative conclusions, which we discuss later.

N14 (Pid) Nla; NH4 (n’d)cla

The ground-state widths (Be58, Ca57a) measured by
the two different reactions agree very well, but there is
a large discrepancy in the measurements of the /=1
reduced width ratio to the 3~ and §~— states (Fig. 21).
The /=1 curve in the (#,d) experiment fits the data
very poorly; any reduced width extracted from such
a curve is subject to large uncertainties. Furthermore,
the (#,d) width 82=0.16 for the §— state is incredibly
large for an /=1 transition whose 8§ value in the jj
limit is 2/11. We conclude that the (»,d) ratio is
erroneous and take 6°%/6,2~0.5 as the experimental
value.

The ratio 8*/8, of spectroscopic factors, calculated
as a function of { (N*) = ¢ (N*) within the configurations
1pm, is found to decrease monotonically from 2.26 at
¢=0(LS) to 2/11 at {=(57). A few representative
values, obtained (AuS55) with a Rosenfeld interaction,
are :

(=0 2 5 16

8§*%/8,=2.26 0.97 0.15 0.12 0.09.

Agreement with the measured ratio is found for {~3.5.
This value is rather low, but could be modified by
varying ¢{(N®) and {(N') separately. For {~~3.5,
8,~1.3, whence, using 6,2=0.05,%

82(1p)~0.04. (IV.28)

The /=0 reduced width to the 2.365-Mev level in N*
extracted from Bennett’s data (Be58) is subject to large
uncertainties, because the transition is very weak and
no measurements were taken for 6, <15°. We should
probably regard the “measured” reduced width as
setting an upper limit

62<0.002. (Iv.29)

We have identified the 3t level of N in question as
($3®)02s3. A measurable /=0 pickup width must indicate
the presence of $%2s? in the N ground state. The con-
figuration p®2s? contains a number of states with J=1,

5 OQur ground-state reduced width is twice that quoted on
page 174 of Aj59. As in the case of B(d,»)CY, this difference
reflects an isotopic-spin coupling factor of 3.
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T=0 and there is therefore the chance of accidental
cancellation in the spectroscopic factor. Ignoring this
remote possibility, we use the jj coupling approxima-
tion, which is probably quite accurate, to estimate an
upper limit on the p%2s? admixture.

The transition in question is

alpO+B(1p1)o* (2521 — (195%)02s3,

with 8=282 Taking 0:2(25s)=0.17 [see (IV.21) and
(Iv.22)], we find $2<0.006. In other words, (IV.29)
implies that the p3%25s;> admixture in the N ground
state is less than 0.6 %, in intensity.

A=14=15

Since a lot of attention has been paid to the C* and
N* ground-state wave functions, we first summarize
the present status of this problem and then discuss the
relevant stripping data.

Stripping Data and the Ground-State W ave
Functions of C* and N*

During the past few years, major interest in the
A=14 polyad has shifted its focus away from the
C* B decay. This problem is now resolved and there is
little doubt that the long lifetime of C* is due to an
accidental cancellation. The fact that such a cancel-
lation cannot be produced within the framework of the
single-particle spin-orbit model, with wave functions
restricted to %, but can be if we introduce a tensor
force, has occasioned comments that the long lifetime
of C** demonstrates the existence of a tensor interaction.

Two procedures were used in studying this problem.
The first, very similar in spirit to conventional inter-
mediate coupling calculations, involved a choice of
effective central, tensor, and spin-orbit interactions and
the use of these to calculate energy levels, wave func-
tions, and other properties of interest (Ja54, EIS6,
Vi57). The second technique proceeded directly from
the experimental data and, assuming again wave
functions belonging to p%, obtained a direct solution
for the amplitudes in the wave functions of interest
(Sh55, Be58). The C* and N ground-state wave func-
tions determined from the experimental data did not
agree with the results of the shell-model calculation
and, indeed, appeared to be inconsistent with what is
known about p-shell level structures.



648

It now seems that the fault lies in the assumption of
p1° wave functions. Baranger and Meshkov (Ba38)
have shown that the C*(d,f)C® [=0 and /=2 reduced
widths indicate mixtures of p%? and especially p3d? 5
in the C** wave function which, while negligibly small
for most purposes, are large enough to play an im-

" portant part in the very delicate 8-decay cancellation.
The long lifetime of C* therefore imposes no simple
relation between the ' wave functions of C* and N,
The direct solution of Sherr et al. loses its central datum.
Moreover, the specific necessity for a tensor force
disappears.

It is nevertheless of interest to see what restrictions
the stripping data impose on the wave functions

¥ (01) =ay (3S1)+B¢ (\P1)+1(D1)  (IV.30)
of the N* ground state (I'=0, J=1) and
W (10) =y (ASo) -+ (Po) (Iv.31)

representing the C“ ground state (7=1, J=0) and
its analog at 2.31 Mev in N*. We consider the /=1
transitions connecting these two levels with the 3~ and
2~ single-hole states in N'® and O'%, using the notation
described in Example 4 of Sec. ITL.10. The sum rule
derived there yields

8:=3/2(1+8*/8) (1=0,1)

enabling us to extract §; directly from a measured ratio
of reduced widths. In the following discussion, the
phase-convention used for the 4= 14 wave functions is
the standard one discussed in Sec. ITL.5.

We now present the experimental information con-
cerning §; and 8;*. Since the relevant (single hole)
states in N'® and O' are about 6 Mev apart, we must
allow for the possibility of an energy variation in 65*(1p).
Since no clear evidence for such a variation is found
elsewhere in the 1p shell, it seems sensible to restrict
this variation in 6¢2(1p) to a factor 1.3 in either direc-
tion. The effects of such possible energy dependence of
02(1p) are included in deriving 8;*/8; from measured
values of 6.2%/6.2:

N (d,p)N' (Wa57) to levels at 0 and 6.33 Mevin N*®:
0.10< 8:/8,<0.20,

(Iv.32)

whence, using (IV.32), we have
1.07<8:<1.25.
N*(d,n)0% (Ev53) to levels at 0 and 6.14 Mev in O'5:
0.06< 81*/8:<0.11,

(IV.33)

yielding

1.22€8:<1.34. (IV.34)

This was one of the first (d,n) stripping experiments to
be performed and it may not be as reliable as (IV.34)

% See the earlier discussion of CM(d,/)C® for quantitative
estimates.

M. H. MACFARLANE AND J. B.

FRENCH

SHERR et al.
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Fic. 22. N ground-state wave function. Curves PQ: ———,
with Rosenfeld interaction; — — ——— , with Inglis interaction.

suggests. The agreement between (IV.33) and (IV.34)
is therefore quite satisfactory.

C4(d,n)N® (RiS7) to levels at 0 and 6.33 Mev in N15:

0.20< 80%/80<0.50

whence

0.75< 80< 1.07. (IV.35)

The relevant experiment used very low energy deu-
terons (Eo=3.5 Mev). There is some evidence
[Be*(d,p)Be] to support the hope that a stripping
ratio does not vary much with bombarding energy.

N13(p,d)N* (BeS8), to ground and 2.31-Mev states
in N4;

0.5<80/81<0.8. (IV.36)
Equations (IV.33) to (IV.35) yield the range of values
0.56<80/8:1< 1,

whose agreement with (IV.36) confirms the accuracy
of the low-energy C"(d,n)N' estimate of $¢*/S,. We

regard the limits

0.5<8< 1 (IV.37)

on 8 as reliable.

We now examine the restrictions imposed by (IV.33),
(IV.34), and (IV.37) on the amplitudes in ¥(01) and
¥(10). In this analysis we can safely neglect configura-
tions other than 1, since the admixtures of 1p%¢* and
1p8s? found in C" from the (d,f) results have no appre-
ciable influence on the /=1 reduced widths under con-
sideration. 8; is given (Fr536) in terms of the amplitudes
by

28:=1+3v+28LR) Iy— B, (IV.38)

as can be shown directly from (IIL.89) and (II1.90).
Using the normalization condition to eliminate 72

(IV.38) determines a curve in the of plane for-each
value of 81. The loci for 8;=1.07, 1.25, and 1.34 are
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shown in Fig. 22.% The shaded annular region contains
values of a and B consistent with the stripping data.

Since the B decay is no longer regarded as relating
a/B and x/y, the only other data yielding a relation
between a and 3 concern the magnetic and quadrupole
moments of N4, We do not regard the latter as provid-
ing any useful information in the present connection.
The magnetic moment locus is the cross-hatched ellipse
in Fig. 22 the errors being uncertain. The available data
are seen to restrict (a,8) to two zones in the (a8) plane.

The first is a wide band in the first quadrant, where
the wave functions of Sherr e al., Elliott, and Visscher
and Ferrell lie (Sh55, E156, Vi57, Be58). The second is
a smaller region around a=—0.4, 8=0.1 in the second
quadrant. Intermediate coupling calculations with
Rosenfeld and Inglis interactions yield the curves PQ
as ¢ ranges from O to . These curves lie inside the
allowed region for the low values 2<¢<3. Since a
small tensor force changes the calculated values of
(eB) from the second quadrant to the first, we should
not expect agreement to be much better. The experi-
mental data do not enable us to choose between the
two allowed regions.

Let us now consider 8o, for which we have [Fr56:
(I11.89) and (II1.90)]

280=1+422+2VZxy. (IV.39)

Thus, a value of 8o, together with the normalization
condition, determines two distinct values of (x,y). The
allowed points on the unit circle #*+4?=1 are exhibited
in Fig. 23, corresponding to the range of values (IV.37)
for 8o. The stripping data demand that x and y have
the same sign and that either x/y 2> 2.8 or x/y<0.35.

Any shell-model calculation with a reasonable inter-
action, with or without a tensor force, predicts® that
x~y, to within a factor two. To obtain x> 2.8y, we
must go to the physically unreasonable LS limit while
#<0.35y is quite impossible. Since the limits imposed
by the stripping data on «/y are insensitive to variations
in 8o, we have here a clear-cut contradiction.

In summary, we would assert that available experi-
mental evidence® does not permit us to choose between
alternative means of achieving cancellation in the
B-decay matrix element. Ignoring the 8 decay entirely,
we obtain two distinct direct solutions for the N wave
function, lying in different quadrants of the oS plane,
and we have no way of deciding between these alter-
natives. The poor agreement between the intermediate
coupling N** wave function with the usual value of ¢

% A diagram of this kind was first used by Warburton and
McGruer (Wa57).
6 This can be seen from the form of the spin-orbit matrix

15[ 0 \/73“]

PLVIE ¢

and the fact that the central diagonal difference E(AS)—E(P)
~6K. A small tensor force simply adds a small term to the 3P
diagonal matrix element and is of no importance to our argument.

81 The y-decay branching ratio of the 3.945-Mev level to the
two lowest levels in N could also be analyzed in this connection.
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Fic. 23. C* ground-state wave function. 1, j7 limit; 2, inter-
mediate coupling (Rosenfeld interaction, {=35); 3, Visscher and
Ferrell (ViS7); 4, Elliott (EIS6).

(§~4) and that determined directly is not to be
regarded as at all significant. On the other hand, the
disagreement in the C" case is very real and not at
present understandable.

N (AN C4(dm)0"

Where they overlap, the three N*(d,p)N'5 experi-
ments (Sh55, Gr56, Wa57) agree quite well, except for
the 8.316-Mev /=0 transition.

We have already discussed the /=1 transitions. It
only remains to use (IV.33) and the ground-state
absolute reduced width (Wa56) to obtain

0.037<6¢2(1p) < 0.044. (IV.40)

Between 5 and 9 Mev in N there are seven posi-
tive-parity levels. Halbert (Ha56, Ha57) has carried
out detailed shell-model calculations for such states of
A=15, arising from 1511925, 15*1p1°1d, 15*1p'2 In the
comparison between theory and experiment presented
in Table VI, we have used the spin assignments and
8 values of Halbert.® These spin assignments are con-
sistent with all currently available experimental
evidence.

The reduced widths of Sh55 were normalized by
taking [J]6%(5.28) =0.049, from Gr56.

We have ignored the doubtful /=0 component in the
transition to the 7.58-Mev state. There is no conclusive
evidence that such a component exists. Its presence
would contradict Halbert’s spin assignment for the
state.

Apart from the data of Wa57 for the 8.316-Mev level
and the mixed transition to the 8.571-Mev state, the
values of 602(1d) and 62(2s) are consistent to within
+30° In view of the great complexity of the wave
functions, this is satisfactory and lends support to

% The N ground state is represented by an intermediate
coupling wave function (Rosenfeld interaction, {=4) the §
values being given in Appendix G of Ha56. In Ha57 the N wave
function of Sherr et al. is used, the values of § being very similar.
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TasLE VI
Excitation Jr 8(I=0) $(2) 62(0) 62(2) 02(2s)® 62 (1d) ® Reference
5.28 s+ e 0.134 0.008 0.061 Gr56
5.31 3" 0.110 0.033 oo Sh55, Grs6
7.165 it . 0.726 0.049 0.067 Gr56
e e 0.041 0.056 Sh55
7314 3 0.642 0.015 0.084 e 0.13 Gr56
0.095 e 0.15 Sh55
7.575 EAl 0.622 .ue 0.058 0.093 Gr56
0.063 0.10 Sh55
e 0.068 0.11 Was7
8.316 3t 0.853 0.005 0.12 e 0.14 Gr56
0.16 0.19 Sh55
0.24 e 0.28 Wa57
8.571 3 0.013 0.594 0.004 0.009 0.30 0.016 Sh55
0.005 0.011 0.37 0.018 Wa57

a The entries in the columns headed ‘‘002(25)" and “‘662(1d)"" are not to be regarded as reliable estimates of single-particle reduced widths, but rather as
values of the ratios 62(0)/§(0) and 62(2)/$(2), evaluated for each transition. Agreement between theory and experiment is then exhibited in the degree

of consistency of the ratios so obtained.

Halbert’s spin assignments. Taking mean values, we
have the rough estimates

02(1d)~0.08, 02(25)~0.15.  (IV.41)

It should be remarked that interchange of the spin
assignments for the 7.165- and 7.571-Mev levels would
not seriously impair agreement with experiment.

The positive parity levels of N*® could obviously be
discussed from the weak coupling standpoint. It can
be seen from Table VI, or from Fig. 3 of Ha537, that at
least the first two states of A=14 (J=1, T'=0 and
J=0, T=1) contribute jointly to several of the N'®
states. Now both of these states of 4= 14 are available
as ground states of target nuclei (N* and C*). This has
the unique consequence that not only can components of
[ 0o(N™) Xu;, ], where u,= 1d5 or 2s3, be directly located
by N(d,p)N, but also fragments of [¢o(C¥)Xuz]
are accessible by C*(He?,d)N'5. A careful C*(He?,d)N'®
experiment would therefore yield valuable insight into
the weak-coupling structure of positive parity levels in
N,

N5(p,d) N

The absolute ground-state reduced width (BeS58)
agrees well with the value found by N*(d,p)N*® (WaS7).

We have already discussed the transitions to the first
two states of N; it remains to examine the 3.945-Mev
level. The reduced width 62 for this level is subject to
large uncertainties ; the estimate

0.1<8,//8:<0.3

of the stripping ratio is probably reliable. It is found
that 8,//8: calculated as a function of { with a Rosenfeld

(IV.42)

/ 5/2+
2-2//
A Y2+ e, 24.
/A
7250

interaction varies very little between {=4 and the jj
limit. The value for 8,’/8: in this region lies between
0.45 and 0.5, significantly higher than (IV.42).

CH4(d,p)C1s

Since the first excited state of C'® is 6.09 Mev above
the ground state, the 3+ and §% levels at 0 and 0.745
Mev in C' must be nearly pure 2s; and 1ds single-
particle levels (Fig. 24).

The shell-model calculations of Halbert (Ha56, HaS7)
give results consistent with the preceding expectation.
The first T=% levels of A=15 are predicted to be
nearly® degenerate, and to have J=3%, 5+,

The simple weak-coupling argument and the detailed
calculation of Halbert and French agree® in suggesting
8~~1 for the /=0 and /=2 transitions under consider-
ation. The absolute reduced widths (Mo058) then yield
the rough estimates

02(1d)~0.05, 6¢2(25)~0.1

for the single-particle widths.

Angular distributions with clear stripping form were
measured for transitions to two higher levels in C, at
6.4 and 7.3 Mev. At the corresponding values of Q,
however, Butler curves with /=0, 1, 2, and 3 are almost
identical. / values and spins could be determined by
C"(n,n) C*,%® whereupon reliable stripping widths could
be extracted.

(IV.43)

A=15=16
N'5(d,p)N'6

Detailed calculation (E157) indicates that 7 coupling
is an excellent approximation for the four lowest 7'=1
states of 4=16 (Fig. 25). The levels in question are
accurately represented by (ps57'ds) s—2,3 and (ps7Is1) y—o,1.

6 The §* level is actually predicted to be 0.2 Mev lower than
the 3*. This could certainly be altered by allowable changes in
the parameters of the theory.

% For the 3* level, Halbert (Ha56) gives $=0. 97.

8 Levels a,bove 1.22 Mev in CI5 are energetically accessible.
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Such an interpretation indicates S~1 for each of the
four transitions in question, a prediction which is
confirmed by the near equality of the respective /=0
and /=2 reduced widths. In fact, consideration of the
reduced widths enabled Warburton and McGruer
(Wa57) to fix the spins of the levels in question, illus-
trating an important practical use of (d,p) widths. The
absolute reduced widths yield

0,2(14)~0.05 (IV.44)
and

062(25)~0.18. (Iv 45)
Olﬁ (He:i’a) 016; 016 (d,t) 015

In the pickup reactions on O, we expect to see two
strong /=1 transitions (8=4 and $=38, respectively)
to the one-hole p3 and p; states in O'® and N6 (Fig. 26).

An O'%(He?a) experiment has been carried out with
2 9.2-Mev He® beam (Hi59). A very clear /=0 transition
is observed to the £+ member of the positive-parity
doublet near 5.2 Mev in O'. This implies either a
(254%)0 admixture in the O ground state, sizeable
15;%1p™ contributions in the 5.174-Mev level in O, or
possibly both. It will be noticed that the 3+ member of
the O doublet lies lower, the reverse of what is found
in N5,

The ground-state (d,f) transition has recently been
studied (Ke60) at a deuteron energy of 14.9 Mev. The
measured absolute cross section yields A9?= 2.4, which
is unexpectedly small; for example, with §=4, 6¢2(1p)
~0.04 from (IV.28) and (IV.40), and A=190 from
(IL.38), we would expect A6>~30. Several factors may
contribute to the observed diminution of A#%:

(1) In the O(d,f)O experiment under consideration
(Ke60), the energy of the outgoing tritons is only 4.7
Mev. 02(1p) seems to decrease at very low projectile
energies.

(2) There is consistent evidence (see Sec. VIL2)
that single-particle reduced widths decrease as the
binding energy of the transferred nucleon increases.
In the case of 0'%(d,f)O" (ground state), this binding
energy has the large value of 15.65 Mev.

(3) Very little is known about the energy-dependence
of the (d,f) normalization factor A. In view of the large
release of binding energy and the small triton energy
involved, it is possible that the above rough estimate
of A, as well as that of 6¢2(1p), is a substantial overesti-

NUCLEI 651
5233 504
5.174 172 4
/
2-0 /
Fic. 26. /
/
/
/
/
0+ /
o's pyt — 0'5 12—

mate. In order to clarify the situation, it would be
worthwhile to repeat the O%(d,f)O'® experiment at a
deuteron energy of 20 Mev or higher and to study
0'%(p,d)O® with protons of similar energy.

In concluding this section on the 1p shell, we remark
that our two most serious sources of difficulty, en-
countered in Li’(d,He?)He® and 0%(d,/)O%, have
involved (d,f) or (d,He?) and not the simpler deuteron-
nucleon reactions.

V. STRIPPING AND PICKUP REACTIONS ON
ds-SHELL NUCLEI

In Sec. IV, we had something to say about most of
the 1p-shell transitions for which experimental data
are available. Since the ds shell is not well understood
spectroscopically and because, in several instances, the
experimental situation is unsatisfactory, such thorough-
ness is not attempted in the present section. In
discussing the ds shell, we analyze in detail only those
reactions from which we can obtain useful spectroscopic
information.

Stripping reactions in the ds shell have been dis-
cussed by several authors; /=0 and /=2 transitions in
0'(d,p)0'® by Bilaniuk and Hough (Bi57); Mg (d,p)-
Mg?® and Si?®(d,p)Si® from the viewpoint of the rota-
tional model by Litherland et al. (Li58) and Bromley
et al. (Br57); the mixed =02 ground-state transition
in P¥(d,p)P® by Parkinson (PaS58); /=1 transitions
in the last-named reaction by Pandya (Pa57a).

014(d,$)0; O (d,n)F*

Since the next levels of the same spin and parity are
5 Mev higher, the ground and first excited states of O
and F are, without doubt, good single-particle 1ds and
2s3 levels (Fig. 27). The (d,p) and (d,n) reactions on O
therefore provide an ideal means of studying the d and
s single-particle reduced widths and their dependence
on bombarding energy.

The values of the reduced-width ratio 62*/6,2 for the
first two levels of OY and FY, obtained in (d,p)
(BuS1a, Gr56) and (d,z) (Mi53) experiments with 8-
to 9-Mev deuterons, are 2 and 4.3, respectively. It seems
unlikely that this large discrepancy reflects a real dif-
ference between (d,p) and (d,n) reduced widths. Pre-
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liminary measurements with 15-Mev deuterons (KeS59)
yield a value of 3.4 for 62%/6,2, intermediate between
the preceding extremes.

At bombarding energies up to 4 Mev, the angular
distribution of the ground-state deuterons does not
have the characteristic stripping form (Gr56a, StSS5,
Ba57). At 8 and 19 Mev, respectively, the measured
ground-state reduced widths (BuSla, Fr53) of 0.058
and 0.044, respectively,®® are consistent with the pre-
liminary value of 0.05 (Ke39) at 15 Mev. There is,
therefore, no evidence of a significant variation in
0¢?(1d) between 8 and 19 Mev. Furthermore, the result-

ing value
0¢*(1d)~0.05 (V.1)

is in good agreement with the values (0.05 to 0.07)
obtained in Sec. IV from 1p-shell studies.

The reduced width 6%* of the 0.872-Mev level of O
appears to increase steadily with bombarding energy
from 0.013 at 2.1 Mev (Gr56a) to 0.11 at 8 Mev (BuS1a).
It is not clear whether the larger value of 0.17 at 15 Mev
(Ke59) indicates a real energy variation or experi-
mental uncertainties. At any rate, the main energy
variation occurs for low energies, as we have already
noted in the case of 6¢(1p). Using the 15-Mev data
(Ke59) because it is probably the most reliable, we have

002(25)~0.17, (V.2)

in good agreement with 1p-shell estimates (0.15 to 0.18).

Further O%(d,p)O'" experiments, in which absolute
cross sections are measured at different deuteron ener-
gies, are needed to clarify the dependence of 60*(1d) and
6¢*(2s) on bombarding energy.

The =2 reduced width of the 5.08-Mev level is
nearly equal to that of the ground state, the observed
values being 0.8 6,2 (Gr56) and 0.9 6,2 (Ke59). This
suggests that the level in question, whose spin is §,
is predominantly single-particle 1ds. However, we
cannot rule out the possibility of an energy variation

66 The reduced widths quoted here and in Table I for the two
lowest transitions in O'(d,»)O7 are smaller by a factor of three
than those extracted by Fairbairn (Fa54) from the same experi-
mental data, but in reasonable agreement with the values given
by Fujimoto et al. (Fu54).
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of 6,2(1d); stripping data on higher levels of O are
needed before a final conclusion can be reached.

A detailed discussion of the negative parity levels of
O has already been given in Example 2 of Sec. ITI.11.
We concluded that the 3.856-Mev level in OV is a
good single-particle 1f7s state. On using (V.1) and the
measured ratio (Gr56) of its reduced width to 6,2, we

obtain

02 (1f)~0.012. (V.3)

We conclude by repeating that further O%(d,p)O"
and O%(He?d)FY experiments, studying levels in the
final nucleus at least up to 8 Mev, would be well
worthwhile.

017(d,p)018

Transitions leading to the three lowest levels of O'$
have been studied experimentally (Bi57) (Fig. 28). On
the basis of these results, spins of 0, 2+, and 4% were
suggested for the corresponding states in O!8. These
assignments have now been confirmed by C%(a,y)O'.
(See AjS9.) No absolute cross sections have been

measured.
Wave functions for O have been calculated by

Redlich (Re54, Re58), and by Elliott and Flowers
(E155a), with very similar results. On using Redlich’s
wave functions, we find 8*/8,~1.2 for the 3.55-Mev and
ground states of O'. This is in good agreement with
the observed reduced-width ratio of 1.1.

The mixed /=0-2 transition to the 1.99-Mev level
has been discussed in detail as Example 2 of Sec. IIL.9.

013(d,t)0v

Transitions to low-lying negative-parity levels in O
(Ar60) indicate that the O'® ground-state wave function
contains sizeable (1f7/2%)o and (2p4%)o admixtures (Fig.
29). Neglecting core excitation, the O ground-state
wave function is

¥ (08) =a(1dg®)o+B(2s2) o+v (1d5®) 0
+o(1f2H) ot e(2po.  (V.4)

The pickup data are now used to determine the size of

the amplitudes in (V.4).
Consider first the /=1 transitions. A strong triton
group is observed (Ar60) belonging to the 3~ level at
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3.058 Mev in O', but no angular distribution could be
measured because of the presence of elastically scattered
deuterons. Since the level in question shows no stripping
from O (Gr56, Ke59), its predominant configurations
clearly involve 1p; core excitation.

The total /=1 reduced width in O'(d,)O" of the §~
states at 4.555 and 5.38 Mev is markedly smaller than
0¢2(2p) (KeS59), again implying significant amounts of
1p-core excitation. 1p and 2p contributions to pickup
to these levels add coherently so that we cannot say
much about the 2ps® amplitude in (V.4). To obtain a
solution, we take

e=19,

(V.5)

a relation which emerges from the shell-model calcu-
lation cited in the following. The size of the 2p4? com-
ponent is too small to have much influence on the
remaining amplitudes.

The relevant final states being good single-particle
levels, the spectroscopic factors for the 1ds, 2s;, 1ds,
and 1f7/. transitions are

S(1dy) =22, $(2s;)=28, (V.6)

The transitions to the 1ds and 2s; levels in O'7 have
Q values similar to those for low-lying /=0 and /=2
transitions later in the ds shell. We therefore take

0c2(25)/0*(1d)~2, 6¢*(1f)/ (0*(1d)~3, (V.7)

differing from the values appropriate to O%(d,p)OY
in the direction indicated by stripping data on heavier
ds-shell nuclei.

Using the observed reduced widths A6* given in
Sec. I1.3, Table II, (V.5)-(V.7) enable us to solve for
the (squared) amplitudes in (V.4). The resulting per-
centage composition of the O ground-state wave
function is exhibited in Table VII. We also list,
for comparison, the intensities obtained in the shell-
model calculations of Elliott and Flowers (El155a) and
Redlich (Re58), and in a similar calculation®” including
1f7/2* and 2p¢? contributions.

In view of the various uncertainties involved (par-
ticularly in the ratios of the single-particle reduced
widths)- over-all agreement is very satisfactory. The
shell-model calculation gives 1f72* and 2ps* admixtures

TasLE VII.
Intensity
Wave function\ of 1dg? 252 1dg*  1fus 2p8?
From pickup data 75.2% 14.5 5.5 14
Shell model® 66.9 21.2

2.9 0.7

3.3
5.2
Redlich 74 16 9.6
Elliott and Flowers 79 5.8

& See footnote 67.

67 The effective two-body interaction used had a Gaussian
radial dependence with range parameter (Fr56) A=1, strength
Vo=30 Mev, and Rosenfeld exchange dependence. The neces-

. s?rg ?ngle—particle level positions were taken from the spectrum
of OY.
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considerably smaller than those indicated by the pickup
data. This situation could certainly be improved by
reasonable changes in the parameters of the shell-model
interaction. It is also noteworthy that the ratio of 1ds
to 2s;3 intensities obtained from the pickup data is in
good agreement with shell-model predictions.

The observed (Ar60) ground-state reduced width of
A6?=135.7 and the value of a? obtained before imply

A6¢2(1d)=3.8. (V.8)

Because of the jump in Q value between O*(d,p)OY
and 0Y(d,p)0', 6,*(1d) in (V.8) cannot be regarded as
a known quantity. However, the normalization constant
A has been determined from C4(d,)C® (Mo58) and
Mg?(d,f)Mg** (Ha60) where the Q values are within a
few hundred kilovolts of that encountered in the present
example. Furthermore, the values of A obtained from
C" (165) and Mg?5 (150) are in excellent agreement and
all three experiments under consideration involve the
same deuteron energy.%® Thus, the value A=160 in the
present situation should be reliable. From (V.8) and
(V.7) we then have, for the single-particle reduced
widths,

0,2(1d)=0.024, 02(1f)=0.012, 642(25)=0.05. (V.9)

The preceding value of 6:2(1f) is in excellent agreement
with the very consistent values obtained in several
experiments involving nuclei between OY and Ca?,
supporting the reliability of our analysis.

On comparing (V.9) with (V.2) and (V.3), we see
that both 6,2(1d) and 6*(2s) have decreased by a factor
of two to three between 0*=0' and OY=0'%. They
appear to remain fairly constant up to A=28. These
observations suggest that the dramatic decrease in the
single-particle reduced widths reveals a strong de-
pendence on Q (especially close to Q=0), since Q (for
low-lying transitions) changes by about 4 Mev between
01%=0" and O=0"'8 and then varies relatively little.

F1o (p’d)FIS

In the only relevant experiment (Be3S8), the four
levels near 1 Mev in F'® were not resolved (Fig. 30).

% All were carried out on the University of Pittsburgh cyclotron.
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Other studies (KuS58, Aj59, Hi59%a) clearly indicate
that the spins of the 0.94- and 1.129-Mev members of
this quartet are 3+ and 5%, respectively. There is,
however, some disagreement about the remaining two
states. Kuehner ef al. (Ku58) identify the level at
1.087 Mev as the lowest T'=1 state in F'8, with J=07,
the 1.042-Mev level probably having J=0-. Hinds and
Middleton (Hi59a) reverse these spin assignments,
asserting that the /=0, T=1 level lies at 1.042 Mev.
We have adopted the spin assignments of Kuehner e? al.
(Ku58, Aj59), but our analysis would not be affected
by an interchange of the spins. The essential conclusion,
on the basis of conservation of angular momentum, is
that the /=0 and /=2 components of Bennett’s (Be58)
combined angular distribution correspond, respectively,
to the J=0%, T'=1and J=3%, T'=0 levels in the quartet
near 1 Mev in F'8.

We have an independent check on the absolute (p,d)
reduced widths of BeS8. The reduced width of the
J=0%, T'=1 ground state of O has been measured in
F¥(5,d)O'® (Ri57a), the value of 0.017 so obtained
being in reasonable agreement with the (p,d) reduced
width (0.023) of the analog level in F'8,

We can calculate 8 values for the /=0 and /=2 tran-
sitions of interest using either of the very similar sets
of wave functions calculated by Redlich (Re55, Re58)
and Elliott and Flowers (ElI55a). Redlich’s wave func-
tions give the results shown in Table VIII. Agreement
between theory and experiment for the /=0 transitions
is good.® To fit the relative reduced width of the /=2
transition to the first excited state of F!8, we must take

06*(25) /62 (1d)~1.5. (V.10)

From the observed ground-state reduced width of
0.017 (Be58) and the calculated value of 8, we obtain

0,2(25)~0.03. (V.11)

This is smaller by a factor of five than the value (V.2)
obtained from O(d,p)O' and smaller by a factor of
two than the value (V.9) obtained from O#(d,)0".
The Q values of these reactions are 1.1 and 5.8 Meyv,

8 An /=2 reduced width of about 0.016 of the /=0 reduced
width is predicted for the F® ground state. No /=2 component is
observed (BeS58) as expected.
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respectively, compared with 8.2 Mev for F¥(p,d)F'8
(ground state). We therefore have striking evidence
that 0¢2(2s) decreases strongly as Q increases. 8q2(1d)
seems to exhibit similar tendencies although a com-
parison of (V.1), (V.7), and (V.10) indicates a slower
rate of decrease.

In conclusion, we note that Bennett’s (Be58) com-
bined angular distribution to the four levels near 1 Mev
in F'8 may include some /= 1 contributions involving 1p;
pickup to the 0~ level.

F19(d,{)F'3

Two experiments have been reported, with 9-Mev
deuterons (EI57c) and 15-Mev deuterons (Ha60a).
The low value A= 105 obtained for the (4,f) normaliza-
tion constant in the 15-Mev experiment perhaps indi-
cates a tendency for A to decrease as Q increases.

No ground-state reduced width could be obtained
from the 9-Mev data since the differential cross section
was not measured at sufficiently small angles to locate
the main forward peak.

TasLE VIIL
Excitation
energy in F18
ToJo (Mev) I /S, 02/8,% (Bess)
01 0 0 0.6 1 1
03 0.94 2 0.7 1.1 1.5
1.042

10 {1'087 0o 06 10 14
01 1.699 0 0.1 0.21 0.12

The four levels near 1 Mev were not completely
resolved, the triton angular distributions being inter-
preted (EIS7c) as showing an /=1 transition to a level
around 0.94 Mev and an /=0 transition to a level near
1.07 Mev. The presence of a strong /=1 transition at
this excitation is not confirmed by the (p,d) data (BeS58);
furthermore, the purported /=1 angular distribution
must certainly include a sizeable contribution from /=2
tritons to the 3% level at 0.94 Mev. We conclude that,
although an /=1 transition to the 0~ level at 1.042 Mev
is possible, its presence is not established by available
data. Further experimental study of F(d,f) F'8 and also
of F9(d,He?)O is clearly desirable.

F1o (d,p)F%

No shell-model wave functions are available for low-
lying positive-parity states of F?. Such wave functions
are probably very complex, could not be obtained
without laborious calculation, and in any case would
be of questionable reliability. We therefore do not
discuss the predictions of the shell model for /=0 and
I=2 transitions in F¥(d,p)F2,

However, the Nilsson form of the rotational model
has been applied to F¥® with considerable success
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(PaS57, RaS7). The 3t ground state of FY is identified
as the lowest of a Ko=3% rotational band,” whose
intrinsic configuration is illustrated in Fig. 31. In this
figure we exhibit the value of @ and the Nilsson orbit-
number for each orbit; a neutron is symbolized by an
open circle, a proton by a cross.

Let us consider the rotational bands in F? that can
be reached by adding a neutron to the ground-state
configuration of F%, The lowest orbit in which there is
a vacancy is No. 7, with @=4*. The two bands, with
K=1and K=2, which arise from the resulting intrinsic
configurations probably lie close in energy with the
K=2 band lower (Br59); they certainly interact
strongly.

The spin of the F ground state is known (Aj59) to
be either 2+ or 3*. We feel that the 2+ assignment is
more plausible, for the following reasons:

(1) The interaction between the K=1 and K=2
bands depresses the J=2 and J=3 members of the
K=2 band by considerable amounts. In order that the

#5

a8=5/2+

a=1/2+ 9 F. 3l

2=3/2+

Q=172+

n

J=3 state lie lower, the difference between these de-
pressions must exceed their zero-order energy difference
taking .the moment of inertia parameter from the
spectrum of Ne®, we find a separation of about 1.5 Mev
which is probably too large to be overcome by the
interaction between bands.

(2) On using Nilsson’s single-particle wave functions
(Ni55), we find $<0.1 for the /=2 transitions to the
J=2 members of both the K=1 and the K=2 bands,
this result being insensitive to changes in deformation.
It is clear that no interaction between bands can alter
the fact that the lowest J=2* state should have a small
stripping width. On the other hand, the J=3* members
of both bands have sizeable § values, in the vicinity
of 0.25. The fact that no stripping has been observed to
the F% ground state is then a clear argument in favor
of a spin of 2*.

% This Ko=% band mixes strongly with a nearby Ko=3* band.
Since a Ko=%* band contains no state with Jo=4%%*, the mixing
does not influence the wave function of the Ko=4% ground state.
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We therefore suggest that the ground state of F2
has J=2%, the first excited state J=3*. K is probably
strongly mixed in both states.

Eight /=1 transitions are observed (EI56) to levels
of F® between 5.04 and 7.20 Mev. Since ¢o(F¥) has
J=4%*, there are four basic /=1 components:

[poX2p3r: J=1,2,
[ooX2p3]r: J=0,1-.

Since no spins and parities are known, we confine our-
selves to an application of the gross sum rule (II1.185),
which yields

é¢(2p) >0.021. (V.12)

F19(d,n)Ne?®

We again analyze the stripping data in terms of the
rotational model. The intrinsic configuration of the Ne?
ground state is formed by adding an Q@=%* proton in
orbit No. 6, to the F ground-state configuration (Fig.
32). Band mixing should be relatively unimportant
here (Br59). Calculated values of 8 for positive values
of Nilsson’s (Ni55) deformation parameter #™ are given
below for the J=0t and J=2% states, the 4t state
being excluded by conservation of angular momentum:

n= 2 4 6 i
§(J=0)= 0.31 0.49 0.57 0
8§(J=2)= 0.34 0.31 0.29 2.

Agreement with the experimental reduced-width
ratio 62/6,2=1.1 (Ca55a) can be achieved only by taking

62(2s)/6¢2(1d) <1. (V.13)

In view of the very large Q values involved (=10 Mev)
and the apparently rapid decrease of 6¢2(2s) as Q
increases, this, perhaps, is not unreasonable.

Ne(d,p)Ne

No absolute cross sections were measured in the only
available experiment (BuS56). The only point on which
we wish to comment is the fact that no stripping is
observed to the $+ ground state of Ne?. From the
standpoint of extreme jj coupling, this is to be expected
since the transition in question must involve a dj
nucleon and is therefore j-forbidden.

4.248 a0
Fic. 32. 1632
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Flo

" measures the relative importance of the deformation and
the spin-orbit coupling. =0 corresponds to zero deformation.
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Ne2(d,p)Ne?

In contrast to NeX(d,p)Ne?, a strong /=2 ground-
state transition is observed, implying that the spin of
Ne? is £+ (Bu56) (Fig. 33).

In examining the predictions of the rotational model
let us refer to Fig. 31 [the intrinsic structure given in
discussing F¥(d,p)F207]. The Ne? ground state (Ko,=0%)
has four nucleons in the Q=3 (No. 6) orbit and two
neutrons (the full complement) in the @=%+ (No. 7)
orbit. Low-lying bands of positive parity in Ne* are
constructed by adding a neutron in orbit No. 5, with
Q=4* and No. 9 with Q=%+,

We identify the ground and first excited states of
Ne? with the lowest states of the resulting rotational
bands (with K=3% and K=4%) on observing that the
decoupling parameter (Ke56) of the K=13 band is such
that it has a 3+ ground state for positive deformations
with the §+ member more than 1 Mev higher. Since
AK=2, the two bands in question do not interact
directly (Ke56); indirect interaction, through positive
parity bands arising from the 2s; and 1d; states of the
spherical shell model, is discouraged by the fact that
interactions between bands arising from different
spherical orbits are relatively weak. The pure-band
approximation should therefore be adequate in the
present situation.

The ground-state transition has 8§,=%. This result is
independent of the deformation because an intrinsic
state with Q= §* receives no contributions from 2s; and
1d; and therefore has a definite value (3%) of 7. In
contrast, the 8 value of the first excited state is sensi-
tively dependent on 7, decreasing rapidly from the
value 8=1 as 7 increases from 0. In order to obtain the
observed reduced-width ratio 62/6,2=4 (BuS6) for the
reasonable deformation n~4, we must have

002(2s)/002(1d) > 2.

This is a very reasonable result since the Q values
concerned are quite small (between 2 and 3 Mev), so
that we would expect to find a reduced-width ratio close
to what was found in O'%(d,p)OY and markedly larger
than the values obtained in 0'%(d,£)O'” and F(d,n)Ne®,

(V.14)

Na*(p,d)Na*; Na*(d,f)Na?

Both the (p,d) and the (d,f) experiments have been
performed (Be58, Vo58) (Fig. 34). They disagree con-
cerning the ratio of the /=2 reduced widths of the lowest
two states of Na?. The (p,d) experiment gives 62/6,2~1,

0.98
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while the (d,f) value is 0.33. It is probable that the
0.59-Mev angular distribution of Be58 contains deu-
terons from the 0.89-Mev level in Na?, for which the
(d,t) experiment (Vo58) gives 6%/6,2=0.59.

We do not give a detailed theoretical analysis of the
relative reduced widths since nothing is known about
the spins of the relevant excited states of Na?? and since
we are dealing with an odd-odd nucleus in which inter-
actions between the bands of the simple rotational
model are probably important.

Na*(d,p)Na*

The results of the three available experiments (Sh54,
Da60, Vo58) are in fair agreement where they overlap.
We cannot give a detailed analysis of the positive-
parity transitions because of the spectroscopic dif-
ficulty of dealing with an odd-odd nucleus and because
of insufficient information about excited-state spins.

Nine /=1 transitions (Da60) are seen to levels in
Na* up to 4.5 Mev. On using the gross sum rule
(II1.185) and normalizing the relative reduced widths
of Da60 with the aid of the absolute ground-state cross

0.59
4=2 /
/
/
// Fic. 34.
/ 3+
!/ Na22
3/2% L= 22

section of Vo358, we obtain
602(2p) >0.028,

where the inequality refers to the possible presence of
unobserved 2p contributions above 5.4 Mev in Na*.

(V.15)

Na?(d,n)Mg*

We consider, first, the theoretical predictions for the
first three levels (Fig. 35). These have been discussed
by Litherland et al. (LiS8).

Ground State

According to the jj-coupling shell model, the Na?-
(d,m)Mg? (g.s.) reaction is j-forbidden. On using the
Nilsson rotational model, we have §,~0.08 for n~4,
the § value being so small that the reaction is, once
again, effectively forbidden.

1.368-Mev Level

Both /=0 and /=2 are allowed by angular momentum
conservation, but the /=0 component is forbidden by a
K selection rule, 6(|2], | K+Ko|), since Ko=%, =%,
and K=0. For n=4, the predicted 8 value is given by
8(1.368)=0.69.
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4.122-Mev Level
Independently of the deformation, (II1.204) yields

0§(J=4+: K=0)/58(J=2+: K=0)=%, (V.16)

provided that we make the approximation of ignoring
j=% contributions to the 2+ level. We can verify
directly that such contributions are of no consequence.

The only available experiment (Ca55) is, unfor-
tunately, inadequate to provide a thorough test of
these predictions. The angular distribution of neutrons
to the 2+ level apparently shows no stripping although
the cross-section is quite large (~5Xg.s. cross section).
The 4.122-Mev 4 level is not resolved from a nearby
2% state whose /=0 component dominates the combined
angular distribution. ‘

Probably only two significant points emerge from
the available experimental results. These are the
absence of a ground-state transition, and the absence
of an /=0 component in the 1.368-Mev angular dis-
tribution, vindicating the j and K selection rules. It is
surprising that the /=2 component of the first excited
state should not have appeared quite clearly, since

{ .
’ —e i} ¢
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[J]8=24/7 and 6:2(1d) is not less than 0.02, implying
[J104~0.07.

A high-resolution Na? (He?,d)Mg? experiment would
be valuable.

Mg*(d,p)Mg*; Mg (d,n)AL*®

Three Mg (d,p)Mg25 and one Mg?(d,n)Al?® experi-
ments have been performed [Fig. 36(a)]. The three
(d,p) experiments (Ho53d, Hi58, Ha60) give reduced
widths in excellent agreement with each other. The
(d,n) experiment, at the low deuteron energy of 4 Mev,
yields reduced widths whose ratios agree well with the
(d,p) results, but whose absolute values are much
smaller. This reduction in reduced widths probably
reflects the influence of the low bombarding energy.

The ground-state angular distribution at a deuteron
energy of 14.8 Mev (Ha60) exhibits a sharp forward
spike superposed on a normal /=2 curve, an anomaly
which is not visible in the 8-Mev (Ho53d) or the 9-Mev
(Hi58) data. It is not clear what produces this forward
peak in the angular distribution; careful measurements
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at successively smaller deuteron energies (Ha60) reveal
a gradual diminution in the forward spike until, at
about 9 Mev, an I=2 curve of the usual form remains.
It is not likely that the anomalous behavior in question
stems from contaminants in the target (Ha60); the
effect seems to be real.

We discuss /=0 and /=2 transitions to levels in
Mg?5 below 4 Mev on the basis of the rotational model,
which was first applied to Al?® and Mg? by Litherland
et al. (LiS8).

The intrinsic structure of the ground state of Mg is
illustrated in Fig. 36(b) ; for notation, see Fig. 31. Low-
lying positive-parity levels of Mg?® (or Al?%) involve
four bands, with T=% and K=3%%, §t 1t and 31, re-
spectively, formed by adding a nucleon in orbits Nos. 9,
5, 11, and 8. Rotational bands interact strongly only if
they arise from the same spherical shell-model orbits
and differ in K by 1.2 We therefore expect the two
lowest bands, with K=3%*+and K= 5", to be fairly pure.
The two higher bands undoubtedly interact so strongly
that statements made on the basis of a pure-band
approximation would be valueless.

We therefore treat the bands based on Nilsson orbits
No. 9 (K=3) and No. 5 (K=4%%) as pure, but take
account of the interaction between the bands based on
orbit No. 11 (K=%) and No. 8 (K=%) in the manner
described by Kerman (Ke36). Since, in the present
case, only the J= 3" states of the last-mentioned bands
enter into the band-mixing problem, we need only
diagonalize a 2X2 matrix. A brief description of the
procedure is given in connection with Si?3(d,p)Si®. We
do not consider here the problem of fitting the observed
energy spectrum of Mg?® by the eigenvalues of the rota-
tional Hamiltonian ; this can, in fact, be done with fair
accuracy (Li58). Rather, we content ourselves with
identifying the levels of Mg?® as members of the various
rotational bands, calculating § values on this basis.

Satisfactory agreement with the observed relative
reduced widths of levels below 2.8 Mev is obtained with

2 Two different K=4% bands can also interact.
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TasLE IX.
$82(2) 02
Excitation Orbit — —(Ho53d) (Hi58) (Ha60)
(Mev) JT K No. ! S0¢%(1d) 0,2

0 3+ 3 5 2 1 1 1 1
0.58 i+ 1 9 0 1.8 2.0 2.1 e
0.98 g+ z 9 2 0.45 0.75 0.76

1.61 I+ H 5 .o ..
1.96 s+ 1 9 2 0.21 0.44 0.45 0.37
2.56 i+ i 11 0 1.2 .. 1.0 e
2.74 It i 9 .. .. A

the reasonable values
06*(2s)

=1. V.17
6¢*(1d) (VD

=3,

of the relevant parameters (see Table IX). The ground-
state spectroscopic factor is §,=3% and is independent
of the deformation parameter 1.

It remains to discuss two positive-parity levels, at
2.80 and 3.90 Mev, which were found in Hi58 to have
large /=2 reduced widths. There is little doubt that
the spin of the lower level is §*, but that of the upper
may be either $* or §+. We consider two possible inter-
pretations. \

(1) Both levels have spin §+ and arise from the inter-
action of the §+ members of the rotational bands, with
K=% and K=3$, respectively, based on Nilsson’s
orbits Nos. 11 and 8. On using the momentum of inertia
indicated by the spectrum of Mg?, and a deformation
parameter n=23, we find that the two states in question
are 3 Mev apart and that the K values are very strongly
mixed.” The entire 1d; reduced width is concentrated
on the lower 5+ state, which has $~0.8, compared with
8<0.01 for the higher. »

(2) Litherland ef al. (Li58) identify the levels at 2.80
and 3.90 Mev in Mg? as the $* and §+ members, re-
spectively, of a pure K=1% band based on orbit No. 11.
We have seen that a calculation based on the full rota-
tional Hamiltonian (KeS56) reveals that the pure-band
approximation is very poor in the case under con-
sideration. It is nevertheless possible that the 3.90-Mev
level has J= 4+, with K=% and K=$ strongly mixed.

Fic. 37.

7 The lower state is about 609, K=% and 409, K=3}.

Such a state would certainly have a very small /=2
reduced width since most of the available dg intensity
has been used up to the lower 5+ levels of Mg?5, The
2.80-Mev level would be interpreted as before.

Both of the foregoing interpretations lead to 8/8,~2.4
for the 2.80-Mev level, considerably larger than the
observed (Hi58) ratio 6%/6,2~1.3 of reduced widths. A
more serious objection is that the 3.90-Mev level is
predicted in both cases to have an unobservably small
reduced width, in direct contrast to the finding of Hi58.
The latter discrepancy may be less severe than now
appears because the 3.90-Mev level was not resolved
in HiS8 from the nearby single-particle 1fy/» state at
3.97 Mev; the observed /=2 reduced width is accord-
ingly subject to large error. A (d,p) experiment resolving
these states would help clarify the situation.

At an excitation energy of 3 Mev or higher, positive-
parity bands arising from breakup of the Mg* core
might enter into consideration (Br59). The intrinsic
structure of one such band, with K=3* is shown in
Fig. 37. Another K= $* band of comparable energy has
the two promoted neutrons in orbit No. 9. However, if
we neglect pairing forces of the kind considered by
Brink and Kerman (Br59), these core-excited bands
are connected by sizeable off-diagonal interaction
matrix elements only to the two lowest bands, based on
orbits No. 9 and No. 5. Since the zero-order separation
is 3 Mev or more, the resulting mixing of bands is
probably small. This is confirmed by the Mg?5(d,f) Mg
experiments of Hamburger and Blair (Ha60), wherein
only the members of the ground-state band in Mg are
excited with appreciable probability. Accordingly, since
members of core-excited bands show no stripping from
Mg?, their neglect should have little influence on our
analysis of the stripping data.

On using the observed reduced widths (Hi58) and
calculated 8 values for the two lowest states of Mg?,
we obtain the estimates

022(1d)~0.03, 0¢2(25)~0.04

of the relevant single-particle reduced widths.
Observed /=1 and /=3 transitions are indicated in
Table X. Litherland e al. (Li 58) suggested that the
levels at 3.40, 3.97, and 4.27 Mev are the 3—, -, and
3~ members of a K=% band arising from Nilsson’s orbit
No. 4, the lowest orbit arising from the 1f, state of the

(V.18)
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spherical shell model. The spectroscopic factors so
implied for n=4 are 0.11, 0.19, and 0.006, respectively.
02(1f) and 6¢2(2p) are known with reasonable accuracy;
using the values 0.010 and 0.025, respectively, we obtain
the calculated reduced widths shown in Table X. It is
clear that the observed reduced widths are at variance
with the proposed interpretation, the predicted values
being too small by factors of five or more. A valid
application of the rotational model to negative-parity
levels in Mg?® should include all four bands arising from
1f7/2 and their interaction, both 2p; bands and their
interactions, and possibly also the mixing of 1fys, 253,
and 2p; bands. Too few of the relevant levels and their
spins are known to make such a large undertaking
worthwhile.

Let us now use the weak-coupling formalism of Sec.
II1.11 considering first the /=1 transitions. Five levels
in Mg? were assigned /=1 in Hi58"; of these, only the
lowest, a §~ level at 3.40 Mev, is of definitely known
spin. The levels in question, with their reduced widths,
are given in Table XI.

It was stressed in Sec. ITI.11 that strongly interacting
levels must have the same spin and parity and should
lie within 1 or 2 Mev of each other. Accordingly, J= %"
is strongly favored for the 4.27-Mev level because of
the proximity of the 3.40-Mev level with its large /=1
reduced width and spin §~. Similarly, /=%~ for the
6.80-Mev level is suggested by its large separation from
the main [¢oX 23] component at 3.40 Mev.

Interpretation of the stripping data on the 7.40-
and 7.58-Mev levels is complicated by the fact that
I=1 and /=2 Butler curves are not very different at
these excitations. If we accept the /=1 assignments of
Hi58, the foregoing arguments strongly favor J=3%~ for
both levels. Assuming, for example, that the 7.40-Mev
state has spin $~, and ignoring the relatively weak
level at 4.27 Mev, since its influence on the argument
would be slight, the observed reduced widths of the
3.40- and 7.40-Mev levels would demand an incredibly
large interaction matrix element of close to 2 Mev. We
conclude that strong §~ levels at 7.40 or 7.58 Mev would
be very hard to explain.” If, however, we assume J=%"
for both levels, we find that the total 2p; and 2p;
intensities are almost the same, in serious disagreement
with the expected statistical ratio of two. An alter-
native possibility presents itself on observing that the
angular distribution of the 7.58-Mev level is rather

" Ignoring a possible small component in the 5.79-Mev level,
whose presence would not significantly influence the ensuing dis-
cussion.

76 The 7.40-Mev level appears as an 85-kev resonance in
Mg (n,n)Mg?. Consideration of the total cross section at this
resonance led Fields and Walt (Fi50) to J=4", and Haeberli e? al.
(Ha58) to J=3$". The different spin assignments reflect a dis-
agreement by a factor of two in the measured cross sections.
Haeberli et al. also found J=4%" to be in accord with differential
cross sections measured at (c.m.)=90° and 180°. A level near
7.58 Mev appears as a 275-kev resonance in Mg (n,n)Mg?. From
the total cross section, Fields and Walt assigned J=%". However,
this assignment is by no means certain; indeed, these authors
suggested that the “level” in question might be a doublet.

NUCLEI 659
TABLE X.
Level of Mg?5 Jr 62(calc) 62(obs) (HiS8)
3.40 3- 0.003 0.019
3.97 7/2- 0.002 0.010
4.27 @) 0.0002 0.011

different from that of the 7.40-Mev level, bearing a
closer resemblance to the 8.05-Mev angular distribu-
tion. /=2 produces a reasonably good fit in both cases.
From the viewpoint of the weak-coupling formalism,
the most attractive interpretation of the levels in ques-
tion is then the following:

3.40 M .
127 MEX] J=% [#X2p5] 6:(2pp)~=0.024,

6.80 Mev 1
7.40 Mev 2

7.18 Mev
7.58 Mev J=4+
8.05 Mev

The matter should be settled by an experimental deter-
mination of the relevant spins and parities.

Applying the sum rule (III1.185) to all observed /=1
transitions (excluding the transition to the 7.58-Mev
level), we have

[oX2p3] 66*(2p3)~20.031,

[¢X2ds] 6¢2(2d;)~20.020.76

2 [J1s=(4+2)=¢6,
274,20}
whence

0:2(2$)~0.026, (V.19)

in good agreement with other estimates.

Three /=3 transitions have been observed (Hi58), to
levels at 3.97, 4.72, and 7.24 Mev in Mg?. The spin of
the 3.97-Mev level is known to be Z~. Arguing again
that strongly interacting levels should be within 1 or
2 Mev of each other, we conclude that the probable
spins of the 4.72- and 7.23-Mev levels are 7~ and §-,
respectively.

The two %~ levels (Fig. 38) involve components of
[éoX 1f7/2]. Since [¢poX 2p3 ] appears to be about 0.6 Mev
below [¢X 1f7/2] in Mg?5, it is possible that [¢1X2p; ] is
less than 1 Mev from [¢oX 1fs/2] and interacts with it
quite strongly. Proceeding in the manner described in

TaBLE XI.
Excitation(Mev) J l [V
3.40 5~ 1 0.076
4.27 1 0.022
6.80 1 0.014
7.40 1 0.04225
1 0.04!
758 {(%*‘) 2 0.055

76 This estimate agrees well with the value 0.019 found from
Ca®(d,p)Catt (HoS53).
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Sec. IT1.11 (Example 1), the reduced widths of the 3.97
and 4.72 Mev levels indicate a zero-order separation of
450 kev and an interaction matrix element of 300 kev.
The absolute reduced widths of the I~ levels indicate
that

062 (1f7/2)=0.012, (V.20)
in excellent agreement with (V.3).

The 7.23-Mev state must”” be predominantly
[#0X 1fs], providing the only identification to date of
a single-particle 1f; level in a ds-shell nucleus. The ab-
solute reduced width of the 7.23-Mev level gives

02*(1f5)=0.013. (V.21)

The ordering of single-particle levels in Mg?® differs
in several respects from what is found”® elsewhere in
the region 16 <4 <50. Firstly, values of the p-doublet
splitting fall consistently between 1 and 2.5 Mev, with
the single exception that in Mg?[2p;]—[2p; ~3.5
Mev. On the other hand, the f-doublet splitting in Mg?®
is only 3 Mev, smaller than in Sc and the Ca isotopes,
where [1f3]—[1f2]>6 Mev. Lastly, Mg? is the only
known nucleus where 2p; lies below 1fys.

A very strong /=0 transition is assigned in Hi58 to
a level at 5.49 Mev in Mg?. It is very hard to account
for a very large 2s; component as high as 5.5 Mev in
Mg?. The Q value of the transition in question is
within 10 kev of that of the intense /=0 transition to
the first excited level of C®3. In separating these groups,
Hinds et al. (Hi58) may have underestimated the C
contribution.
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77 The 7.23-Mev level was not completely resolved in Hi58 from
a nearby /=2 level at 7.18 Mev. The separation of the combined
angular distribution into /=2 and /=3 components is quite
convincing.

78 The positions of single-particle levels in the region 30 <4 <60
have been discussed in detail by Nussbaum (Nu56).
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Mg (p,d)Mg*, Mg (d,f)Mg*

Two closely-spaced levels near 4.2 Mev in Mg? were
not resolved in the only available (p,d) experiment
(Be58) (Fig. 39). A (d,t) experiment (Ha60) indicates
that most of the combined /=2 transition proceeds to
the 41 level at 4.122 Mev. The (d,f) and (p,d) results
are in satisfactory accord except that the (p,d) experi-
ment indicates a markedly stronger transition to the
4.2-Mev doublet.

The intrinsic structure of the ground states of Mg?
and Mg?® was described in connection with the inverse
experiment Mg?(d,p)Mg?®. The fact that, of the levels
of Mg* up to 7.6 Mev, only the members of the ground-
state band were excited with appreciable intensity in
the (d,f) experiment, indicates that the K= 5% ground
state of Mg? is very pure.” The small reduced width
of the 2% state at 4.24 Mev probably arises from a
residual interaction with the 2+ member of the ground-
state band.

According to (II1.204), the spin-J member of the O+
rotational band in Mg? has a spectroscopic factor pro-
portional to C(J § %:0 $)2 The resulting reduced-width
ratios are given in Table XII. The (d,f) reduced widths

TABLE XII.
8 02 62
Level in — —(dp) —(p,4d)
Mg Jr 8q 0,2 0,2
0 or 1 1 1
1.368 2+ 25/14=1.8 2.0 2.7
4.122 4+ 3/14=0.21 0.33 1.0

are in excellent agreement with the predictions of the
rotational model; agreement for the (p,d) reduced
widths is markedly poorer.
In Example 1 of Sec. II1.10, we applied the jj-
coupling sum rule
82+84=880

to the (p,d) reduced widths. Agreement with the
observed reduced widths is unimpressive and becomes
rather worse if we use the (d,f) data. The preceding
sum rule is to be contrasted with

Sat+84=28,,

obtained with the aid of the rotational model. The
rotational sum rule is obviously in much better agree-
ment with experiment than the jj-coupling sum rule.

Mg*(d,p)Mg*®

Since we are again dealing with the transfer of a
nucleon with =3, for which 5 has the specified value
of £, the reduced widths of levels in the K=0 ground-
state band of Mg? are independent of the deformation
(Fig. 40). We find, for the spectroscopic factors of the

" From the viewpoint of the Nilsson brand of rotational model.
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ground and first excited states of Mg?, the values §;=2
and 8§*=5/7.

In the only available experiment (Ho53d), the
ground-state angular distribution was not measured.
Since /=2 is demanded by conservation of angular
momentum, an upper limit 6,2<0.04 was set on the
reduced width. The /=2 assignment has now been
confirmed in the reaction (Ha60) Mg?¢(d,f)Mg?®; using
the value A=150 of the (d,f) normalization factor
obtained from Mg?®(d,f)Mg?, the ground-state reduced
was found to be 0.031 which is consistent with the
foregoing upper limit and is used in the following dis-
cussion. The ratio of the /=2 reduced widths of the two
lowest states of Mg?6 is then found to be

62/6,2=0.7.

Considering the uncertainty involved in our indirect
determination of 6,2 and the fact that both the states
under consideration are found to contain small
admixtures of excited bands, agreement with the
predicted ratio

8/8,=5/14~0.4
is tolerably good.

297 24
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As discussed by Satchler (Sa58) and by Sawicki
(Sa58a), the presence of an /=0 admixture in the
transition to the 1.83-Mev level reveals 2s; components
in its wave function. The most likely origin of such
components is through interaction with the 2+ level
at 2.97 Mev. Geometrical effects cannot contribute
(Sa58b). Since rotation-particle coupling (Ke56) does
not connect bands with AK =2 directly, the interaction
in question probably arises mainly from residual two-
body forces.

Mg (d,t)Mg*

If (the last two nucleons in the Mg ground state
were entirely in Nilsson’s orbit No. 5, only the ground-
state of Mg? would be excited in Mg?(d,/)Mg?®. The
fact that other levels show appreciable pickup (Ha60)
reveals the presence of admixture in the Mg?® intrinsics
wave function. Let us write

¥ (Mg?%) =a(No. 5)>+B(No. 9)>+vy(No. 11)? (V.22)
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TaBrLE XIII.
Excitation Orbit 62/6,2
(Mev) J K No. ! 8(np=2) 8(n=4) (Ha60)
0 5 5 5 2 2 2 1
0.58 i+ 3 9 0 1.382 0.5632 0.080
2.56 i+ 3 11 0 0.39y2 0.9442 0.023

for the relevant intrinsic wave function; we use the
observed pickup widths to evaluate o, 8%, and 72 A
similar analysis has been given in Ha60.

First, we consider the ground states of the rotational
bands based on orbits No. 5, No. 9, and No. 11 in Mg?.
The respective values of 8, obtained from (III.204)
with the aid of Nilsson’s single-particle wave functions
(Ni55), are given in Table XIII.

In order to obtain estimates of the amplitudes we
must have a suitable value for 8,2(2s)/82(1d). We have
encountered consistent evidence that this ratio de-
creases as () increases; since the Q values for the transi-
tions in question are much higher than those en-
countered in Mg (d,p)Mg?® and almost as large as that
for F19(d,n)Ne, (V.17) and (V.13) suggest that

062(25) /02 (1d)~1 (V.23)

is acceptable as a reasonable estimate. We then obtain
a?=0.80 (=0.10 +42=0.10 (n=2), (V.24)
a?=0.75 (2=0.22 4?=0.03 (9=4). (V.25)

Using the ground-state spectroscopic factor (which
is insensitive to 1) and the corresponding observed
absolute reduced width (Ha60) of 0.031, we have

802 (1d)~0.02. (V.26)

Comparison with (V.18) again reveals the tendency of
single-particle reduced widths to decrease with in-
creasing Q.

According to (I11.204), the reduced widths of levels
of the same band in Mg? are proportional to the
appropriate (squared) Nilsson amplitudes. Relevant
experimental data is available only for the K=% band
based on orbit No. 9, for which we have the data given
in Table XIV. The ratios are very sensitive functions
of the deformation, and it is patently impossible to
obtain reasonable agreement for both the §+ and 5+
states. For =3, the reduced-width ratio of the §*

TaBLE XIV.
62
s o
Excitation —n=2) —@O=4) 0,
(Mev) Jr l J =} Sy Ha60)
0.58 3t 0 1 1 1
0.98 3+ 2 0.28 1.6 0.16
1.96 s+ 2 0.26 1.7 0.72
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state is reasonably reproduced but the §* level is much
too strongly excited.

The £+ level at 2.80 Mev in Mg?5, which we have
seen to be an intimate mixture of K=% and K= 3, also
has a small observed /=2 reduced width. The value of
8 for this state, calculated for =3 on the assumption
that the (No. 8)? admixture in (V.22) is negligible, is
found to be 0.028,, in fair accord with the observed
reduced-width ratio of 0.03 (Ha60).

Mg*(d,p)Mg*

Two experiments have been reported, one with
8.9-Mev deuterons studying levels in Mg? up to 4.75
Mev (HiS8), the other studying only the ground and
first excited states of Mg? at a deuteron energy of 8
Mev (Ho53d). The absolute reduced widths measured
in these two experiments disagree by a factor of two.

Let us study the /=1 transitions first in order to get
a better idea of the correct Mg* absolute reduced
widths. A strong /=1 level appears at 3.56 Mev in
Mg?", analogous to the 2p; level at 3.40 Mev in Mg?.
There is probably a weak I=1level at 4.75 Mev in Mg¥,
similar to the 4.27-Mev level in Mg?®. The reduced
widths of Hi58 then yield 642(2p)~20.035, significantly
larger than other estimates, suggesting that the absolute
Mg? reduced widths of Hi58 are too large. Let us,
therefore, renormalize the reduced widths of Hi58 to
002(2p)=0.026 [(V.19), (V.33), and (V.34)]. The re-
sulting reduced widths are intermediate in value
between those of Ho53d and HiS8, and are given in
Fig. 41.

The deformations of the four Mg isotopes with 4 =24
to 27 appear to be quite similar (Ra57). The rotational
model therefore predicts that the spacings and reduced
widths of low-lying levels of Mg?” should resemble those
of Mg? with the ground-state K=% band removed.
Because of the different effects of residual two-body
forces (Br59) in the two cases, we do not expect this
similarity in structure to be more than qualitative.

That the predicted qualitative similarity is exhibited
by the observed level sequences and reduced widths can
be seen from Fig. 41.
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Al (d’p)ApS

A high-resolution experiment has been performed
with 6-Mev deuterons (En36), studying levels up to
5.14 Mev in Al*%, but measuring no absolute cross sec-
tions [Fig. 42(a)]. The reduced widths so obtained
can, however, be normalized with the aid of an earlier
less-detailed experiment (Ho53a) at a bombarding
energy of 8 Mev.

We start by discussing the possibility of applying the
rotational model to the low-lying positive-parity levels
of Al?8 and their reduced widths. The intrinsic structure
of the AI*” ground state is as shown in Fig. 42(b). The
lowest T=1 bands of A=28 have K=2 and K=3,
being formed from the Al*” ground state by adding a
nucleon in the No. 9 (@=1%) orbit [see Fig. 42(b)].
Low-lying excited bands can be formed in two dif-
ferent ways. Firstly, excited T'=1 bands with K=0
and K=1 are constructed by putting two nucleons in
each of orbits No. 5 and No. 9. Secondly, a nucleon
can be added to the Al?" ground-state configuration in
either of the 1d; orbits, No. 11 and No. 8. We may
enumerate the various bands in the following fashion:

A. {67159y T=1; K=2,3,
B. {64752 9 T=1; K=0,1,
C. {675 11yT=1; K=2,3,
D. {6*7*58) T=1; K=1,4.

The number of nucleons in each orbit is given by the
superscripts. Sheline (Sh56) has discussed levels of Al
up to 2.3 Mev in terms of the rotational model. He
assumes that the only rotational bands of importance
are those arising from the intrinsic configurations 4
and B, the 1d; orbits making no significant contribution.
The observed reduced widths indicate that such an
assumption is unjustified. The crux of the matter lies
in the large /=2 reduced widths (En56) of the levels
at 1.02 and 2.28 Mev in Al%8, reduced widths which
correspond to 8 values close to one. None of the rota-
tional states discussed by Sheline could possibly have
sufficiently large /=2 reduced widths; members of the
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ground-state K=3 and K=2 bands have §(/=2)<0.2
for any reasonable deformation,® while states arising
from the intrinsic configuration B cannot be reached
by stripping from Al?” and so have §=0. In fact, /=2
reduced widths of the desired size demand large 1d;
contributions. For reasonable deformations, such con-
tributions can be found only in members of the first
kind of excited band discussed previously, wherein the
added nucleon is in one of the 1djy orbits, No. 11 and
No. 8. .

Thus a correct application of the rotational model to
low-lying levels in Al?® must include all the rotational
bands enumerated previously and interactions between
them. This is obviously a large undertaking and is
hardly worthwhile since only three of the relevantlevels
are of definitely known spin and parity.

Let us proceed to examine the negative-parity tran-
sitions. Strong /=1 transitions are observed to levels
in Al?® between 3.4 and 5.2 Mev. There are six basic
I=1 components:

[6oX2p ), J=1,2,3, 4"
[poX2p3 )T, J=2,3".

Applying the sum rule (ITII.185), we deduce from
2 [J]8= (3+5+T7+9)+ (5+7)=36

and®
2[J1220.7,
that

62(2p) > 0.02. (V.27)

Since no spins are known and since 2p; and 2p3 com-
~ ponents can both contribute to J=2%and J= 3" states,
we cannot separate 2p; and 23 contributions. However,
the large [J 6 values of the 3.59-, 4.69-, and 4.77-Mev
levels indicate that they must have J>1 and probably
J>2 also.

No /=3 transitions were observed (En56). This is
probably due to competition with /=1; J=14-3 super-
positions are allowed by conservation of angular mo-
mentum when Jo > 2. (Al*” has Jo=1%.)

AL7(d,n)Si2

The two available experiments, at deuteron energies
of 6 and 9 Mev (Ru57 and Ca55), are in poor agreement.
We accept the 9-Mev data of Ca55 as more reliable.

Binding-energy calculations on the basis of the rota-
tional model (Br57) suggest that the equilibrium defor-
mation of ds-shell nuclei changes sign near Si?8, This
expectation has been supported by applications of the

8 The equilibrium deformation of Al® is probably (RaS7)
rather smaller than that of Mg?® or Al?5; =2 is probably a rea-
sonable estimate.

8 The inequality allows for the possibility that sizeable /=1
components lie above the limit of the experiment in question
(EnS6). We quote only one significant digit because the reduced
widths of En56 were normalized indirectly, using those of HoS3a.
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rotational model to SiZ® (Br57) and P% (Br58), where
reasonable agreement with experiment is achieved for
deformation parameters of between —2 and —3,
prolate shapes being rather definitely excluded. The
change of sign in question appears to take place quite
suddenly; the adjacent nuclei Al*® and Si* probably
have stable equilibrium deformations of roughly equal
magnitude and opposite sign. The existence (but not
the sign) of a stable equilibrium deformation in the
“closed-shell” nucleus Si*® is indicated by its successful
inclusion in Brink and Kerman’s (Br59) calculation of
relative binding energies of light deformed nuclei. By
minimizing the total energy of the nucleus with respect
to #, it is found (Br57) that the equilibrium deforma-
tions of Si?® and Si#® should be almost the same. This
prediction is much less sensitive to the details of the
model used than the precise value obtained for the
deformation at minimum energy. We therefore conclude
that Si?® is, in all likelihood, an oblate nucleus, with
'r,ﬁ—z.

Having assigned very different equilibrium deforma-
tions to Al* and Si*®, we cannot give a quantitative
discussion of the Al?"(d,n)Si?® reduced widths on the
basis of the rotational model. Not only is the core
overlap factor (f|i) in (II1.204) now an unknown
quantity, but also the single-particle Nilsson orbits in
Al?" and Si?® are no longer even approximately orthog-
onal.

The existence of stable deformations for Al*” and Si?®
implies, in the language of the shell model, sizeable
contributions to the corresponding wave functions from
the 1ds and 2s; orbits. We later encounter very direct
experimental evidence of such admixtures in discussing
the reactions Si?®(He%,)Si?” and Si?¥(d,p)Si¥; first we
examine the implications of the Al¥’(d,#)Si?® reduced
widths.

In jj coupling, the Al?" ground state is simply dys?
and that of Si?® a closed-shell state. The Al?"(d,x)Si?8
(ground state) reaction would then have 8§=12, as
described in Example 4 of Sec. IIL.9. Since 602(1d) is
about 0.02 for reactions of the relevant Q value (V.26),
the observed reduced width of 0.039 (Ca55) reveals a
discrepancy of a factor of six. Since it is unlikely® that
there is such a large error in the measured absolute
cross section of Ca55, we are forced to the conclusion
that the preceding simple wave functions for Al*” and
Si?® are seriously inadequate.

In the following calculation, our aim is to find the
smallest 2s; and 1d; admixtures consistent with the
observed ground-state reduced width. We assume op-
timal cooperation of phases and make the approxima-
tion of using extreme jj wave functions, of lowest

8 The strong /=0 transition(s) to level(s) near 9.3 Mev in Si28
probably excites the analog of the AI?® ground-state doublet.
Reasonable agreement is found between the values, 0.31 and 0.22,
respectively, of Z[J 6 for this lowest 7=1 doublet measured by
AP7(d,n)Si?® (CaS5) and AlY(d,p)Al8 (EnS6).
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symplectic symmetry,® for states of dy*. We obtain
an upper limit to, rather than an estimate of, the one-
hole and closed-shell components in Al?”7 and Si%,
respectively.
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As in the case of Ne®, paired excitations from the 1ds
to the 2s; and 1d; shells are energetically favored. Let
us, therefore, exclude such configurations as ds s, and
write® for the Si*® ground-state wave function,

(5t = . V . oy, (V29
A % *P P o T hs

where ¢, c3, and c4 describe configurations involving s;
and d;. For example, ¢, represents some linear com-
bination of (s;2)o; and (d3%)o;. We are not interested in
the precise nature of the ¢;; apart from additional
overlap factors to be mentioned in the following, the

‘I’(A127)= a' + a2

Nl =
nlo

L
2

Corresponding terms in (V.28) and (V.29) are con-
nected by the transfer of a 1d; nucleon. On using
(I11.64),% the overlap integrals are, respectively,

I(d)=1, —(1/19)¥ ez '), — (7/18)¥cs|cd'),
— () ¥ealed).

The overlap factors {c;|¢;’) clearly depend on the exact
nature of the 2s; and 1dg contributions ¢; and ¢’ to Si28
and Al?”. In accordance with our aim of setting a lower
limit on such core-excited components, we take {c;|c;’)
=1. If the overlap factors are, in fact, significantly
smaller than one, then the amount of core excitation
implied by the observed reduced widths will be corre-
spondingly larger.
The spectroscopic factor is therefore

8(1ds) = 12[asB1— (1/14)}azB2— (7/18) 3B
— (3B P

It is clear that if the phases (especially of the last two
components) cooperate, a large reduction in the spec-
troscopic factor can be produced by a moderate amount
of core excitation. Let us suppose, for example, that

(V.30)

8 Symplectic symmetry may not be very ‘“‘good” for ds", but
is probably as good as jj coupling and quite satisfactory in the
present context. For states of d§2 no assumptions need be made
concerning symplectic symmetry since each such state is uniquely
specified by T and J.

8 Notice that, in writing the pair of quantum numbers (7J),
we place T first.

8 In evaluating the last of these four overlap integrals, we need
the cfp (s’ % $|dy* 00), which is not given by Edmonds and
Flowers (EdS52). However, using explicit expressions given by
Grayson and Nordheim (Gr56b) for the cases of lowest symplectic
symmetry, we find (dy® % §|dy? 0 0)=— (2/15)%

5
2

reduced widths in which we are interested here (those
involving transfer of a 1ds nucleon) depend on the ¢;
only through the total quantum numbers.

In similar fashion Al*” may be represented by

: > ia, . (v.29)

3
2

+ Qyf

Nl —
njo
[

the Al*” and Si?® ground states are 60% ds™ and ds,
respectively, and that the phases cooperate. Let us take,
in fact,

(aucsasas) = (B1828554)
=[(6/10)3, (1/10)}, (1/10)%, (2/10)%]

and substitute in (V.30). We obtain §~1.45, in place of
the value 12 found in pure jj coupling.

Thus the small Al?"(d,7)Si?® ground-state reduced
width places an upper limit of about 609, on the
closed-shell component in ¥(Si?®). The remaining 1ds
contributions must appear in higher excited 0* states
of Si?®; the corresponding /=2 transitions should be
sought in high-resolution Al?7(d,7)Si? or Al*’(He3,d)Si2®
experiments.

Si*® (He?,a)Si%”

If Si?® were a true closed-shell nucleus, the only
positive-parity transition to be observed to low-lying
levels of Si?® would be the /=2 ground-state transition.
The observation (Hi60) of a strong /=0 transition to
the 3t first excited state of Si¥’” and a second /=2
transition to the 3+ second excited state, constitutes a
direct verification that the Si?® ground-state wave
function contains large 2s; and 1d; contributions (Fig.
43).

Si?8(d,p)Si?9; Si?8(d,n)P?

The measured (d,p) and (d,r) reduced widths (HoS3,
Ca57) of the first excited states of Si*® and P? disagree
by a factor of two. Since the first excited state of P%
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is within 1.5 Mev of the proton separation energy, we
regard the (d,p) reduced width as more significant.
The observed /=2 reduced widths of §* states in Si?®
are a further indication of core excitation in Si?. For,
by conservation of angular momentum, such transitions
must involve the capture of a ds nucleon; only 1ds
seems likely at the excitations in question and would
be ruled out by a closed-shell assumption for Si?8.
Although the reduced widths involved are small,
they imply large amounts of core excitation in the
ground state of Si*!. Summing over all §+ states (or
their fragments) which can be formed from (V.28) by
capture of a 1ds nucleon, we obtain the sum rule

2 8(1dp) = §(B2+B:>+284). (v.31)

Adopting 6:2(1d)~0.025 as a suitable value of the
single-particle reduced width for the Q values in
question, the wave function

(8:82848+) =[(6/10)%(1/10)#(1/10)#(2/10)*]
used in connection with Al?7(d,)Si?® gives
> 62(1d5)~0.0025,

considerably smaller than the measured sum of 0.006.
This discrepancy indicates either an even larger degree
of core excitation in Si?® or coherent 2ds contributions
to the observed /=2 reduced widths.

There is little doubt that the well-isolated strong
/=3 and I=1 transitions to levels at 3.62, 4.9, and 6.38
Mev in Si® reveal good single-particle 1 fz, 2p3, and 2p;
levels, respectively. The absolute reduced widths yield

82(1£)~0.013, (V.32)
862(25)~0.029, (V.33)
002(2p3)~0.023, (V.34)

in reasonable agreement with earlier estimates. The
p-doublet splitting is 1.5 Mev and the relative positions
of 1f75 and 2p4 levels is reversed from what is observed
in Mg?®,

Bromley et al. (BrS7) have pointed out that nuclei
between Si?® and S* possess oblate equilibrium shapes,
and therefore suggest that the Nilsson rotational model
is applicable. The intrinsic structure of the Si?® ground
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state is shown in Fig. 44. It can be seen that, for oblate
shapes, three positive-parity bands are expected among
the low-lying levels of Si%*, based on the =% (No. 9),

=3+ (No. 8), and 2=%*+ (No. 11) Nilsson orbits.

Bromley et al. neglected the mixing of bands and
assigned the five lowest levels of Si* to the first two of
these bands. Such a model is at variance with observed
l=2 transitions to $* states, as can readily be seen as
follows. The reduced width of the §+ state arising from
the K=t (No. 8) band is

8= %6;22 (NO 8) )

where ¢j2 is the dy amplitude in the single-particle
Nilsson function. The same expressions hold for the §+
states arising from the No. 9 and No. 11 K=4% bands.
Forsmall deformations c322(No. 8)=~1, ¢352(No. 9)~0, and
¢32*(No. 11)~~1. The prediction is therefore that two /=2
transitions with about one-half of the full single-
particle strength will be observed to §* levels of Si®.
In fact, only one dj transition is seen (HoS53) and this
has a full single-particle reduced width. We now show
that the discrepancy stems from the unwarranted
neglect of band mixing and disappears when the com-
plete rotational Hamiltonian is used.

Pure rotational bands are obtained by neglecting a

“Coriolis” term
—(#/29)(T-3) (v.35)

in the rotational Hamiltonian (Ke56), where J is the
total nuclear angular momentum and j is that of the
intrinsic nucleon motion. The operator (V.35) connects
states differing in K by 1, or two K=% bands; for
moderate deformations (of the kind encountered in
calculations of nuclear energy levels) it has large off-
diagonal matrix elements between states of rotational
bands arising from the same shell-model orbits. In the
case of Si*) such strongly interacting states are en-
countered in the K=% and K=32 bands based on
Nilsson’s orbits No. 11 and No. 8.

We therefore must carry out a calculation for Si?®
based on the full rotational Hamiltonian described by
Kerman (Ke56). The Hamiltonian matrix is set up and
diagonalized in a representation spanned by the pure-
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band states from Nilsson orbits No. 8, No. 9, and No.
11. The matrices encountered are 2X2 for J=1it
and 3X3 for J=4*, $*+ ... The calculation has two
adjustable parameters, the deformation 7 and the
moment of inertia 9; we take the zero-order positions
of the ground states of the interacting bands to be
given by the rotational Hamiltonian and Nilsson’s
intrinsic eigenvalues. The energy levels and spectro-
scopic factors shown in Fig. 45 are obtained with a
deformation 7= —2 and a moment of inertia parameter
72/29=0.35 Mev suggested by the value (0.37) obtained
from the excitation of the first 2+ state in Si®.

(1) No states in addition to the ones shown in Fig. 45
are predicted below 3.5 Mev; none of the higher states
have §>0.05. Thus agreement with the spins, order,
and positions of positive-parity states of Si?® is fairly
good. The general tendency of the predicted levels to
crowd too closely together could be improved by using
a rather larger value of #2/24. Our results favor a spin
of 3t for the 3.07-Mev level.

(2) The calculated 8 values are in satisfactory accord
with the observed reduced widths. In particular, it is
striking that interaction between bands results in all
the observable ds reduced width being concentrated in
the first excited state. The dj reduced width of the
second excited state is found to be larger than predicted
by much the same factor as was encountered in our
shell-model discussion of this transition. A larger 1ds
reduced width could be obtained only by increasing the
deformation and this would push the 3+ first excited
state too close to the 3+ ground state.

(3) In using the rotational model to interpret the
data on Si?8(d,p)Si®, we must assume that Si?8 and Si%
possess nearly equal equilibrium deformations. We have
discussed this question in connection with Al?"(d,x)Si?.

Detailed agreement could obviously be improved by
minor adjustments in the parameters # and 7%?/29. The
significant points which have emerged are that a good
over-all picture of both spectrum and reduced widths
has been obtained with a reasonable choice of param-
eters and, of particular interest here, that agreement
for the reduced widths cannot be obtained without
taking correct account of the interaction between the
two 1ds bands.

Using the 8 values given in Fig. 45 and the observed
reduced widths (HoS53) of the ground and first excited
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states of Si®, we obtain
062(25)~20.04,
002(1d)~0.021.

(V.36)
(V.37)

The 2s reduced width is sensitively dependent of the
deformation, while the 1d reduced width is not. The
value (V.37) of 62(1d) is consistent with (V.24),
obtained from Mg?(d,p)Mg?, where the Q value is
comparable.

P3 (p’d)Pa‘O

The intrinsic configuration of the lowest bands in P
may involve a mixture of (2+43%)% and (Q=4%1)?, the
two nucleons occupying Nilsson orbits No. 9 and No. 8,
respectively. Each configuration gives rise to three
bands, two with 7=0 and one with T'=1 (K=0) ; since
we are dealing with an odd-odd nucleus, all six bands
may be (in zero order) below 2 Mev (Br59). The bands
arising from (Q=%%)? and (@=$§%)? interact with each
other only through residual two-body forces since the
Coriolis term (V.35) is a one-body operator. The fact
that Nilsson orbits Nos. 9 and 8 lie very close in energy
for small negative deformations, and our earlier con-
clusions concerning the Mg?® ground state (where con-
ditions are less favorable for interaction), suggest that
strong mixing may occur. The situation is clearly quite
complicated. Accordingly, since the only available ex-
periment (Be58) locates only two /=0 transitions to
levels of P®  (one of them to an unresolved doublet of
levels near 0.7 Mev) and since little is known about the
spins of low-lying levels of P®, we do not give a detailed
discussion of the P3(,d)P® data.

P3t (d’p)PSZ

Experimental studies of levels in P? up to 6.56 Mev
(Da57) and of the ground-state doublet (Pa58) have
been reported. No absolute cross-sections have been
measured. We therefore depart from our usual order
and discuss /=1 transitions first; from such considera-
tions we obtain a rough normalization of the /=0 and
1=2 reduced widths.

There are four basic 2p single-particle components
(Fig. 46):

[¢0>.<2P%:|-7) J= 1) 2—; [¢0>.<2[7§]J, ]=0y 1~

The fact that nine /=1 transitions are observed indi-

¢2 2.232 s/24

1.26!
4" 265

3/2+ F1c. 46.
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cates fragmentation of these single-particle states. This
fragmentation could be produced by interaction with
such statesas [¢1X 13-, [¢2X 1 f1/2 1,27, [1 X 223 10,1
and [¢2X 2p3 |:1-, independently of the detailed fashion in
which 2s; and 1dj contributions are mixed in the P
ground-state wave function. In particular, the fact
that nine rather than four /=1 transitions are seen
cannot be taken to imply that the P% ground state
involves large departures from jj coupling®®; we may
be forced to invoke such departures in interpreting
other data.

The two 1fy; components [¢oX1fye-]s, J=3, 4~
have not been identified.

Let us now apply the sum rule (II1.185) to the /=1
transitions. If C is the factor which normalizes the
relative cross sections of Da57, we have

44C=120¢(2p).
Taking 6¢2(2p)=0.027, we obtain
C~0.0074.

v(P)= + a,

(] el

3
2

taking account of all (3 3) states of 5%, s42d3, and s3dy?.

We use the observed /=0 reduced widths to estimate
the size of the amplitudes e, @, a3, and a4 in (V.38) and
hence the amount of core excitation in the ground state
of P,

We take account of all states of s;3d3 and s?ds*> which
can be reached by /=0 stripping from P%!; such states
have T'=1 and J=0 or 1. s;3d; contains no T'=1 states
with /=0 and only one with J=1, the latter state
being identified with the ground state of P*2. There are
three J=1 states and one J=0 state with T'=1 in
si’dg®. Energy estimates based on the spectra of P%,
CPB* and S* indicate that the J=0 state should be
lowest. It is therefore likely that the 0.515-Mev level
in P® has J=0t. We can then assign® states of s;%ds
and s32dg? to observed levels of P® in the following
plausible fashion; the corresponding § values, obtained
with the aid of (II1.65), (II1.68), and the wave function
(V.38) for the ground state of P%, are given alongside:

P20): [(s))33lds]an=an
$U=2)=ar, S(=0)=3a? (V.39)
P®(0.515): [(s8)10(1d$)10]sr=ao
S(=0)=4ag (V.40)

86 This point has been made by Pandya (Pa57a) in a rather dif-
ferent fashion.

87 The analogous 1dj transitions in Al7(d,p)Al?® give no such
direct information because of competition with 1dy contributions.
The situation for 4 =32 is otherwise very similar to that for 4 =28.

8 Similar assignments have been made by Pandya (Pa57a).
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TaBLE XV.
Excitation J [Je? Reference

0 1+ 2 0.022 Pa58

0 0.0015 Pa58
0.077 2t 2 0.031 Pa58
0.515 0 0.005 Da57
1.15 0 0.009 Da57
2.2 0 0.004 Da57e
4.21 0 0.005 Da57

s We assume that only one member of the doublet at 2.2 Mev has an
1 =0 angular distribution,

With this normalization, the reduced widths of /=0 and
}=2 transitions in P3(d,p)P% are then as given in Table
XV.

The presence of /=0 transitions to low-lying levels
of P*® is a clear® indication that the single-hole wave
function s;® is not an accurate representation of the P%
ground state. Let us write, in fact,

(V.38)
1.15
P32{2~2 }: LG 0@ 10]utL (5D 10(@D o1
421
+[(Si2)01(d§2)12]11
2 8(1=0)=3(as+as). (V.41)

From the appropriate measured reduced widths
(Da57); (V.40) and (V.41) determine as? and a¢; the
ratio of the /=0 and /=2 reduced widths in the ground-
state transition (Pa58) yields as?/e; through (V.39);
since ay®+as? is known from the normalization of -
(V.38), the squares of all amplitudes in (V.38) are now
determined.

It remains to select suitable values of 62(2s) and
002(1d). The Q value for P3(d,p)P*® is close to that of
Si28(d,p)Si®, where 62(1d) has been estimated rather
reliably as 0.02. Since the corresponding value of
062(2s) is sensitive to the deformation assumed for Si*
in extracting it, we prefer to use the rather smaller
value of 0.03 indicated by determinations of 6¢%(2s)/
002(1d) elsewhere in the ds shell. [See, for example,
(V.17).] With

0:2(1d)~0.02, :2(25)~0.03, (V.42)

we find

a?=0.66, a?=0.04, «=0.04, «2=0.26. (V.43).

Our treatment of the ground-state transition is the
same, in principle, as the original one of Parkinson
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(Pa58; see also Fr60). The fact that the preceding
value of a;® is considerably smaller than Parkinson’s
reflects our different assumptions concerning 6,2(1d)/
65*(2s) and the change of normalization implied by the
presence of the third and fourth terms in (V.38).

A reasonable picture of the P3%(d,p)P® reduced
widths has thus been obtained. In the process, it has
been estimated that the P3 ground state is between 60
and 709, sy This should be regarded as a rough
estimate in view of the uncertainties introduced by our
indirect normalization of the reduced widths of Da57
and by our assumed values of the single-particle reduced
widths.

The rotational model has been applied with some
success to P by Broude ef al. (Br58), and P may also
be an oblate nucleus. However, we do not discuss the
rotational interpretation of the P3(d,p)P® reduced
widths because of the difficulty, described in connection
with P¥, of dealing with the many bands at low exci-
tation in an odd-odd nucleus.

P¥(d,n)S™

If the P% ground state were well described as a
single-hole s; state and the S* ground state as a closed
shell, we would have $§=4 for the P%(d,n)S® ground-
state reaction. The observed /=0 reduced width (Ca55)
0,2=0.006, smaller by a factor of at least 10 than such
an 8§ value would demand, reveals the inadequacy of
the preceding simple wave functions. We have already
reached this conclusion from our analysis of P%(d,p)P%;
it is also suggested by the fact that a second /=0
transition is observed (Ca55) to level(s) around 4 Mev
in S%.

" The situation is very similar to that encountered in

Al?"(d,n)Si?8; the arguments presented in detail there
need not be repeated. Suffice it to say that with the
wave function (V.38) and (V.42) for P%., the observed
diminution of the P%(d,#)S®? ground-state reduced
width sets a rough lower limit of 409, on the amount
of core excitation in S%.

A more detailed consideration of the excited levels
of S* is not worthwhile since so little is known of their

properties, particularly spins and parities.

S®(d,4)S"; §*(d,n)CI?

The (d,p) and (d,n) reduced-width ratios (Ho53,
Mi53) of the first two levels in S% and CI%, respectively,
are in marked disagreement. We regard the (d,p) data
as more significant because the Q value of S*2(d,n)CI*
(0.84 Mev) is —0.746 Mev, so that the level in question
is close to the proton separation energy.

Since no absolute cross sections have been measured,
we confine ourselves to a brief qualitative discussion of
the observed reduced widths. We start with the /=1
transitions.
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There are two basic 2p single-particle components
(Fig. 47) ) ]
[p0X2p1 15, [$oX2p3 14~

- Four /=1 transitions are, in fact, observed, the levels

and reduced widths being as shown in Table XVI.

The only state of a weak-coupling representation
based on S (see Sec. III.11) which could possibly
interact significantly with [¢oX2ps] is [¢1X1fr2].
Similarly, only onestate, namely, [¢1X 2p3 ], seems likely
to interact strongly with [¢oX2p;]. We therefore
suggest that the 4.2- and 4.9-Mev /=1 levels have
J=%" and }-, respectively. The values of > [J 16 for
the $~ and 3~ states are in the ratio 12.1/8.1~1.5,
compared with the predicted value of two.

A strong /=3 transition to a level near 2.8 Mev in S%
reveals the dominant 1f;, single-particle component.
The reduced-width ratios imply

02(2p)/6¢2(1f)~1.7 (V.44)

in good agreement with other estimates of this ratio.

We have already mentioned that the presence of an
!=0 transition to the first excited state of S% implies
core excitation in S®. Apart from this, the most sig-
nificant point about the positive-parity transitions is
the absence of observable /=2 transitions to §* states
in S®. In the first place, it indicates that we are justified
in ignoring 1ds excitations in S®, and, by implication,
in P% also; secondly, since 2ds contributions are at
least as likely among low-lying S®(d,p)S® transitions
as in Si?8(d,p)Si®, it suggests that 2dy contributions to
observed dy transitions in Si?8(d,p)Si® are too small to
be of importance.

Region 33< A<38

If the earlier part of the ds shell, with 4<32, we
have seen that 1d and 2s configurations are strongly
mixed; at the end of the shell, on the other hand,
around 4 =40, the jj-coupling shell model seems to be
quite successful. It is unfortunate that so little experi-
mental information is available concerning the inter-
esting transitional region. We would like to know
whether low-lying levels of nuclei in this region can be
adequately described as belonging to 1d3” and to what
extent excitation of the 2s; core is important. A related
question concerns the equilibrium shapes of nuclei
beyond Si?8. We have seen that nuclei from 4=28 to
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A =31 can be treated with some success in terms of a
rotational model, assuming oblate equilibrium defor-
mations. Further experimental study is needed to find
out whether and, if so, to what extent the region of
oblate nuclei extends beyond S%.

C1%5(d,p)Cl13¢

The only available stripping experiment (Ki52)
concerns the CI*(d,p)CI*® ground-state réaction, a
mixture of /=0 and /=2. No absolute cross section is
available.

This isolated piece of data does not, in fact, tell us
much about the importance of core excitation in CI%.
For the CI*® ground state is expected to be mainly
(d3Y) (roy=q12) (the configuration ds® containing only one
such state); thus the small /=0 admixture in the
ground-state angular distribution reveals a small com-
ponent of [(sy™);3(d3912]); 3 in the CI¥% ground-state
wave function.

But this admixture is not the one most likely to
contribute significantly to the CI*® ground state.
[(s5™5 1(ds%02]s 3 is energetically more favorable and
is not connected to the dominant component in the CI%¢
ground state by transfer of a single nucleon. Further-
more, we cannot be sure that other kinds of excitation
of the 2s shell can be ignored in CI*® and CI®.

We conclude that much more experimental informa-
tion is needed before we can say anything significant
about the CI?5 and CI¥ wave functions. Probably the
best way to study such matters would be to perform
high-resolution CI%(d,p)CI*¢ and CI*’(He?,d)Ar® ex-
periments. Points of interest raised by such investi-
gations could then be further examined by suitably
chosen experiments on S*, CI%6, and perhaps Ars®,

VI. STRIPPING AND PICKUP REACTIONS ON
HEAVIER NUCLEI (4>40)

Since there are few data concerning nuclei with 4 > 70,
this section concerns stripping widths in the region
40< 4 <70. In our theoretical discussions we use the jj-
coupling shell model and the weak-coupling formalism
described in Sec. IIT.11.

K39 (d,p)KAO

Two experiments have been performed, at deuteron
energies of 6 Mev (En59) and 8.9 Mev (Da59). The
results of these two studies agree very well, within the
limitations imposed by the lower energy resolution and

TABLE XVI.
Excitation (Mev) J~ ! Relative [J]®? Reference
3.22 g 1 10.5 Ho53
42 (7) 1 1.6 Ho53
49 () 1 0.8 Ho53
5.71 i 1 7.3 Ho53
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the lack of absolute cross sections in the 8.9-Mev ex-
periment.

The strong I=3 transitions to the first four levels of
K* have already been discussed in detail as Example 3
of Sec. ITL.9. The four levels in question being, as we
have seen, good single-particle 1 fy, states, the absolute
reduced widths of EnS59 yield

002(1f7/2)20.010, (VII)

quite close to the values found in the ds shell (6¢2(1fy2)
~0.012 [(V.3), (V.20), (V.32)].

Some 30 /=1 transitions are observed to levels
between 1.6 and 5 Mev in K%. We discuss them in terms
of the weak-coupling formalism, since 2p contributions
to the K® ground-state wave function are assuredly
negligible.

There are six basic single-particle 2p components
(see Fig. 48):

[¢0x2?i], J=0,1, 2,37
[g00>'<2?5], ]=1, 2~

The experimental results indicate that these states are
split into many fragments. Such a situation is not hard
to understand qualitatively; on the reasonable assump-
tion that some of the low-lying excited states of K%
have positive parity, we can clearly have many inter-
acting states of the type [¢:Xu:J, where uy=1fys, 2p3,
or 2p;. The situation is too complex to attempt any
detailed enumeration of the final-state interactions
involved. -

On summing over all /=1 levels, we have, using
(I11.185),

2_[J162=24642(2p).
The observed values of [J]6* (En59) yield > [J]6
~0.49, whence

0:2(2p)~0.021, (VI.2)

in reasonable agreement with ds-shell estimates.
Let us now say a few words about 2p; and 2p; com-
ponents separately.
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2ps Levels

The large /=1 reduced widths of levels at 2.042,
2.064, 2.099, and 2.622 Mev indicate the presence of
major components of [[¢oX2p;]. The [J16? values of
these levels enable us to make the plausible spin assign-
ments given in Table XVII.

2py Levels

We cannot say much about the detailed nature of
the 2p; levels. Apparently the degree of fragmentation
of the 2p; components is greater than that of the 2p;,
which is not surprising in view of the higher excitation.

Three weak /=0 transitions are observed to levels
of K% between 3 and 4 Mev. Their significance is
discussed later.

Ar(d,p)Ar#

The only available experiment (BuS6) gives no
absolute cross sections. On using the ground-state peak
cross section given in an early study (Gi52), a rough
normalization can be obtained. The accuracy of the
resulting absolute reduced widths is quite uncertain.

=3 Transitions

Only one /=3 transition is observed, connecting the
ground states of Ar*® and Ar*l. We ignore core excitation
and discuss this transition in terms of the jj-coupling
shell model, taking the lowest state of each configuration
compatible with the given total quantum numbers.
The ground-state transition is then described by

W P (VL3)
—— ,
' 20

the appropriate 8 value being %, from (II1.65). The
absolute ground-state reduced width (Bu56, Gi52) then
leads to the reasonable estimate

0 (1f7/2)§0013

Nla
i~

(VL4)

8 As an academic point, we note that since the dj neutron
shell is filled in both states, the reaction (VI.3) can be described
more simply without the isotopic-spin formalism as

72 o
or (since the dj group has spin zero) more simply still as

& —&

In situations such as this, to use the isotopic-spin formalism is to
make things unnecessarily complicated.

(VLS)

AND J. B. FRENCH
TABLE XVII.
State of K% Jr [Jleri=1) 2(l=1)
2.042 Mev 3~ 0.086 0.012
2.064 2~ 0.078 0.016
2.099 1~ 0.053 0.018
2.622 0~ 0.018 0.018

l=1 Transitions

The two basic 2p single-particle components are
distributed among seven observed /=1 transitions. The
large [JJ6? value of the 1.39-Mev level in Ar# indicates
that it contains a large fragment of [¢oX2p;] and,
accordingly, has spin §. The low-lying /=1 level at
0.57 Mev must also contain a component of the 2p;
single-particle state (and hence must also have spin ),
probably arising from an interaction between

372
and [@oX2p3].

On applying the sum rule (II1.185), we find 6¢2(2p)
~0.035. If we use (VI.4) to express 8:2(2p) in units of
05°(1f) (thereby avoiding any reference to our doubtful
indirect normalization of the reduced widths of BuS6),

we have
00*(2p) /6,2 (1f)~2.6. (VL.6)

This value of the ratio of single-particle reduced widths
is to be compared with 2.1 from K3(d,p)K% [(VIL.1)
and VI.2)] and 1.7 from the (d,p) experiments on
Ca [(VL7) and (VL.8)].

In view of the correspondence

—_

A
J-

where

T

is some state of three particles in the 1f—2p shell, we
expect a qualitative similarity between the positions
and reduced widths of low-lying levels in Ca® and Ar#.
This expectation is clearly borne out by the results of
available Ca®(d,p)Ca® (Bo57) and Ar®(d,p)Ar*! (Bu56)
experiments; the similarity even seems to extend to two
weak positive-parity levels found at nearly the same
excitations in Ca* and Ar%. The main difference is that
many levels are known below 4 Mev in Ca% which
show no stripping from Ca*2, while no analogous levels
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have been found in Ar#. In particular, no low-lying
$— level of Ar" of the form

%)

5/2-

corresponding to the first excited state of Ca®, has yet
been observed. Most of these apparent differences
probably stem from the lower resolution in the only
available Ar%(d,p)Ar* experiment (Bu56).

Low-lying positive-parity transitions in Ar%(d,p)Ar#
are discussed later.

Ca'o(d,p)Ca*; Ca*(d,p)Ca®; Ca*(d,p)Ca’®

(d,p) experiments on Ca® (Bo57a), Ca*2(Bo57), and
Ca** (CoS7), have been performed with 7-Mev deu-
terons. The cross sections are given in the same relative
units. The reduced widths extracted from the data
obtained in these three experiments can be normalized
with the help of an earlier study (Ho53) with 8-Mev
deuterons. )

We find it convenient to discuss the three Ca experi-
ments simultaneously. Many aspects of these reactions
have been discussed by French and Raz* (Fr56), whose
main interest was in using the (d,p) results to study
certain matrix elements of the effective two-nucleon
interaction. We are not concerned with that topic here.

The ground-state /=3 transitions have already been
discussed in Example 5 of Sec. IT1.9. The ratios of the
three ground-state reduced widths agree well with the
jj-coupling predictions. The absolute reduced widths
indicate

00*(1£)~0.013,

in good agreement with other estimates.

Stripping to the low-lying §~ state at 0.373 Mev in
Ca® and to a similar state (probably at 0.176 Mev) in
Ca* can only involve 1f;, by conservation of angular
momentum. Since the main 1f; components appear at
6 Mev or higher (Cl59), transfer of a 1fs nucleon at
such an excitation is strongly unfavored. The fact that
no stripping is observed (Bo57, CoS7) suggests that j7
coupling is a reasonable approximation. The foregoing
considerations have no bearing on the possibility of core
excitation.

In considering /=1 transitions, we use the weak-
coupling formalism of Sec. II1.11, on the assumption
that 2p; and 2p; do not contribute significantly to the
ground states of the even-4 Ca isotopes. Let us first
separate 2p; from 2p;. To do this, we note that 2p;
levels are expected to lie above 2p; levels and that the
total 2p; intensity (3_[J]6%) should be twice that of 2p;.

The results of the most plausible such separation are
given in Table XVIII. The values of 6,2(p) obtained by

(VLT)

9 See Fr56, particularly Table 1.
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TasBLE XVIII.
Orbit Excitation of state [Je? 02(2p)
Ca®(d,p)Catt
2p3 1.947 0.080 0.026
2.469 0.027
2py 2.967 0.002
3.619 0.005 0.021
3.736 0.003
3.950 0.032
Ca®(d,p)Ca® :
2p4 0.593 0.005 0.021
2.048 0.080
2p3 2.607 0.008
2.880 0.005 0.012
2.947 0.005
3.584 0.005
Ca*4(d,p)Cath
23 1.432 0.011
1.902 0.054 0.019
2.249 0.009
2py 2.844 0.009
3.244 0.004 0.016
3.419 0.018

applying the sum rule (IIL.185) to each set of 2p; and
2p; transitions constitute a test of the consistency of
our interpretation.

Several remarks should be made concerning this table.

(1) The identification of the 2.47-Mev level in Ca#
as single-particle 2p; is strongly unfavored. Apart from
upsetting the relative amounts of [¢oX2p3] and
LoX2p;], suchaninterpretation would demand an equal
division of [¢oX2p;] between levels 1.5 Mev apart.

(2) 60*(2p3) <60*(2p3), especially in Ca®(d,p)Ca®. It
is probable that this difference is due to the existence
of 2p; levels above the excitation reached in the relevant
experiments.

(3) It should be stressed that Table XVIII lists only
those §~ and 4~ states which have observable /=1
reduced widths. There are many levels below 4 Mev
in the odd-4 Ca isotopes which show no stripping and
of these there must surely be some with spin §-, some
with spin 3.

(4) In both Ca® and Ca* the lowest =1 level is
weak, arising mainly from (f75%)s, (fr/2%)3-.

The values of 62(2p) determined in Table XVIII
cluster around the value

862 (29)~0.022, (VL8)

excluding the 2p; levels in Ca® and Ca% [see (2)].
Strong /=2 transitions to levels at 4.76 and 5.72 Mev
(HoS53) indicate large single-particle 2ds contributions.
Such an interpretation is supported by the gross-
structure studies of Schiffer and Lee (Sc59), who find
that, in the region 49< 4 <66, 2d; levels lie 1 to 2 Mev
above 2p;. The usual sum rule (II1.185) then gives

8¢ (2dy) > 0.016. (VL9)
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No single-particle 1f; or 1gy, components have been
reported in (d,p) studies of the Ca isotopes. It is now
almost certain, from a study of the structure of Sc#
by Ca®(p,p)Ca® (Cl59), that such components lie
above the range of excitations studied, around 6 Mev.

Core Excitation in the Region 4~40

In the (d,p) reactions on K¥, Ar®, Ca®, Ca®, and
Ca#, weak /=0 and /=2 transitions are observed to
low-lying levels of the residual nuclei. Detailed dis-
cussion of these transitions in terms of minor com-
ponents in the target ground state is more difficult
than for A~30 because of the greater likelihood of
coherent 1d and 2d, 2s and 3s contributions and because
of uncertainty concerning the relevant single-particle
reduced widths. We therefore confine ourselves to a
brief qualitative discussion.

Let us start with the /=0 transitions. Even if these
were to arise only from excitations of the 2s shell, the
amount of 2s core excitation implied by the observed
reduced widths would be less than 109. Since possible
3s contributions are coherent with 2s, it is possible
that the actual amount of core excitation is considerably

smaller. o )
Since no /=2 transitions have been identified in

M. H. MACFARLANE AND ]J.
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K®(d,p)K®, we discuss the similar cases of Ar# and
the odd-4 Ca isotopes. Here the situation is quite
different. If core excitation is responsible for the ob-
served transitions it must involve 1dy; the amount of
core excitation implied by the measured reduced widths
is between 10 and 209,. 2d; contributions, coherent
with 1dj, are probably of little importance. Such an
interpretation implies J=$+ for the low-lying positive-
parity levels in question. If, on the other hand, we are
dealing with low-lying fragments of [¢oX2ds], the
correct spin assignment is J=45*. But the 2d; single-
particle component must certainly be small, so that core
excitation must predominate. Since J=3%* is strongly
unfavored for low-lying core-excited levels in Ar#, Ca%,
or Ca®, we conclude that the probable spin is 3+.
Sizeable amounts of 1d; and 2s; core excitation in the
ground states of the Ar and Ca isotopes may have sur-
prisingly little effect on the 2p and 1f reduced widths.
This is obvious in the case of 2p; for 1f, it is a con-
sequence of the fact that 1d; and 2s; nucleons are
promoted in pairs. The essential point here is that the
8 values of f?"*1— fy2" and fy2n1— fy2v2 differ
only by % [see (IIL.150)]. For example, if we replace
the simple ground-state wave functions of Ca® and

Ca® by

¥ (Ca) =
( ) A/3/5 '+ J2/5 ‘
00 00

and

‘I’(Ca‘ﬂ): /3/5 ’ -+ /2/5
1

I
2

2

involving 409, excitation of the 1d; shell, we have
8=0.90. In other words, 409, core excitation changes
8 only from 1 to 0.9, assuming that the phases cooperate

in the desired way.

Ti*t (d,p) Tit"

Preliminary results of an experiment by Rietjens and
Bilaniuk (Ri60) with 7.8-Mev deuterons reveal one /=3
transition, proceeding to the first excited state of Ti¥,
and five /=1 transitions to levels of Ti* between 1.56
and 3.31 Mev (see Fig. 49).

The reaction to the ground state of Ti'”, whose spin
is known to be 5, shows no stripping. From the
jj-coupling viewpoint, this is to be expected since the
transition must involve a 1f; nucleon and is therefore

j-forbidden.

Ni—
N~

If we use the jj-coupling approximation and treat
neutrons and protons separately, the transition to the
3~ first excited state of Ti¥ is described® by

i I ‘ ’
772 °

(VI.10)

% On using the isotopic-spin formalism and assuming that
symplectic symmetry ¢ is a good quantum number, the transition
in question becomes

() TT =53, o=(1000) = (f12)ToJo=00, oo=(0000),

the 8 value being %, exactly as before. A similar comment holds
for Ti*8(d,p)Ti®(g.s.).
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with 8=%. Although no absolute cross sections are
available, Rietjens and Bilaniuk (Ri60) have also
studied Ti*(d,p)Ti®, measuring the cross sections for
Ti*” and Ti® in the same relative units. They find, for
the ratio of the fy2 reduced widths,

62% (Ti*", 0.16 Mev)/8,2(Ti®) =2.2-£0.7. (VIL.11)

On representing the Ti®(d,p)Ti® ground-state transi-
tion by the appropriate modification of (VI.10), we
obtain 8,(Ti%¥)=} and, accordingly,

8*(Ti*", 0.16 Mev)/8,(Ti®)=2,

in agreement with (VI.11).

The lowest /=1 level, at 1.56 Mev, undoubtedly
contains a large fragment of the 2p; single-particle state
[eoX2p3], its spin being, therefore, §~. It is likely that
the nearby 1.80-Mev level also contains a 2p; contri-
bution. With these exceptions, we cannot separate 2p;
and 2p; among the observed /=1 transitions; it is, in
fact, doubtful that all 2p contributions have been
accounted for. Levels with large cross sections at
Orab=20° are found at 3.60 and 3.71 Mev in Ti%, either
or both of which may have an /=1 stripping pattern.

The 0.55-Mev, level probably has spin $~, belonging

predominantly to

3/2

The fact that no stripping is observed indicates a
negligible interaction with [¢oX2p3], in contrast with
analogous levels in Ca* and Ca®.

Ti*s (d,p) Tit®

There are two relevant experiments. Preliminary
results of the first of these (Ri60) are indicated in Fig.
50(a). The second is a study (Sc59) of gross structure
in the proton spectra from Ti‘*(d,p) ,with energy reso-
lution poorer than the average spacing of levels in this
mass region. The purpose of this work is to locate

F1c. 49.
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single-particle levels in the residual nucleus, the low
resolution having the effect of reassembling the various
fragments of the basic single-particle states. No absolute
cross sections are available.

We have already discussed the =3 ground-state
transition in comparing 1fy, reduced widths in Ti¢
and Ti®. Let us therefore proceed to discuss the higher
single-particle levels. The rough positions of single-
particle levels in Ti# found by Schiffer ef al. are shown
in Fig. 50(b).

The results of Rietjens and Bilaniuk are consistent
with these findings. The /=1 transitions to levels at
1.38 and 1.72 Mev clearly® involve the major portion
of the 2p; level [[¢o(Ti*®) X 2p;]. On using the sum rule
(I11.185) and the fact that 8,(Ti®*)=1%, the observed
reduced widths of the first three observed states of Ti%®
lead to

0:*(2p)/60*(1f)~1.3, (VL12)

rather smaller than the value 1.7 implied by (VI.7) and
(VL8). The findings of Schiffer et al. suggest that the
2.49-Mev level in Ti® is single-particle 1f;; no angular
distribution is available for this level at the time of
writing, but the cross section at f1.,=20° is consistent
with the foregoing interpretation. The 3.26-Mev level
involves a Jarge fragment of [ 09X 2p;], and the nearby
3.17-Mev level may do so as well.

The level density of known levels of Ti*” and Ti® up
to about 3 Mev is markedly lower than in Ca#, Ca®,
Cat, It is likely that other levels, which show no
stripping from Ti* and Ti%, actually exist in the rele-
vant parts of the spectra of Ti*” and Ti®.

Ca*(d,p)Ca®

Angular-distribution measurements (Bu54) show that
the reactions to the first two states of Ca® have I=1
(see Fig. 51). The levels in question being, undoubtedly,
single-particle 2p; and 2p;, the absolute cross sections

% In an experimental study of the circular polarization of v rays
following the capture of polarized neutrons by Ti, Trumpy
(Tr57) assigned a spin of 3~ to the 1.72-Mev level in Ti®. Since
the measurements involved in the polarization experiment are
very delicate, we prefer the spin-assignment of %~, which is
definitely favored by the stripping data.
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of the corresponding transitions would provide a reliable
determination of 6¢?(2p) in this mass region. No cross
sections, relative or absolute, are available.

The 1f; single-particle level is no lower than 3.56 Mev
in Ca®. This is to be contrasted with the situation in
Ti*, where the 1f; level seems to lie below 2p;, and
bears a close resemblance to what is found in Ca®. It is
clear that the filling of 1f;» proton shell has a pro-
found influence on the 1fs neutron levels. Further ex-
perimental information, in particular a determination
of the position of 1f; levels in Ca*,, Ca®, Ca*®, Ca?’, and
Ti*", is needed to shed light on this matter.

Vil (d’p)VSZ

Three experiments have been performed, two (ELSS,
Da60a) with moderate energy-resolution for levels up
to 2.8 Mev in V%, the other (Sc59) a “gross structure”
study with low resolution. The two moderate-resolution
experiments are in good agreement.

The V3 ground state is expected to be predominantly

A

772~

(VI.13)

with a complete shell of f75 neutrons. Thus, V®(d,p) V52
should involve 2ps, 2p;, 1f;, --- single-particle levels
and their fragments. Let us consider /=1 levels first.
There are four basic 2p; components, [¢oX2p; ]/
=2, 3,4, 5%, and two basic 2p; components [ ¢oX2p; |/
=3, 4*. If the main 2p; and 2p; components do not
overlap, we can separate them in the usual way with
the aid of the relation®

271 (2p1) =2 2 [T 10°(2p3)

obtained from (III.185).

Experimental information concerning /=1 levels in
V# is summarized in Fig. 52. The reduced widths [J]6?
of the various proton groups resolved in EI58 (taken
from Table I) are exhibited graphically to the right.
Proton groups which are known (Sc52) to correspond to
more than one level in V% are indicated by a vertical bar
(——1). On the left, the positions of the 2p3 and 2p;
single-particle levels, found in the work of Schiffer et al.

9 True independently of the ground-state target spin.

M. H. MACFARLANE AND J. B.

FRENCH

(Sc59) are given. It is clear that the two sets of results
are consistent with each other.

The foregoing interpretation of the 2p levels assumes
that the lower /=1 transitions (below 1 Mev) involve
predominantly 2p; nucleons, those above 1.4 Mev
Involving 2p;. This assumption is suggested by the
“break” between 0.9 and 1.4 Mev in the sequence of
/=1 levels and receives support from the good agree-
ment between the observed ratio

2 [ee=1/ ¥ [Jee=1)=25,

Exc. <1 Mev Exc. >1 Mev

and the statistical ratio of two.
The fractions of the total 2p; contribution

2716 (2p4)

belonging to levels with /=2, 3, 4, and 5%, are 3%, 7%,
3%, and 3, respectively. The ground state of V&
possesses almost 0.6 of the observed (EIS8) total value
of 2.[J]6* for I=1 levels below 1 Mev, suggesting a
large ground-state spin. On the other hand, the 8~ decay
V#— Cr? is allowed and proceeds entirely to the 2+
excited state of Cr®, so that the spin of the V® ground
state must be either 2+ or 3+. The difficulty would be
resolved if the ground state of V?2 were a close doublet,
probably consisting of a 3+ ground state and a 5+ first
excited state. Such a doublet would contain 18/32~0.56
of the total 2p; contribution.

On using the absolute cross sections of Da60a and
the sum rule (II1.185), we have

8¢ (2)~0.019, (VL.14)

in good agreement with earlier estimates.

There is a definite break in the succession of strong
stripping transitions between 2.307 and 2.8 Mev in V%,
Dalton e/ al. (Da60a) then find five more strong
stripping transitions to levels up to 4.43 Mev in V&,
It is impossible to decide on the basis of the simple
Butler theory whether the appropriate ! value for
these transitions is 1 or 2. All that is known about the
systematics of single-particle levels and single-particle
reduced widths in this mass region conclusively indi-
cates /=2; we have assumed this to be the correct
assignment in the foregoing discussion.

~Fz.5
2.0 2p 2
Exc. |
vew T'°
82
in Vv Lo
dos — P32
Lo

o 1 2 3 4 5 6 7

N I e I R

RELATIVE [3] 6% (g2 1)——»

Fic. 52.
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Similar difficulties in distinguishing adjacent / values
are encountered in (d,p) experiments on the Ca isotopes
(Bo57, Bo57a, CoS57) and in Cr®(d,p)Cr® (EI58b)

‘where the transition to the 2.31-Mev level may have
either /=1 or /=2. The difficulty may stem from the
fact that each of the experiments in question was per-
formed at deuteron energies of 6 to 9 Mev, very close
to the height of the Coulomb barrier (6 to 7 Mev) in
this mass region. This point is also raised in Secs. IT1.4
and VII.

No 1f; level was found in the low-resolution V% (d,p)-
V% work of Schiffer et al. (Sc59). This is not surprising
since 1f; components are expected, in this region to
lie close to the main 2p contributions, in which case
!=1 would probably swamp /=3. El-Bedewi and Tadros
(EI58) find large /=3 admixtures in groups of levels
near 1.8 and 2.1 Mev in V®. It is certain that sizeable
1fs contributions have as yet escaped detection.

Cr#(d,p)Cr®

The ground state of Cr® [Fig. 53(a)] should be
adequately represented by the wave function

(VL15)

(o]

The fact that the 1f7, neutron shell is fully occupied,
while the 2p and 1f; shells are empty, permits the use
of the weak-coupling formalism of Sec. ITI.11 in dis-
cussing /=1 and /=3 levels in Cr®. We consider /=1
transitions first.

There is no doubt that the ground state of Cr®
contains a large fragment of the 2p; single-particle state
[eoX2p;] [Fig. 53(b)]. The experimental stripping
data (El58b) then present us with the puzzling phe-
nomenon of two /=1 transitions, to levels 1.74 Mev
apart, each with roughly the intensity relative to the
ground state to be expected of a full single-particle 2p;
transition. We examine three possible interpretations of
this situation.

(1) It has usually been assumed (NuS6, E158b) that
the spin of the 0.57-Mev level of Cr® is 4—, the corre-
sponding /=1 transition involving 2p;. If the transition
to the 2.31-Mev level has been correctly assigned 7=1%
it must surely proceed through 2p; also. The presence
of two approximately equal fragments of [[¢oX2p;]
1.74 Mev apart then demands the existence of a 3~ state
(possibly [ o1 X 2p3 1;-) nearly degenerate with [ ¢oX 23],
and an implausibly large interaction matrix element of
close to 1 Mev. A further objection to the present inter-
pretation is that it implies :

216 (2p)~0.85 T[T 16*(23),

% We later discuss the possibility that the /=1 assignment is
incorrect.
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in serious diagreement with the expected statistical
ratio of two. ,

(2) Another possibility is that the two lowest /=1
levels, at 0 and 0.57 Mev in Cr%, have spin §— while
that at 2.31 Mev has spin 3~. At first sight, this sug-
gestion is rather attractive. It implies

SLI1e2p2.3 LTI (2py),

satisfactorily close to the statistical ratio of two; fur-
thermore, the two fragments of [ X 23] do not appear
to be unreasonably far apart.

The observed (EI58b) /=1 reduced widths of the
ground and 0.57-Mev levels of Cr® then demand the
existence of a §~ state only 180 kev above [¢oX2p;]
and connected to it by a moderately large interaction
matrix element of 270 kev. The only reasonable possi-
bility for such a state is [¢1X2p3]3~. A calculation of
the energy of this state relative to [ o)X 2p3], describing
oo and ¢, by the appropriate states of the neutron con-
figuration frs* and choosing an effective two-body
interaction consistent with certain features of the
spectra and stripping widths of nuclei near 4=40
(Pa57a), places it nearly 2 Mev above [ ¢oX2p;]. The
effective interaction appropriate to this mass region is
not well understood and our detailed prediction corre-
spondingly uncertain.®® Nevertheless, it is very hard to
produce a reasonable interaction which depresses
[@1X2p3]3- even to within 1 Mev of [¢oX2p;]; the
difficulty of reducing the separation to the desired

9% In discussing some projection theorems relating the level
structures of nuclei in the vicinity of 4 =60, Lawson and Uretsky
(La57)identify the0.57-,1.29-,and 2.31-Mev levels as the 3, -, and
4~ members, respectively, of the group [¢1X2p3] 7, J=%, 3, §, 2,
predicting that the missing §~ state should be around 1.8 Mev.
Apart from the difficulty %discussed before) of producing a low-
lying §~ state, these assignments are open to the objections that
they do not account for the =1 reduced widths of the 0.57- and
2.31-Mev levels (they imply a zero reduced width in each case)
and that the 2.31-Mev level, if indeed its parity is negative, must
surely involve 2p3. However, the theorems used by Lawson and
Uretsky, in particular their “center-of-gravity theorem,” are of a
very general nature. If the foregoing detailed assignments are
incorrect, we would expect to find levels of Cr®, as yet undetected,
below 2.5 Mev, to which the theorems in question apply.
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value of 180 kev is sufficiently extreme to constitute a
serious objection to the present interpretation of the
Cr5% reduced widths.

(3) The angular distribution of the 2.31-Mev level
in Cr® is not reproduced very well by Elwyn and
Shull’s (E158b) Butler curve with /=1 and 7,=35.6{;
almost as good a fit is obtained with /=2 and the larger,
but reasonable, radius of 7 f. On the basis of the angular
distribution alone, /=1 is more likely but /=2 cannot
be definitely excluded.

We therefore have a third possible interpretation of
the Cr® results, according to which the ground, 0.57-,
and 2.31-Mev levels are single-particle 2ps, 2p;, and
2ds states, respectively. The observed reduced widths
(E158b) lend support to such an interpretation. The
values of [J]6* for the ground and 0.57-Mev states of
Cr® are in the ratio 1.9, agreeing well with the statistical
ratio of 2; the /=2 reduced width of the 2.31 Mev level
yields®®

0:2(2d) /62 (2p)~1.1,

in good agreement with the values found for this ratio
in the (d,p) experiments on Zn®(VI.16), Zn%(VI.17),
and Zn®(VI1.18), and also in the gross-structure studies
of Schiffer et al. (Sc59). A 2p-doublet splitting of 0.6
Mev is markedly smaller than the values [2p;]
—[2p31~1.5 Mev found in nearby nuclei; on the
other hand, [2ds]—[2p;]~2.3 Mev is close to what is
found in Ti#® (2.7 Mev), V®2 (2.1 Mev), and Mn%®
(2.3 Mev).

We therefore have three alternative interpretations
of the Cr5® reduced widths, of which the third is, perhaps,
the most attractive. The matter should now be settled
experimentally ; probably the best way to do this would
be to determine the spin and parity of the 2.31-Mev level
and the spin of the 0.57-Mev level independently of
the stripping results. A Cr%(d,p)Cr experiment study-
ing levels up to 5 Mev in Cr% would also be useful in
identifying the main 2d; contributions and thereby
either supporting or excluding interpretation (3).

There is no doubt that the 0.97-Mev level is pre-
dominantly [¢oX1f3]. Indeed, this experiment (E158b)
was the first in which a 1fs single-particle state was
definitely identified.

Cr33(d,p)Cr5

It is likely that some of the proton groups observed
in the only available experiment (EI58b) correspond to
unresolved groups of levels in Cr® and that sizeable /=3
components have been swamped by the dominant /=1
contributions (Fig. 54). No absolute cross sections are
available.

The observed /=1 reduced widths do not lend them-
selves to any simple interpretation. We might be

9 The ! value of the 2.31-Mev level being uncertain, this is to
be regarded as test of the consistency of our interpretation rather
than an independent estimate of the ratio of single-particle
reduced widths.
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tempted by themarked break between 1.31 and 2.67 Mev
in the pattern of observed /=1 transitions to suggest
that /=1 levels below 1.5 Mev involve mainly 2p;, those
above 2.5 Mev being predominantly 2p;. The proposed
2p; transitions are, however, too strong relative to 2p;
by a factor of about four to support such an inter-
pretation. Detailed analysis of the low-lying levels of
Cr5 and their reduced widths must await identification
of possible /=3 contributions and, possibly, further
information concerning the spins of the relevant states.

Co®(d,p)Co®

There are two relevant experiments, one (EI58a),
with moderate resolution, reaching levels up to 1 Mev
in Co®, the other (Sc59) being a low-resolution study
of single-particle neutron levels in Co®.

In the latter experiment, the proton energy-spectrum
reveals only one low-lying /=1 peak; above this /=1
peak, 2ds contributions are found to be centered around
2.7 Mev, 3s; near 4 Mev, while 1gy» components are
tentatively identified close to 2ds. No 1fs contributions
are found, a conclusion which is paralleled in the
moderate-resolution work of El58a. However, prelimi-
nary results of a high-resolution Co*(d,p)Co® experi-
ment (En57) indicate that there are many /=1 levels
below 2.5 Mev in Co® with sizeable /=3 admixtures,
and a few pure /=3 levels as well. It is therefore almost
certain that, in the low-resolution work of Sc59, 1f;
contributions are concealed in the single /=1 peak.

The simplest interpretation (Sc59) of the existence
of only one /=1 peak is that, in »Cos%, the 2p; neutron
shell is complete. The single /=1 peak would then cor-
respond to 2p;. Since, however, 2p; and 2p; contribu-
tions are experimentally indistinguishable, it is by no
means clear that this extreme assumption is justified.
Further work is needed to find out how the 2p; and
1fs neutron shells fill in the region 50<4 <70, (p,d)
or (d,f) pickup experiments are particularly useful in
this connection.?”

97 See the discussion of the (d,t) experiments of Zeidman et al.
(Ze60) at the end of this section.
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Zn%(d,p)Zn; Zn**(d,p)Zn®"; Zn® (d,p)Zn®s;
Zn%(d,p)Zn®

(d,p) experiments on Zn%, Zn%, and Zn® have been
performed with 10-Mev deuterons (Sh59), Zn®(d,p)Zn®
with both 10-Mev (Sh59) and 11.9-Mev (Eb54)
deuterons. The 10- and 11.9-Mev Zn%(d,p) results
are in reasonable agreement, although the /=4 transi-
tion to the first excited state of Zn® is markedly stronger
in the 10-Mev experiment. We use the 10-Mev data of
ShS59 % in the following discussion. Although no absolute
cross sections are available, the various Zn(d,p) cross
sections of Sh59 are given in the same relative units.

The presence of /=1 and /=3 transitions to low-
lying levels with J=4~ and %4, respectively, in Zn%
and Zn®% indicates that neither the 2p; nor the 1f;
neutron shell can be regarded as closed in the Zn® and
Zn® ground-state wave functions. We cannot make
quantitative estimates of the structure of these wave
functions on the basis of the stripping widths alone.

Above the 1f; and 2ps contributions in Zn®(d,p)Zn%
and Zn%(d,p)Zn®%, strong transitions are observed with
l=1,1=4, and I=2, similar to the three lowest transi-
tions in Zn®(d,p)Zn®. But the Zn® ground-state wave
function is expected to involve, predominantly, closed
1f5 and 2p4 shells. Thus, the Zn® levels in question can
be plausibly interpreted as single-particle 2p;, 1gop,
and 2ds, the spins (3~ and 9/2%) of the first two states
being otherwise known. We see later that the Zn®(d,p)-
Zn® ground-state reduced widths lends some support
to our hope that (p3%)e, (1ds?)o, and (1g;%)e contributions
to the Zn% ground state are small.

We would like to give a similar single-particle inter-
pretation of the /=1, /=4, and /=2 levels in Zn% and
Zn%. Such an interpretation demands that the reduced
widths of analogous levels in Zn®, Zn%, and Zn®% be
the same, since each §=1. On using the data of Sh59
and expressing the reduced widths in the same units,
we have the values shown in Table XTX. The reduced
widths of corresponding levels are seen to agree moder-
ately well, their ratios very much better. It seems, in
fact, that the proposed single-particle interpretation®
of the levels in question is a reasonable approximation,
probably rather better in Zn® than in Zn® and Zn®’.

From Table XIX, then, we obtain for the ratios of
2p, 1g, and 2d reduced widths:

00°(1g)/8*(2p)~2.1, 06¢*(2d)/65*(2p)~1.1,

from Zn%; (VI.16)

98 Sh59 suggest that the transitions in question may have =3
rather than /=4, arising from excitation of the 1fy/» shell in Zn%
and Zn%. Apart from the difficulty of producing a core-excited
transition of the requisite strength [remember the 1d; transitions
in Si?8(d,p)Si*], we regard /=3 as unlikely because the 0.44-Mev
transitions in Zn%, which certainly has /=4, has a very similar
angular distribution.

9 We have incidentally suggested spins for the relevant levels
of Zn% and Zn®.

677

TaBLE XIX.
Jr ! 62(Zns®) 62(Zn*7) 02(Zn%)
1/2+ 1 0.90 0.85 1.4
9/2+ 4 1.9 1.6 2.5
5/2+ 2 1.0 0.89 1.4
802 (19)/6022(2p)~1.9, 62(2d)/6¢2(2p)~1.0,
from Zn%7; (VI.17)
002(1g)/602(2p)21.8, 00 (2d)/002 (2?)_’\_’10,
from Zn®., (VI.18)

These estimates of 62(1g)/6¢*(2p) constitute the only
information about 6¢?(1g) encountered in this study;
they are rather larger than the values quoted in the
gross-structure study of Sc59(~1.0).

If the closed-shell interpretation of the Zn% ground
state is a reasonable approximation, the Zn®%(d,p)Zn%
ground-state transition should be well represented by
2p590(1 1580 — (29590 (1553, ignoring the zero-coupled
group of protons. The § value of this transition is six
(the number of particles in the 1f; neutron shell). If we
regard the transition Zn®(d,p)Zn® as single-particle
2p3, 50 that §=1, and use the estimate 8¢2(2p)>2260%(1f),
the measured ratio (Sh59)

0,2 [Zn® (d,p)Zn®®]/0 [ Zn%8(d,p)Zn%]=2.4

indicates 8,[Zn%"(d,p)Zn%8~s5.

This is sufficiently close to the predicted value of six
to suggest that core excitation in the Zn®® ground state
is relatively unimportant.

(d,t) Reactions on Nuclei with 51 A< 68

(@,t) reactions on a number of nuclei with mass
numbers between 51 and 68 have been studied by
Zeidman, Yntema, and Raz (Ze60, Ra60) at a deuteron
energy of 21.5 Mev. In many of the (d,f) experiments
individual levels of the residual nucleus were not
resolved; even if they were, far too little is known
about the spectroscopy of nuclei with 4~60 for us to
provide an explicit wave function for each state. Ac-
cordingly, the kind of analysis used in connection with
0'3(d,1)0" or Mg?®(d,t)Mg? is no longer possible. In-
stead, we use the sum rules of Appendix 2, where the
summations extend over all observed transitions of
given / and the information obtained primarily concerns
the target ground state.

We could proceed directly and simply by substitution
in (IT1.120") or (II1.140") of Appendix 2. Instead, it is
instructive to derive the desired sum rule explicitly in
one particular case, that of Zn%(d,f)Zn%. We assume
charge independence, so that the Zn® ground state has
T=2, Mr=2. Since the isotopic spins of the final states
in Zn% are not known, we need sum rules for the quan-
tity (C)%?, where (C)? is the isotopic-spin coupling
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factor in (I1.30) or (I1.37). It is reasonable to write

¥ (Zn®) =a(f3®)20+B{ (f5*)10(p5*) 10} 20
F1{(f)20(£3*) 00} 20+8{ (f5*) 00 ($5*) 20} 20
+e{ (f5)10(1%)10}20  (VI.19)

for the ground-state wave function of Zn%, with 7'J = 20.
Other components which might be required could be
included in the following discussion without difficulty.

Let us now list the components in the Zn® wave
functions which can be reached by pickup from (VI.19).
We consider /=3 transitions first and use (II1.64) or
(II1.67) to evaluate the necessary overlap integrals
(reduced-width amplitudes) :

To=%: x1=(fi")ss 91=(7/10)k
xe={(fiD13(psH10} 9= (5/12)}8
xs={(f)1s(psM1}  9s=(1/30)}8
= {(Dudn 5=/l O
xs={(fP)15(P)20}  Is=(1/5)%
x6={(/D13(p19)10}  Je=(1/4)%e

To=3%: xi'=(f{")ss = (3/10)%

x2'={(f")1(pH} 95'=(3/10)}8 (VI.20")

={(/PD1(p)} 9y'=(3/10)%

Consider the To=% states first. Actual states ¢; of

Zn® with Jo=4%" and Ty=% are linear combinations of

X1, X2, * **, X6 and of other §— states x7- - -x, which are

not reached by fy pickup from (VI.19). Specifically, we
have

=2 CiiXk, (VL.21)

k=l

where s is the number of states in Zn® which contain
significant components of x1- - -xs and 9,=0 for £>3.
As described at the end of Sec. ITL.7, the spectroscopic
factor §; of ¢; is

Sj(fs)=8{k}:; Cindi}?

=8{> ci?92+2 3 CinCin9x91}. (VI1.22)
k k<l

We now sum (VI.22) over all states of Zn® with
ToJo=% 4~ and observable f; pickup reduced widths;
in other words we sum over 7:

2z 3j(f§)=8{2k:(2_ Cjk2)£’k2+2k2<l (2 cincin) 994
(VI1.23)

Since the matrix [¢;x] transforms one (real) ortho-
normal set of functions into another, it must be orthog-

onal. Thus
Z Cjk6j1=5(k,l). (V124)
i
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Substituting (VI.24) in (VI.23), we see that the cross
terms vanish and the sum rule

2 8i(f=82% 9¢ (VIL.25)
7 k

is obtained. The foregoing argument refers explicitly
to states of Zn® with Ty=%. It is, however, obvious that
(VI.25) and the arguments which led to it are equally

applicable to the states with Ty=3.
The amplitudes (VI.20) and (VI.20’) then lead to

zs(nr)

7
-8(—a2+-—ﬁ2+—')’2+ —524— 52), (VI.26)
10 20

5 3 3 3
8(f;:T0=—) =8 ——a2+—-ﬂ2+——52). (VI1.2¢6%)
2 10 10 10
It remains to combine (VI.26) and (VI.26¢’) into a sum
rule for (C?)8(fs). The relevant isotopic-spin coupling
factor {C[To3T : M 1o, M 7— M 7,]}? has the value 1 for
each To=% state, # for To=$%. Thus, multiplying
(V1.26) by 1, (VI.26¢') by %, and adding, we obtain the
final sum rule :

2 (O)*8(f3) = 602+-48°+4y>4-28242¢%.  (V1.27)
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We verify immediately that (VI.27) is precisely what
is obtained by applying the general sum rule (II1.140’)
of Appendix 2 to each separate component of (VI.19)
and adding the results. We have thus verified the asser-
tion at the end of Appendix 2 that the contributions to
the sum rule from different components of the target
wave function do not interfere. The argument is clearly
quite general. For 2p; pickup, we obtain in similar
fashion

3 (C)8(2py) =282+ 2y 48 +4e.  (VI.2T')

2p3

Finally, summing over all states of Zn® which are
reached from Zn% by pickup of either an f; or a 2p;

neutron, we have
> (C)s$=6, (VI.28)
T3 204

the number of neutrons outside closed shells.

It is easy to see that, in the general case of pickup on
a nucleus with isotopic spin 7'(=M7) and # nucleons
outside closed shells, we have

2. (C)8= —Z+M 7, (VI.29)

where the summation extends over all transitions in-
volving nucleons outside closed shells.
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Raz et al. (Ra60) have used sum rules similar to those
under consideration to interpret the results of (d,f) ex-
periments on nuclei with mass number A~60. These
authors adopt what we describe, in Appendix 1, as an
“n-p formalism.” Components in ground-state wave
functions are formed by placing neutrons and protons
separately in low-energy states. Although, as we have
emphasized repeatedly, this procedure is not charge-
independent, the sum rules obtained by Raz el al.
(for 3 8) do not differ greatly from what is found [for
> (C)*8] with the aid of (I11.140") of Appendix 2. This
reflects the fact that the 7' admixtures in the lowest
states of the #-p formalism are usually small. It is clear
that the sum rule (VI.29), the right-hand side of which
depends only on 7 (the number of nucleons) and My
(the neutron excess), also emerges in the #-p formalism.

We encounter two main difficulties in applying our
sum rules to the results of (d,f) experiments (Ze60) in
the region from V to Zn. Firstly, /=23 levels are some-
times unresolved from nearby /=1 levels, making it
difficult to measure the /=3 reduced width. In such
cases we accept the upper limit given in Ze60 as a rough
estimate of the /=3 reduced width. Secondly, f;» con-
tributions to pickup are experimentally indistinguish-
able from fs. We assume that f;/, transitions to levels
below 4 Mev in nuclei between Cr® and Zn® are un-
important. Too little is known about the systematics of
single-hole states for us to be certain that this is a good
approximation.

Let us, then, apply the ‘“total” sum rule (VI.29). To
do so, we need to know the values of three phenomeno-
logical parameters, the (d,f) normalization factor A, and
the single-particle reduced widths ¢2(1f) and 822(2p).
We take

07 (2p)/6°(1/)=2,

(see Figs. 58 and 59) and use measured values of
(C)A8 (Ze60) to “evaluate” AGP(1f). The results are
shown in Table XX.

Results are reasonably consistent; the tendency of
A8¢*(1f) to decrease with mass number probably reflects
the presence of sizeable 1f5 and 2p; contributions above
the highest excitations reached in the relevant experi-
ments (Ze60). The small value of Af2(1f) found in
Zn%(d,t)Zn®% is, however, quite disturbing since all
sizeable /=1 and /=3 contributions up to about 5 Mev
in Zn® have been identified. Elsewhere in this study we
have found A~190 (I1.38) and 62(1f)~0.012 (Fig. 58),
yielding A0?(1f)~2.3, in satisfactory agreement with
the values in Table XX. :

The separate fs and 2p; sum rules give only two rela-
tions between the amplitudes in the target grourd-state
wave function and therefore do not, in general, deter-
mine these (squared) amplitudes completely. Some-
times it is possible to obtain a solution with the aid of
other experimental data, as in the case of Feb? discussed
in Ra60.

The main qualitative conclusions to be drawn from
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TaBLE XX.

Target

nucleus Mnb% Fe5 Fed” Co%® Zn® Cu® Znb Zn® Zn%8

A62(1f) 30 27 20 24 19 18 15 08 12

the experiments of Zeidman et al. (Ze60) are the
following :

(1) The absence of /=1 transitions in V5 (d,#)V® and
Cr%(d,t)Cr% provide further indications that 2p; ad-
mixtures in the configurations 1f;,5" are small.

(2) The f; and 2p; orbits mix very strongly. There
is some evidence that the f; orbit contributes more to
even-even nuclei that to even-odd nuclei (Sc59, Ra60).

Many more pickup experiments in this mass region
are needed, not only in order to examine the wave func-
tions of the target ground states but also, and probably
more important, to study the properties of single-hole
states in the residual nuclei.

VII. REVIEW OF THE INFORMATION OBTAINED
FROM THE ANALYSIS OF EMPIRICAL
REDUCED WIDTHS

It is clear from the wide variety of useful applications
in Secs. IV to VI that the Born-approximation analysis
of stripping widths is very useful in the study of
nuclear spectroscopy. The central assumption of our
procedure is that the shortcomings of the simple Born-
approximation theory of stripping can be absorbed in
an empirical single-particle reduced width 6¢?, which
varies smoothly as a function of the relevant param-
eters. The most convincing justification of this assump-
tion is the body of consistent information deduced with
its aid about the properties of nuclear levels. In Sec.
VII.1, we give a brief résumé of the different kinds of
information which can be obtained from an.analysis of
stripping widths.

The properties of 6 provide another, more direct,
test of our basic assumption. If this assumption is
justified, we should now have a fairly detailed picture
of the magnitude of 6 and of its dependence on its
parameters. In Sec. VIL.2 we collect the information
about 6¢* obtained in Secs. IV to VI. It is seen that the
behavior of the empirical single-particle reduced width
is sufficiently consistent to confirm the reliability of our
procedure.

Finally, in Sec. VIL.3, we discuss some experiments
and types of experiment which are of particular interest
for future study.

1. Information about the Properties
of Nuclear States

In this subsection, we review the different ways in
which a stripping width can tell us something about
the structure of nuclei. Many of the procedures to be
described have been used extensively in Secs. IV-VI.
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(a) Spin Determinations

The best-known application of the stripping reaction
in nuclear spectroscopy is in determining spins and
parities. Such applications vary in sophistication from
cases which involve only simple kinematical consider-
ations to those where we use relatively detailed infor-
mation about the structure of the nuclear states
involved and about the systematics of stripping reac-
tions.

Purely on the basis of kinematics, measured 7 values
fix parities and restrict spins to one of a few possible
values. Assuming that (as is nearly always the case)
the spin and parity JoIlo of the target ground state are
known, the parity II of the final state is fixed as
II=1I,(— )’ while its spin J must lie between Jo+I4%
and the smaller of [Jo—/#%|. In the special case
Jo=1=0, J is determined uniquely, having the value .

At the next level of sophistication, suppose that in a
(@,p) [or (dmn)] reaction involving the addition of a
nucleon inequivalent to those in the target ground
state, a large value of [ /)6 is found. Since in such a
case it is known from (II1.73’) that 8§< 1, a knowledge
of the appropriate single-particle reduced width 6¢(?)
may impose a lower limit on J and, in some cases,
determine it completely. A good example of this kind
is provided by the work of Warburton and McGruer
(WaS57) on N5(d,p)N*6, They find an /=0 transition to
a level at 0.393 Mev in N6, with [J]6*=0.54. Since
8<1 and 6¢2(2s) in this mass region is known to lie
between 0.1 and 0.2, it is clear that J2>1. However,
since the target spin is 3, the only possible spins are
0 and 1, so that the level in question must have J=1.

The spin determinations considered so far make no
assumptions about the structure of nuclei beyond
what is involved in deciding that the transferred
nucleon in certain situations is inequivalent to those
in the target ground state. In order to make more
specific use of our knowledge of nuclear structure, we
usually proceed to introduce some nuclear model. Now
each model, in its simplest form, makes general state-
ments concerning reduced widths, of the form of
selection rules, predicting that certain reduced widths
should be large, others small. These selection rules are
frequently useful in fixing spins. For example, in the
region 20X A4<28, 1d; transitions to low-lying levels
(below about 3 Mev) are j-forbidden or, in other words,
are predicted to have zero reduced widths by the
extreme jj-coupling shell model. The fact, therefore,
that the Ne?(d,p)Ne? ground-state transition shows no
stripping, while Ne?(d,p)Ne? (ground state) has /=2,
implies spins of §* and £+ for the ground states of Ne
and Ne?®, respectively. Other models, for example, the
rotational model, can be used in similar fashion.

Selection rules are far from exploiting fully the pos-
sibilities of a nuclear model in analyzing reduced
widths. We need not be satisfied with statements as to
whether certain reduced widths are large or small, but
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may demand, instead, quantitative expressions for
them. Initial and final nuclear states are then described
by the appropriate model wave functions and the
reduced widths calculated by the techniques described
in Sec. III; finally, the calculated reduced widths are
compared with experiment. This procedure, exemplified
many times in Secs. IV to VI, often leads to the assign-
ment of spins, For instance, the spins of several positive-
parity levels in N*® were assigned by comparing their
observed stripping widths in N*(d,p)N5 (Sh55, Gr56,
Wa57) with the predictions of Halbert’s (Ha57)
detailed shell-model calculation.

Arguments based on the weak-coupling formalism of
Sec. III.11, where we are dealing with single-particle
states and the manner in which they are “spread out”
over adjacent bands of excitation, give rise to another
important class of spin determinations. If the target
nucleus has Jy=0, spins of levels in the residual nucleus
can sometimes be assigned on the expectation that
sizeable fragments of each basic single-particle state
should be found quite close together, probably within
1 or 2 Mev. In other words, there is a tendency in odd-4
nuclei for levels of the same spin and parity which do
not belong to the ground-state configurations and which
are excited by stripping from adjacent even-even
nuclei, to appear in clusters. This tendency is confined
to levels which show stripping and does not apply to
levels of the same spin and parity in general. Spins are
suggested on this basis for /=1 levels in Ca%, Ca®, and
Ca% in Sec. VI. When the target spin is nonzero, there
are several single-particle states of each kind, with
different spins, in the residual nucleus. If these basic
single-particle components have suffered sufficiently
slight loss by fragmentation, each such state has $~1
and the corresponding values of [J]§? are proportional
to (27-+1). Considerations of this kind, first emphasized
by Enge (En53), yield the spins of the four lowest levels
in K% which are well described by [dy1f;.J=2, 3,
4, 5-, and also of four /=1 levels around 2 Mev in the
same nucleus arising from [dy2p;1/=0, 1, 2, 3—.

(b) Determination of Amplitudes and
Interaction Matrix Elements

The reduced width of an unfavored transition often
measures an admixed amplitude in a wave function
whose major component has some simple coupling
scheme. Furthermore, the determination of such
admixed amplitudes, in addition to being useful in
itself, can yield a measure of the size of interaction
matrix elements. A good illustration is encountered in
Example 3 of Sec. II1.9. Here we consider possible /=1
admixtures in the /=3 transition in K¥(d,p)K® to a
3~ level at 0.028 Mev in K%. The dominant configura-
tion of this level is [di'1fy2]s-; an /=1 admixture
could be produced by an interaction with the 2p; state
[ds2p3 15, whose main component is at 2.042 Mev in
K%, A measurement of the /=1 reduced width of the
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0.028-Mev level would determine the admixed 2p;
amplitude and hence the interaction matrix element
([ds 1 f1j9)s-| H|[d52p3]s-). Any interaction matrix
element is a significant quantity and can tell us some-
thing about the effective two-body interaction in nuclei.
In the actual case under consideration, only an upper
limit on the observed /=1 admixture is available
(En59).

(¢) Nuclear Models

Reduced widths measured in stripping and pickup
reactions provide important tests of the wave functions
of nuclear models. The main emphasis here is on giving
a reasonable interpretation of enhanced and inhibited
transitions and on correctly predicting the number of
strong transitions of given /. Many such examples are
found in Secs. IV to VI. In favorable cases, we hope to
give a quantitative estimate of each observed reduced
width with the help of the model wave functions.

In Sec. IV, low-lying /=1 transitions in the 1p shell
have been analyzed in terms of the intermediate-
coupling shell model. Satisfactory agreement with ex-
periment can generally be obtained with values of the
interaction parameters similar to those found neces-
sary in studies of other properties of 1p-shell nuclei
(In53, Ku56).

At the beginning of the ds shell, up to 4 =19, similar
intermediate-coupling calculations have been carried
out. Reduced-width data is too scanty to provide, as
yet, a searching test of such predictions. The rotational
model has also been used for 4=19, but it is quite
possible that the two models agree better with each
other than they do with the experimental data. Later
in the ds shell, from 4 =20 to 4 =33, the data bear a
qualitative resemblance to the jj-coupling predictions.
Closer inspection reveals that, in detail, the jj ap-
proximation is very crude in the region in question. In
particular, /=0 and /=2 reduced widths in the vicinity
of A=28 and A4=32 reveal that the ‘“closed-shell”
nuclei Si?® and S* involve large amounts of core-excited
configurations. However, the Nilsson form of rotational
model (Ni55) gives a satisfactory description of
stripping data in the region 20< 4 <33, but only if
correct account is taken of the mixing of rotational
bands arising from the 1ds, 253, and 1d; orbits of the
spherical shell model. These applications of the rota-
tional model enable us to understand both the quali-
tative success and the quantitative failure of the
jj-coupling shell model. For, although the low levels
of ds-shell nuclei belong predominantly to the same
(ds) shell, the success of the rotational model indicates
that the d and s subshells are intimately mixed. Very
little is known about late ds-shell model nuclei, with
33<A<38.

In Sec. VI we have discussed ‘““intermediate” nuclei,
with 38< 4 <70; much more data is needed before any
clear picture can emerge. Qualitatively, however, the
jj-coupling shell model within the configuration 172"
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has some success in interpreting the properties of low-
lying levels in 1f7, nuclei (4<52). The results of
stripping and pickup reactions on nuclei in the mass
region 52<A4 <68 indicate that the 1f; and 2p; orbits
are very strongly mixed. .

Since most of the available data refer to light and
intermediate nuclei, with 4 <70, the only detailed
models used in our study are the rotational model and
various species of shell model. However, as further
stripping data become available in the region 70< A4
<150, the vibrational collective model, whose pre-
dictions are considered in Sec. II1.13, may become
importarnt.

(@) Single-Particle Levels'™ and
Stripping Reactions

The stripping experiment [4]— [4+1] is a natural
means of studying single-particle levels in the nucleus
[4+1], their fragmentation, their relative positions and
separations, and how such properties vary from nucleus
to nucleus. Detailed information of this kind should
yield valuable insight into the effective two-body inter-
action in nuclei. The weak-coupling formalism described
in Sec. III.11 provides a very convenient framework
for the discussion of stripping transitions to single-
particle states.

When the single-particle states under consideration
are split by final-state interactions into large numbers
of fragments, it is usually impracticable to discuss the
reduced width of each individual level. Instead, we
consider sums of the reduced widths of many levels,
using the sum rule (III.185). In such studies, it may
not be essential to resolve individual levels of [441],
the desired information being obtainable from low-
resolution measurements of the kind carried out by
Schiffer, Lee, and Zeidman (Sc59). It should be ob-
served, however, that low-resolution studies have
certain important limitations. Whenever the fragments
of two single-particle states with different / values
overlap, there is a danger that the state with higher /
will be obscured. For example, in the work of Schiffer
et al. (Sc59) on fp-shell nuclei, 1f5 components often
escape observation.

(e) Pickup Reactions and Single-Hole States

In contrast to a stripping reaction which reveals the
properties of single-particle states in the residual
nucleus, the pickup reaction [441]— [4] can be used
to focus attention on the ground-state wave function of
the target nucleus [4+17. A pickup reaction can often
measure small amplitudes in a ground-state wave
function which could not readily be detected by any
other means. Striking illustrations of this technique are

100 The term ‘‘single-particle level” has.been defined at the end
of Sec. ITL.9 and in Sec. ITI.11. We are talking here of cases where
the ‘“‘single particle” is inequivalent to all nucleons in the ground
state of [Ai
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found in the analysis of the reaction C*(d,f)C" in Sec.
IV, and of O%(d,/)0O' and Mg?6(d,/)Mg?® in Sec. V.

Just as stripping reactions reveal single-particle
states, pickup reactions seek single-hole states in the
residual nucleus. Little is known about the properties
of such single-hole states, but the subject promises to
be important in the future.

2. Information about the Mechanism of Stripping
Reactions: Single-Particle Reduced Widths

The quantity of spectroscopic interest in a reduced
width

62 = 80,2 (VIL1)

is the spectroscopic factor 8. In this study we have used
the Born approximation to extract values of §2 from the
measured differential cross sections of stripping and
pickup reactions, treating the single-particle reduced
width 6¢® as an empirical parameter. If this procedure
is reliable, we should find that 6 is a smoothly varying
function of its parameters, namely, #, I, 7, 7o, Q, an done
of the projectile energies (Eo or E).

It would be very surprising if 6 were found to
depend significantly on j for fixed #» and /, and, indeed,
there is convincing evidence that it does not. Further-
more, we have already pointed out that our reduced
widths depend strongly on 7o only when the Butler
theory finds difficulty in providing a stable fit to the
observed differential cross section. On the other hand,
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0¢* is certainly different for different values of # and /.
We therefore consider a separate reduced width 6¢%(,l)
for each pair of values (#,/), and study the dependence
of these quantities on the energy parameters.

(@) Dependence of 8¢ on the Projectile Energies

Absolute cross sections for the reactions Be®(d,p)Be',
C2(d,p)C", 0'%(d,)0", Mg*(d,p)Mg*, and Mg*(d,n)-
Al?® have been measured at several different bombarding
energies. From Table I, we find in each case that the
observed reduced widths, and therefore 6¢%(1p), 60*(2s),
and 6,2(1d), increase by factors of two to three as the
deuteron energy increases from, roughly, 3 to 7 Mev.
All available evidence, including the cases just cited,
indicates that the single-particle reduced widths do not
change much as the deuteron energy is further increased
to 15 Mev and perhaps to even higher energies.

Accordingly, let us consider only “moderate-energy”’
single-particle reduced widths obtained from reactions
wherein neither projectile energy lies outside the ap-
proximate range of 6 to 20 Mev. We understand this
restriction to apply when we speak of reduced widths
without further qualification. Our task is therefore to
study the dependence of each single-particle reduced
width 6¢*(n,l) on the remaining energy parameter Q.

(6) Dependence of 6 on Q
Instead of the Q value of the reaction
[41+[e]— [4+1]+[e—1],

we introduce the binding energy B of the transferred
nucleon in the nucleus [441]. According to (II.8),
we have

(VIL2)

B=04¢€,—€q1. (VIL3)
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Let us now use the values of 6%(n,) obtained in
Secs. IV to VI to plot each single-particle reduced
width as a function of B. The results for 6@2(1p), 6:2(2s),
0:2(1d), 62(1f), and 6¢*(2p) are shown in Figs. 55 to 59.
In view of the uncertainties involved in extracting these
single-particle reduced widths—experimental error,
inaccuracy of model wave functions, and the short-
comings associated with the Born approximation—
their over-all consistency is remarkable and confirms
the reliability of our semiempirical procedure for
analyzing stripping data.

The salient qualitative features of Figs. 55 to 59
arelol: :

(1) With the exception of 85*(1f), each of the single-
particle reduced widths under consideration decreases
monotonically with increasing B for B>2 Mev.

(2) 62(1f) does not change significantly between
B=0 and B=8 Mev.

For binding energies in the ranges covered by Figs.
55 to 59, the foregoing five single-particle reduced
widths fluctuate by less than 209, about their central
values. [6¢*(2s) for B<2 Mev should be excluded from
this statement since /=0 reduced widths of levels close
to the nucleon separation energy (B=0) are often
pathologically sensitive to 7o]. Consistency to within
4209, is very satisfactory.

It is now shown that an interpretation can be given
of the salient characteristics of 6¢* in terms of a simple
potential-well model of the process of nucleon capture.

Let us therefore suppose that, in the reaction (VIIL.2),
the transferred nucleon is captured by a spherically
symmetric potential well representing the nucleus [4].
The reduced width for this process is, by definition, a

0.0 7
I .
. . .
Boun : : :
Fic. 58. 62(1f) as 0010~ D
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1t The symbol “4” in Fig. 59 refers to cases [for example,
(V.12)] where only a lower limit is available for the relevant
single-particle reduced width.
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single-particle reduced width. It is given (II.14) by
06 (n,0) =37¢*Rui2(r0), (VIL4)

where Rni(ro) is the radial wave function, evaluated at
the nuclear surface, of the captured nucleon in the
potential well representing [4]. The quantity (VIL.4)
can be evaluated numerically for a suitably chosen
potential well. It is found to be a function of the single
parameter y, which is related to the binding energy of
the captured nucleon in the capturing potential®? by

y=ro[2uB]} (VILS5)

where 4 is the reduced mass of the nucleon.

05*(n,l) has been evaluated by Lubitz'® (Lu57) and
by Lane (La54a), for various values of # and /, using
normalized square-well eigenfunctions. Lubitz’s results
are shown in Fig. 60 (taken from Fig. 2 of Lu57). To
facilitate comparison with Figs. 55 to 59, we have chosen
the representative parameter values u=0.95 and 7o=35 f,
and give values of B corresponding to a few values of y.

It is obvious that several of the characteristics of the
empirical single-particle reduced widths are reproduced
by the potential-well model. Such features include:

(la) Each single-particle reduced width decreases
monotonically with increasing y for y>2.5.

(2a) 6¢*(1f) varies by only 109, between y=0 and
y=3.

102 The well depth is determined by %, I, B, and 7, and can be
evaluated very simply for specific parameter values with the aid
of Fig. 3 of Lu57. :

108 We are indebted to Dr. Lubitz for correspondence on this
topic.
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A comparison of predictions (1a) and (2a) of the
potential-well model with characteristics (1) and (2) of
the empirical single-particle widths reveals qualitative
similarity. There are equally obvious quantitative dis-
parities. For example, the maxima predicted by the
square-well model occur at larger binding energies than
do the empirical maxima. Furthermore, the well-known
tendency of the Born-approximation theory ‘to over-
estimate cross sections manifests itself in the fact that
the square-well reduced widths are an order of magni-
tude larger than the empirical values. Again, the rela-
tive values of the different single-particle reduced
widths predicted by the potential-well model bear little
resemblance to what is found empirically.

In view of the uncertainties involved in extracting
empirical reduced widths and since a square well does
not provide the best possible equivalent potential well
for the nucleus [47], we do not expect to find quan-
titative agreement between the potential-well model and
empirical values of 6,2 However, the success of the
potential-well model in reproducing the qualitative fea-
tures of the empirical single-particle reduced widths
provides further confirmation of the validity of our
procedure.

The single-particle reduced widths 6¢?(2d) and 6¢*(1g)
also appear in a few instances in Secs. V and VI. Much
less is known about them than about the five single-
particle reduced widths discussed afore. Available data
indicate rather consistently that

052 (2d)~0,2(2p) (VIL6)

and

002(19)>1.3642(2p). (VILT)
Similar findings have been reported by Schiffer, Lee,
and Zeidman (Sc59).

Nothing is known about single-particle reduced
widths for bombarding energies above 18 Mev and
essentially nothing for capture into unbound levels of
[4+1] (B<0). Both these topics merit experimental
study. Further experiments should also be undertaken
to verify that 6> does not vary significantly with pro-
jectile energies in the range 6 to 20 Mev. The direct
evidence on which we have based this conclusion is
rather scanty, but the consistent picture which has
emerged of the dependence of 6% on the binding energy
of the transferred nucleon argues in its favor.

3. Suggested Experiments for Future Study

We conclude our study of stripping widths with a
discussion of some experiments and types of experiment
of particular interest. In some of these experiments the
main objective is to study the properties of a specific
nucleus; others are more concerned with the mechan-
ism of stripping reactions and aim to sharpen our semi-
phenomenological procedure for analyzing stripping
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widths by determining its parameters with greater
precision. Many of the experiments in the ensuing list
have already been discussed elsewhere in our study; in
such cases we are content to give a reference to the
section wherein the relevant discussion may be found.

(1) The successful application of our procedure for
analyzing stripping data depends on an accurate
knowledge of the appropriate single-particle reduced
widths. Any stripping or pickup experiment can con-
tribute to our store of information about ¢ and should
therefore include measurements of absolute cross section.

In addition, several specific aspects of the single-
particle reduced widths merit experimental investi-
gation; some of these aspects have already been
mentioned in Sec. VIL.2.

(a) The same transitions should be studied at
several different bombarding energies in order to study
the dependence of 6?2 on projectile energies. See Sec.
VIL.2.

(b) We know very little about single-particle
reduced widths of unbound levels (B<0). It would be
interesting to examine how such quantities are related
to the corresponding resonant reduced widths and to
Born-approximation reduced widths for bound levels.

(c) The behavior of single-particle reduced widths
close to the nucleon separation energy should be studied
and compared to the behavior predicted in Fig. 60.
See Sec. I1.4.

(d) The relation between (d,p) and (d,z) reduced
widths of analog levels in mirror nuclei is poorly
understood. Since the binding energy of the nucleons
captured into such states often differ significantly, it is
by no means certain that 62(d,p) =6%(d,n).

(e) We see from Figs. 55 to 59 that little is known
about the behavior of 6¢* for B>12 Mev. This could
be studied by pickup reactions on closed-shell nuclei
(or the inverse stripping reactions). The bombarding
energy should be 20 Mev or higher in order to keep the
energy of the outgoing particles well above the Coulomb
barrier.

(2) The (d,t) and (d,He?) normalization factors A ()
and A(He?) must be evaluated more precisely. Avail-
able data (see Sec. IL3) indicate that is probably
possible to extend our analysis to include such more
complex processes, but our knowledge of the nor-
malization factors is inadequate. This is reflected in the
fact, noted at the end of Sec. IV, that the most serious
difficulties encountered in our study involve (d,f) or
(d,He?) reactions. The (d,f) and (d,He?) normalization
factors may be quite different and should be evaluated
separately. See Sec. IL.3.

(3) In Sec. IL.4 we remarked that (d,p) experiments
with 6- to 8-Mev deuterons on nuclei with 4 > 40 (Bo57,
Bo57a, Da60a) have repeatedly found difficulty in dis-
tinguishing /=1 from /=2, /=2 from }=3. Since the
bombarding energies involved are very close to the
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relevant Coulomb barrier heights (6 to 7 Mev), we
suggest that experiments with higher-energy projectiles
might distinguish / values more clearly.

(4) (d,p) experiments should be carried out with
deuterons of 20 Mev or more in order to test the validity
of the Born approximation at higher bombarding
energies. See Sec. I1.4.

(5) In discussing the Mg*(d,p)Mg?® ground-state
transition in Sec. IV, we mentioned the anomalous
forward spike found in the /=2 angular distribution at
a deuteron energy of 14.8 Mev (Ha60). Such a phe-
nomenon could not be due to an /=0 admixture, even
allowing for the possibility of spin-flip. Recent work by
Parkinson (Pa60) with 8-Mev deuterons has revealed
a similar spike in the /=2 transition Mg?(d,p)Mg?®
(1.83 Mev). In this case an /=0 admixture is allowed,
but the forward peak, as was the case in Mg*(d,p)Mg?,
is much more sharply localized in the forward direction
than an /=0 Butler curve. It would be very interesting
to find out whether a distorted-wave calculation predicts
these sharp forward spikes. Such calculations might
also give some indication where to seek other instances
of the anomalous forward peak.

(6) Available data on vibrational (100<4<150)
and rotational (150 <4 <190) nuclei have for the most
part been obtained from the analysis of p-decay
schemes and from Coulomb-excitation studies. Such
information is subject to rather severe restrictions
since only a limited number of levels are energetically
accessible to B decay and since the probability of
Coulomb excitation decreases rapidly with increasing
excitation energy. Stripping and pickup experiments
provide an ideal means of studying vibrational and
rotational nuclei.

In order to carry out this program, the systematics
of stripping reactions for 4>70 must be studied in
detail.

(7) Li" (n,d)He®, because of the puzzling Li’(d,He?®) He®
results. See Sec. IV. Measurements of the (#,d) reduced
widths of the first two states of He® would yield valuable
information about the energy dependence of A(He?).

(8) BU(d,n)C2 or BU(He?,d)C™, especially to the
7.65 Mev 0* state of C'2. See Sec. IV.

(9) C®(He?,d)N™, up to 10 Mev in N*, because of
special interest in the 4 =14 levels. See Sec. IV.

(10) C“(He?d)N'5, up to 10 Mev in N8, in order to

(a) fix the 8y parameter of the 4=14 states (see
Sec. IV and also the end of Sec. IT1.10) and

(b) use the fact that both C** and N* are available
as targets to examine the weak-coupling structure of
the levels of N,

(11) N'5(He?,d)0', up to 10 Mev in O, with par-
ticular attention to the following features:

(a) The ground-state reduced width (8§=4) should
be compared with the surprisingly small value obtained
in O6(d,£) 015,
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(b) Information can be obtained concerning the
0t state at 6.04 Mev in precisely the same way as in
BU(He?,d) C2 (7.65 Mev).

(c) I=0 and /=2 transitions measure p;ls; and
$5~'dy components in negative-parity levels of O'® above
6 Mev.

(d) Shell-model wave functions for the levels
mentioned in (c) have been calculated by Elliott
(E157).

(12) 0'%(p,d)0%; 0%(d,He*)N'5. See Sec. IV.

(13) 0'%(d,p)0Y up to 10 Mev in OY, in order to
study single-particle levels, their positions, and how
they are fragmented by final-state interactions.

(14) 0v(d,H)0* (6.06 Mev), to supplement 11(b).

(15) 08(d,p)0%; O8(He?d)F¥. These experiments
would test available shell-model wave functions (El55a,
Re58) for A=18 and 4=19. Although the first three
levels of F¥, 3t ground state, 3~ at 110 kev, §+ at 198
kev, are only about 100 kev apart, the energy resolution
necessary for complete separation is no better than
200 kev because the 3~ level at 110 kev should show no
stripping.

(16) F¥(d,))F'8; F¥9(d,He?)O8, as in (15).

(17) Al?7(He3,d)Si%8. If « is the 1d5! amplitude in the
Al ground-state wave function, then Y 8§ for all 1d;
transitions to 0% states of Si?® is 122 On using the
rough value o?>~0.6 obtained in Sec. V, we obtain
> 8~7. The observed ground-state reduced width
implies 8~~2, accounting for only a minor portion of the
sum. We therefore expect to find 1dy transitions of con-
siderable strength to higher 0% levels in Si28. (The /=2
transitions in question may be obscured by coherent
2ds admixtures and, since the relevant spins are not
known, by 1d; transitions to levels of Si?® with J#0.)

(18) Si28(d,He®)Al?”, because of interest in the Si28
ground-state wave function. See Sec. V.

(19) Si*8(d,p)Si®, up to 10 Mev in Si®. See Sec. V.

(20) Si®(d,t)Si®8, to supplement (17).

(21) S%(d,n)C13%; S3(d,p)S*. Thesingle-particle levels
with /=3 or [=1 are of interest. There are, for example,
two sets of fr/s single-particle levels (identified by strong
l=3 reactions), namely, J=2, 3, 4, 5 with =0, 1. Both
are observable in the (d,n) [or (He3,d)] reaction, only
one set in the (d,p). There is a strong prediction (Fr60a)
that the average of the I'=0, 1 spectra should be iden-
tical with the low-lying spectrum of CI%, which is well
known. Even if only the T'=1 spectrum were known,
we could combine this with that of CI®8 to get a complete
account of the shell-model interaction for a (d3f7/2) pair.
A similar argument applies to the p; levels; in CI*® the
p3 levels are unknown but could be deduced from those
of K% for which we have a plausible assignment (see
Sec. VI). There are a great many possible examples of
this sort (see Fr60a).

(22) CI¥%(d,p)CI8; Cl35(He?,d)Ar®, particularly to
the CI*¢ ground state and the first excited 2% state of
Ar3S. See end of Sec. V.
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(23) The [J]6? values of the expected /=3 transitions
to the first four levels of CI*%, whose predominant con-
figuration is [(d3®)33X1fre]wr=eny, J=2, 3, 4, 5,
should verify the correctness of the theoretical spin
assignments of Goldstein and Talmi (Go56) and of
Pandya (Pa56) for these levels.

(24) Ar’8(d,p)Ar® should resemble Ca%(d,p)Catt
quite closely. A level at 1.52 Mev in Ar® is known to
have spin +. If a weak /=2 transition is observed to
this level, J=4%* would be strongly favored for the
2.014-Mev level in Ca*. See Sec. VI.

(25) K*(He?d)Ca®. Since the ground-state transi-
tion completes the 1ds shell, we have $~8. The ob-
. served ground-state reduced width would yield infor-
mation about core-excitation in K*, and Ca¥, as in the
similar cases of Al?"(d,%)Si?® and P% (d,#)S* discussed in
Sec. V.

(26) Ground-state reactions involving the calcium
isotopes are of very great interest. One would like to
know the variation of 8 with # (Sec. II1.10, Example 2)
for the entire chain of # values. At present only three
points are available on the $<1 branch; the §>1
branch is of particular interest because this branch
effectively measures the m degeneracy of the single-
particle frs state and thus gives a sensitive indication
of the validity of the spherical shell model in a region
where one has a strong e priori feeling that it should be
good. (Observe that the strong cooperative effect is
found in the shell model; the rotational collective model
gives at most a weak cooperative effect.)

Of course, excited-state reactions in the calcium iso-
topes as well as in the other f;2~ shell nuclei are of
general interest too.

(27) Ca*8(d¢)Ca¥; Ga*®(d,He?)Sc¥. The B~ decay
Ca¥ — Sc¥({—— %) with log ft=8.6, is strongly
inhibited. If this is due to very different ground-state
configurations for Ca* and Sc?’, the ground-state
(d,t) and (d,He?) reduced widths will reflect such dif-
ferences. By simultaneously performing Ca®(d,p)Ca®
to the1fy single-particle level, 8¢2(1f)s could be deter-
mined for use in analyzing the pickup results.

(28) As indicated in Appendix 2, (He3,d) and (d,f)
experiments with heavy nuclei lead to configurations
which contain two T values. Very often we should be
able to determine the 7" value simply by the magnitude
of (C)%*?, where (C)? is the isotopic-spin coupling factor,
For example, if we should observe an excited-configura-
tion reaction with a near single-particle strength in
Cr52(He?,d)Mn®, we could argue that the Mn® state
has T=3%, since (C)*=4%, % for T=3%, §, respectively.

A related point which does not seem to have been
emphasized sufficiently in the literature is that (d,») or
(He?,d) reactions on nuclei with 7>0 (and a positive
neutron excess) should reveal fwo sets of single-particle
states, with T=To==%. Such an effect should be sought
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in gross-structure experiments of the kind carried out
[for (d,p)] by Schiffer et al. (Sc59). Similarly, two sets
of single-hole states are expected in (d,f) reactions,
while (d,He®) or (n,d), like (d,p), should show no T
doubling.

(29) There has recently been considerable interest in
the statistics of the spacing of levels of given II, J, T,
one question being, for example, whether the spectrum
shows the expected “repulsion” between levels (Po60).
Stripping experiments with zero-spin targets to indi-
vidual levels in a giant resonance peak produce a set of
such levels and might then be of some utility in study-
ing the statistical behavior. In fact, combining the
reduced widths with the spacings might facilitate a
more subtle study of the statistical behavior than is
possible via the energies alone.

CONCLUSION

The analysis of stripping data with the aid of the
Born approximation has had a good measure of success.
A large body of information has been obtained about
the structure of nuclei with 4 <70, checking at many
points with findings based on other experimental data.
The empirical single-particle reduced widths behave in
consistent fashion as functions of their parameters.
Available evidence indicates that, in addition to
deuteron-nucleon reactions, more complex processes
such as (d,f), (d,He?), and perhaps (He*a) and (a,f),
which involve transfer of a single nucleon, can be
included in the same general framework. This will
require further experimental work to determine the
empirical constants normalizing the differential cross
sections of these more complex reactions.

APPENDIX 1

Isotopic Spin in the n—p Formalism

It has been suggested several times in the foregoing
that the isotopic-spin formalism may in some cases,
particularly for heavier nuclei, be replaced by a simpler
one in which neutrons and protons are treated sepa-
rately (using what we call the “n—p formalism”).
There are really two questions involved here.

The first question is whether in reactions involving
heavier nuclei the isotopic-spin Clebsch-Gordan factor
which we abbreviate as (C)? should be included in the
equations relating do/dw and 6* [e.g., (IL.29) and
(I1.30) ], one being often tempted to omit this factor
on the vague ground that isotopic spin does not have
much to do with heavier nuclei which have a neutron
excess and whose active neutrons and protons are in
different orbits. We see that in fact (C)? should always
be included in the equation. In a large class of cases,
however, (C)?=1 so that the question then has no con-
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tent; but if (C)?#1, the use, e.g., of Eq. (I11.29) without
the (C)? factor gives a reduced width which has built
into it a fluctuating isotopic-spin dependence which may
disguise its real significance. The (C)? factor should then
be included in the equation for exactly the same reason
as one uses in lighter nuclei. The second question is for
the person who wishes to calculate a relative reduced
width 8 from a model. Should he use the T formalism
or the n—p formalism? The answer here is that only
when (C)? is automatically unity is the »—p formalism
as a general rule more convenient. In this special case
the closed neutron subshells behave in the reaction as
entirely inert objects.

We observe first that no matter which formalism we
choose, the isotopic spin of both states in a reaction is
definite.!™ In order, then, for a wave function to be
described simply in terms of an n—p configuration, it
must be that the states of such a configuration should
have a definite 7', for otherwise we would have to use an
appropriate mixture of z—p configurations. It is easy
to show (see Fr60a) that T is definite in an n—$ con-
figuration and has the value |T,| =%(V—Z2) if and only
if every orbit which contains one or more protons is
completely filled for neutrons.’®® Configurations of this
type we may call (n— p)r configurations. The low-lying
states of heavier nuclei belong to (zn— p)r configurations
and, moreover, any (d,p) reaction starting with such a
configuration necessarily leads to another. The (C)?
factor has the form (C[ToTo+%; —To, —3])? which
is automatically unity. The neutron subshell which in
the target nucleus has the same orbit as the active pro-
tons may be regarded as entirely inert and ignored.

For a (d,») or (He*d) experiment things may be
different. If the added proton enters an orbit which is
neutron-filled, we have once again a final (n—p)r con-
figuration, (C)?=1, and things are as before. If the
added proton enters a higher orbit which is neutron-
empty, the resultant configuration is not an (n—p)r
configuration and (C)?#1. The point is that final states
with two different 7" values are available'®® and the two

104 We ignore the admixing of isotopic spins caused by Coulomb
effects since for all the nuclei we consider this should be negligibly
small except in the special circumstance that two states of the
same (J,vrg) but different T come very close together. Observe,
too, that when the reaction involves two (#—p)r configurations
(see the following for the definition) isotopic-spin admixtures
which would arise from a different radial dependence of neutron
and proton have no effect except to make unequal the single-
particle neutron and proton widths.

105 Tf the state has a proton excess the words proton and neutron
should be interchanged here. Note, too, that certain states in-
volving equivalent protons and neutrons, not in filled subshells,
also necessarily have a definite T (for example, a proton and
equivalent neutron). These are of no interest to us here and we
may exclude them without modifying the definition of an (z—p)r
configuration by observing that their T value depends on J.

106 Or counting differently, more than one #—p configuration
contributes, the proton being added in the j orbit, sinking to
another (j—j’) while a neutron makes the inverse transition.
The number of #—p configurations which are excited may be
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(C)? factors simply determine the way in which the total
cross section divides among the states of different T.
It is obvious that [when the (C)? factor is properly
taken account of | we have” §=1 for final states of
either 7. This simple result would have been entirely
disguised if reduced widths were extracted without con-
sidering the (C)? factor and, for example, we would find
a different reduced width for the (d,7) experiment than
for the (d,p) experiment to the corresponding level. The
same argument applies to the case where the added
proton enters an orbit which contains some neutrons
but is not filled except that here we do not have the
simple case §=1. 8§ instead should be determined by a
detailed calculation which is simpler in the 7" formalism,
but in any case the reduced widths should always be
extracted using an equation containing the (C)? factor.
If the T value is not known, the quantity determined
should be stated as (C)%? and it sometimes happens
that the numerical value of this class does, in fact, indi-
cate what the T value must be.

The same remarks apply to the pickup reactions.
Here the (d,He?) experiments starting with a heavier
nucleus always lead to an (z—p)r configuration with
(C)?=1. The (d,t) experiments, on the other hand, lead
to more complicated situations unless the neutron is
removed from a proton-empty orbit. If the orbit is not
proton-empty, then once again states of two different
T values are available, (C)?1, calculations via the T
formalism are usually much simpler, and'the reduced
width should be extracted by means of an equation
containing the (C)? factor.

APPENDIX 2

Further Sum Rules

In many cases, particularly when dealing with (d,f)
and (He?,d) reactions with heavier nuclei, the isotopic
spin of many of the final levels is not known and then
the sum rules given in Sec. II1.10 cannot be immedi-
ately applied. Instead, we need sum rules for the
quantity (C)%?, where (C)? is the isotopic-spin Clebsch-
Gordan coupling factor in (11.30) and (IL1.37). Since in
(II1.127) and (I1I.128) we have given, for the transfer
of an equivalent particle, separate sum rules for each
final T value, and since (II1.140) and (III.141) enable
us to generalize these to the most complex configura-
tions,!® it is not difficult to produce the required sum
rules and we give the results without proof.

larger than two (corresponding to different values of j’), but the
exclusion principle for the neutrons reduces the number of degrees
of freedom to two.

107 We ignore here the possibility that the initial nucleons couple
differently in the final state since we already know how to handle
this complication.

108 Note that in (II1.138) the inert group (p1™) may be replaced
by any group whatever of particles inequivalent to ps, without
changing the results.



688

' n
¥ {CLTAT; Mrom 8 (jrad T — jo—tao o To) =~+2mMr,

20J0T0

2 ACLTowT; Mrom ][I 18(j 0] T — j

zJT

M. H. MACFARLANE AND 7J.

(N—n
o JoTo)=[Jo] I —'—“—5—“—

B. FRENCH

, (I11.120")

+1)

—-ZmMTo], (IT1.121')

Z {C[To%T, MT()m]}2S (]lTl;j”xzj‘sz; JT — ]1T1;j"“1x313T3; ]()To)

JoTo
x3J3T's

n
=—f+-mMr- [
2

T(T+1)+To(To+1)—Ty(T1+1)
T(T+1)

}, (II1.140")

Z {C[To%T, MTom]}z[:]]S (]1T1;j"x2]2Tz; JT— ]]_Tl;j"-lxgjaTg; JoTo)

JT
x2J2T2
N—n+1

=[]0] '—Z*——MMT()'

We have numbered these equations to coincide with
the corresponding sum rules of Sec. ITI.10 for 6* with-
out the (C)? factor. In the last two, the notation
(J1T1; j"x9J2T2; JT) denotes a group JiT: vector
coupled to the j group x»JTs, the resultant angular
momenta being J7T. The transitions are those of
(III38) with a1§]1T1, OZQEJ;)Tg, ﬁzEjsTa, etC., re-
membering, as just mentioned, that the internal struc-
ture of the inert group is of no consequence. The first
two equations are special cases (T'y— 0) of the second
two, while the second and fourth are the hole-particle
complements of the other two. The trivial case =0
causes no difficulty in the last two equations, the
m-dependent term simply vanishing when 7'=0. The
equations could be written more formally in terms of a
Clebsch-Gordan coefficient and (for the last two) a
Racah coefficient. For example, the sum in the first
equation is

n1nt1
n[C[———; MTom]l,
22 2
which sheds an interesting light on the structure of the
equation.

The equations inform us immediately about such
phenomena as the relative magnitudes (apart from the
purely dynamical effects) of a giant resonance peak
reached from a given nucleus by (d,p) and (d,n) reac-
tions, and when more data of this type become available
they will be of considerable value.

We stress once again that the equations given here
and in Sec. ITI.10 enable us to evaluate the desired sum
for any case whatever for which a target wave function
is available. When dealing with a j» group the symbols
in question do not require that the symplectic sym-
metry or seniority should be good; there is, in general,
such a requirement for the sum rules of Egs. (IT11.132),
(I11.136), and (II1.137), but we have not felt it worth-
while to write the equations for these cases.

Finally, if the target wave function is represented as
a linear combination of orthogonal states with ampli-

[TO(T0+1)+T3(T3+1)—T1(T1+1)

To(To+1) ] } (II1.141")

tudes 4, it is clear that in any sum rule there is no
interference between the different components, and the
sums are then a linear combination with amplitudes
| 45|? of the sums for each orthogonal state. The vanish-
ing of these interference terms is shown in a specific
example at the end of Sec. VI.
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