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I. Introduction

ANY hundreds of reduced widths of nuclear

energy levels have been measured during the
last 10 years. The theoretical interpretation of these
widths has been largely statistical in nature, the reason
being that most observed levels cannot possibly be
identified individually. For instance, the widths for
neutron and photon channels that are obtained from
slow-neutron resonance reactions belong mostly to
levels in regions where there are thousands of levels
per Mev of excitation (HuS58).! The widths of these
levels have been interpreted siafistically in terms of
“strength functions,” but it is unreasonable to expect

1 References are given in alphabetical order in Bibliography at
the end of the paper.

that the widths of such levels should be interpreted
individually.

However, not all of the observed widths come into
this category. There are quite a number of widths about
which some individual prediction may be made. These
widths are those of most levels of light nuclei, and of
low-lying levels of heavier nuclei. For a heavier nucleus,
the excitation energy above which individual inter-
pretation becomes impossible depends upon the
proximity of closed shells. For nuclei not near closed
shells this energy is ~2 Mev; for Pb*®, however,
unbound levels at ~5-Mev excitation may be identified.

Experimentally, one obtains widths of unbound
levels by measuring excitation curves of resonance reac-
tions. Widths for bound levels are obtained from
measurement of yields in stripping reactions or, in the
case of photon channels, from Coulomb excitation.

The present article is composed of two parts: the
first part deals with the theoretical prediction of widths,
and presents expressions for widths derived from the
shell model (El57a) and the strong coupling version of
the Bohr-Mottelson model (BoS53); the second part
consists of a compilation of the observed widths of
nuclei of mass number <40 together with theoretical
discussion. Apart from a few photon widths, all values
quoted refer to resonance levels, i.e., the values are
obtained from resonance reactions, not stripping reac-

. tions. The reason for this restriction is that values from

stripping reactions are not reliably determined in
general. It appears that the relative values of widths
determined in any given reaction are much more reliable
than absolute values, which are sensitive to details of
the particular stripping theory that is used. Bowcock
(B055), has made an interesting attempt to remove this
sensitivity and to extract reliable values, but his
method has not been extensively applied.

II. Theoretical Prediction of
Reduced Widths

Following Lane and Thomas (La57), the basic nota-
tion used here is as follows:

A: the total number of nucleons

a; and az: any pair of bound fragments into
which the total system may be
separated

Ayand A, the mass numbers of «; and as:
A1+A2=A
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g1 and ga: the internal coordinates of @y and as
I and I,: the spins of a; and a;
41 and 432 the components of 7; and I, in a

fixed direction
YarI1ir and Yaolziz: the wave functions of a; and a2
the vector between the positions of

I=T,:
a1 and oy

T=7q the radial distance between a; and a2

Q.=Q, the angle of r. referred to the fixed
direction

Ce=0y: the interaction radius for «; and as

ds.: the element of the channel surface in
configuration space:
d8.=aldQ.dq1dg,

M.=M, Mo M a3/ May+M oy the reduce 1 mass
of a1 and ay

le: the relative angular momentum of a;
and a2

Me: the component of /,

s: the channel spin of «; and a:
s=L+1:

v: the component of s

J: the total spin J=1,4s

M: the component of J

c: channel={aiassl.J}

Xooum: wave function of the compound state
\ of spin J with component M

et reduced width amplitude for the

channel ¢ of the compound state \;
this is defined as:

Yre™= (h2/2Mca'c)*f ﬂocM*X)\JMdsc; (1)

where ¢.ar is the “channel wave function”

eeu=rs"t X (Iisiriz| sv) (slovm.| TM)
1,52
v,Me

Xpalviy (Q1)1Pa21 212 (92) (3%¥m ) (Qc), (2)

where s, are taken to denote channel spin and its mag-
netic quantum number. Let us define a dimensionless

reduced width amplitude 6x. by

Ore= 'Y)\c(ﬁ2/Mcaaz>_§, (3)
thus,

Ore=(ac/2)} f P XonrudS.. 4

The surface 8. is really a sum over many surfaces, one
for each permutation of all 4 nucleons into groups of
Ay and A. individual nucleons. Let us make use of the
isotopic spin formalism, then all particles are equiv-
alent, and neutrons and protons are not distinguished
separately. The number of surfaces is then (4!/4,!4,}),
irrespective of the numbers of neutrons and protons in
o1 and as. Correspondingly, in the definition of ¢our
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there should be a summation over (4!/A4:!4,!) terms
along with a normalizing factor (4!/A4:!4,!)~%. Since
Xosar is antisymmetric in all particles, it follows that
each individual surface makes the same contribution.
Therefore, if @.ur is now taken to contain definite particles
in the groups ay and as, the dimensionless reduced width
amplitude is

Oro= (ae/2)M( A1/ Ay 1450} f ot XarudSe.  (5)

1. REDUCED WIDTH AMPLITUDES IN TERMS
OF EXPANSION COEFFICIENTS

(a) Particle Channels

Before introducing specific models, it is convenient
to develop expression (5) further. From the form of (5)
it is evident that the 6. are closely related to the ex-
pansion coefficients in the expansion of the compound-
state wave function X s in terms of the channel wave
functions

X)\JM= Z()\J]alagslcf; rc>¢cM. (6)

In this expansion the sum is over s and /, and all states
ai of A, particular nucleons and all states ap of the
other 4, nucleons. The sum also implies integration
over unbound states. We stress again that here (and in
future) we understand that ¢.x contains definite par-
ticular nucleons in the groups e; and as. From (5) it
follows immediately that

Ohe= (A '/Al 'A2 ')*(aa/Z)*()\JIalmsch, ac). (7)

Notice that the normalization of Xysir and the e
implies that the expansion coefficients as defined by (6)
satisfy the relation

)> [T |asasloT ; 7.) | 2dro=1. (8)

ajagsl, 0

Once an expansion of the form (6) has been established
on the basis of some nuclear model, the reduced widths
can be evaluated by using (7). The most natural ex-
pansions of Xy arising from various models are not
quite of the form (6). The differences arise from dif-
ferent modes of vector coupling. In (6), the channel
spin is used merely to classify different spin combina-
tions, and it has no special physical significance. We
now consider two types of expansions in which alter-
native spin quantum members of physical significance
are used instead of channel spin.

Expansion Natural to Spin-Orbit Coupling

Instead of coupling /3 and 7, to give channel spin s,
I, is coupled to /. to give a new quantum number J.
The expansion is now

Xow= 2 gO\J [YenasI1 T 5 7c) '
arael], )
X p(anael1gIM), (9)
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where

<p(a1a2[1c‘,]]M) = rc_l Z (Izl,ﬂ:zmc [ gm)
22,m¢, M, 91
X (Iléﬁ]ﬂn‘ JM)!PaIIliﬂl/azfziz (’l:hYM,;( Zc)) . (10)

We see later that this type of expansion follows most
naturally from the nuclear shell model in j—7 coupling.
By comparing (9) and (10) with (6) and using a little
Racah algebra, one easily derives the relation

N |asaasle] 5 7e)

=§ U(I1I2]lc,8(g)<)\.]|Ol10£2[15]; r(;), (11)

therefore, from (7),
Ore=(AY/4:14:)}(a./2)} % U(I02J:59)

X()\]|a1a211g.7; ac). (12)

Expansion Natural to L—S Coupling

If an L—.S coupling situation holds in the nucleus so
that states N\, a1, and «s can be assigned quantum
numbers SL, SiLi, and SeLe, respectively, the most
natural expansion of Xxszmgnmy is

XasiMsMr= 3 <)\SL1(¥1012£SL;1’¢>

ajanled
X o(awe LSLM sM 1), (13)
where
o(010e &SLM sM 1)
=yt Z (Lzch Lo, l 4337’6)

ML, M 1.M gy M gam N
X (L1 M| LM 1) (S1SeM s:.M 55| SM )
Xy (Ol SiliM siM Ll)ll/ (azS oLoM S;AM L2)

XilVm, ).  (14)

The new quantum number in this case is £, which is
formed by coupling L, and I, together. By using the
relation

Xaou= X (SLM M |TM)X\sLMsMz,
MgMy,

15)

and similar ones for Yairiir and Yaslsis, we can relate
the expansions (13) and (6) to derive

()\] [ Ol10lzslc] ; rc) = Z (SlL1]1,SgL2[2,SLJ,la£S)
£

X()\SLlal(IszSL; re), (16)

where the new symbol represents the quantity

(=)Tr85—8r28 3 (= Y~TU (LsSasI1,I5f)
!

X U(fLoJleys £)U (L1S1£S2,[1S) U(SLJI £,fL), (17)
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which can be written as a 12—4 symbol (El55a). Thus,
in L—S coupling, we have the formula for the reduced
width amplitude

Ore=(A1!/A114:Y)¥(a./2)}
X3 (SiLal1,SoLols,SLT 1o.L5)
£
XASL|c1asLSL; a.)

Ea()\SL;a1S1L1,a252L2,Sl,,J) (say). (18)

Treatment of Arbitrary Coupling

Even when an L—.S coupling situation does not
exist in the nucleus, it is often convenient to work in
terms of an L—S representation; i.e., to expand

Xoru= 2 N |uSLYXur(sLym,

uSL

Yal1iy = Z <a111|BISIL1>¢3111(51L1)1'1,
B18111 -

Varloin= 2 {aols|BaSaLayBaTs(SaLa)is,

B8282L2

(19)

where the wave functions on the right form complete
sets of L—S wave functions. We can now express any
reduced width in terms of the expansion coefficients in
(19) and the reduced width of (18),

Ohe= 2 O\flllSL)(OllIll5151L1)<a2[213252L2>
it
B2S:2L2

XO(uSLB1S1L1,82S2La,sl,T).  (20)

We now consider specializations to various particular
types of channels c.

Nucleon channels. as=nucleon, ;=31 (4!/4:'4,!)
=A4.

Spin-orbit coupling: The expansion (9), although
appropriate to the situation of spin-orbit coupling, is
perfectly general, as is the consequent formula (12) for
reduced width amplitude. On specializing to the case of
nucleon processes, (12) becomes

Ore=A44a,/2D S U35 )N lanaal 1575 a0),  (21)
J

where we write j instead of g asis customary for nucleons
and where (\J|aasl17J;7,) are the expansion coef-
ficients as in Eq. (9). Notice that, on squaring and
summing over channel spins, the vector coupling coef-
ficient disappears:

> o=A(a/2) I |asenl 1T 5 a0) |2 (22)

s=I1+3}

If we can assume that the value of an expansion coef-
ficient at 7.=a. is roughly equal to its average over the
interior 7, < @, from (8) it follows that

2 02~A/2, (23)
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where, as in (8), the sum includes an integration over
unbound residual states ai. :

L—S coupling: Formula (18) for reduced width am-
plitude in L—.S coupling is appreciably simplified when
specialization to nucleon channels is made. By putting
Ly=0in (17) and (18)

(S1L1T 1,308, SLT ldos)

= (=)I=8=8rhs U (L1 S153, [LS) U (SLuJlsL),  (24)
Oro=A}(a,/2)}(—)T1=5-5rrT (L1S153,1,5)
X U(SLiJlesL)(ASL |aiaal SL; a.).  (25)

By summing the square of (24) over S and I, we get
the formula corresponding to (22) in spin-orbit coupling,

L1 +81
S Y 0n2=A4(ay/2)|(\SL|aasloSL; a.)]|.
Ii=|Li—81| °*

(26)

Arguing as before, one can then derive the sum rule (23).
Deuteron channels. as=deuteron, I,=1,

(A41/4:'4,)=A4(4-1)/2.
Spin-orbit coupling: From (12),

o= (4(4—1)/2)}a/2)} 2 U(l:1J1,59)
g=tle,letr

X ()\J [0110(2[1(3]; (lc>. (27)

L—.S coupling: From (18), by putting L,=0, S»=0,

o= (A (4 =1)/2)}a/ 2 (—)Pms=sit
XU (LiS1s1,118) U (SLyJ!,,sL)

XNSL|awdSL; a.). (28)

Just as for nucleon processes, we can derive a sum rule

like (23), but now with 4 replaced by 4(4—1)/2. The

sum includes not only integration over unbound states

of the residual nucleus but also integration over

unbound states of the nucleon-nucleon system.
Alpha channels. ay=alpha, I,=0,

(AYA)4:)=A/(A—4) 14\
Spin-orbit coupling: From (12), with I,=0, g=L.,

Ore= (4 Y/ (A—4) 14D} (ae/2)XN |arelileT 5 ). (29)
L—S coupling: From (18), with Ly=S,=0,
Oho=(41/(4—4)'41)4(a./2)3U (SLyJI,,I,L)
(“‘ )—2 Sl—Il—LO\SL I a]_azlcSL ’ (ZC). (30)

Again a sum rule like (23) can be derived with 4
replaced by [4/(4—4)14!].
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(b) Photon Channels

For such channels, the reduced width amplitudes are
electromagnetic matrix elements. The evaluation of
these does not follow directly from the previous for-
mulas but involves special considerations. We consider
only E£ and M1 multipole radiation as represented by
the operators Hm®£) and Hm Y ; each of these is a
sum (over all particles) of the single-particle operators

I L) = e[ §—ts— (Z/A) Jr* Y@ (Q),  (31)
o) (space) = (e/2me) (3= 1) (Vr¥om®-1,  (32)

han D (spin) = (et/2me)[ (3—13)gp
+ G+ta)gal(Vr¥m®)-s, (33)

where m is the nucleon mass, ;= —% for protons, +%
for neutrons, and g,, g, are the gyromagnetic ratios for
protons and neutrons. In (31), the recoil effect for E£
radiation has been allowed for by the Z/A4€ term; also,
certain small terms have been dropped. We know from
the algebra of Racah (Ra42) that the matrix elements
of any one component Ham'® of an operator of degree
£ is related simply to the matrix elements of any other
component How ) through the relation (in Racah’s
notation)

(TM | H® |\ J' M)
(J' M| TM)(NT ||HE [N
- (27+1)}

where (\J||H®|N'J’) is a “reduced matrix element”
that does not depend on any directional quantum
numbers. Racah uses the phase convention

(N M | H® | NJ' M)

, (34

= (=)' M| Hn® |\ M), (35)
or, equivalently
W [H®NT)=(=)7=' NI |HD|MN).  (36)
From (34), it follows that
WTZ@ V)
= > (JeMwm|IM)
(2741) M'+m=M
XNTM|Hu® N J' M), (37)

and this is the formula we use to evaluate the reduced
matrix elements. The square of (37) is precisely the
quantity B(£) that was introduced by Bohr and
Mottelson (Bo53).

Spin-Orbit Coupling
Consider that a; is a nucleon in expansion (9), and
make such an expansion for each of the states A and N\’.
These expansions enable us to develop expressions for

the matrix elements of space and spin operators as
follows.
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Space operator of degree £. By using formula (37) and expansion (9) with as=nucleon, use of the Racah algebra
gives

(AT || E > (space) |N'J")

=4 X UL 5l U(L] T3]

(2]"‘1)! ailcle’ 17’
(W lesealsg ;7 V0 B0 space) [0S asealnf 775 10V 4
. (38
(2+1)}
Spin operator of degree £. In this case from (37) and (9) we have
(I [|E (spin) [|\'T7) iy :
=4 3 (=)7U(L3jle3iVU(L5 T, 5T")
(2J41)} e1ler’ )
(T szl 13T 5 76) || (spin) [[(N'T” | e T 15T 5 7))
X v . (39)
L—S Coupling
Now we consider states A and N’ expanded (with ae=nucleon) as in Eq. (13).
Space operator of degree £.
(AJ||E ) (space) [[\'T")
= > U(LL/LLLYU(LL'IS, L))
(2741)3 a1lole’SLLY
' y (T | a1l oSL; 70)) Y 1) || 12 (space) || (N T |aaizl/ SL' ; 7,) ¥ (")) (40)
. (40
(21+1)3
Spin operator of degree £.
(\J[|[H® (spin) ||\"T")
=4 Y - (=)SSHI=IU(L3S5S1,3S)U(LS'JL,ST')
(2J+1) a1leL i8S’
y (AT |e12loSL; 7, || (spin) || (N T | caaal /S'L; 7)) - (a)

V2

Partial Reduction of Single-Particle Matrix Elements

The single-particle space matrix element in (38) can be partially evaluated for the three types of multipole
order we are considering (on replacing /., I/’ by /, I’ as is usual for nucleons):

(T | sl 13T 5 7)Y || 5@ (space) [|(NT” |anael1 7T 5 7)Y (17)
(2041)

(=)2e(1L00|VO) [ —m.— (Z/A%)] f T lasasT 15T 5 1 YN T |asan 1T s v 2dr, for ES (42)

(eh/2mc)8 10 [+ RGE—my) f AT |enael 13T 5 )N T sl 15T 5 76)dr.  for M1(space). (43)

The single-particle space matrix element in (40) can be similarly reduced. The only single-particle spin matrix
element we are concerned with is that for M1 (spin) radiation. The element occurring in (39) can be written

(AT |1 3T 5 7e) | B (spin) [|(N' T [aneal 15T 7))
V2

= (eh/ 2me) (DU G—mo)gpr+ (G+moga}

Xf()\]lalazl1jj; 1¢><)\,J’ [ alagllj'.]' ’ Ta>dr¢, (44)

and that occurring in (41) can be similarly expressed. of the whole system (which produces radiation) is
In formulas (42) and (43), there is an implicit assump- approximated by the motion relative to the centroid of
tion that the motion of a nucleon relative to the centroid ~the other nucleons. This is true only to O(1/4), but
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since this error is inherent in the model we use to evalu-
ate the expansion coefficients (the shell model), we need
not be concerned with it.

2. INTERPRETATION OF THE EXPANSION
COEFFICIENTS WITH THE
SHELL MODEL

Having seen how the reduced widths of nuclear
energy levels can be expressed in terms of certain ex-
pansion coefficients, we now discuss the interpretation
of these coefficients on the basis of the shell model. We
do not interrupt the development here to introduce the
concepts and assumptions of the shell model, but refer
to a recent review of this subject (El157a).

At this stage we introduce a separation of the dis-
cussion which is carried through to the end of the
section, namely, nuclear states are discussed according
to whether they are of ‘“normal” or “nonnormal”
parity. The normal parity of a nucleus is the parity of
the ground state and the nonnormal parity is simply
the opposite parity. This division is natural on the shell
model, where the lowest states of normal parity have
the normal configuration, i.e., a number of close shells
and a few “loose” particles in an unfilled orbit. Non-
normal parity states, on the other hand, have a more
complicated structure since they must involve the
excitation of a particle to a higher orbit or the dis-
turbance of the closed shells. In Table I we give the
configurations of the lowest states of normal and non-
normal parity in light nuclei. '

(a) States of Normal Parity

The known states of normal parity in light nuclei that
occur above the lowest disintegration thresholds usually
can be assumed to belong to the normal configuration,
as can the final states that are formed in the breakup
of the free states. Thus our main interest is in processes
of the form

Compound State
{)\{ (closed shells) 4= (1)} }
Channel State

—_){ a1{ (closed shells) 4= (1)1} +-ay

i.e., the compound state N has (4—#) nucleons in
closed shells and # in the / orbit, and the channel state
consists of the residual nucleus oy with the same closed
shell and #»; particles in the 7 orbit and the emitted
nucleus as containing #.(=#—#;) nucleons. Since the
closed shells play no role in this type of process, there
is no need to expand the wave function of all 4 nucleons
as we have done in the previous section but only the
wave function of the »# “loose” particles. It so happens
that expansions of states of the loose particles that are
very similar to what we require are well known in shell-
model theory. These are the “fractional parentage”
expansions. Tables of such expansions have been given
for two types of states: (a) states of Russell-Saunders

L
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coupling with quantum numbers T, S, L, and spatial
symmetry (Ja51); (b) states of spin-orbit coupling with
quantum numbers J, 7', and seniority (Ed52). Thus, if
we believed nuclear states to be either of these two
types, we could read off the expansion coefficients from
the tables and immediately predict their reduced widths.
Even if states are not of these simple types in practice,
we can often expand them in terms of one of the simple
sets as in Eq. (19); the required reduced widths then
follow immediately on use of Eq. (20).

To find expansions of type (19), we simply carry
through a conventional shell-model calculation to find
the expansions of what we believe to be the actual
nuclear states in terms of one of the two kinds of
complete sets mentioned previously, i.e., set up the total
interaction matrices in one of the complete sets and
diagonalize them.

We now discuss in more detail the relations between
fractional parentage expansions and the expansions of
Sec. II.1. Let us suppose that we have chosen a com-
plete set of Russell-Saunders wave functions, and that
we are expanding state A(7T.SL) of (I*) into state
Bl(Tylel) of (l"l) and B2(T'sS2Ls) of (i), where 81 and
B2 contain definite individual nucleons. This expansion
is usually written in the form (JaS1)

Xarsrmrmsur=

ﬁ§ <>\l }ﬁlﬂ2> Z (‘I‘IT2MT1MT21 TMT)

X (L1£ML1m[LML) (S1S2M51M52ISMS)
XY (B1T 151 LaM 7. M .M 1.y)
Xxb(ﬂszS LM TzM sﬁﬂl) (46)

[writing £ for L, in keeping with expansion (13)7],
where the second sum is over magnetic quantum
numbers and (\|}B18) is an abbreviation for the full
coefficient of fractional parentage (c.f.p.)

(M 3B1B2) =((I"N(TSL) |} (1")B1(T1S1Ly),
X (1*2)Bo(T'5S2Ls)).

By comparing expansion (46) with the previous ex-
pansion [Egs. (13) and (14)], we can associate 8; with
ay. B2 cannot be identified with as, however, since the
former consists of #2 nucleons moving in the / orbit and
the latter is a composite particle of #; nucleons moving
relative to a; with angular momentum /,. Thus the
relation between the expansion coefficient of (13) and
the c.f.p. of (46) is complicated by an overlap integral.
The relation can easily be seen to be

<>\TSL ] alangSL ; 1’¢>
= (n !/ﬂﬂﬂz ')4(14 1!A2 ’/A !)%(TngMTlMTzf TMT)
Xﬁ§ O\ l } Blﬁz}éaxﬁleazlo, B2 (70), (47)
2
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TasLE I. Lowest and next-to-lowest configurations of nuclear states in the mass ranges 4<4 <16 and 16 <4 <40. The next-to-lowest
configurations of normal parity lie in energy 2/4w above the lowest, and the lowest configurations of nonnormal parity lie midway
between the two. (%w is the quantum of the harmonic oscillator well.)

Configurations of normal parity

Configurations of nonnormal parity

Mass range Lowest Next-to-lowest Lowest
4<AK16 (1s)*p)» (1)2(1p)m+ (1s(1p)=+
(1)2(1p)"(2s,1d) (19)4(1p)"1(25,10)
(1)4(1p)"2(2s,1d)
(1s)*(1p)»*(2p,1f)
16<A <40 (15)4(1p)12(25,1d) (15)3(1p)12(2s,1d) w+t (15)4(1p)1 (2s,1d) v+

(1) (1p)10(2s,1d)+2

(15)t (1) (2s5,1d)" (1p,1f)

15)4(1p)1(2s,1d)"(1p,1
CRAGAR AT TR

where the first factor merely takes account of the fact
that all 4 nucleons are included in expansion (13), but
only the » loose ones are in expansion (46). The last
factor is the space overlap integral between ns(=A45)
nucleons moving in the 7 orbit about the well center,
and particle e separating from oy with relative orbital
angular momentum /,:

Ouate pa(r) =, f [ (8o 29) (1) T*

[ Z (LleLzml £Em)¢ (a2L2MLg(Q2)
e X Vo1 (2.) 1dgsd . (48)

gs represents the internal coordinates of as, and €, is
the angle of the vector 7, joining e and as.

For j—j4 coupling we can write formulas correspond-
ing to those just given for L—.S coupling. The fractional
parentage expansion of state A(JT') of (57) into states
a1(J1T1), az(J2T2) of (), (§2), respectively, is (Ed52)

Xaromraey

= g’; (A [}8182) 2 (T1T:M 1Mz, | TM 1)

X (1151'131'6 I JMJ)‘/’(ﬁlllTlilMTl)
Y(BogoT=MM ),
where (\|}8182) is written for the full c.f.p.,
AN BB =((NTT |} (57)B1(TI1) (572)B2(T=9)). (50)

By comparing (49) with (9) and (10), and identifying
ﬂl With ay,

<)\TJ[O£1(12[1§J;1'c>

n1!n2! Al

(49)

)g(TszMTIMTq TM )

Xﬂ% (M| }B1B2)dx110aste, p2(r), (51)
where the overlap integral is

et =a. [ VGG PLE (ki gm)

12,M¢

XU (T 2is(g8) Vo1 () 1dgsds.  (52)

Evaluation of the c.f.p. in Special Cases

For nucleon, deuteron, and alpha channels, the ap-
propriate fractional parentage expansions (46) and (49)
are those in which #.=1, 2, and 4, respectively. Those
for ne=1 are tabulated, and so are some for zy=2 (E153).
The rest of those for #;=2 and those for #n,=4 can be
obtained by “‘iterating” those for #.=1.

Evaluation of the Overlap in Special Cases

For nucleon channels (az=nucleon), the overlap of
both formulas (48) and (52) simply reduces to the
single-particle radial wave function of the [ orbit, ¢;(7),
say. By the normalization of X,, the normalization of

¢; must be
Qc
[ 1o 1=,

0

(53)

instead of the usual normalization of shell-model theory
in which the upper limit is infinity. However, the dif-
ferences in the two normalizations is small. In Table IT
expressions are given for some single-particle radial
wave functions of a harmonic oscillator well.

For deuteron channels formula (50) becomes

Oatess(L—S)=adtec f [ (8229 (1) T#

X [Ya (42) Voo (R) dg2d <2,

if we assume the deuteron to be in an S state. Formula
(52) giving the j—j7 coupling overlap becomes

(54

Odtosa(j—7)=as f [ (8299) (1) T*

X[ (Wedm | gM)pa(g2) Vimoto) (Qc) JdgadQe.

By recoupling vectors, it can be seen that this is related
to th! overlap of (54) by

Odle,p2(j— ) = Odto,pe(L—S)[ 25 (— )i+ 1!
XU (3195,5)U G5l U (3390,S1) ],

with S, the intrinsic spin of the deuteron, equal to one.

(55)

(56)
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TaBLE II. Radial oscillator wave functions ¢;(r) for the four lowest orbits, normalized according to (53). The oscillator potential
may be written in terms of the “size parameter” b as V (r) = (m/2) (5/mb%?2. The oscillator quantum #%w is related to & by #icw=42/mb2.
The quantities z, 2, and I are defined by z=7/b, zo=a./b, and I=exp (2,® fv* exp (—2%)dz. The third column is related to the dimension-
less single-particle reduced widths 8,2 by 0,2=3[7¢:(r) Jac. The last column gives the logarithmic derivatives of the radial wave functions.

Orbit Eigenvalue r¢i2(r) f=(r/¢1) (dp1/dr)
1s 3lw/2 223 exp (202 —22) (I —2p) ™1 1—22
1p Shiw/2 425 exp (22— 22) (31— 228 — 320) 1 2—22
1d Thew/2 827 exp (2¢2—22) (151 —42¢5— 1033 — 1520) 1 3—22
2s The/2 42 (28— $2)? exp (262 — 22) (37 — 2305 +203— 320) ! 3—22+4-3/2—%

Overlap (54) can be evaluated by using the con-
venient transformation methods of Talmi (Ta51). As
an example, consider two 1p nucleons coupled up to
give £=2, i.e., orbital angular momenta parallel. The
evaluation of (54) is independent of the value of 91,
but it is convenient to take 9M=-2. By taking the
oscillator wave functions normalized over all space
(which can incur only a small error),

¥ (B LM (%)
=[""‘:i’")y1<n (szﬂ)][d’“;i”’)yw(ﬂp)]

TS
o _:sz]
- (i) rer@-tero @3
2r:2+(q%/2)
Xp[— 2b?

— () (i) (eytiy) exp[ -

o

where we have made the transformation

rn=rc+%q; rp=rc_%q' (58)

The center-of-mass coordinate is r, and q= (¢,Q) is the
internal coordinate of the neutron-proton system, and
b is the oscillator-well size parameter (see caption to
Table II for precise definition).

On using (55), we have the overlap

64a.?
7507

2\
olm,ﬂﬁ[ (—) ] oar? exp(—r2/2),  (59)
™

where we have defined a new overlap (dimensionless)
for the integral over the internal coordinate,

o= [ [%?]modq-

The dimensionless reduced width 62, which is equal to
a./2 times the square of the overlap evaluated at 7,=a,
is, from (59),

32/72\}
02=—(_) 20" exp(—220%) (0a)?, (61)
15\7r '

(60)

where z9=0a,/b,

Evaluation of Overlap at the Nuclear Surface

The nuclear shell model gives only an approximation
to the actual nuclear wave function. This approximation
in most practical applications appears to be a surpris-
ingly good one. However, one has to be careful in each
application to make sure that the model is not taken
so literally that certain inherent errors in the shell
model are magnified to a point where spurious results
can arise. As an example, one can recall the fact that
the normal version of the shell model does not ex-
plicitly separate the center-of-mass motion. In most
applications this limitation of the model can be for-
gotten because the errors incurred are at most O(1/4).
When used for computing E1 matrix elements, however,
the model, when used naively, does not give the well-
known isotopic-spin selection rule and, therefore, can
give large errors. This does not mean that the model
is useless in such applications, but merely that one must
make special allowance for its limitations. This is done
simply by changing the E1 operator into an effective
operator which includes a recoil term as in (31). The
model can then be used to the same degree of accuracy
as in other applications.

A second example of where we have to be careful in
applying the model too literally arises in the present
work when we evaluate the overlaps at the interaction
radii, 7,=a,, for the purpose of estimating reduced
widths.

Let us consider the special case of nucleon processes.
The overlap for such processes is just the single-particle
radial wave function, and the estimation of reduced
widths involves the evaluation of this wave function at
the interaction radius for a nucleon and the residual
nucleus. An evaluation using the oscillator shell model
is subject to two errors, one from the oscillator shape,
one from the nature of the shell model:

(1) the first error arises because the interaction radius
r=a, usually comes well outside the turning point of
the orbit in the oscillator well, and this means (cf. the
third column in Table II) that the value of the single-

particle width
0,°="[r/2¢*(r) J=a,

is very small with the precise value depending hyper-
sensitively on the point of evaluation. As an example,
consider N* as the compound nucleus. A normal parity
state belongs to (1s)*(1p)° and we are interested in the
value of 6,? for a channel with a p wave nucleon. The
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usual formula, ¢,=1.45(41}+4) X107 cm, gives for
the interaction radius in this case the value 4.7710-13
cm. The turning point of the 1p orbit occurs at the
point 72=[5-4(17)¥16%/2. Now, from a study of Coulomb
energies of mirror nuclei (Ca54b), we know that the
value of b for nuclei in the 1p shell is ~1.67X 10~ cm.
By taking this value, the turning point of the 1p orbit
is at 3.60X 10~ cm which is 1.17X 10~ cm inside the
interaction radius. The value of 6,% using the second
column of Table II, is found to be 0.036, which is much
less than the single-particle reduced width (6,2~0.5).

The reason for this anomaly is clearly that the infinite
oscillator well, although providing wave functions that
are suitable for most calculations, nevertheless has
certain deficiencies and occasionally gives spurious
results as in the present case. We now discuss how the
most reasonable nuclear well differs from the infinite
oscillator well. Clearly, the main difference is that the
actual nuclear well has a finite depth. The most con-
sistent depth for a given light nucleus seems to be that
for which the last orbit fills near the top of the well
(to within a few Mev). This choice would represent the
observed fact that the states in single-particle nuclei
(He?, O'7) occur near the dissociation energy for nuclear
emission. If we remove the infinite walls of the oscillator
well, the various orbits fall somewhat in energy because
they are less confined. They also spread out considerably
(except for those orbits still tightly bound) and the
value of 6,2 will rise to ~0.5. It might be thought that
the reasonable well for a given nucleus can be achieved
by simply rounding off the edge of the usual oscillator
well at the orbit that is filling [Fig. 1(a)]. However,
this is not so. For instance, in the 1p shell, rounding off
the oscillator well with 8=1.67X10" cm causes the
bulk of the 1p wave function to move outwards. This
means that particles are further apart and that the
Coulomb mirror energies are underestimated. What we
really want is that the wave functions spread out in
both directions instead of only outwards. This is quali-
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F16. 1(a). Various well shapes and the corresponding radial 1p
wave functions (qualitative only).

tatively achieved with a bell-shaped well [Fig. 1(a)]
that is narrower and deeper than the oscillator well,
and also is finite with a tail on it. This would thus seem
to be the most ‘“‘reasonable” nuclear well. It would give
wave functions that have reasonable values of 8,2 at
the interaction radius, yet, at the same time, it should,
in other respects, behave like the infinite oscillator well.
Unfortunately, it is not possible to perform analytical
calculations with the bell-shaped well and so one cannot
be very precise about the values of 8,2 that it predicts.
Since, however, there are often uncertainties in the
experimental reduced widths of the order of 309, this
is not a serious fault. We try the value ~0.60 for 6,
for all orbits with an understood possible uncertainty
of the order of 309,. This choice is seen in the next
section to be corroborated by the experimental data.
(ii) The second kind of error that arises when the
oscillator shell model is used naively does not arise
from the shape of the well but from the structure of the
shell model itself. This trouble is that the shell-model

F1c. 1(b). Illustrating the [T e
transition from the shell- «—SPECTRUM [
model wave function of a e —— OF TSN
single particle inside the 7/ =~ - / RESIDUAL. /’ N e
nucleus (r <a,) to the actual yad [ NUCLEUS 4
external wave function in z Qe Z de
the external region (r>a,). g hE S T
Figure (i) shows the situ- == t T
ation when the transition 1 . 4 N
region is very sharp, ie., > | = g 1=
when the sharing of energy g fﬁ N
take place in a very small %l S~ _ z S~k
ﬁg:frle %;f)taﬁflfstr?tesr:t‘}zlz ul \—\_INCREASNQ : \\ rm—
more realistic situation of a 8 EXCITATION Qo
finite transition region. In ul or I_‘_I'
this latter case, the wave O RESIDUAL
functions (shown by broken 2 NUCLEUS _9;
lines) are smooth across the *
transition region.

@ (@ii)
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wave function does not obviously satisfy the set of
boundary conditions B,=S. that we normally impose
upon a compound state X in resonance reaction theory
(La57). This is obviously true because, even when the
shape of the well is adjusted in the way we have just
discussed, the usual shell-model wave functions cannot
represent the correct radial wave function owuiside the
point r=a,. The reason is that, in the shell model, it is
assumed that all particles in the same orbit always
have the same energy whereas, actually, when a
nucleon separates from the rest of the system beyond
the point where it has no polarizing interaction, it has
a special energy of its own depending on the energy of
the residual configuration. It is the fact that states of
the residual nucleus are split up in energy that gives
rise to this situation. If there were no splitting, the
energy of a nucleon outside @, would always be the
same so the shell-model wave function would be ac-
curate there. Another way of saying the same thing is
that, when a particle is brought into the nucleus from
outside, the interactions with other nucleons cause it
to change its energy from its special energy outside to
the mean orbit energy inside, if however, there were no
interactions, there could be no sharing of energy and
hence the energy of the nucleon is the same wherever
it is. Notice that it is the fact that the shell model (with
energy splittings) can describe the shaping of energy
brought into the nucleus that enables it to be used to
describe compound-nucleus processes in nuclear reac-
tions in the way we are doing.

For simplicity, let us assume that the energy sharing
takes place in an infinitely small region at the inter-
action radius @, assumed the same for all nucleon
processes. This situation is depicted in Fig. 1(b).
Inside @, all nucleons have the same mean energy and
the same wave function. Outside @, a nucleon has
an energy depending on the energy of the residual
nucleus, and its wave function is the solution at
this energy of the Schrédinger equation with the
normal external barrier. Thus, there are discontinuities
in slopes of the radial wave functions at .. On this
simple picture, since the single-particle wave functions
inside r=a, do not depend on external energy, the
single-particle reduced widths 6,2=21a.¢%*(a,) are the
same for all processes, i.e., there is no dependence on
the energy of the residual nucleus. When this extreme
picture is relaxed and the region of energy sharing is
considered to be finite, the value of 6, depends on the
state of the residual nucleus. The main change is in
the values of 8, for those processes in which the nucleon
energy is very negative outside r=a,. If energy sharing
does not take place precisely at r=a,, the negative
energy persists inside this point, and the exponential
increase of the wave function for decreasing 7 continues.
This means that, for such processes, 6,2 may be much
smaller than when the sharing is immediate at r=a,.
However, this seriously affects only the prediction of
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reduced widths for negative energy processes such as
those relevant to stripping reactions in which the final
state is bound. For other processes, such as those of
resonance reactions, 6,% should not deviate far from the
value it has when the sharing region is very small.

Finally, we make a few remarks about the evaluation
of the overlap of deuteron processes at the interaction
radius. This evaluation is affected even more than that
for nucleon overlaps by the unreal attenuation of the
radial wave functions caused by the infinite sides of the
oscillator well since fwo nucleons are involved. It is
difficult to see how the overlap is altered on changing
to the finite bell-shaped well of Fig. 1(a) because we can
no longer make the simple transformation (58), which
is only correct for oscillator wave functions. However,
it should be qualitatively correct to retain the integral
0q over the internal coordinate of the deuteron in
formula (61) and to put the factor zo” exp (—22¢*) which
contains the spurious attenuation equal to unity; there-
fore, 6>~2(04)%

Photon Channels

Equations (42) to (44) give expressions for matrix
elements to be inserted in (38) and (39) to obtain total
matrix elements for E1 and M1 radiation between
states in spin-orbit coupling. There exist other equa-
tions, identical in form, for the L—S coupling matrix
elements to be inserted in (40) and (41). When a
nuclear shell model is used, all the expansion coef-
ficients have the form [from Eq. (51) with a;=nucleon,
B2=7 nucleon, B1=0ay]

()\]Iala:z[lj]; 1‘,,>
= (/)X Tz M rym.| TMr)(N }B:B2)u(r),  (62)

where ¢;(r) is the single-particle radial wave function
of the 7 orbit. The essential part of expressions (42) to
(44) are the radial integrals. When we insert the shell-
model expressions above for the expansion coefficients,
we have for these integrals

f()\ffalaglljf; YN T eI 17' T r)redy

= (n/A) (Tl%MT),'WI/az‘ TMT) (Tz%Mszag i TMT)

XN [}BB)N' 3818 ) (£ L)), (63)

where

I(L;Ll)= f“c ou(r)pu (r)redr. (64)

In these integrals the upper limit should be the inter-
action radius for nucleons r=a,, and the radial wave
functions should be normalized inside this point.
However, we take the upper limit at infinity and the
normalization over all space. This should incur no
serious error. With oscillator wave functions, we have
the values of I(£;20") shown in Table III. [The
relevant integral for M1 transitions is 7(0;2,)’).]
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TaBLE III. Values of the radial integrals 7(£;/,/’) when oscil-
lator wave functions are used. The integral I(0;/’), which is
appropriate for M1 transitions, equals &:1..

LV 15,1p  2s5,1p 1d,1p 25,2p 1d,2p 1d,1f
I (3 b b3t b(3 *p b b($)}
LU 1p, 1p 25, 1d 14,1d
125 1) F1 (10)%2 E£2
LU 1p, 1d
13510 (245/8)3b?

(b) States of Nonnormal Parity

In principle, it is possible to deal with states of non-
normal parity with just the same program that was
suggested for states of normal parity, i.e., first set up
complete sets of states, then evaluate reduced width
amplitudes for these states, and finally express the
actual states in terms of the complete set by diagonal-
izing interactions. The practical trouble in applying
this program to nonnormal parity states is the great
amount of computational labor involved in the last step
arising from the largeness of the complete set.

To illustrate this remark, let us consider states of
J=3%, T=% in C® with negative (normal) and positive
(nonnormal) parity. In the former case, as can be
seen from Table I, there is one configuration that is
uniquely lowest, (15)*(1p)°. It can be easily checked
from published. lists of states that there are only five
states of J=%, T=% arising from this configuration.
Consequently, the matrices involved in the last stage
of the program are five-by-five, and these are easily
diagonalized without much labor.

From Table I it can be seen that states of positive
parity in C® arise from not one, but three configurations
that have about the same energy (exactly the same on
an oscillator well with no spin-orbit splitting):

(1)*(1p)2s, (15)*(1p)°1d, (1s)*(1p)*. (65)

There is no difficulty about setting up a complete set
of states. Given any complete sets of states of (1p)3
and (1)¥, one can construct the complete set we need
by coupling on the odd nucleon (or hole) to these states
and then antisymmetrizing. This is the ‘“genealogical”
method of constructing states. By using the published
lists of states, it is quickly found that there are 75 states
of J=%, T=% in the complete set, the foregoing three
configurations giving 19, 50, and 6 states, respectively.

The great amount of labor involved in dealing with
this complete set tempts one to make simplifying
approximations, even those with no obvious justifica-
tion. For instance, one can limit the number of states
in the set one uses. In practice we are interested in the
lowest few states of spectra, and it seems clear that for
such states, the most important members of the com-
plete set are those whose “parent” states [of (1p)8 and
(1p)19] are lowest in energy. As yet we have not specified
any particular sets of parent states, but let us now
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choose these sets to be the actual eigenstates of the
parent nuclei. In our example these are the positive
parity states of C'?, N, [These are known to be well
represented by the configurations (1p)8, (1p)¥ taken in
intermediate coupling.] This choice should enable a
more severe limitation of the complete set than any
other.

What we propose to do, in fact, is to set up a very
simplified model for the nonnormal parity states in
which we carry this latter type of approximation to the
extreme, i.e., we try to identify members of the last
mentioned type of complete set with the actual nuclear
states. [A somewhat generalized version of the same
model has been examined independently by G. C.
Phillips (private communication); see Re56(b).] This
model implies two strong assumptions.

(i) Each state has a pure configuration (i.e., in our
example one of the three configurations listed).

(ii) Each state has a unique “parent” state, which is
a proper state of the parent nucleus (i.e., C** or N* in
our example).

Physically, the model implies that the polarizing
power of an odd nucleon or hole in the presence of a
group (core) of equivalent particles is very limited such
that the interactions do not disturb the core, or, for
that matter, the orbit of the odd nucleon. As a refine-
ment, we regard the odd nucleon as being spin-orbit
coupled having a j value besides an ! value. In general,
in the 1p shell, the model implies that states of non-
normal parity are one of four types; for a nucleus of
normal configuration (1s)*(1p)*,

4) [ Tt 25,
(B) [(A9)4(1p) Tt 1dy,
©) [A9* (1P Tt1ds,
(D) L)1) Jer—1s;,

where a; is taken to label the actual eigenstates of the
bracketed “core” configurations.

The simplified model makes immediate predictions
about certain common types of data such as spectra and
nucleon reduced widths. The predicted spectrum of
nonnormal parity states of a 1p-shell nucleus consists
of four families of types (4)(B)(C)(D), the first three
of which reproduce the observed spectrum of (1s)*
(1p)* 1 and the last reproducing that of (1s)4(1p)»*.
The four families can be superposed once the relative
energies of the four single-particle states is given.

The only reduced nucleon widths that are important
in practice are those with the ground state of the
nucleus with one less nucleon as the residual nucleus.
The predictions about the values of these reduced
widths are immediate on the present model:

Type (4): single-particle value for s-wave emission
when the core state @ is the ground state; zero other-
wise.

(66)
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Types (B), (C): single-particle value for d-wave emis-
sion when the core state «; is the ground state; zero
otherwise.

Type (D): always zero.

It follows that one can very quickly discover, on
examining the experimental data, whether the model
can be taken at all seriously. We see in Sec. III.2 that
the model works well, in fact almost disconcertingly so.
We will see evidence in the case of N'® that the polar-
izing power of the interaction between the odd nucleon
and the C core is such that it is only when two core
states occur within an Mev or so of each other that
they begin to mix appreciably. However, it should not
be assumed that the model is always successful. For
instance, in the case of N, the model gives a poor
account of the observed states, which involve large
mixing of core states (Ha57b) of N, It is reasonable
that the model should work better in N8 that N5 since
the spacing of the core states is larger for N® than for
N8,

We do not discuss deuteron and alpha processes from
nonnormal parity states. There is not very much data,
and the labor involved together with inherent uncer-
tainties and the tentativeness of the model do not make
the effort worth it. However, we do discuss radiation
processes, which are all of the electric-dipole type
leading to states of normal parity. For computing the
matrix elements of such processes, we must express
the structure of states on our model more explicitly.
For a core state of (#—1) nucleons and an odd
nucleon 7,

Xarasrpmy={n4 Z(——)i}

XZ(Tl%Mmmg[ TMT)(Iljllml[jMJ)

X (Tl 1M ridy) S0 (Ljmem;) @, (67)
where {#~*3 ;(—) } is the antisymmetrizing operator
and the superscript (—7) means “does not contain
particle 2.”

(c) Collected Formulas for Applications
in Sec. III

In Sec. III we compare theoretical and experimental
reduced widths. This is done quantitively only for
certain nucleon and electromagnetic processes, and we
give here shell-model formulas for the reduced widths
of such processes. All these formulas have been given
explicitly or implicitly in the present subsection, but we
collect them here for convenience.

Nucleon Channels

The reduced width of a normal parity compound
state of configuration (})” for a channel state (Z)»! and
an J-wave nucleon is given in L—S coupling [from (25)
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and (49)] by
0)\0/0,,= (—)S“'S‘““J‘n*(Tr%MT;mt] TMT)

X U(LISLY%,J],S) U(SLl.]l,SL)O\l }011>, (68)
where 8, is the single-particle value,
0,=(a./2)i¢:1(ac). (69)

In j—j coupling, for compound state (5)* and residual
state (7)™ where j=I/4%, we have [from (21) and
(52)]

One/0r =1} (T2 M zyme| TM7)U (J1371,55) (N Y.

The c.f.p. for L—S and j—; coupling can be found in
the literature (Ja51, Ed52) except for the c.f.p. in the
upper halves of shells in j—j coupling. These are simply
related to the “mirror” c.f.p. in the lower halves of
shells by the formula (Ra43)

(A ATT) |} (@)
= (=) /IR (a0 T J ) |} 2 (NTT))
(n+1)(2T+1)(271+1)
[(4j+2—n)(2T+1)(2]+1)] )

(70)

For nucleon channels and nonnormal parity states, the
predicted reduces widths on the simplified model have
been discussed below Eq. (66).

We write the quantity 65,/0, as the symbol Ay, and
we use this as the basis of our comparison of experiment
and theory,

(72)

A)\c=0)\c/01’= (I‘)\c/r P)%-

Photon Channels

We may define a quantity similar to Ay, for electro-
magnetic processes by

(I‘xc) WJE=NT7)

@At

However, there is ambiguity in the evaluation of the
single-particle value depending on whether the particle
is a proton or neutron and upon the coupling of the
orbital motion to the spin.

We conventionally adopt the following choices for the
single-particle values.

Electric multipole. Evaluate for a proton with no
orbit-spin coupling:

(single-particle (73)

value).

(single-particle value)
(l”h(f’)(space)”l’) 28+1
@t (
X (1L00|FO)I(£; L) )e(1—Z/A%).

(74)
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Magnetic dipole. Evaluate for a proton with no
orbital motion:

(single-particle value)
(s]|a™MD (spin)[|s) 3
T (21 —_g”( ) 79)

The theoretical formulas for Ay in L—.S coupling are
then, from (42)-(44), and (53),

M(EL)=b5sn X\ Jar)N' | Jor)U (V' LLy,IL)

XU(LL'JS,LJ)
3@rpi—11)—(Z/A®)3rr:
{ 1—(Z/4%)
Mo(M1) =61 (n/V3gp) (N | Jar)(N' | Jorr)
X {855 U(WWLLILYU(1L'TS, L")
X @rr—r)20+1) T
+orp (=) =8 =I+8U (18" JL,ST")
XU (13551,3S") (V3/2)L(Orr —T1)gs
+ @rr+71)gal},
where the new quantity 7, is defined by
1= (—=)2T=T-T3(1T'0OM | TMr)
‘ XUQLTT1,AT),

, (76)

("

(78)

and is tabulated in Table IV.

These formulas apply to transitions of the type
Ao™ ) — N (Jo»1') with oy labeling the states of [y
and where / and // may or may not be equal to /o. From
formula (67) it follows that, if I3/, our simple model
for states of the type (Zo"1) gives for the cf.p.,

Ao [Jea (tom 1)) =2, (79

For states of configurations 5y (I5£o) it is of interest
to consider a possible structure in which the core
(Jo" a1 is in L—.S coupling with a total spin J;=L;+S,
and where the odd particle is spin-orbit coupled, j=1/4-%,
before being coupled on to J; in the total state. For EL

2[(28+1) 112X 0.694 X 10-5(197.3)2&+1
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TaBLE IV. Values of the isotopic spin factor 7; defined in (78),
along with other relevant quantities. g, and g, are the gyromag-
netic ratios for the neutron and proton.

T T Mr T: 71 dr7r—71 ST ™1 (Srrl—rx)gp
+ (@17 +71)8n

3 3 3 0 1 0 2 2gn=—17.652
i 3 3 1 =3 3 3 ?s‘(gn+28p)— 4.898
3 3 -3 0 -1 2 0 2g,= 11.172
3 3 -3 1 3 3 % 3(2gntgp)=—1.384
0 0 0 3 0 1 1 gntgr= 1760
0 1 0 3 1 -1 1 Zn—Egp=—9.412
1 1 0 3 0 1 1 Zntgo= 1760
11 0 % 0 1 1 gntgo= 1760
1 1 1 3 1 0 2 2g,=—17.652
tr 1 1 3 -3 3 3 $(3gptga)= 6.466
11 -1 % -1 2 0 gp= 11.172
1 1t -1 3 3 3 3 $(gpt+3ga) = —2.946

transitions with the final state in pure L—S coupling
and the initial state of this type,

AXO(EGQ) = (._..)Jr-J+Sl-S’-—J’n} Z(—.)f
!

XUWLJ'S', L' f)UGS1fLy,S'Ty)
XUBTT,ifYU(LVTfITYN [ Yaa)
X{G@rr—711)— (Z/A2)orr]/1—(Z/ A 2)}.

In j—j coupling the corresponding formulas are
[from (38), (39), (42)-(44), and (63)],

M(EL)=n %O\l Ja)(N' | Jan)U (L0 54,15")
XU(L5'TT 1,37 )5 @rr’ — 1)
—(2/A4%)rr]/1—-(Z/A%)}, (81)
Aro(M1) = (ndu/V3g5) ;(M Ja)(N' [ Jea)U (157 71,577)

(80)

X{U W j3,05") @rr— r) B0+ 1)
+(=)="U (134,35 (V3/2)
XL @rr—71)gpt+ Grr—+71)gnl}.

The formula for extracting the experimental value of
A? from an observed width T'es for electric-multipole
radiation is

(82)

I‘obs

AM2(E£) =

(83)
202e+1)(£+1) E2&H[1—(Z/A )L (1£00|10)I(£;L0) T
where 7(£,0,/') is in units of (1078 cm)®, E, in Mev, mula is
Tovs in ev. The values of the first factor for dipole M2(M1)=15.45T s/ E,2. (85)

(£=1) and quadrupole (£=2) radiation are
L£=1: { }=3.977,
£=2: { }=3.11X10° (84)

For magnetic-dipole radiation, the corresponding for-

3. INTERPRETATION OF THE EXPANSION
COEFFICIENTS WITH THE
ROTATIONAL MODEL

Recently it has been shown that a number of the
light nuclei in the mass region A =19 to 4 =236 appear
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to have permanent intrinsic quadrupole deformations
(Pa57, Sh56b). It is possible to describe these deforma-
tions in terms of superpositions of shell-model states;
in fact, in the case of many properties of F, the shell
model has been used successfully to predict these
properties (El55a). However, it is much simpler, both
in this particular case (Pa57) and in general, to describe
deformed nuclei with the development by Nilsson
(Ni55) of the “strong-coupling” model of Bohr and
Mottelson (Bo53). In this development, one works with
single-particle wave functions defined for a deformed
(spheroidal) potential well. In general, such a wave
function has the projection w of the angular momentum
on the symmetry axis as a good quantum number, but
4, the total angular momentum, is not a good quantum
number.

To illustrate the construction of total wave functions
with Nilsson’s model, we begin by describing the pre-
diction of reduced widths for nucleon channels (Sa58,
Yo054). In doing this, we follow a paper by Yoshida
(Yo54). (Yoshida considered both “strong” and “weak”
coupling. We do not concern ourselves here with the
latter because there is no evidence at present that it is
of any use in applications.) Afterwards we mention
electromagnetic matrix elements. There is not sufficient
practical application to warrant any discussion of alpha
and deuteron processes, and no discussion of these is
given.

(a) Nucleon Channels

Let us suppose that the nucleus consists of 4 nucleons
moving in orbits in a deformed spheroidal potential.
Although 7 cannot be an exact quantum number for a
particle in a spheroidal potential, for the present we
can regard j as an approximate quantum number and
label the particle orbits 7i---j4. (This restriction is
removed below.) Let us further suppose that the com-
ponents of particle angular momentum along the body
axis of symmetry are good quantum numbers wi- - ‘w4
and let us write Q for X ;—14 w; and (j,w) for the set of
orbits. We may now assert that the internal wave function
of the system (i.e., the wave function referred to the
body axes) has the form

XGwerur= (4 ) £)pinPiws: - - Piawa,
(1)

(86)

where (3_ (=) denotes a summation over the possible
permutations of the particles 1---4 amongst the states
¢i1e1* * *@iawa such that T is a good quantum number
and the state has a definite symmetry character allowed
by the Pauli principle.

To construct wave functions in a space-fixed coor-
dinate system, it only remains to introduce the quan-
tities Dyrx? (012) which enable one to transform wave
functions from one set of axes to a second set whose
orientation with relation to the first set is specified by
Euler angles denoted by 6s. For instance, the trans-
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formation of a particular particle state is

®im(01) =20 D@ (012) 50 (82). 87)
The normalization of the Dyx” is
f | Dacx (013) | dbrs= 8%/ (2T +1).  (88)

The wave function of a compound state of spin J and
component M along a space-fixed axis is

2J+1

8m?

3
Xaomrmp= ( ) BHHXG,wersrDyg

(89)

where e is the sign e=(—1)7—9, 4 being the angular
momentum of the intrinsic wave function X:

I=%j.

+eX G, —w) ~armrDyr_x 7},

The presence of the second term and also the rule that
the difference (K— ) must be even,

K—Q=0, +2, +4---, (90)

is a consequence of the degeneracy of the system with
respect to rotation by 180° about any axis perpendicular
to the body symmetry axis. In general one may also
include a vibrational wave function in (89), but we do
not concern ourselves with vibrational states.

The wave function of the “channel state”

V(eI 101 T M 1),

which has one less nucleon than the compound state,
has a similar form:

¢(a1]1i1T1MT1)

(2[1‘["1
B 8
F e ((§, —w)1— N1 M 7:) Diy —k, TV},

The use of the formula

3
) BDHP((j0) T M) Diy ™

&)

f (DMK(J))*DilKl IVD,oDdb:s

2

(I1jiym| IM) (I jKw|JK)  (92)
+1

immediately enables one to derive the expansion coef-
ficients in (49) as

e 1(211+1
Jeuf)=7 27+1

-f—(—QIQlw)(IlelwIJ—K)

+ (=)@ = Q) (I1j— Kw|JK)

(=) (=] — Q)
X(Lj—Kw|J-K)},

3
) (@] @) (11jK | JK)

(93)
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where the (@|Qw) are the coefficients in the fractional
parentage expansion of the internal wave functions

X G,we= 2 (@] QW0 mbo (94)

Q1,0

For brevity we have dropped the isotopic-spin labels
and write (Q|Qw) for the full fractional parentage
coefficient

((7,)QT M 1|} (§,0) 10 T1M 71, jeodm,).
From (93)
(M Yeus)
=E(2[1+1

2\2J+1

+(—Q| =@, —K+K)](I1jK:1(K— K1) | JK)

+[{(—Q|@, —K—K1)+(Q| -, K+K1)]

X (IjK\(—K—Ky) | J—K)}.

3
) ([(l 2, K—K)

(95)

For nonzero (\|e,7), it is clear that all orbits of (j,w)1
must be contained in (j,w) or (j, —w) and also that

Q—K=4(%—K,). (96)

There are exceptional cases for which the foregoing
formulas are not quite correct. For instance, the wave
function (89) is not correctly normalized if '

XG.weDur’ =eX j—nr-oDu—xP. 97)

This implies that K=0=0 and X (;,u)0=€X (j,—wy0. For
each occupied state ¢;,. in the total state, the state ¢,
must be occupied also; thus, the total state must consist
of filled two-particle “‘shells” Zw with certain symmetry
and J values. For instance, if all lowest states in an
even-even (V=2Z) nucleus are filled with neutrons and
protons, then only even J are allowed. If an odd-odd
(N=2Z) nucleus has all lowest orbits filled and one
neutron and one proton in the last orbit, then, for 7=0
states (symmetric in space for the last two particles),
only odd J are allowed and for T'=1, only even J are
allowed. If an even-even (N=Z+2) nucleus has all
lowest states filled, the last two neutrons (7'=1) must
be coupled antisymmetrically in space and only even J
are allowed. When condition (97) holds, the wave
function is

2J+1\?}
XuM=( P )X(J’.w)o’DMO(J),

and (95) becomes "
a1\
X[{0] 21— K1)+(0| —2:K1)]
= (3)(—)H(J jOK,| LK)
X[0] 21— K1)+(0] —2:K1)],

<x1}a1j>=<%>*(

(98)
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where it is implied that @;=K; for nonzero (\|}a17).

Evidently another exceptional case is when the
channel state (91) is not correctly normalized for
similar reasons. In this case, Ki==0 and (95)
becomes

2I+1
2J+1

3
AYaug)= (%)*( ) (I,jOK | JK)

X[(2|0K)+(—2|0—K)]
= (B)}(—)H*E(Jj—KK|I,0)
X[(2]0K)+(—2[0—K)], (99)

where it is implied that Q=K for nonzero (\|}a17).
From (12) and (9), the reduced-width amplitudes
corresponding to the expansion coefficients (95) are

Ore=> U(I15J1e,s7) (T3 M rimy| TM r)n*(\ | Yo g)
i

X (ac/2)¥pju(ac),  (100)

and the reduced widths summed over channel spins,

5 v (T Mrom| TM2)* T M| )?

X [(06/2)¢‘jw (a'c)]27

where 7 is the number of particles that are taken into
account in the parentage expansion (94) for the internal
wave functions. As pointed out before, there is no need
to include in the antisymmetrization those particles in
close “shells” common to both compound and channel
states.

At this stage we may point out the effects of dropping
the assumption that j is a good quantum number. The
actual orbit ¢, may be expanded as

(101)

b= Z(w I j>¢jw; (102)

the expansion coefficients {w|7) being identical with
Nilsson’s ¢; (Ni55). Thus the right-hand sides of (89)
and (91) should be preceded by

Zj1---jA<w1[j1>' . (wA ]jA>,

but the only effect on formulas (93), (95), (98), and
(99) is that each term on the right-hand side is multi-
plied by {w|j) with w taken appropriately for each term
separately. Formulas (94) and (100) are unaffected.

The results of this section may be illustrated by the
following simple example which accounts for many
cases of practical interest.

(i) Channel state consists of closed shells of neutrons
and protons (so #=1, ©,=0) in the lowest rotational
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state (so Ki=I;=0). This situation is one of the ex-
ceptional cases mentioned previously and is covered by
(99) from which it follows that

2 3
O Janf)= (5;1—1) K| (103)

Thus, from (101), the reduced widths for entrance
channels of rotational bands of levels found in nucleon
resonance reactions or (d,p) or (d,n) stripping reactions
on an even-even nucleus by nucleons are proportional
to (2741)7! in the approximation in which j is a
reasonably good quantum number. If there is con-
siderable 7 mixing, the same result holds if (27-+1)"1is
replaced by (2J+1)"YK|7)%

(ii) Compound state consists of closed shells of
neutrons and protons (so #=2, 2=0) in the lowest state
(so K=J=0). This situation is covered by (98) from
which it follows that

A Yarg)=24(—) KK, | )din.

Thus, in the approximation in which j is a good quan-
tum number, the reduced widths of states of a rotational
band found in (p,d) or (,d) pickup reactions on even-
even closed-shell targets should be all the same.

(104)

(b) Photon Channels

From the strong-coupling wave functions of (89) and
the electromagnetic operators (31)-(33), it is possible
to compute electromagnetic matrix elements. The first
step is to express the operators in terms of the same
coordinates as those in the wave functions, viz., the
Euler angles 6,2 of the symmetry axis relative to a
space-fixed set of axes, and the internal coordinates.
From the tensor nature of the electromagnetic operators,
this may be done by transforming thus:

Ho,(®)(0,) =23 Danyan, (£ (612) Hom, (£ (62), (105)
Ny

where Ham®)(f;) has the same functional form as
H™® (6;). Unlike the corresponding evaluation of
matrix elements with the usual shell model based on a
spherically symmetric potential, e/ particles contribute
in general. Let us break the operators H into two parts;
H=H+H, the part H corresponding to particles in
closed shells that are undisturbed in the transition
(each shell containing two neutrons and two protons and
having 7=0), and the part H corresponding to the
“loose” particles. The internal wave functions X ;, )2
may also be broken into two parts. X=X ((;.0)0.0)0X
provided that we ignore antisymmetrization between
the particles in the two parts. Typical matrix elements

A. M.
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of the operators & and H are
T M | Hom, (&) |\ T M)
172741 274+1\} .
“( : (@] Hony ) [ Q)
8r? 8 My
X (MK |90 | M'K)+e(— 2| Hon, ()| Q)
X (M —K || M'K")+¢ (2| Ho, () | — )
X (MK |90 | M — K')+ e’ (— Q| Homy (2| — )
iy S KImOL M=K},
- ) (J'eM', | TM){(Q| Hg—x 2| )
(J'8K'(K—K")|JK)
+e(—Q| A gk (2|Q)

X(J'€K'(—K—K")|J—K")}, (106)
\TM | Ho, < |\ T M)
27+
= ot 1)(J’ eM'y | TM)(J' £KO0|JK)
X (0|Ho®|0)dgx-dxx:, (107)

where we have made the abbreviations

(Dux | Damuany () | Dagrgr ) = (MK | 99| M'K"),
_ o . (108)
X oo Hm | X 0y 0) = (2 Hon (2 | Q')

and where dxx=1 if X (j wye and X (j,4)-e- are identical
wave functions and zero otherwise.

Electrical Multipole Transitions

The evaluation of the matrix elements of A proceeds
as follows. Let us assume fractional parentage expan-
sions of states H ;,.yq of # particles in terms of parent
state X ¢j,u),0, of (n—1) particles:

XGwe= > (@ Q) TEMrO | TM7)

21,0
Mri+mi=Mr

XX Gonmupje, (109)
and similarly for X ;,0)e-. It follows that
([ Hom 2| 2)=n T (2] )@ |21')
Quw’
X (0| er Vo, 9 | pjve’)
X[5@brr'—11)—(Z/A£)orr], (110)

where we have used the electric multipole operator of
(31) and the definition (78) of 7. On using the formula
of subsections 1 and 2 for the single-particle matrix
elements (¢jo]|7rSYoms® |¢ o) and formula (106), the
matrix elements of A are obtained. As in the problem
of predicting nucleon widths, generalization to the case
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when 7 is not a good quantum number is attained by
inserting the expansion coefficients {w|7) of (102) at
appropriate places. The single-particle matrix elements
may be evaluated with formula and numerical tables
given by Nilsson (NiS5).

The evaluation of the matrix elements of H, the
closed-shell operator, is straightforward:

(0| Fyt®[0)=e f (D) Vo D, (111)
where p(r) is the density distribution of protons
fp(r)dr=Z, (112)

and where the term Z/A4* has been dropped. If we now
assume that the density is uniform {=Z[ (4r/3)a*]}
inside the surface given by

r= a[l +ﬂ Y0(2) (02)],
and zero outside, it follows that, to first order in 8
e(3Za*8/4r)

(0[[—_10(,8)]0)_:
0 otherwise.

(113)

if £=2.
(114)

Thus the closed shells contribute only to quadrupole
transitions; the reduced matrix element for the closed-

shell E2 transition is, from (106) and (114),
W ®NT)= @I"+1)}(J"2KO0| TK)3Q,  (115)

where Qo is the intrinsic quadrupole moment of Bohr

and Mottelson (Bo53) defined as
Qo=3Za*Be/ (5m)%. (116)

For the frequently encountered case of an E2 transition
 between the first excited state (J=2) and the ground
state (J'=0) of an even-even nucleus,

T H®|NT")=3ZaBe/2(57)}=1Q,.

In terms of the quantity B.(2) of Bohr and Mottelson,
as defined following (37),

B.(2)= (1/16m)Qc.

(117)

(118)

Magnetic Dipole Transitions

The magnetic dipole operator is, from (32) and (33),

eh
HyMD= > ——) (vrYm®)

all particles \ 2#¢
{(G—13) (1H£,8)+ (3+1)gn8},

where 1 is the particle angular momentum relative to a
space-fixed coordinate system. When the transformation
(105) is made, the components of 1 are referred to the

(119)
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body-fixed system; it is important to note that 1 is still
defined as angular momentum relative to a space-fixed
system. Now the internal wave functions X (;,«)o are
products of single-particle wave functions ¢;, in which
7 is the angular momentum relative to the body-fixed
system. Thus one cannot directly evaluate the matrix
elements (¢jo|bm®D|¢;,). The usual way of pro-
ceeding is to introduce a “collective angular momentum”
R defined by the equation

J= ¥ (48)wa+R (120)
all particles
Evidently,
R= Z (l)spaoe“ (l)body~ (121)

all particles

Now one assumes that the magnetic-moment operator
corresponding to (120) is equal to (119) with (Dpody
replacing (Dspace; and with a term grR added inside
the curly brackets, where gg is the gyromagnetic ratio
associated with R. Usually gr is assigned the value
Z/A. By using (120), the effective M1 operator is

eh
HnMH= ¥ (—)(VrYsm“)
all particles \ 272¢

{G—t)[(1—gr) 1+ (g, —gr)s]

+G+1t)[—grl+-(gn—grls]}, (122)

where 1 is taken in the body system. It is clear that the
part of (122) from particles in closed shells not disturbed
in a transition has zero matrix elements. It follows that
the summation may be restricted to the loose particles.
To evaluate the matrix elements (Q|Hom,MV|Q") of
(106), one proceeds just as in the electric-multipole
case by introducing the fractional parentage expansion
(109) leading to (110). The evaluation of the single-
particle matrix elements (¢j.| oD |¢ ;) is the only
remaining problem. This may be done by using the
formulas and numerical tables of Nilsson (Ni55).

As an example, let us consider the common case
where there is only one loose particle and the transition
is between two state J — J'=J—1 of a rotational band
K=K Q=0=0:

<¢,~w1ho<l>1¢,-w>=(i)*(zﬁz—c)@w—gze)w, (123)

go=(1/0){G—1ts) (l:+g05:)+ (5+13)gns:) e
Equation (106) then gives

(124)

3\}
T OV = (;) (27" 1)}(J"1K0| JK)

X (%) (go—gr)w. (125)
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In terms of B, (1) of Bohr and Mottelson as defined
following (37),

2

Bm(1)=§[ (J1KO0|J'K) (%) (gw—gn)wl .

III. Experimental Values of Reduced
Widths of Resonance Levels
in Light Nuclei

In Sec. II, formulas have been derived for the various
reduced widths of individual energy levels. In the
present section, the data on individual resonance levels
in nuclei with 4 <40 is presented and some comparison
with the predictions of models is made. Recently the
shell model has had striking successes in predicting the
level schemes of the lighter nuclei, especially those
with 4 <16 (In53, El55a, Ku56). Before anticipating
similar success in predicting the reduced widths of
resonance levels, it must be recalled that this latter
data usually concerns levels at considerably higher
excitations than those levels previously discussed. Con-
sequently there is no basis for expecting the shell model
to give more than qualitative agreement with the
observed reduced widths of resonance levels. As
stressed in the last section, there are practical reasons
for using rather different shell-model approaches to
states of normal and nonnormal parity. Consequently
all discussion in terms of the shell model is divided into
normal and nonnormal parity states.

Although the shell model has been applied with
success to nuclei in the range 16<A4 <40 [especially
to F® (EI55a)], the limelight in this region has been
taken recently by the strong-coupling version of the
Bohr-Mottelson model (Bo53) [as supplemented by
Nilsson (Ni55)7]. This latter model has been applied
with striking success to F¥® (Pa57), Mg?, Al* (Li56),
Al?8 (Sh56b) and several other nuclei (Ra57) in this
region. In certain cases such as F%, this model and the
shell model give very similar predictions. This raises
interesting problems (which do not concern us here)
about the relation between the two models. In actual
fact, just as the shell model has applications in the
range 16<4 <40, so the strong-coupling model may
be applied successfully in the range 4 <16 (KuS9).
However, we confine discussion of nuclei of 4 <16 to
the shell model and discussion of nuclei of 16<A4 <40
to the strong-coupling model. This rather arbitrary
limitation may be justified by the fact that weither
model can be expected to give a very good account of
many of the excited levels that concern us here.

1. NORMAL PARITY STATES OF THE
MASS RANGE 4<A<16

Configurations of the type (1s5)*(1p)” may be assigned
to most known normal parity states in nuclei of the
1p shell. Exceptions arise for the more highly excited
states of nuclei of masses 14, 15, and 16 where the
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above type of configuration contains only limited
number of states. For instance, in the case of mass 16,
the configuration is (15)*(1p)®, which is a closed-shell
system and has only one state; hence, all excited states
of positive parity must arise from other configurations.

The following discussion of the nuclear reaction data
on the normal parity states is in four parts correspond-
ing to nucleon, deuteron, alpha, and radiation processes.
Where theoretical predictions about the data are made
using the shell model, this is usually done only for
those modes of coupling for which the necessary frac-
tional parentage coefficients have been tabulated. There
are two such modes as follows.

(i) Russel-Saunders (L—S) coupling with no spin-
exchange forces and no spin-orbit forces (Ja51): In
this situation spatial symmetry is a good quantum
number and therefore can be used to classify states. It
so happens that, in the 1p shell, the set of numbers 7,
S, L, and symmetry is sufficient to. classify all states
with two exceptions, viz., the 8D and 3D states of
maximum symmetry [427] in (1p)%; each of these is
doubly degenerate. The condition of no spin-exchange
forces means that only force mixtures containing ordi-
nary and Majorana (space exchange) forces are catered
for. The Serber force (Se47) is such a mixture:

3(14+Puy)=3[3— (01 02) — (71 %2) — (01-02) (v1°%2) ].

Unfortunately, it seems that those mixtures containing
some spin-exchange forces are more satisfactory in
shell-model calculations of nuclear spectra. In particular,
there is the Rosenfeld (Ro48) mixture,

—0.134-0.93P+0.46Pp—0.26 Py
= — (%1°%2)[0.10+0.23 (01" 02) |,

and its “caricatured form” (In53),
0.80P+0.20Pp=— (2/15) (2+%1-%2) (1+01- 02),

which are often used in this connection. Both of these
contain appreciable spin-exchange components. How-
ever, in general, it turns out that the nondiagonal
elements of these components are considerably less than
the diagonal separations of states. Thus, the approxi-
mation of assuming good symmetry quantum numbers
is justified for most suggested central force mixtures.
(if) Spin orbit (j—j) coupling with (small) central
forces of the ordinary and Heisenberg (charge exchange)
types (Ed52): In the absence of central forces, states
of a number of spin-orbit coupled nucleons are highly
degenerate. Such states can be classified in many ways
in principle. An especially convenient one which has
been the basis of fractional parentage tables is that in
which there are two quantum numbers (in addition to
the usual J, T) called s and ¢, the seniority and reduced
isotopic spin. It so happens that any mixture of ordinary
and Heisenberg forces is diagonal in this representation.
However, as in the previous case of L—.S coupling, the
“natural” types of force for the representation do not
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correspond to those which succeed best in nuclear-
structure calculations. In the present case, we notice
that the Rosenfeld mixture and its caricature contain
large Majorana components which are nondiagonal, in
general, in the (s,f) representation. Nevertheless, again
as in the previous case, the suggested representation can
provide a good approximation to the wave functions.
This is because any type of zero-range force always can
be written as a combination of ordinary and Heisenberg
forces (because zero-range Majorana and Bartlett
forces are equivalent to ordinary and Heisenberg forces,
respectively). Since the actual range of nuclear forces
(compared with nuclear dimensions) is fairly small, the
quantum numbers s and ¢ should be preserved even in
the presence of strong Majorana and Bartlett forces.

Neither of the foregoing two extreme types of coupling
seems to be a good description of the actual mode of
coupling in the 1p shell, which is believed to be inter-
mediate between the two (EIS7a, Im53, Ku56).
Although in general we compare only the observed
values with the pairs of predicted values from the
extreme modes, in certain special cases we actually
examine data in the intermediate region between the
two extremes. The mode of coupling in this intermediate
region can be specified by a ratio £/ K, the so-called
“intermediate coupling parameter” (InS3). In this
ratio, £ is a measure of the strength of the spin-orbit
forces tending to produce a state of spin-orbit coupling,
and K is a measure of the strength of the central forces
that tend to produce Russell-Saunders coupling.

In the following discussions, experimental references
are only given if they are not to be found in the com-
pilations of data by Ajzenberg and Lauritsen (Aj52,
AjS5, Aj59).

(a) Nucleon Channels

At present there are some 30 or so experimental values
of reduced widths for compound states of normal parity
in the 1p shell and channel states consisting of a nucleon
and a residual nucleus. With few exceptions the residual
nucleus is in its ground state in these processes. A few of
the values are for compound states that do not belong
to the ground-state configurations (1s)*(1p)?; these
cases occur in N N5 and O, All values are listed in
Table V along with the theoretical predictions, where
possible, of the two extreme coupling modes of the
shell model. The observed relative orbital angular
momentum of separation is almost always p wave. We
now discuss the entries in the table and other nucleon
data on normal parity states according to the mass
numbers of the compound nuclei.

Mass 5

The mirror nuclei He® and Li® are very similar. In
both nuclei the ground state is unbound against nucleon
emission and possesses a large natural width. Further-
more, each nucleus is known to have a very broad state
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a few Mev above the ground state making, with the
ground state, the 1pg-1p; inverted doublet expected
from the shell model. In view of the large widths, it is
somewhat unnatural to use the one-level resonance
reaction theory for relating experimental phase shifts
to the shell model, especially for the upper state. Rather
it seems more appropriate to compare the observed
phase shifts directly to those expected in nucleon scat-
tering from a potential well with a spin-orbit force
included. Both programs have been carried through.
The former approach (Ad52, Do52, Mi 58c) leads to
fits of the data in terms of the reduced widths of the two
states. That of the lower state is determined to be
approximately the single-particle value, but the reduced
width of the upper state is undetermined except insofar
that it be large. The second approach (Sa54) is more
precise. Adequate fits of the observed phase shifts have
been obtained with the square, Gaussian, and exponen-
tial well shapes ¥ and a spin-orbit force of the Thomas
type: const (1/7)(dV/dr)(1-s). Given some well shape,
the various parameters seem to be fairly well deter-
mined in the fitting. For the three wells mentioned, the
fitting gives

Square well: [140.1031(1- 8)7¢6 (r—7,) ](19.65 Mev)
(r0=3.21X 107 cm),

Gaussian well: [140.2468(1- s) ](47.32 Mev)
Xexp[— (r/a)*] (6=2.30X10"%3 cm),

Exponential well: [140.4765(1- s) (r/5) ](155.5 Mev)
exp(—27/b) (6b=1.924X10"1 cm).

It is rather unfortunate that no analysis has been
reported for a cutoff oscillator well because this has the
unique characteristic of having a Thomas-type spin-
orbit term that does not depend on radial distance.
Most shell-model structure calculations assume this
latter type of spin-orbit term for convenience. Thus, at
present, no immediate comparison is possible of the
strength of spin-orbit force needed in structure calcu-
lations with that needed to explain the alpha-nucleon
scattering. However, we can make a rough comparison
by taking the expectation value of the spin-orbit force
in the radial wave function for each of the above three
cases. The value obtained in units of (I-s) is, in each
case, about 3 or 4 Mev. This is to be compared with
the strength of approximately 2 Mev needed in structure
calculations on the mass 6 nuclei (In53, Ga55).

Mass 7

A normal parity state of spin § has been found in Be”
in Li®4p bombardment and a similar state has been
found in Li” in Li®4-» bombardment. There is little
doubt that these two states are mirror states. Not only
do they have the same spin and almost the same exci-
tation energy, but their reduced widths for nucleon
emission are roughly the same, namely 62~0.35, when
an interaction radius of 1.45(6341) X 10~8=4.09X 1013
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TaBLE V. Nucleon widths of normal parity states of nuclei in the mass range 4< 4 £16.®

Channel: chgxll):el Com-
. X residual width Compound Residual AZin pound Residual  A?in
Com- Exci- Spin and nucleus (kev, in nucleus nucleus L~-S nucleus nucleus i—7j
pound tation isotopic -+nucleon center of in L-S in L—-S coup- inj—j inj—j coup-
nucleus  in Mev spin 1o mass) Obs 624 coupling coupling linge coupling coupling  linge
Hes 0 3—,1 Het+n+1 ~700 ~1 2p ug 1 (st (L) 1
Lis 0 i1 Het4p4+1  ~1500 ~1 2p ug 1 pi(ls)s (Isy)e 1
Li 746  3— i  Littnt1 61 0.39 up[3]  2P[2 2 (pr(py) (py)? 0
Be?  7.16 33 Li*+p+1 670 0.36 #P[3] 2P[2 H (2)%(p1)  (p4)? 0
Lis 2.28 34,1 Li’+n+41 28 0.11 #8p[31 2P[3 ¢ (ps)* (p9)? 5/15
Bet 17.63  1+,1 Li"4p+1 10 0.13 #p[31] 2P[3 I (e (¢ 2/15
19.18 3+,1 Li"4-p+1 ~180 ~0.06 8p[31 2P[3 $ 1)t (p1)? 2/15
Be 7.37 34,1 Bet+n+1 23 0.021 ap(42] 2P[41 0 (o (py)" 0
7.54  (24+),1  Bett+n+1 7 0.0051 {{311)[42] 2p[41 ? (o0t (b)) ?
or
(P[33 0
B 746 24,(0) Be'tp+1 80 0.15 BD[42]  2P[41] ? (D% (1)° ?
7.56 0+ Bet4p+1 3 0.006 %P[33 0 ()% (pp)b 0
or 2P[41]
15p[321 0
880 24,1 Bed+p+1 8 0.0048 upf42]  2P[41] (e (Bw)F ?
B+n+1 or
8P[33]
880 34,1 Bet4p+1 75 0.039 up[42]  =2P[41] 0 (P%py  (p9)" 0
B9+n+41
Ccu 9.70 32—, (3) BYntil 225 0.12
or or
75 0.04
B2 3.76 24,1 Bi4pn-4-1 37 0.054 38P[4317] 2P[43] ] (pp)s(p)? (p3)7 0
ce 1610 24,1 Bu4p41 0.006 0.08 331’[431% 2P[43]  5/18  (p9)'ps ém 3
(17.80)>  (0+) Bi+p+1 $140 $0.05 1P[431] 2P[43] 3 (3)8(20)* ()" 0
or
P[431 3
N#B 351 -} Ce4p4-1 67 0.06 2p[441] 1S[44] 3 (e)T(pa)? (pn)? 0
N4 862 0+, (1) CB4p+1 6 0.02 3P[422 ”P[441% 0 (ps(pn)* (b)%ps 0
8.98 1+ Ci+-p+1 7 0.007 upr433] =2p[441 0 (B3)%(p1)* (p1)%p3 0
9.72 14 Cii4-p+1 15 0.007
12.79 4+ CB4p+3 0.18 0.00018
Ci8+p+-4 0.085 0.04
Col34-p+43 0.44 0.045
Ca+p+2 9.6 0.07
NB8+n+3 0.59 0.0024
N5 11.29 —.3 Cl+4-p+1 9.7 0.03
N¥+n+1 1.5 0.002
11.88 $—.3 Ci4-p+43 0.03 0.002
N¥+n+1 22.0 0.01
11.96 i— % Cit4-p+1 0.3 0.0003
NU+4n4-1 20.0 0.009
1209 §—,% Cli4p+1 0.8 0.03
Né4-n+1 16.0 0.007
(02 7.61 55— N¥+-p-41 <2 <10
903 41— N4+p+1 4 0.0045
13.65 1+ Nt p41 10 0.012

' ; References to the data used in the table are given in the discussions in the text except where the data is cited in the published compilations (Aj52, Aj55
i59.

j59).
b Uncertain entries are bracketed ( )

o The residual nucleus in the fourth column is always in the ground state except where a subscript z denotes that it is in the nth excited state.
d The observed values of 62 are corrected for variation of the partial level shift, The interaction radius is always assumed to be 1.45 (A1} +1) X1073 cm.
e The ninth and 12th columns list theoretical values of A2=02/6,% For comparison with the experimental values of 62 in the sixth column, we try 6,2=0.6

[see the discussion in Sec. 11.2(a)].

cm is assumed (Ba51, Jo54b, WiS6a, MaS6e).2 The
state was originally identified in a shell-model scheme
as a 22F[ 3] state of L—S coupling and a (p3)? state of
j— 7 coupling (LaS55a). Lately, however, these assign-
ments have been revised in the light of new experi-
mental evidence (Ma57b) and further theoretical con-
siderations (So57, Ma57a, Me56) ; the new assignments
are 22P[217] and (p3)?p;. The residual nucleus Li® is
8S[27] in L—S coupling and arises from (p3)? in j—j

2 An unusually small interaction radius is used in (Jo54b).

coupling. The reduced width for p-wave emission in
L—S coupling is £ of the single-particle value; in j—j
coupling. it is zero. By taking the valve 0.60 for 6,2,
agreement between experiment and theory is achieved
(So57) at a mode of coupling characterized by ¢~2K.

The ratio of the yields to the ground (§—) and first
excited (3—) states of Li” in the Li®(d,p)Li’ stripping
reaction indicates that the ratio of the two reduced
widths is roughly 0.7 (Ho353, Le55). In L—.S coupling,
the states arise from the 2P[3] doublet and the pre-
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dicted ratio of the two reduced widths is unity. In j—j
coupling, both states arise from (p3)® and the ground
state is predicted to have a smaller reduced width than
the excited one by a factor 1%. The observed ratio lies
in between the two predictions, and intermediate-
coupling calculations (AuS5, Fr57) give agreement
centered at the mode characterized by §~3K. It is
also possible to analyze the relative yield to the ground
(14) and first excited (3+4) states of Li® in the
Li7(p,d)Li® reaction (Re56a) and find a reduced width
ratio of ~1.4, which agrees with an intermediate-
coupling mode of §¢~1.8K (Au55). (The predictions of
L—S and j—j coupling for the ratio are 25/14 and
3/, respectively.)

Mass §

There is good isobaric correspondence between the
observed states of Li® and Be? if the 16.72-Mev level in
Be? is paired off with the ground state of Li®. The 17.63-
and 19.2-Mev states in Be? then pair off*in energy with
the 0.93- and 2.28-Mev states in Li®. The spins of these
various states, as far as they are known, support this
pairing. The nucleon reduced width of any pair of
isobaric states should be the same. Since any nucleon
width of a Be? state is shared equally between neutrons
and protons, the neutron (or proton) reduced width of
a state in Bed should be one-half of the neutron
reduced width of the isobaric state in Li8, i.e., the total
nucleon widths of corresponding states should be the
same.

The observed proton reduced width of the 17.63
state in Be8is §2=0.13. This state, which is the first T=1
state of spin J=1, is identified as coming from #P[31]
in L—S coupling and from (p3)* in j— 7 coupling. The
L—S state predicts 62= %0, and the j— j state predicts
6= (2/15)8,2. On taking 0,2~0.60, the observed value
lies between the predicted values. An additional item
of experimental information on this state is the channel
spin ratio, which is known to be 1:5 for s=1:5=2
(De49). Theoretically, the predictions of such quan-
tities do not contain the uncertain single-particle width
6,2 which drops out in the ratio. Both L—S and j—j
coupling predict precisely the observed value of 1:5
(Ch53).

There is a state of 18.14 Mev in Be? which has been
suggested to be 14. It is presumably T'=0 since no
isobar is found in Li8. If the main decay of this state is
supposed to be to the ground state of Li’, its reduced
width for this process is #2~0.3. In L—.S coupling the
state is most likely BP[317], which has a reduced width
=10, and a channel spin ratio of 1:5. In j—j
coupling, the state would be (p3)%p;, but there are two
states of J=14-, T'=0 in this configuration, and finding
the relative amplitude of each in the actual state
involves diagonalizing the central interaction.

The observed widths of the state at 19.18 Mev in Be?
and the isobaric 34 state at 2.28 Mev in Li® can be
fitted with roughly the same value of the total nuclear
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reduced width as expected for isobaric states (Ad54)
[see,however, (Ne57)]. The total nucleonreduced width
for either level is #2=0.12 (Th54, Th56, Wi56a). In
L—S coupling the state is ¥P[31] and in j— 7 coupling
it comes from (p3)%. The predicted values of 62 in the
two extreme modes are 26,2 and (4.15)0,2, respectively.
This reduced width has also been investigated in inter-
mediate coupling (La55a). However, there is no such
nearly sensitive dependence on the degree of inter-
mediate coupling as was found in a similar instance in
the mass 7 nuclei (So57, La55a). It has been suggested
(Ma56a) that the 19.18 state in Be8 is not the analog
of the 3+ level at 2.28 in Li%. This suggestion comes
from an analysis of the evidence on Li"4-p scattering
in this vicinity, which points to an analog level at
19.0 Mev.

The relative yields to the ground and 0.93 states in
Li® in the Li’(d,p) reaction (Le55, Re56a) indicate a
ratio of 1.83 for the reduced widths for breakup of
these states into Li’+# [see also (Fr57)]. L—S and
j—7 coupling give the ratios 5/3 and 4, respectively
(assuming the two states to be 24 and 1+ and to arise
from the 3P[31] state in L—.S coupling).

Mass 9

Very little can be inferred about the spins of the
known states in Be® at present. There are four definite
or suggested low-lying excited states at 1.8-, 2.43-, 3.1-,
and 4.8-Mev excitation. The 2.43 state is very sharp
[T'<1 kev, (Go55b)], the 4.8 state is broad (I'=0.5—1
Mev), and the widths of the other two are uncertain
but probably <100 kev. There is qualitative agreement
with expectation. One expects low-lying normal parity
states of spin 2, % arising from 22P[417] and 22D[41],
respectively, in L—S coupling and from (p3)® in j—j
coupling. The reduced widths expected are 28,2 and
zero, respectively, in L—S coupling and both are zero
in j—j coupling. Thus the 2.43 state (which would
have an observed 62<0.001 for p-wave neutron emission)
might be identified as the § state. This can decay only
by f-wave emission. The observed state at 3.1 could
be the predicted % state. Because of its possibly large
width, the 1.8 state may be an s-wave state since it is
unbound only by 0.14 Mev or so, and a state formed by
other waves would be sharpened by the penetrability.
Since CB is a (4n-+1)-type nucleus like Be?, we might
expect certain similarities in their structures. In partic-
ular, the single-particle s- and d-wave states of the type
found in C® may occur in Be®. The 1.8 and 4.8 states of
Be? would be the most likely candidates. It is interesting
that an analysis of the Be®(y,#)Be® and Be®(y,n)Be®*
reactions (Gu49, Ma56b) has been made with an s-wave
state near 1.7 Mev and a broad d-wave state at 4.8 Mev.
The ratio between the two cross sections is sensitive to
the value of the intermediate-coupling parameter £/K.
The observed ratio corresponds to é=1.4K.

The BY(n,d)Be’ and BY(p,d)B° reactions (Ri54,
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Re56a) yielding the ground and 2.4 states of the mass 9
nuclei have been analyzed to give the ratio of reduced
widths of the B ground state for*break up into these
states. The ratio is 1.40 from the first reaction, 0.93
from the second. The prediction of j— j coupling is %;
that of L—.S coupling depends on the exchange nature
of the central forces.

Mass 10

The first unbound state in the mass 10 isobars that is
believed to have normal parity is the 7.46 level in BY,
whose spin is inferred to be 2+ (MoS6). The second
state is the 04 state at 7.56 whose isotopic spin is
undertermined. If T=1 for this state, then it must
appear in the spectrum of Be!, From the parity assign-
ments of the Be(d,p)Be! stripping reaction (Gr56a),
the only eligible state at about the analogous energy in
Be is the state that at 6.18 Mev whose parity is
undetermined because of the weakness of the group
leading to it. The 7.56 Mev state has a small reduced
width against proton emission, namely, 62~0.008. In
L—.S coupling the state would be #P[337]if =1 and
18pP[3217if T=0. Both assignments give ?=0. In j—j
coupling, for either isotopic spin, the state would be
(p1)%p3 with the (p3)® group in the spin % state. Since
Be?, the residual nucleus, has spin §, again 6?is predicted
to be zero. The smallness of the observed 62 is thus not
surprising.

There is a state in B at 8.89 Mev whose spin is
believed to be 2+, T'=1 (Ma54, Ma56c). There is a
known level at about the analogous energy in Be!®
which is also believed to have spin 2, although the
parity is unknown ; this is the 7.54-Mev level. According
to an analysis of the Be®(p,a)Li®* reaction, the observed
reduced width of the B level for nucleon emission is
6?=0.016 or 0.0048 (Ma54). (This is the sum of the
neutron and proton reduced widths assuming them to
be equal.) If the 7.54 level in Be! is assumed to be 2+,
its reduced width is §>=0.0051 in nice agreement with
the second of the two possibilities for the B level. In
fact, a recent analysis of the data on the B level has
confirmed that the second value should be taken
(Ma56¢). In L—.S coupling the level would be #.D[42]
or 8P[337]. The former can give a large reduced width,
and the latter gives zero. (N.B. The 3D[42] level
contains two components that are split by diagonalizing
the central interaction. Since its structure is in this way
ambiguous, we do not quote a precise prediction for the
reduced width.) In j— j coupling the state arises from
(p3)%p3, and it could have a large range of reduced
widths values from zero upwards depending on the
relative amounts of (p3)%s,—3 and (p3)%s,—4 in its
parentage. Finally we discuss the 7.37 state in Be!
that is believed to be 34-. If the spin is indeed 3+, the
state can be identified as the 3.F[42] state in L—S
couphng and as ansmg from (p;)ﬁp; [with the (p3)®
group in a spin § or ¥ state] in j—7 couphng Both
extreme modes clearly predict 6?=0 which is satis-
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factory in view of the small observed value of 62=0.021
(Wis5a).

For some time there was speculation on the apparent
absence of a level corresponding to this latter one in the
spectrum of BY. From the known width of the Be!
level, one could easily calculate that the isobaric state
in B™ should be of reasonable width (~50 kev or so),
not too sharp and not too broad to escape observation.
Thus the absence of such in a state seemed mysterious.
The mystery has been resolved by a recent analysis of
new data (MaS56c) which finds that the 8.89-Mev level
of B actually consists of two levels of widths ~40 and
~80 kev. The former of these is associated with the
2+ level at 7.54 Mev in Be', as we have already dis-
cussed. The latter width is attributed to the missing
3+ level. The total nucleon reduced widths of the 3+
states in Be® and B! are 62~0.021 and ~0.038, re-
spectively. The difference of a factor of almost two is
a little disturbing but not sufficiently to throw serious
doubt on the interpretation of the levels as an isobaric
pair.

Mass 11

The only resonance data on these nuclei comes from
the Li’t+a and B*+-p bombardments. The B(p,a)Li’
reaction reveals a state of spin §— in C! at 9,70 Mev
with a proton reduced width of either 62=0.12 or 0.04
(Cr56a). It does not seem possible to identify this state
unambiguously with the shell model.

Mass 12

There is considerable isobaric correspondence between
the levels of B'? and C®. Pairing off the ground state
of B2 with the 15.09 state of C2 enables a number of

.other pairs to be associated in energy and spin. The

first of these is the 16.10-Mev state in C*? which cor-
responds to the 0.95-Mev state of B* and has spin 2.
In L—S coupling this state would be *¥P[4317] which
has 62=(5/18)8,2. In j— j coupling it would be (p3)7p;
which has #2=126,% The observed value is 62~0.08 which
is less than both of the predicted values when 6,2 is
taken as 0.6.

A rather doubtful 04 state occurs at 17.80 Mev in
C™2, Its isotopic spin is undetermined. In L—S coupling
it would be ¥P[4317] or #P[431] and, in _7' j coupling
(p;) (p3)?. Both L—S states predict 6?=%6,% and the
j— 7 state predicts 62=0. The observed total width of
150 kev corresponds to §2=0.05, but this value must be
taken as an upper limit since no alpha width has been
subtracted.

The 2+ state at 3.76 Mev in B has a reduced width
of #?=0.05, and may have an analog in the 18.86
state in C'? or possibly in the 18.39 state which has
been suggested to be 2+4-. In L—.S coupling the state
is #D[4317] with a reduced width 62=0.10 6,2 In j— 7
coupling, the state is (p3)%($:)? and this has 6?=0
Taking 6,2=0.60, the observed value again lies between
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F16. 2. The value of A2=T/T, for the proton emission process
N1(§—) — C2(04). The horizontal line is the experimental
value (assuming 6,2=0.60). Rosenfeld forces were used in the
calculation of the theoretical curve.

the predictions of the extreme coupling modes. An
analysis of neutron scattering on B! indicates a
channel spin ratio (the ratio of the reduced widths for
the two channel spins 1 and 2) of zero or infinity
(WiS55a). The foregoing L— S assignment implies a ratio
one and the j—j assignment makes no prediction since
both reduced widths separately are zero. [The most
likely impurity in the j—j case, (p3)7(ps), predicts a
ratio one.] Note that the 18.86-Mev state in C¥ has a
width of about 100 kev. If this is mostly made up of
the width for proton emission to B! in its ground state,
the reduced width for this latter process is 62~0.03
which is about a half the value for the B2 state, as
would be expected if these states are isobars.

Mass 13

There is only one well-established normal parity
state in the mass 13 nuclei that is unbound. This is the
3.51 Mev (3—) state in N which has a reduced width
of ?=0.06 (Se51, Ja53). In L—.S coupling this state
forms with the ground state, the 22P[4417] doublet and
has 02=%6,% In j— j coupling, the state is (p3)7(p3)? and
this implies §°=0. Taking 6,2=0.6, the observed value
falls between the two predicted values. This example
has been analyzed in intermediate coupling (La53) and
the result is shown in Fig. 2. Agreement between theory
and experiment is achieved at a mode of coupling
characterized by £=5K. This is a rather higher value
of ¢ than is obtained on fitting a reduced width in
Li7 (So57), but such a trend in £ with 4 often has been
remarked on (In53, Ku56).

Mass 14

The state at 8.62 Mev in N™ has spin 0+ and is
probably T'=1 since it is not produced in the N*(a,o)-
N*#* reaction (Mi56). If indeed it has T'=1, it should
have one of the states at 6.59, 6.72, and 6.89 in C*
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as its analog. The C®¥(d,p)C" reaction suggests the
6.89 state on grounds of parity (McGSS5). By accepting
T=1, it can be assigned to the normal configuration
(1p)° with the structure #P[433] in L—S coupling
and (p3)~%in j7— j coupling. In both cases 6? is predicted
to be zero and it is satisfactory to find that the observed
value is small (0.020). [If the state is not 7=1, it must
arise from a configuration higher than (1p)Y. The most
likely configurations are (1p)%(2s,1d)? and these imply
6*=0.]

A second unbound normal parity state is found at
8.98 in N* with spin 14-. If this is assigned to the
normal configuration (1p)%, it is "P[433] in L—S
coupling and (p3)~2 in j—j coupling. Again, in both
cases, * is predicted to be zero and the observed value
is small (0.007). Another 14 level with the same
reduced width has been reported at 9.72 Mev (Zi57).

At high excitation, there occur two 4+ states (at
12.79 and 12.92). These must be assigned to higher
configurations. The reduced widths of the lower state
for f~wave proton emission to the % ground state in C*®
and for f-wave neutron emission to the % ground state
of N*® are 62=0.00018, and 0.0024, respectively (Sh33,
ShS55a). It is significant that these values differ by more
than a factor of 10 or so. Small differences in reduced
widths for mirror processes can arise from the different
boundary conditions for neutrons and protons, but a
factor of five must be ascribed to a breakdown of
neutron-proton symmetry, that is, to the impurity of
isotopic spin as a quantum number. The two observed
4+ states occur only 130 kev apart, which is within the
estimates one can make of Coulomb mixing energy
(Ra53, McD56), so it is not surprising that isotopic
spin is not preserved.

It is also significant that the 12.79-Mev state emits
g-wave protons to the 3.09 (3+4) state of C® with
appreciable probability (6°=0.04) signifying that con-
figurations that are four quanta above the normal con-
figuration of N are already contributing to the
structure of these states.

Finally, the absolute cross section of the pickup
reaction N™“(p,d)N® has been analyzed to give the
reduced width of the ground state of N** for breakup into
N*® and a neutron (St56). The value obtained is said to
be qualitatively in agreement with that expected from
the intermediate-coupling shell model. In addition,
some theoretical predictions of a rather general nature
have been made about reduced widths involving the
lowest states of N** and N'%(Fr56, Fr57, EI56b).

Mass 15

The levels in O at 6.14, 7.61, and 9.03 Mev (Ha56,
Fe59b) have tentatively been assigned normal parity
(for example, the 7.61-Mev state is probably $—). The
N*(d,p)N5 stripping reaction indicates that the levels
in N*® at 6.33, and 9.06 Mev (Gr56a) correspond to the
first and last of the three levels in O'. There are several



542

A. M. LANE

TaBiE VI. Alpha-particle widths of levels of the mass range 4<4 <16.8

Spin and Channel: Observed channel width
Compound Excitation isotopic residual (kev in center of
nucleus in Mev spin nucleus +lcb mass) Obs 621
Li7 4.63 i—, % He?+3 93 0.32
7.46 3=, 3 H3+4-3 38 0.012
Be? 4.58 3= 3 He3-+3 102 0.54
6.4 {%+, for {He3+0 or 120 or 0.02 or
24,3 He3+2 60 0.04
7.16 £—,3 He34-3 50 0.072
Besb 0 0+,0 Het+4-0 4.5(£3)X1073 0.07
2.90 24,0 Het4-2 ~2.0X103 ~1.0
10.8 44,0 Het+4-4 ~6.7X 103 ~1.5
16.06 24,0 or Het+4 or 0.47X103 0.05 or
44 Het+2 0.06
16.72 2+, 1e Het+-2 150 0.016
Bioe 4.77 24, Lis+2 <10, >107* <10, >1073
5.11 2—,0 Lis+1 1.2 0.036
5.16 24,1 Lis+4-2 ~0.4 ~0.1
6.894 1—,0 Lis+4-1 “es ~0.15
7.48e 2—,1 Lit4-1 ~15 ~0.008
8.89 24,1 LisS+42 28 0.50
Bue 8.92 3,93 Li’+0 or <1072 <0.1 or
Li’1 or <0.4 or
Li"+2 <5
9.19 $—, % Li72 >1073 >1.2X1073
9.28 3+, 3 Li"++1 6 0.28
cu 9.70 -, G Li"4-0 75 or 0.012 or
225 0.037
10.06 i—, G Li"43 56 or 0.24 or
100 0.48
Li"+43 34 or 0 30 or
60 0.63
cr2 15.09 14,1 Be,84-2 0.020 7X107¢
16.10 24,1 Bed+42 0.1 3X1078
Be,3+0 5 1073
16.57 2—,1 Be,8+1 140 0.03
17.22 1— {Be5+1 ~35 ~0.008
Be2+1 ~900 ~0.2
N 12.69 3— Blo-1 1.7 0.09
12.79 4+ B2 1.0 0.12
O 9.58 1—,0 C24-1 645 1.3*
9.835 24,0 C24-2 0.75 0.0022+
10.36 44,0 Ci24-4 27 0.39+
11.25 04,0 C24-0 2400 1.1+
11.51 24,0 Ci24-2 77 0.05+
11.62 3—,0 C1z4-3 1200 1.1+
12.43 1-,0 Cr41 172 0.06%
12.51f - Ci2+1 0.9 or 1.2 or
0.03 0.04
12,95 2—,1 C2+41 1.0 0.04
13.09 1—,1 C21 27 0.008
Ci2-4-1 1 0.0034
13.24 3—,1 C124-3 12 0.006
Ci24-1 6 0.074
13.65 14,0 Cy2+42 57 0.57

@ References to data used in the table are given in the discussions in the text except where the data is cited in the published compilations (Aj52, AjSS,

359).
b The limits on the width of the ground state of Be® are taken from estimates of the lifetime (He56, Ru56).
° The limits in the entries in B and B! can be imposed according to whether the states concerned decay preferentially by gamma or alpha emission

[D. H. Wilkinson (private communication); (Jo54a, Me59) ].
d The entry for the 6.89-Mev level in B! assumes I'y <Tgq, I

.
e The entry for the 7.48-Mev level in B is discussed in Sec. III.2(a) under ‘“Mass 10.”
t The larger of the two possible values of the partial width in the case of the 12.51 level in O!6 is preferred because the smaller one would imply a very

large proton reduced width (822>1) for the state (see Table X).
& Uncertain entries are bracketed (

b The residual nucleus in the fourth column is in the ground state unless a subscript # denotes that it is in the »th excited state.
i An interaction radius of 1.45(41/8+4-41/8) X10718 cm has been used in extracting values of reduced widths, except in the cases of O!¢ marked + where a
radius constant of 1.40 was assumed in the published analysis of the data (Bi54), and the 0, 2.9, and 10.8 levels in Be8 where the radii used were 5.7, 5.0,

and 4.5 X1078 cm (Ru56).

levels in N'® between 9 and 13 Mev to which normal
parity has been definitely or tentatively assigned (BaS4,
Fo55, Ba55b, Sh55a, Gr56a, Fe59a). The normal con-
figuration of these mass 15 nuclei is (1p)"* which has
only one excited state, and this is identified at 6.3-Mev
excitation. Thus all the normal parity states above

must come . from higher configurations such as
(1p)°(2s, 1d)? or possibly (1p)1°(2p, 1f). The first pos-
sibility gives zero reduced widths. The observed values
for all the above states are small. Some of the spin
assignments in (FoS55) do not agree with those of
(Ba55b). We quote the latter assignments in Table V.
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Mass 16

There is a state at 12.43 Mev in O whose spin has
alternately been suggested as being 0+ and 1— (Co53,
Bi54, HoS55). The former possibility implies p-wave
formation and the corresponding value of the reduced
width is very large 62>1 (Co53). The only possible
theoretical explanation of a large p-wave reduced width
lies in assigning the configuration (1p)"'2p. However,
even this gives only 62~0.30 when the value 0.60 is
assumed for 6,2, and so the correct spin is probably 1—.

Another unbound state of normal parity exists at
13.65. The spin is 14 (HaS57a) and this implies p-wave
nucleon emission. However, the partial width of the
state for this emission is unknown.

(b) Alpha Particle Channels

In Table VI, we list the observed reduced alpha
widths for both normal and nonnormal parity states
in the 1p shell. The most striking feature of the reduced
widths is the great variation. However, this is due in
some measure to the fact that the very small values (for
instance, those in C!2) correspond to transitions for-
bidden by the isotopic-spin selection rule. In such cases,
the magnitude of the alpha width gives an estimate of
isotopic-spin impurity (Wi53a).

Another feature is the occurrence of some large widths
in Li” (Mi58b) but especially in the 4% nuclei Be® (Tr5S,
Ru56) and O (Bi54). Theoretically, large widths are
expected on the alpha-particle model. Whether the
shell model can give such magnitudes is more debatable.
There is no basic reason why it should not. It has been
pointed out (Pe56) that the totally antisymmetric
shell-model ground states of (1s)*(1p)" with =4, 8, 12
and with oscillator wave functions can be written in
such a way as to show that the systems are divided
spatially into groups of four nucleons separated by
node planes. Thus, there is less difference between the
two models than might appear at first sight. In par-
ticular, (1s)4(1p)4, the configuration of Be?, has been
examined from this point of view, and it has been shown
that, in L—S coupling with oscillator wave functions,
the 115[44 ] ground-state wave function can be rewritten
as a product of the two internal wave functions of two
groups of four particles times a wave function of relative
motion. This means that the shell-model state can have
an appreciable alpha width, the precise value being
controlled by the overlap between the alpha wave
functions and the foregoing internal wave functions.

It would be interesting to predict the O widths with
the alpha model, especially in view of the success the
model has in predicting the O spectrum (De54b).

(¢) Deuteron Channels

Table VII lists the observed deuteron widths for
normal and nonnormal parity states in the 1p shell.
There are only a few entries because the deuteron
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TaBLE VII. Deuteron widths of levels in the
mass range 4<4 162
Obs.
channel
Spin  Channel: width Assumed
Com- Excita- and residual (kevin radiusa .
pound tionin  isotopic nucleus center (10713 .
nucleus Mev spin +led of mass) cm) Obs 62
He$ 16.69 24,3 H3+4-2 cee 5 1.4e
Lie 1680  3+,% He+2 ..o [ 0.1°
7.6 0.7¢
Lisb 2.189 34,0 He'42 20 3.5 1.20e
4.0 0.75¢
4.52 24,0 He'42 3.5 11.5¢
5.4 1+, 0 Het+0 broad 3.5 0.3-1.5¢
B0 6.89 1—,0 Bed+41 oo 473 ~1.2
748 . 2—,1 Bet+l ~15 473 ~0.012
Nt 1241 4 ce43 22 515 020
12.60 34 C124-2 30 5.15 0.02
12.69 3— C243 093 5.15 0.0039
12.79 4+ C24-4 20 515 0.059

s References to data used in the table are given in the discussions in
21% ge:zt.gz;():ept where the data is cited in the published compilations (AjS2,

j55, Aj59).

b The Li¢ values have been deduced from the He¢+d data (Ga55) with
rather a small interaction radius (3.5 X10713 cm). Note that limits on the
ground-state reduced width were also deduced in this analysis.

¢ For discussion of the values given for the 7.48-Mev level in B, see
“Mass 10" of Sec. II1.2(b).

d The residual nucleus in the fourth column is always in the ground
state unless a subscript # indicates that it is the nth excited state.

e An interaction radius of 1.45 (41/34-21/3) is not used in these entries.

thresholds are usually high in excitation in the con-
tinuum where individual levels are not resolved. One
noteworthy point is the size of the widths in Li® (Ga55);
as we have seen in Sec. II, such large widths are quite
consistent with the nuclear shell model and are, in fact,
expected because of the large overlap between the wave
function of two nucleons moving in 1p orbits and a
deuteron separating from the well-center with orbital
angular momentum zero or two.

(d) Photon Channels

Table VIII lists the known M1 radiation widths
observed between states of normal parity in the 1p
shell. It is an extended and corrected version of a
previous table.? Many entries are taken from a recent
compilation (Wi56b), and we refer to this paper for the
many experimental references. The initial and final
states in nearly every case can be ascribed to the normal
configuration (1p)”, and so theoretical predictions can
be made about the observed magnitudes. Such pre-
dictions for L—S and j—j coupling are listed in the
table along with the assignments to the character of the
initial and final states. In every case the radiation is
supposed to come only from the 1p nucleons and the
possible effects of recoil motion of the (1s)* core are
ignored. Such effects are presumably more important

3See (La54) but notice: (i) A is defined differently in this
reference; (ii) in Formulas (4) to (7), errors occur in the relative
phases of the space and spin contributions to A(#/1). This invali-
dates the last column of Table 2 in this reference.
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TasrLE VIIL. M1 transitions of known width in nuclei of the mass range 4<4 £16.2
Excita- Spinand Excita- Spin and
tion of isotopic  tion of  isotopic Experi- Initial Final Initial Final X
initial spin of  final spin of Obs mental state state Azin state state A%in
Nu- state initial state final width value in L—-S in L— - inj—j in j— -7
cleus in Mev state in Mev  state in ev of A2 coupling coupling coupling  coupling couplmg coupling
Li'® 0477 3—,% 0 3—,1  ~0.0057 ~0.84 #p[3] =2P[3] 0.0 (p9)? (p2)? 0.31
Be’ 0430 1—,% 0 3,1 ~00024 ~048 2p[3] =2P[3]  0.59 (py)? (pp)? 0.31
Bet 17.63 1+4,(1)4 0 0+,0 17 0.048 »p[31] us[4] 0 (3)* (pp)* 0.21
2.9 24,0 8.3 0.040 upr4] 0 (pp)t 0
18.14° (14) 0 0+, 0 5.3 0.018 ° 1504] (p3)*
29 2+,0 1p4] (py)?
B 478 (14,00 072 14,0 0.15 0.035 BD[42] BS[42] . 0 (P9)5p3 (pp)s
516 (2+,1 0 34,0 0.03 0.0034 ap, (427 BD[42] 1.32 (p3)° (p3)8 0.65
072 14,0 0.15 0.026 B5[42] 0 (pp)s 0.74
215 14,0 0.4 0.23 BD[42] 0.57 (p1)503
756 (0+,0 072 14,0 438 0.23 6wp[33] 1S[42]" 0.019  (py)5ps (pp)® 0.0080
or 1) or or 0 or 1.00
1P[321] .
215 14,0 1 0.12 1D[42] 0.033 (p1)03
or
889 24,1 072 14,0 8 0.34 up[42] 1S[42] Oor (p9)5p3 (pp)s
or 0.019
$P[33]
BY 446 (3—,3) 0 3—, 1 0.66 0.115 2p[43] 2P[43] 0.13 (p3)%p3 (pp)7
919 (-4 o 5=, 3 0.01 2X 104 2F[43] 2P[43] 0 (p3)%p3 )7
9.19  (3—,3) 446 (G—, D) 1.3 0.062 2F[43] 2D[43] 2X10™  (p3)%h (i);)“(m)
919 (53— 1 681 (-3 023 0.080 2p43] 2D[43] 0.0028  (p))°hs (p)5(py)
ct 970 (3-) 0 501 2.3 0.040 2p[4217] 2P[43]  0.0079  (p%3  (p3)7
c: 1510 14,1 0 04,0 100 0.45 sp[4317 uS[44] 0 G0y (p)® 0.59
1510 14,1 443 24,0 ~3 0.04 sp[431] up[44] 0 (p;)’p; (73 0.21
1610 24,1 443 24,0 152 1.4 #p[431] 1D[44] 0 ) (pppy 037
N8 351 i—% 0 31—, 3 0.66 0.244 2pra417 2P[441] 0.40 (m)ﬁ(m)2 (P13 0 124
N4 862 0+, (1) 0 1+,0 0.73 0.0176 ©P[433] 18S[442] 0.028  (p)°(py)t  (p)?
395 14,0 3.1 0.47 D442 0.035 (p2)7(p3)® 0.50
898 1+,(0) 0 14,0 0.17 0.0036 1pr4337] 18S[4427 0 (0ot (p)?
N5 1070 3—,% 0 1—1 0.12 0.0015 2p[443] (p3)?
1081 -1 0 301 0.010 1.2X10~ 2p[4437] (pp)?
1120 i—%1 0 1% 0.29 0.0031 2P[443] ()3

= References to the data used in the table are to be found in published compilations (A152 Aj55, AjS9, and especially Wi56b

b The observed value quoted for Li7 is a new one [C. Swann, V.

. Rasmussen, and F.

. R. Metzger, Phys. Rev. 114, 862 (1959)]

¢ Only the total radiation width of the 18.14-Mev state in Be8 is known along with the fact that E 212 Mev.

4 All uncertain spin assignments are bracketed (

e The absence of an entry in the theoretical columns implies that the evaluation of the entry is too ambiguous.

when there are only a few “loose” nucleons outside the
core to absorb the recoil, such as in the mass 7 nuclei.
Values of the single-particle widths I',, that are needed
in order to obtain values for A2=T'/T,, are estimated as
explained in Sec. I1.2(c).

The table shows that the theoretical prediction of A?

vary greatly from case to case, as do the experimental .

values. Also, although neither L—S nor j—j coupling
gives an adequate account of the observed values, there
is in several cases a correlation between the observed
values and the pairs of predicted values that is sug-
gestive of an intermediate-coupling situation. (See
especially the transitions in N*4) In a few cases, namely,
the transitions in Li’7, Be” (La55a, Bu56), N3(La53),
Bed, B, B and C®?(Ku57), calculations have been
done in intermediate coupling. The mass 7 results
cannot be taken too seriously in view of the previously
mentioned neglect of core motion and large experi-
mental uncertainties. The N* transition (Fig. 3) is
fitted in intermediate coupling with Rosenfeld forces
at a point where £=35K, which is the expected coupling
mode for this nucleus (In53, Ku56).

There exists two KO transitions in the mass range

A £16. They are 0+ —0+- transitions between the 7.68
and ground state of C2 and the 6.06 and ground state
of 08, These have been discussed in the literature (Sc55,
ElS6¢c, Sh56a). They are both quite strong transitions
(A2~%) and are informative in revealing properties of
levels. The O transition is allowed for (1p)12p — (1p)2
but is forbidden for the two-particle transition (1)
(25,1d)*> — (1p)22. The C® transition is forbidden accord-
ing to the shell model because of an interesting selection
rule (Sh56a) arising from the nature of the EO operator:
> i(3—1t3:)r2 This rule forbids all EO transitions be-
tween states of equivalent particles like (1p)8 — (1p)3.
The nice thing about this rule is that it is quite inde-
pendent of the nature of the forces between particles,
that is, it is purely a selection rule on orbital configura-
tions. The finiteness of the C®? transition is thus direct
evidence for configuration impurity in the initial or final
states. The most likely impurity is (1p)72p; it may be
that quite a small amount of impurity is sufficient to
give an appreciable transition strength, but this specula-
tion should be checked by calculation.

There are a few suspected E2 transitions in the 1p
shell, but the widths are generally not well known. Four
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cases are:

0.72(14) — 0(3+) in BY, I'=10-%ev, A2=0.9
(Th53, BIS7, Se56),

4.44(2+) — 0(0+) in C®,
{I‘=0.025 ev, A?=25 (De56),
Ir'=0.01ev, A2=1 (Sw57),
16.10(24) — 0(0+) in C2, v
,{P=3 ev, A?=0.4, (Wi56b),
I'=7ev, A2=1 (Ke59),
6.91(2+) — 0(0+4) in 08,
I'>0.026 ev, A2>0.28 (De56).

In extracting values of A? we have used (83) along with
the entries of Table IIT and =1.65X10"" cm. Some
predictions about A?(E2) for unmeasured transitions
have been made previously by Lane and Radicati
(La54). Note that (i) all theoretical values in Table IIT
of this reference should be divided by six because of an
error; (ii) A in this reference is equivalent to A? of the
present work in the case of E2 transitions.

(e) Concluding Remarks

In this section the shell model has been used to
predict about 30 or so experimental data involving
normal parity states in the 1p shell. Apart from the
question of agreement between experiment and theory,
an important feature of the predictions of A? is that
this quantity may have values from zero (forbidden
transitions) up to unity (single particle transitions). In
fact, A% can be larger than unity in certain cases. As an
example, the reduced width of C*? in j— j coupling for
nucleon emission is eight times the single-particle value,
ie., A?=8.

The general conclusion from comparing all the experi-
mental values with the pairs of predicted values in the
two extreme coupling modes is that there is good evi-
dence in support of the shell model with the freedom
of intermediate coupling. In the cases where the data

has been investigated in intermediate coupling, agree--

ment is obtained for £/K between three and five with
the suggestion of an increase between these values with
increasing mass. Such values of £/K are in good agree-
ment with those used in nuclear-structure calculations
(In53, Ku56).

2. NONNORMAL PARITY STATES OF THE
MASS RANGE 4<A<16

In Sec. I1.2(b), we set up a simplified shell model of
nonnormal parity states. This model is used in the
present discussion as a guide in the analysis of the
experimental data on reduced widths. The model
predicts that the first states of nonnormal parity of a
mass 4 nucleus in the 1p shell consist of an 2s or a 1d
particle coupled on to the ground state of the mass
(4—1) nucleus or, alternatively, a 1s nucleon hole
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F1c. 3. The value of A2=TI'/T', for the M1 radiation width in
N#: 3.51(3—) > 0(3—). ', is the single-particle width for a
proton as defined in Sec. I1.2(c). The horizontal line (A2=0.244)
is the experimental value. Curve (g) is computed with the
Rosenfeld central force mixture and curve (b) with the Serber
mixture.

coupled on to the ground state of the mass (4-41)
nucleus. It is clear that, if states of the former structure
occur near the nucleon thresholds, they produce strong
effects in the cross sections when the mass (4—1)
nucleus is bombarded with s- or d-wave incident par-
ticles. The nature of these effects depends on just where
the states are located relative to the thresholds. There
are three possibilities.*

(2) States occur below the nucleon thresholds, i.e., they
are bound against nucleon emission. In this case, they
manifest themselves in the scattering cross sections
above the thresholds by producing strong deviations
from hard-sphere scattering. In particular, the thermal-
neutron scattering lengths are greafer than the inter-
action radius. The last prediction is verified in the
data presented in the Li®4-n, Be’+n, C%?4-n, and
N™“4-7 scatterings.

(%) States occur above the nucleon thresholds and also
above the barriers in the nucleon channels. Single-particle
states are expected to be usually too broad to be ob-'
served as isolated resonances when no barrier (Coulomb
or angular momentum) exists to sharpen up the widths.
Thus, if the 2s and 1d state occur above the barriers,
they are not distinguishable for the nonresonant back-
grounds in the bombardment of mass (4 —1) nuclei by
nucleons. Nevertheless, they should produce anomalous
background effects, and the presence of the 2s state
again affects the thermal-neutron scattering length
which should now be Jess than the interaction radius.
This latter situation is observed in the He!4# and
Li"™#n scatterings.

(432) States occur above the nucleon thresholds but below
the barriers in the nucleon channels. When the single-
particle levels occur in such energy regions, they appear

4In all three situations, the single-particle states should
manifest themselves in stripping reactions by giving large yields;
(d,n) reactions leading to final nuclei Bes, B, C22, N would be
especially interesting in this connection.
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as resonances in excitation curves and so can be very
conveniently investigated. It is a fortunate fact that
the 2s and 14 levels do seem to often occur like this
experimentally. For instance, single-particle resonances
for s and d waves are found in mass 10, 12, 13, and 14
nuclei.

In contrast to the single-particle states, states of the
1s-hole type in the mass 4 nucleus are not expected to
influence the bombardment of the mass (4 —1) nucleus
with nucleons. Consequently, the latter type of reaction
is not expected to reveal anything about the states of
1s hole (unless, of course, one allows for some impurity
in their structure, i.e., allows for interaction with the
particle states which would amount to deviations from
the simplified shell model). This may help to explain
why much less is known about states of the 1s-hole type
than about particle states. In most nuclei, no states
have been identified as being of this type mainly
because one does not know for which properties to look.
In particular, it would be of great help in trying to
determine these states to have some idea of their ener-
gies. For this purpose, we can appeal to the simplified
shell model which gives a method for predicting the
required energies. This method, which seems to work
in the few cases where it has been tested empirically
(for instance, see “Mass 5” in the following), is based
on the neglect of interaction between different orbits.
(This is a rather stronger requirement than is strictly
necessary for the validity of the simplified model, which
only requires that the polarizing interaction between
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different orbits be small.) With this neglect, it follows
that the binding of a 1s-hole type state of the mass 4
nucleus in the ground state of the mass (4—1) nucleus
is equal to the binding of He® in He!. Thus one can
directly estimate the required positions of the states
of 1s hole.

In Table IX are listed the spins and energies of the
lowest states of nonnormal parity expected in nuclei
of the 1p shell on the basis of the simplified shell model.
The energies of the lowest states of the 1s-hole type (D)
are estimated as just described. The energies of the
2s3, 1ds, and 1d; particle states are estimated by as-
suming that their binding energies are always the same
and equal to the observed binding energies in C%,
namely 1.87, 1.06, and —1.92 Mev, respectively. This
method for the particle states is a semiempirical one,
since it is an experimental fact that the lowest-particle
states always have about the same binding, to within
a Mev or so. Almost independently of whether the
ground state of a given nucleus is loosely or tightly
bound, the particle states first seem to appear near the
nucleon dissociation energy. This fact indicates that
the positions of these states are determined mainly by
the mean potential well (which varies smoothly with
mass number) rather than the actual interaction with
other nucleons which effectively can fluctuate con-
siderably with mass number. For instance, the sym-
metry effect tends to make the binding in 4n-type
nuclei considerably larger than in the other nuclei.

This latter effect is well known for states of normal

TasLE IX. Spins and energies of the lowest states of nonnormal parity expected in nuclei of the 1p shell.®

Expected Expected Expected Expected
positions positions positions positions
of lowest of lowest of lowest of lowest
states of states of states of states of
Nuclei type (4) Spins type (B) Spins type (C) Spins type (D) Spins
He5, Li® 3 § 15 % %
Li¢ 3.6 1,2 44 1to4 7.4 0to3 13.3 1,2
6.1 0,1 6.9 2,3 12.9 1,2 13.8 0,1
Li7, Be? 5.4 13 6.2 381 9.2 13,8 17 3
7.6 2z 8.8 1/2'to 11/2 11.4 3/2109/2 3.7 38
Be? 17.0 1,2 17.8 1to4 20.8 0to3 18.9 1,2
17.5 0,1 18.3 2,3 21.0 1,2 21.2 ?
Be?, B? —0.2 3 0.6 E3 3.6 3 12.1 53
1.8 55 2.6 1/2t0 9/2 5.6 ttod 12.8 ?
BW 6.6 1,2 7.4 1to4 10.4 0to3 9.1 1,2
9.0 ? 9.8 ? 124 ? 111 ?
Bu, Cu 9.6 45 10.4 1/2 to 11/2 13.4 3/2t09/2 1.9 3
10.3 53 111 5% % 14.1 543 6.3 %%
(0 16.8 1,2 17.8 1to4 20.8 0to3 15.6 0,1
18.8 ? 19.8 ? 22.8 ? 19.3 1,2
Ci3) N3 3.1 3 3.9 3 6.9 3 10.0 % 3
7.5 38 8.3 1/2 to 9/2 11.3 Ltol 12.3 1
N 8.7 0,1 9.5 2,3 125 1,2 9.7 0,1
12.4 1,2 13.2 1to4 16.2 0to3 16.0 1,2
N, O 8.9 % 3 9.7 %% % 12.7 5353 5.0 3
11.2 3 12.0 2 15.0 2 e
ot 13.7 0,1 145 2,3 17.5 1,2
20.0 1,2 20.7 1to4 23.8 Oto3

a We list the four types of states (4), (B), (C), and (D) as defined in the text, The positions of the 2sj, 1dj, and 1dj particle states (4), (B), and (C)
are estimated by the condition that the binding of a neutron be the same as for the observed lowest states of these types in C3, namely, 1.87, 1.06, and

—1.92

Mev, respectively. The positions of the first states of the 1s-hole type (D) are determined as described in the text; that is, essentially, using the

assumption that the binding of such a state in the ground state of the next heavier nucleus is equal to the binding of He? in He? (20.56 Mev). All energies

are expressed as excitation above the ground states in Mev.
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parity, but, for nonnormal parity states, any such
effect is much less indicating that the odd nucleon
effectively couples weakly to other nucleons compared
to their coupling amongst themselves. This is just the
kind of evidence that supports the simplified shell
model for nonnormal parity states because, as discussed
in the last section, this model is based on the weakness
of interaction between different orbits. Thus the appli-
cation of the simplified model has some self-consistency,
although it should be stressed again that its theoretical
basis is very uncertain.

Finally, Yoshida (Yo054) has interpreted the nucleon
widths of nonnormal parity states in terms of the
strong-coupling model. We do not discuss his work here,
but, in Sec. I1.3, the connection between the simplified
model and the strong-coupling model is mentioned.

(a) Nucleon Channels

There are some 20 or 30 unbound states of non-
normal parity for which nucleon reduced widths are
known. These are listed in Table X. We now discuss
this and other data according to the mass numbers of
the compound nuclei.

Mass 5

The s-wave phase shift up to 20 Mev in the scattering
of neutrons from He? has roughly the energy de-
pendence expected from hard-sphere scattering: do=
—k,R (Hu52). Since this holds down to thermal ener-
gies, the constant R defined by this equation can be
identified as the thermal scattering length. The value
of R is 2.4X10~ cm, which is considerably less than
the interaction radius from the usual formula 1.45(4}+1)
X1078=3.71X 102 cm. This implies, as we have seen,
the existence of an unbound broad s-wave level. It
must be centered at an excitation E, 220 Mev, since
otherwise it would affect the observed energy depend-
ence of the phase shift. The s-wave phase shift for
- proton scattering up to 18 Mev is consistent with
scattering from a hard sphere of radius 2.0X10~ cm
(Mi58c).

There is evidence for anomalous d-wave phase shifts
and a £+ resonance emitting d-wave neutrons is found
in the H3+4d reaction at 16.69 Mev excitation in He®.
The reduced width is small, §°~0.03, so this is clearly
not the single-particle 1ds level. The simplest explana-
tion of this state is that it arises from the configuration
(15)3(1p)2; that is, a 1s hole in Li presumably in its
ground state. On the simplified shell model (see Table
IX), such a state is predicted at 15 Mev, which is
within 2 Mev of the observed position. The reduced
width of the pure state is zero, and the finite observed
value indicates the degree of impurity in the state. The
surprising fact is that the impurity is so small. The
broad 1ds single-particle state must occur somewhere
in the vicinity of the 16.69-Mev state; yet, in spite of
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that, there appears to be little interaction between the
two states.

A similar £+ state is found at 16.80 excitation in Li®
from the He3+4d reaction. To some extent its detailed
properties confirm that it is the mirror of the foregoing
state in He®, For instance, the nucleon reduced widths
are about the same. The deuteron reduced widths for
the two states, on the other hand, may differ consider-
ably for certain choices of interaction radius (for
instance, they differ by a factor of 10 if the radius
5% 1078 cm is used). Since the values of the reduced
widths are very sensitive to choice of radius, such dif-
ferences cannot be taken as serious evidence against
the mirror nature of the two levels.

Recently there has been evidence for states above the
16.69 state in He® from the T'(d,n) reaction (Ga56) and
from neutron scattering (BoS7).

Mass 7

A broad level (or levels) of nonnormal parity is
found at about 6.5 Mev in both Li” and Be’. The
breadth of the Li? levels must be ascribed to breakup
into H3+4He?, since its position is below the neutron
threshold. The Be7 levels, on the other hand, can break
up by proton emission so that its breadth is composed
of a width for He®*+He* and a width for p4-Li® A rough
analysis (Ba51) of the latter level indicates the width
for He*+He* decay to ~0.12 (if J=4%) or ~0.06 Mev
(if J=%). The width for the mirror decay of Li into
H3-}He! is greater than these values by a factor equal
to the ratio of the barrier penetrabilities (s wave if J=3%;
d wave if J=3). The reduced proton width of the Be’
level is not very well determined but it is large, that is,
of the order of the single-particle value. Thus it seems
that at least one of the two single-particle 2s levels of
spins £ and % occurs at 6.5 Mev. This surmise is
supported in the case of Li’ by the size of the Li®+#»
coherent thermal-neutron scattering length (7X107%
cm), which far exceeds the interaction radius of 4.2
X107 cm and therefore demands at least one strong
bound s-wave state. However, there is a possible error
of 50% in the thermal-neutron cross section (Sh51)
and also, at higher energies, the s-wave potential scat-
tering is anomalously small rather than large (Jo54b,
WiS6a). Thus the situation is not a simple one. From
a theoretical point of view one anticipates a complicated
situation involving many states. Besides expecting 2s
and 14 single-particle states (since the energy is near
the nucleon threshold where such levels are found to
occur empirically in other cases), we also expect a low-
lying 1s-hole (3-) state. By using the simple means of
estimating the positions of such a level, we find (Table
IX) that it is predicted at 1.5-Mev excitation. This
estimate can only be taken to suggest the fact that a
low-lying 2+ level of this type can be expected, but it
may be significant that a similarly estimated position in
the mass 5 nuclei (see “Mass 5’ above) was apparently
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TasLE X. Nucleon widths of nonnormal parity states of the mass range 4<4 <16.#

Obs width (kev

Channel: residual
in center of

Compound Excitation Spin and isotopic nucleus +nucleon
nucleus in Mev spin +iot mass) Obs 628
He$ 16.69 3,3 Het+n-2 ce 0.03
Lis 16.80 i+, 3 Het+p+2 cee 0.03
Be ~6.5 G, 34), 3¢ Lis+p+0 e ~0.75
B 6.89 1—-,0 Be?4-p+0 ses ~1.5
7.48 2—,1 BeS+p+0 57 0.02
7.81 2— Be¥+p+0 260 0.15
Cu 10.06 i+, 3) BY4-»+4-0 160 or 90 0.20 or 0.09
B2 4.53 3—, Bi+4-n4-2 120 0.42
cu 16.57 2— Bi+4-5+4-0 ~140 ~0.21b
17.22 1— Bi--5+0 ~50 ~0.03
(O 6.87 +,3 Cl24-p-2 oo 0.008
7.64> +, 3 Cl+-p+4-2 ~90 ~0.04
~8.5b +,3 C24-n+-2 ~1000 ~0.4
N 2.37 +, 3 C2+4p4-0 33 0.81
3.56 +,3 Ci24-p+2 61 0.32
6.38 +, 3 C24-p-4-2 11 0.005
6.60 3+, % C2+4-p+0 75 0.022
6.85 3+,3 Ci2+p+4-2 41 0.02
C2+-p+0 73 0.5
7.42 +, 3 C24p4-2 85 0.03
8.15 +, 3 Ci4p+2 350 0.17
Cu ~11.5 , 5+, 1 CB4-n+2 ~1000 ~0.4
N 8.06 -1 Ci34-54-0 31 0.15
8.70 0—,1 CB4p40 470 0.29®
8.90 3—, (1) CB4-p4-2 19 0.18
9.18¢ 2—-,1) (CB+p+2) <0.4 <0.002
9.39 1— Ci3+p+0 18 0.10
9.49 2—,1 C4-p+42 37 0.15
10.43 @2-,1 CB+p-+2 <28 £0.03
12.69 - NB+n4-2 43 0.0028
CB4-p+4-2 0.62 0.00018
Ci8+4-p+3 0.17 0.0044
Col34-p4-2 0.70 0.0046
Csl+-p+1 5.6 0.0070
N1s 11.43 3+, % Cli+p4-0 15 0.005
N+54-0 24 0.014
11.61 i+, 3 Cl4-p+0 500 0.23
Nit4-5+0 18 0.0014
11.77 3+, 3 Cl+p+2 0.5 0.003
Nié+4-+0 34.0 0.01
12.14 34+,3% Cltp+2 14 0.04
N¥+4-54-2 36 0.008
12.32 5+, 3 Clét-p+2 0.3 0.006
Nit+2%-4-0 2.1 0.007
O1s 8.00 3,3 N¥+p+40 93 0.36>
8.33 3+, 3 N4+ p+0 3 0.0045
8.79 3+, 3 N#+p4-0 34 0.024
9.77 3Li+, 3 N+ p+0 1180 0.33h
Ot 12.43 1-) Ni54-54-0 ree 0.151
12.514 2— N5t p4-2 0.033 0.13k
12.78 0—,1 Ni54-p4-0 40 0.17%
12.95 2—,1 Nibst-p+2 1.2 0.15h
13.09 1—,1 Ni54-p4-0 112 0.15
13.24 3—,1 Nib4-p4-2 4.7 0.11b

a References to data used in the table are given in the discussions in the text except where the data is cited in the well-known compilations (Aj52,

AjS5, Aj59). . .
b The neutron widths of the 7.64- and 8.5-Mev states in C8 are taken from the data of C12+#x scattering (BuS55). Rather larger values are indicated in

the C!2(d,p) reaction (McGS5S5).
° The spin of the 9.18-Mev level in N4 has been recently reported as 2 4, and the width as 70 ev [S. S. Hanna and L. Meyer-Schutzmeister, Phys. Rev.

115, 986 (1959)].
d The proton width of the 12.5-Mev level in O!6 is the smaller of two possibilities (0.033 of 0.9) and is chosen because the larger value implies 623>1.

¢ When an entry is bracketed ( ), there is some doubt about it.
f The residual nucleus of the fourth column is always in the ground state unless a subscript # indicates the nth excited state.
& An interaction radius of 1.45(Ai184-1) X10718 cm is used except the case of the levels in N4, where published graphs of penetrabilities (Ch48) based

on a radius 1.41(A41/8-4-1) X10718 cm are used.
b The reduced width has not been corrected for the variation of the level shifts with energy.

type of situation such as seems to be observed (see
Ma57a).

verified to within a few Mev. Such a state would have
zero reduced width for nucleon emission, but it may
have a large one for alpha emission. By virtue of the
latter, it could be broad and overlap and interact with
the single-particle states to give rise to a complicated

Mass &

There are no known bound states of nonnormal
parity in the mass 8 nuclei. For that matter there are
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no free states either, at least none that appear as
discrete resonances. On the other hand, there are
several indications of strong s-wave effects just above
the nucleon thresholds which suggest that the 2s single-
particle levels (four in all; J=1,2; T=1, 2) are located
a short way above the neutron thresholds. In particu-
lar, both thermal-neutron scattering lengths in Li"4#
are either very small or negative, and this indicates
strong free s-wave levels. The s-wave phase shifts near
E,=0.25 Mev are positive (Wi56a). An analysis of the
Li7(nn')Li™ reaction reveals very strong s-wave effects
in the region about 1 Mev bombarding energy (Fr55).
Also, the reactions Li’(p,y)Be® show considerable
evidence for s-wave effects both in angular distributions
and excitation curves (Wi54).

Mass 9

No nonnormal parity states have been definitely
established as yet in Be®, but we wish to point out that
there is evidence for the existence of low-lying single-
particle 2s and 1d states as one might expect from
analogy with C®, another (4n-+1) nucleus. As men-
tioned in discussing normal parity states, the breadth
of the 1.8-Mev anomaly, taken in conjunction with its
proximity to threshold, may establish it as the expected
14 s-wave state. This anomaly is revealed in the
inelastic scattering of protons (Go55b, Bo56) deuterons,
and alphas (RaS55a) on Be’. In each case a broad
inelastic group (width ~200 kev) is found correspond-
ing to an excess energy of the residual system of ~1.8
Mev. [Notice that evidence for a similar anomaly in
B? is found from the Be?(p,%)B? reaction (Ma55).] The
shape of the anomaly can be fitted with a Breit-Wigner
type resonance formula, and this may be taken to
suggest that the inelastic particles leave behind a
compound state of Be® with excitation 1.8 Mev. Unfor-
tunately, the fittings do not really give separate values
of the two parameters (reduced width, resonance
energy). Nevertheless it is possible to conclude that the
reduced width is large, probably about the single-
particle value and certainly greater than one-fifth of it
(Go55b, RaS55a). Such a large reduced width for an
s-wave state implies that the neutron is released by the
inelastically scattered particles without much’appre-
ciable intrinsic time delay, so that the process may be
more realistically described as a three-body breakup
rather than two consecutive two-body ones. This makes
the analysis in terms of a Breit-Wigner formula some-
what artificial. An alternative analysis has been made
(Ra55a, Su58, Mi58a) in which one first attempts to
fit the shape of the anomaly in terms of phase-space
factors of the three particles alone. Then one improves
the fit by taking into account the Be8-neutron inter-
action (final state interaction). This fitting yields a
value of the scattering length for this interaction which
is large (13X1072 cm). Such a large value implies the
presence of a strong (single particle) s-wave interaction
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centered below the threshold, which is just the con-
clusion of the other analysis.

Mass 10

The scattering lengths of the Be?+-# scattering are
large (7.8X107® cm) compared with the interaction
radius (4.5)X107% cm) and this indicates strong bound
s-wave levels of both spins 1— and 2—. These may
well be the two states at 5.96 and 6.26 Mev that are
established as s wave in the Be(d,p)BY® reaction
(Gr56a). One is tempted to associate the 5.96-Mev state
with the believed 2— state of 7'=1 near the analogous
energy in BY. This is the 7.48-Mev level. On the other
hand, the reduced width of this state for s-wave
nucleon emission is only §2=0.04 or less, and this means
that it is a “weak” state and hardly capable of pro-
ducing strong effects at the neutron threshold in Be®.

As far as T=0 states of nonnormal parity are con-
cerned, the first level is the one at 5.11 Mev in BY,
which is believed to be 2—. The next one is the 6.89
Mev state. A recent analysis (Mo56) of the Be®(p,p),
Be®(p,a), and Be®(p,d) reactions indicates that the spins
that the spins of this state are 1— or 2—, and that the
ratio T',/T is 0.30 or 0.18, respectively, as J=1, 2. The
fact that the state radiates strongly to the 1.74-Mev
state of B which has spin 04 (Table XI) suggests
that the spin is J=1. Since the state is broad, and the
level shift varies significantly through the width of the
state (as does the proton penetration factor), one must
not fit the cross section through the state in terms of a
simple Breit-Wigner formula with constant widths.
Instead, one must use the general resonance formula
with the reduced widths as parameters. Such a fitting
is not completely unambiguous, but there seems to be
no doubt (Mo56) that 62 for the proton channel is of
order unity, as expected for a single-particle state.

A special feature of the 6.89-Mev state as revealed by
study of the Be®(p,y) reaction is that it decays by the
emission of E1 radiation to both T=0 and T'=1 states
with fair probability (Ca54a, Ca55, Lo55, C156). This
may indicate a composite structure. Certainly there is
no lack of predicted levels in this energy region. The
coupling of 2s and 1d particles to the ground state of
the mass 9 system gives 20 states altogether. The
low excited states of the mass 9 system give rise to
similar numbers, and, in addition, states involving a 1s
hole are predicted to occur not far above the nucleon
thresholds.

A large number of possible structures could explain
the small s-wave reduced width of the 7.48 level we
have mentioned. It could have an excited state of the
mass 9 system as parent; it could involve a 1s hole
coupled to the mass 11 ground state; or it could be
mainly a 1d particle coupled to the mass 9 ground state.
The last possibility is given some credence by the
observed fact that, in spite of the high d-wave barrier,
an appreciable amount of d-wave admixture is needed
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to fit the angular distributions from this level (De49).
The proton width of the 7.48 level is only 659, of the
total width which is reported to be 88 kev from proton
capture work and 150(=250) kev from elastic scattering
(M056). Thus there appears to be a width of 35 kev for
alpha and deuteron decay in spite of the implied viola-
tion of the isotopic spin selection rule. In fact, the
Be'(p,@) and Be®(p,d) reactions show a resonance of
about the right width (We56) but apparently centered
at a few tens of kilovolts below the Be(p,v) resonance.
At present it is not quite certain that the resonances
are the same, although it seems very likely; the shift
in energy may be due (Mo56) to the interference with
the second 2— level at 7.81 Mev.

There is considerable interest in the results of a study
of the pair conversion electrons from the radiation
emitted near -the 7.48 level (De54a). If one level is
assumed responsible, the radiation is reported to be
E3 or M2. Since a 2s— 1p transition is forbidden for
such radiation, this might be taken as support for the
suggestion that the 7.48 state has configuration (1p)%1d.
However, the value of A? for the transition (10%) is
much too large to permit such an interpretation. One
must conclude that either the pair conversion theory on
which the radiation assignment is based is at fault or
else at least two levels are involved. It has been shown
recently that the pair conversion data can be fitted in
terms of two states, one emitting 1 radiation and the
other M1 (Mo56). The one emitting M1 radiation is
believed to have spin 2+ and to occur at 7.46 Mev; its
existence is independently suggested by the elastic
proton scattering data (Mo56).

Recent investigations have suggested a very tentative
correspondence between states in the range 5.7-7.6 Mev
in Be and those in the corresponding range 7.4-9.3
Mev in BY, In the energy range in Bel%, there are states
at 5.96, 6.18, 6.26, 7.37, and 7.54. As mentioned in
the discussion of normal parity states, the 6.18, 7.37,
and 7.54 states may be associated with the 7.56 and
8.89 states of BY, the 8.89 state being interpreted as a
close doublet (Ma56c¢). There is some doubt about iden-
tifying the 5.96 state with the 7.48 state in B, Accept-
ing this assignment leaves only the 6.26 state which had
no apparent analog in BY until recently when two
investigations (De57, Mo56) revealed a broad s-wave
state (I'~0.5 Mev) in B at an excitation energy of
7.81 Mev. The most disturbing feature of this corre-
spondence is that it involves all the known states of B
in the range 7.4-9.3 Mev, except the 7.46 state, thereby
implying that all except one are T'=1. Since it is very
unlikely that there is only one T'=0 state in this range,
one must conclude that either the correspondence is
incorrect or that there exist 7=0 states that have not
been found experimentally.

Mass 11

There is little evidence on any nonnormal parity free
states in the mass 11 nuclei. We only mention them to
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point out that the simple estimate (Table IX) for the
positions of the 1s-hole states indicates that the lowest
should occur about 2 Mev and have spin 4. This
raises the interesting question as to whether this state
is one of the established ones (at 2.1 or 4.4 Mev?) or
whether it has not yet been observed. Such a state
should not be found in the B°(d,p) B! stripping reaction
because it has zero nucleon reduced width.

An analysis of the B(p,a)Li” reaction at the 10.06
Mev level in CM" assigns nonnormal parity to this
state and an s-wave proton reduced width of either
0.20 or 0.09 (Cr56a). .

Mass 12

In C? we find the first clear demonstration of 2s
single-particle levels occurring as resonances. Alto-
gether, four states can be made by coupling a 2s
nucleon to the ground state of the mass 11 system J=2,
1—; T=0, 1. The 2— level at 16.57 may well be one
of these because it has an s-wave reduced width for
proton emission of about the value $6,2. Experimentally,
some doubt existed as to the spin, but the assignment
2— (T=1) now appears as satisfactory as others (De57).
The parity assignment to the 16.57 state also has some
support from the believed negative parity of 1.67 state
in B which is the energy analogue. It was originally
thought that the 17.22 (1—, T'=1) state was also a
single-particle level; recently, however, Dearnaley has
shown that the proton width of this state is the smaller
part (~5%) of the total widths, so the reduced width
is small (De57). The absence of the two I'=0 levels
need not be disturbing. Analogy with normal parity
states tells us that, other things being equal, T'=0
states are more bound than 7'=1. This means that the
two states could occur below the nucleon threshold,
where several states with no spin and parity assign-
ments are, in fact, known to exist. Furthermore, the 1—
state can decay by alpha emission; if the reduced alpha
width were large, the state might be so broad as to be
indistinguishable from the background.

Another nonnormal parity state is found in B2 at
4.53 Mev. This has spin 3— and is a d-wave state with
a large reduced width of 0.42, which makes it likely
that this is a 1d single-particle state. The angular dis-
tribution of the BY+-# scattering. (Wi55a) has been
fitted with a channel spin ratio (s=2:s=1) of 10,
assuming the potential s-wave scattering to contain a
statistical mixture of the two channel spins. The latter
assumption may be wrong and this may help to explain
the discrepancy between the ratio 10 and the ratio of
% predicted by the simplified shell model in which the
B state is considered to be a 1dg nucleon coupled to
the ground state of the mass 11 nucleus.

Mass 13

The nuclei C¥® and N®¥ manifest the success of the
simplified shell model in a striking way. Both the
reduced widths and the spectrum itself lend strong
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support to the model. According to the model, the
spectrum of states in C!2 should be reproduced in C*
and N, with the addition of 2s;, 1ds, and 1dj particles.
Once we specify the relative spacings of these single-
particle levels, we can “predict” the spectrum of the
mass 13 nuclei by superposing the three families as in
Fig. 4(a). In addition, the spectrum of N* should be
reproduced in states containing a 1s hole, but the simple
estimate (Table IX) indicates that such a family only
begins at ~10 Mev. If we take the observed 2sj, 1ds,
1d; ordering from OY, we obtain the spectrum shown
in Fig. 4(b). On comparing with the observed spectrum,
the most striking agreement is in the gap of 3 Mev above
the first two states. The most obvious differences_are:
(1) the inversion of the 2s3—1dg order; (2) there are
too many predicted levels, especially as some of the
observed levels must have normal (—) parity.

The first difference can be trivially attributed to a
change in well-shape between C® and O'". The second
difference is more illuminating. One should really
compare only experimental and theoretical spectra with
reference to the particular reactions used. Let us first
consider the scattering of nucleons by C*. This reveals

only those compound states with nonzero reduced

nucleon widths. It so happens that, of all the states we
predict, only three have nonzero reduced widths,
namely, those states formed by adding a 2s3, 1ds and
1d; to C2 in its ground state. These three should have
single-particle widths. This is completely borne out by
experiment. In the C®4p reaction, s- and d-wave
states are found at 2.37 and 3.56 Mev in N*® with large
reduced widths. From phase-shift analyses of the C2-+#
and C2+4p scattering (BuS5, Sc56), a broad dj level is
identified at 8.5 Mev excitation in C¥® and a corre-
sponding one at 8.15 Mev in N*,

Now let us consider what is to be expected when we
relax the model somewhat, that is, we allow some
mixing interaction between states. Such mixing affects
close neighbors first and, amongst other things, leads
to a sharing of reduced width properties. Both the 2s;
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Fi16. 4(a). The prediction of positive parity states in carbon-13
according to the simplified shell model discussed in the text. The
first spectrum is the experimental one of carbon-12. The next four
are predicted spectra of carbon-13 of states of the types (4), (B),
(C), and (D).

and dy single-particle states are predicted to be sepa-
rated by 3 Mev or so from their nearest neighbors of the
same spin, and so these latter should have small 62
There are two states of spin $-+ and one state of spin
2+ reported at 6.38, 7.42, and 6.60 Mev in N from
C2+4p scattering and their reduced widths are 0.005,
0.03, and 0.022, respectively (Sc56, Li57, Re56b). The
£+ state of 6.87 Mev in C* found in C**+-#% scattering
may be the mirror of the 6.38 state in N, Its reduced
width is 0.008 (BuS5, Sc56, WiS6c, Co56). The dj state,
on the other hand, is predicted to occur close to two
other 2+ states. Thus we expect these states to
acquire only small reduced widths when the mixing
interactions are introduced [ Fig. 4(b)]. This expectation
is confirmed experimentally by the identification of a
comparatively sharp - state at 7.64 Mev in’C¥
(Bu55) near the broad state is ~8.5 Mev, and a similar
state at 6.90 in N*¥(Sc56, Re56b) near the broad N

Y + (0° LARGE) 8:55 13, + (62 = 0:4)
% % + (0%smaLL) 815 1% . 6%20-17)
Y2 % % 7% +(@PsmaLL 7:64 1% + (02:004) )
i o0
ol €87 5‘2*(92=0008) 2'60 % + (0 =0-02)
F16. 4(b). The positive casle* ©*=002)
parity states of the mass 13 8 15 4 (62 =0-005)
systems. The spectrum on
the left is the expected one
and those on the right are
experimental. Reduced
widths for emission to the
ground state of C2 are indi-
cated in brackets by each % + (@ LaRGE) 13:86 15 4
state. 35° 5+ ©*=032)
% + (©®LARGE) 308 1+
2-37 ’,2* (92=°‘3)
THEORETICAL cBExP) N E&xP)
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state at 8.15 Mev. (The reduced widths of these widths
of these states are ~0.04 and 0.02, so they may be
mirror states.) The two predicted § states consist of an
s3 and a dg nucleon coupled to the first excited state of
C®, It is significant that the observed N* state at 6.90
has a large s-wave reduced width for emission to the
excited state of C2 (Sc56, Re56b), viz., 2~0.5. It is
thus apparent that the simple model gives a surprisingly
good representation of the experimental situation.

The C2(d,p)C*® reaction is subject to the same selec-
tion rules in the observation of levels as the C2+4#n
scattering if it proceeds by stripping. This is because
the reduced width is a multiplying factor in the stripping
cross section. On the other hand, if the compound
nucleus mechanism is operative, there is no such
selection rules. The reaction proceeds by stripping to
the three single-particle levels and it also excites with
less intensity several other levels as well (McGSS5).

The interpretation of the lowest 3+ state as a 2s
single-particle state has received further corroboration
from an analysis of the C2+-# scattering results at
energies S1 Mev (Th52). Not only is the scattering
length larger (6.11X107 cm) than the interaction
radius (4.77X10® cm), indicating a strong bound
state, but also the precise numerical values of the
scattering length and “effective range” (3.32£0.3X10-1
cm) can be shown to be consistent with a single-particle
model of the 14 state. To be more specific, these two
quantities are related to the logarithmic derivative f
of the radial wave function and its energy derivative
evaluated at zero neutron energy:

' 1\! £2)(df 1—aa+ta?—ro/2a
= 1 — s M ———— ——) = y
! ( aa) ’ (ma2 dE (1—aa)?
where 1/a is the scattering length, and 7, is the effective
range. These two quantities and the binding energy of
the 3.08 state in C® are, for example, consistent with a

single-particle 2s state in a square well, depth 35.23
Mev, radius 4.062X 10~ cm (La52).

Mass 14

The situation in N* is like that in C® inasmuch as
s-wave states with large reduced widths occur as reso-
nances. These are the 8.06 (1—, T'=1) and 8.70
(0—, T=1) states. The latter has a proton reduced
width of the order of 26,% expected for a 2s single-par-
ticle state. Although the former has quite a large
reduced s width (0.15), it does not appear to be a single-
particle 2s state but rather (Br57) a mixture of 25 and
1d states. Further evidence for this comes from the fact
that the 9.39 Mev state (see below) has an equally
large reduced width. Both the 8.06 and 8.70 states may
have their analogs in C" amongst the four reported
states at 6.09, 6.59, 6.72, 6.89 Mev. One analysis of the
C8(d,p)C" stripping reaction assigns negative parity to
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the first three of these (McGSS). Another analysis
(El56a) confirms the first one to be s-wave capture.
The two expected T'=0 states of 2s single-particle
structure may well occur amongst the several unidenti-
fied states below the nucleon thresholds in N, (The
state at 4.91 is believed to have spin 0—.)

There is also a d-wave (3—) state at 8.90 which has
a large proton reduced width of the order 26,2, and so
presumably has the structure of a 1d particle coupled
to the ground state of the mass 13 system (Wa39).

At 9.18 there occurs a state of possible spin 2—
(Ma56d). Accepting this spin, the reduced width (for
d waves) is very small (02<0.002), and this indicates
that the ground state of the mass 13 system is not the
main parent of this state. The isotopic spin of the state
isin doubt; the strong E1 radiation from it to the ground
state suggests T=1; on the other hand, the observation
of the state in the N*(a,0/)N™* reaction suggests T=0
(Mi56).

A 1— state has been reported at 9.39 Mev (Zi57)
with a quite strong width (62~0.10).

It has been suggested that the 9.49 state in N“ is 2—
and formed by d waves (WiS6b, Zi57, Zi58, Wa59). If

we attribute the observed width entirely to d-wave

formation, 62~0.15 for this state.

The 10.43 state is reported to be 2— (Wi55b, Wi57).
The small observed (d wave) width of 28 kev implies a
small reduced width 62~0.05, which in turn implies
that the main parentage of this state comes from excited
states in the mass 13 system. The observed channel
spin ratio for the s=0 to the s=1 channel is £, and this
suggests that the amount of parentage from the mass
13 ground state is associated with a dj rather than a d;
nucleon. (These two single-particle states imply channel
spin ratios of §, 4/9, respectively.)

At higher energies, a (3—) state is found at 12.69
Mev. Like the 4+ state discussed in Sec. III1.1(a), this
has very small reduced widths for nucleon emissions,
and its neutron and proton reduced widths also differ
by a factor of five or so, indicating strong isotopic spin
impurity (Sh53, Sh55a).

The C*¥(d,p)C* reaction reveals a strong d-wave level
(or levels) centered at about 11.5 Mev in C* (McG55).
This may well be the expected doublet of single-particle
levels J=1, 2— ; T'=1 formed by coupling a 1d; particle
on to the ground state of the mass 13 system.

Mass 15

This mass is of special interest. Experimentally,
several levels of positive parity have been found in the
N*(d,p)N* reaction (Sh55b, Gr56a) at 5.28, 5.31,
7.16, 7.32, 7.57, 8.32, and 8.57 Mev. Theoretically,
Halbert and French (Ha57b) have made an attempt to
predict the energies of the levels, together with their
spins and reduced widths, by diagonalizing interactions
within the configurations (1s'1p%2s), (1s%'°1d), and
(1s%1p"). Amongst other reasons, this calculation is
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interesting because it gives insight into the simplified
shell model that we have been using.

The comparison between experiment and theory is,
on the whole, very good. Experimental values of the
reduced widths vary over nearly two orders of mag-
nitude, but they are reproduced satisfactorily by the
calculation.

Comparison with the simplified model shows that the
model certainly cannot be used reliably in the mass 15
systems. Although there is a tendency for each state
to have a pure configuration (i.e., one of the three
quoted above dominates), the assumption of “unique
parentage” breaks down seriously for some states. As
Halbert and French point out, the four lowest predicted
states have comparable amounts of parent states of
T=0 and T=1. Furthermore, the two lowest states
(5.28 and 5.31) have small reduced widths instead of
the large ones predicted by the simplified model. The
suggested explanation for the 5.31 state—that it comes
from the (1s%1p%) configuration (In55)—is not sup-
ported by the calculations or by recent experimental
data on C' decay (Al59). This fact means that the
simple recipe for predicting the position of hole-type
states also fails in mass 15 [ from Table IV (b), the recipe
predicts 5 Mev, which is near the 5.31 state].

The failure of the simplified model in mass 15 prob-
ably applies also to other (4n-+3) type nuclei like
mass 11. However, in nuclei of other types, the model
must work rather better. Not only is this an experi-
mental fact (see Mass 12, 13, 14 above) but it is also
theoretically reasonable, since the amount of parentage
mixture must vary inversely as the energy spacing of
low-lying parent levels. In the (4n-+2) type parents
of (4n+3) type nuclei, this spacing is least.

In O, unbound states are reported at 8.00 (%, $4),
8.33 ($+4) (Ha56), 8.79 (3+) (FeS9b), 9.77 (%, 3+).
The 8.00 and 8.33 states have large and small widths,
respectively, and are probably isobars of the 8.32 and
8.57 states in N8, The former is found in calculation to
be mainly of the structure [N*(ground)+2s] (i.e., the
simplified model applies to this case). Presumably the
9.77 state, which also has a large reduced width,
accounts for most of the remainder of this parentage.

Higher in the spectrum of N5, several positive parity
states are found in the reactions C*+p (Ba54, BaS5b,
Fe59a), N¥+4# (Fo55) and B4 (Sh55a). These have
uniformly small reduced widths except for the 11.57
state of spin 34, where the value is very large (Ba55,
Fe59a). This state probably has T'=$% (it does not
decay by neutron emission to the ground state of N*),
and it is naturally identified at the 2s single-particle
state whose ‘“core” or ‘“parent” is the first excited
(T=1, J=0) state of the mass 14 system.

Mass 16

The addition of 2s and 1 nucleons to the ground
state of the mass 15 system gives 6 states of spins O,
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1,1, 2, 2, 3— for T=0 and another 6 for T=1. There
are several states below the proton threshold in Q¢ of
odd parity, and these are presumably members of the
T'=0 group. Above threshold are found a 0—, a 1—,
and two 2— states (at 12.78, 13.09, and 12.51, 12.95,
respectively) and also a possible 1— state at 12.43
(He58b) and a possible 3— state at 13.24 (Ha56). The
0— and 1— (s wave) and the two 2— (d wave) states
have reduced widths rather less than but of the order
of 36,% and this suggests their interpretation as 2s and
1d single-particle states. The suspect 1— state would
have a fairly large reduced width although rather less
than the single-particle value. The suspect 3— state
emits alpha particles to the 24 excited state of C12 and
the width for this process is unknown so that the proton
width can only be given as an upper limit.

There is a certain center-of-mass effect to be taken
into account in constructing states of nonnormal parity
on the basis of the usual shell model (E155b). Besides
demanding a certain mixing of configurations, this
effect actually excludes some states being spurious in
the sense that they are not new states of internal motion
but only of the center-of-mass motion. Some of the 12
states that we mention above are excluded in this
interpretation.

(b) Alpha-Particle and Deuteron Channels

These have been discussed generally for both normal
and nonnormal parity states in Secs. IIL.1(b) and (c).
The experimental data is included in Tables VI and VII.

(c) Photon Channels

In Table XT we list the observed electric-dipole elec-
tromagnetic transitions of known width in the 1p shell
(Wi56b). In every case only one of the two states
involved is of nonnormal parity (usually the initial
state). In addition to these E1 transitions, an £3 tran-
sition is found in O (see below).

A very useful criterion for an initial analysis of the
strength of an E1 transition is provided by the vanishing
of the E1 matrix elements taken between states of the
same isotopic spin in self-conjugate nuclei [in other
words, the ‘“isotopic spin selection rule” for E1 tran-
sitions (McD 55)7. This selection rule enables one to
extract information about the isotopic spin of the states
involved in an E1 transition from the transition width.
For instance, the extreme smallness of the E1 widths
from the 5.11 state in B! of spin 2— establishes this
state as almost pure 7’=0. In contrast, the occurrence
of strong E1 transitions from the 6.89 state in the same
nucleus to states of 7’=0 and T=1 implies that this
state contains both T'=0 and 7=1 components
(WiS6d).

In order to discuss the observed E1 widths further,
it is convenient to extract, for each width, the value of
the quantity A% As discussed in Sec. II, this is defiried,
for any transition, as the ratio of the transition width
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to that of a corresponding single-particle transition:
A2=T/T,. In the same discussion, a conventional defi-
nition-of “single-particle transition” was made in which
the matrix elements (assuming an oscillator well) are
essentially given by the integrals 7(£,1,1’) of Table IIL.
The final formula for A%in terms of I' and these integrals
was given at the end of the section. The entries of
column 7 in Table XI are obtained from direct use of
this formula, assuming a value for the oscillator-well
size constant b of 1.65X 10~ (CaS4b, Ja54). Columns
10 and 13 of Table XTI give the theoretical values of A?
based on the assumption of L—S and j—j coupling,
respectively, and these are to be compared with column
7. For the states of nonnormal parity, i.e., those con-
taining an ‘“‘odd” particle, the odd particle is always
assumed to be spin-orbit coupled before being coupled
on to the “core,” irrespective of whether L—S and
j— 7 coupling applies inside the core.

The qualitative conclusions that we can draw in
comparing the observed and predicted. transitions are
much the same as for the M1 transitions in Table VIII.
The theoretical predictions vary greatly from case to
case to case as do the experimental values. Also in some
cases, there is a certain correlation between the ob-
served values and the pairs of predicted ones that may
be taken to corroborate our simplified shell model for
nonnormal parity states. (Impurities in a wave function
of the simplified model type have a more serious effect
on the prediction of E1 widths than on the prediction
of nucleon widths of nonnormal parity states, since
admixtures of other wave functions of the simplified
model give rise to interference terms in the former case
but not in the latter case. Thus, we do not expect the
predictions of the model to be so good for E1 widths.)

The E3 transition in O'® that we mentioned pre-
viously is between the 6.14 (3—) state and the ground
state. The width of the transition is I'=0.7(#0.3)10~*
ev (De55, Ko58), which corresponds to A2(E3)=6(=3)
(if the single-particle matrix element is evaluated for a
1d — 1p transition using Table ITT with 6=1.65X10"13
cm). In j—j coupling (1ds)(1p1)* — (1p3)%, A*=5/21;
in L—S coupling ("F — 115), A2=5/7. Both theoretical
values are considerably less than the experimental ones.
In extracting the experimental values of A2, the single-
particle matrix element may have been underestimated
but surely not so much as to account for the required
factor of 10 or so. Some suggestion has been made for
the occurrence of radiation from the neighborhood of
of the 7.48 state in B which would be £3 in natureif the
state were responsible (De54a). However, the A% value
for the transition would be >>10, and so the suggestion
is probably incorrect. ‘

Several thermal-neutron capture cross sections are
known (Table XII). If the s-wave levels responsible for
capture and their neutron reduced widths could be
established, these cross sections would yield many
radiation widths, mostly E1. However, an analysis of
the capture in Li#(Th51) and C2 (Th52; Wo54) indi-
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TaBLE XII. Thermal-neutron cross sections of
nuclei in the 1p shell.»

Coherent Total Thermal
scattering scattering capture Final states and
Compound cross section  cross section cross section their percentage
nucleus in barns in barns  in millibarns capture
Li7 ~6 oo 2848
Lisb 0.804-0.05 1.5+40.4 3345
Bel? 6.04+0.03 6.04+:0.03 9.0+0.5 0(0+):75
3.37(24):25
Bu e 3.3+0.5 450200
B2 e 3.76 <2
Cs oo 4.702:0.05 47 0(3—):70
3.68(3-):30
3.09(34+): <10
3.86(34):<6
Cu 4.5+0.6 5.5+£1.0 0.940.2
N1s 11.140.3 11.440.5 80420 0(3—):20
5.30(+):40
6.33(3—):17
7.16(+):4
7.32(4):12
8.28(+):4
9.16:2

® References to the data are to be found in the compilations (Aj59,
Aj55), except for the limit of 2 mb in the case of B2 (Harwell, unpublished
work) and the thermal capture cross sections of Li¢, B1, N4 (Ba57)

bIn Li8 the coherent scattering amplitude is observed to be negative.
In other cases the sign is not known.

cates that considerable E1 capture can occur outside the
interaction radius in these and probably other cases.
Such capture interferes with the usual internal con-
tribution and thereby makes the extraction of the latter
from the data uncertain. This may explain in apparent
paradox in the case of capture in C. If we assume that
the 3--(3.09) state is responsible for this capture (Ki54),

- the ratio of the E1 widths for the i+ — 31— and

3+ — $— transitions is 7:3 or, if we extract the E?
factor, 1:25. Now if there is no T'y=1 parentage in the
14 state (as would be implied by our simplified shell
model, which says that C? is its unique parent), we
expect this ratio to be the same in N3, The two relevant
El1 widths in N® are known, and the ratio (when
corrected for the E? factor and the spin of the emitting
state in the 34 — §— transition) is 1:1. Thus, there
is a discrepancy of 25 in the two ratios. A freak inter-
ference between the internal and external contributions
in either N*8 or C** may be responsible.

(d) Concluding Remarks

The present section has established that we can
usefully exploit the simplified shell model of nonnormal

parity states as.a guide for analyzing the data. Con-

sidering that the model has little theoretical foundation
as mentioned, its usefulness is somewhat surprising. It
is significant that its best results are achieved for mass
13 for the states in which a single particle is coupled to
the states of the mass 12 “core” and the worst for mass
15 with a mass 14 “core.” Since the states of C!? are
widely spaced (~4 Mev or so), the core has a special
stability against being excited or polarized. This fact
certainly contributes strongly to the success of the
model in this case. We have seen that the triplet of 34
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states near 7 Mev actually enables us to estimate the
power of the interactions between states. The mixing
of pure states within an Mev or so of each other is of
the order of 209, which is remarkably small. The
situation we are discussing here has some correspond-
ence with the fine structure interpretation of the
complex-potential model of heavy nuclei (LaS5h).
According to this model a zero-order single-particle
level is mixed into the multitude of surrounding states
but only over a limited energy range. In light nuclei,
such as mass 13, there are very few states to do the
sharing or absorbing, so few in fact that we can study
levels and their sharing ability on an individual basis.
However, the mixing range is just about the same in
both situations, namely, a Mev or so.

It is certainly very desirable that a theoretical
examination of the simplified shell model be undertaken
in some special cases in order to find out whether the
model is implied by the usual shell-model assumptions
for normal parity states or whether some new assump-
tions are needed. Probably the nonnormal parity states
can be more informative about the nature of the forces
coupling nucleons to each other than the normal parity
states. In atoms, for instance, where forces are long
range, our model is a recognized one and can be shown
to be consistent with normal Coulomb forces, etc. In
the nucleus, forces are taken to be of short range in
discussing normal parity states. For nonnormal parity
states, it may be that forces have to be taken with
longer range to justify the simple model and so fit the
observed data. Such speculation can be checked only
by calculation, and calculations have been made so far
only for the mass 15 systems (HaS57b; see “Mass 15”

above).
3. NUCLEI IN THE MASS RANGE 16<4<40

There is a growing amount of reaction data on nuclei
between oxygen and calcium, that is, nuclei of the
(2s, 1d) shell (En54, En57). The data on widths for
nucleon, alpha, and radiation processes are listed in
Tables XIII, XIV, and XV. On attempting any detailed
theoretical analysis of most of this data, one soon finds
this to be impracticable in view of the ambiguities in
the identification of individual states. Because of this,
most of the ensuing discussion of the tables consists of
qualitative remarks. We first make some general ob-
servations about normal and nonnormal parity states,
and then we discuss some specific entries in the tables
in the light of these observations.

(a) Normal Parity States

The mass 17 nuclei, O and F', exhibit three states
corresponding to the expected 1dj, 2s;, and 1d; single-
particle states. In O, these are the ground, 0.87, and
5.08 states, respectively (Ad53). The identification of
these states as the single-particle states is supported by
their positions (Fo58), their spins, theJM1 and E2
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moments of the ground state of (OV), the strength (large
reduced width) of the 2s; state [as revealed by its
strong influence on the 0'%+-p and O+ scattering at
low energy (La52, Th52)7, and the large reduced width
of the 1d; state as measured in O by the O4#
resonance scattering. The only experimental fact in
apparent disagreement with the assignment of the
single-particle states is the width of the i+ — 5+ EF,
transition in OY. This transition is theoretically for-
bidden between the two single-neutron states pre-
scribed by the shell model [there is not even a con-
tribution from the recoiling O core provided that
properly antisymmetrized wave functions are used
(EI55b)]; experimentally, the transition is allowed
(ThS53). Recently, the observed width has been fitted
simultaneously with the observed E2 moment of the
ground state by modifying the shell-model picture to
include weak collective effects [weak excitation of a
quadrupole phonon oscillation in the O core (EI55b,
BaS6a, Am57)].

Recent successful shell-model work on the mass 18
and mass 19 systems (ReSS, El55a) show that the
structures of low-lying individual states of even these
two- and three-particle nuclei are quite complicated in
a shell-model description. We may expect that, for
highly excited states and for heavier nuclei, the states
are even more complicated. Qualitatively this leads one
to expect small reduced widths for nucleon channels
since the most likely overlap between any given
compound and final states is a small one. This expec-
tation is confirmed by the smallness of the s- and
d-wave reduced widths in Table XIII. In fact, the
smallness of 6% and the closeness of the spacing of many
levels in Table XIIT means that one may begin to apply
statistical considerations. In several nuclei, one can
make order-of-magnitude estimates of v%/D, the strength
functions, and confirm that the values are of the order
of the predicted value 10~ (La57).

The striking success of the strong-coupling model of
Bohr and Mottelson (Bo53) for the mass 25 system
(Li56, Li58) has lead to an examination of the low-lying
states of F'® with the same model (Pa57). The simplest
considerations with the strong-coupling model already
give qualitative agreement with the observed spectrum.
More refined considerations, which take into account
the j mixing of single-particle states due to the defor-
mation (Ni55) and K mixing due to the rotation-
particle coupling (Ke56), give very good agreement with
observed data [even including the large width of the
E2 transition 0.197 (§+)— 0(%+), which the shell-
model calculations fail to give unless supplemented by
collective effects (El55a, Ba56a)]. It isanimpressive fact
that the predictions with the strong-coupling model can
be made in a few hours, whereas the shell-model calcula-
tions take months to perform. In spite of the absence of
apparent similarity between the two models, they do
ultimately make nearly the same predictions. This fact
suggests an underlying similarity between the two; in
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other words, the configuration mixing between the ds, d3,
and sy orbits thatresults from the complicated shell-model
calculations is essentially the simple type of mixing
that is induced by deforming the spherical potential
well into a spheroidal shape. Recently, Elliott has
examined this situation (EI5S8) and has exposed the
connection between the two models.

This discovery of the applicability of the strong-
coupling model does not imply any revision of the above
statement that little may be said of the individual
resonance (i.e., unbound) levels in nuclei like F, How-
ever, it does mean that one may now make predictions
about resonance levels of nuclei like Al*® where these
levels occur at low excitations. From the shell-model
point of view, it is effectively impossible to make pre-
dictions about Al%® which has nine loose particles outside
the closed shell 0. With the strong-coupling model, in
contrast, predictions are immediate (see Sec. IL.3). All
the lowest states are members of rotational bands, the
internal wave functions consist of the closed (w) shell
Mg? and a single particle.

So far we have mentioned only ‘single-particle”
states as opposed to ‘single-hole” states. Certain
evidence for the existence of the latter type states is
found in the nuclei O'7 and F*®. The interpretation of
the 0.114 (3—) state in F¥ as a 1p3— hole state leads
to the correct energy of this state when we make use
of the simplified model discussed previously. It has
been suggested (Ch54) that the odd-parity states in OV
should be regarded as states of three holes (1p3)73, but
one may also try a single hole, (1p;)~), interpretation.
The first four states of odd parity in O'7 are at 3.06

1-), 3.85 (3—), 4.56 ($—), and 5.23. The last state
has been found recently as a weak group in the
018(d,p)0"Y reaction with a stripping-type angular dis-
tribution best fitted with 7,=3 (Pa55a). The ground
state of F'8 is 14, 7'=0 and, according to the shell-
model theory (El55a), there should be a state about
1 Mev higher with J=3+, T'=0. If we consider making

a 1p; hole in these two states, then we expect to produce

four states of spins %, £, and 3, Z. If we identify the
above four states with these, then their energies are
only about 2 Mev below the predicted positions. In
addition, notice that all four states have small reduced
widths as expected (Table XIII), according to the
present interpretation. (The 5.23 state is so sharp that
it is not found in the O'-}-# scattering.)

(b) Nonnormal Parity States

First we discuss the approach to these states in terms
of the shell model; it is recalled that, in discussion of
nuclei in the mass-range 4<4 <16, it was found that
proper shell-model calculations for states of nonnormal
parity required prohibitive labor. In the case of the
mass range 16 <4 <40, even most normal parity states
have not been treated because of the labor involved.
Consequently, we are again forced to adopt the sim-
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plified shell model for discussion of low-lying non-
normal parity states. The only nuclei in which such
states are found are Na?, Al?» P» and CI® (see Table
XIII). The best example is Al?%, as investigated in the
proton bombardment of Mg (Mo51, K052, Li56). In
this nucleus, the simplified model seems to be readily
applicable. The levels at 3.08 ($—), 3.72 (3—), and
3.85 (3—) all have large widths and would appear to be
the expected 2p;, 1fys, 2p; single-particle states. (In
contrast with these levels, the normal parity levels at
3.88, 4.22, and 4.60 have very small widths; however,
the normal parity states at 2.51 and 2.70 probably have
larger ones.) The nuclei Na2, P2, and CI® also exhibit
“strong” p-wave states.

We recall that the simplified model of nonnormal
parity states was introduced because the usual shell-
model calculations are much too complicated to be of
practical use for such states. In contrast, the strong
coupling model deals with states of normal and non-
normal parity with equal facility; in particular, it
predicts that the lowest states of either parity in a
nucleus of 4 particles should have large reduced widths
for channels involving the ground state of the nucleus
of (4—1) particles. [Referring to Sec. IL3, the pre-
dicted values of 6%/6,® for the levels of a compound
nucleus consisting of a closed-shell nucleus plus one
particle are 2(2J4-1)7%, where J is the spin of the
compound state.] From this point of view, we may say
that the strong-coupling model provides an alternative
basis for the large reduced widths of nonnormal parity
states, a basis which has the merit of not requiring
special assumptions over and above those for normal
parity states. Furthermore, the observed widths, although
large, are usually rather less than 62/6,2=1 or % which
is predicted by the simplified shell model. This is in
qualitative accord with the extra factors like 2(27+41)!
implied by the strong-coupling model. Yoshida (Yo054)
has reinterpreted the observed widths of nonnormal
parity states of nuclei with 4<16 in terms of the
strong-coupling model and found reasonable agreement.
In the following discussion, we describe a similar appli-
cation to nuclei in the mass range 16<A4 <40.

(c) Nucleon Channels

From considerations of excitation energy and level
density, the only widths in Table XIII about which
individual predictions can possibly be made are those
of O and F*7, Na?, Al?», P¥, and CI¥, i.e., the (4n+1)-
type nuclei.

The nuclei O and F'7 presumably must be discussed
in terms of the shell model since it is unlikely that
nuclei so close to the closed shell O have a permanent
deformation. On this basis, the 5.08-Mev state of O
is the expected dj single-particle state (as is the 4.6
state of F*7). This assignment is supported by the large
widths. All the other states (which have small widths)
must be attributed to core excitation.
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TasLE XIII. Nucleon widths of states in the mass range 16 <4 540.

Obs channel
Compound Excitation Spin and Channel: residual width (kev in
nucleus in Mev parity nucleus +nucleon 1! center of mass) Obs value of 62> Reference®
ov 4.56 - O14-n+41 42 0.057
5.08 + O+ 2 95 0.39
5.39 -~ O¥+n4-1 33 0.014
5.94 — O+n--1 28 0.0084
6.37 + 01+4r+4+0 110 0.020
7.28 + O4-p--2 210 0.075
7.72 - Ot64-pn+4-1 750 0.120
8.25 - Oté4-p+4-1 260 0.037
Fu 3.10 G—)» 0164541 18.7 0.010
3.86 G-) Ot64-p+4-3 <3.3 <0.018
4.5 3-) Ot+4-p+4-1 ~400 ~0.08
4.6 @+ O1+4p+2 ~350 ~A0.16
(024 8.22 2+ 0Y"4-n+40 0.014 9X10-8 Wes8
8.29 3— OY4-n+1 0.83 0.0024 .
F20 6.626 2— Fo4-p4-1 0.3 0.015 Ne55
6.647 1— Fo4pn+1 1.42 0.033 BIS6
6.70 (1-) FO4n+ (1) (10) (0.085)
Ne2 13.19 1+ Fo9+4-540 0.045 0.057 Ba55a
Fi¥+4p+1 <0.0005 <0.21 Ba55c
Fal94p+2 <0.0001 <10% WeS5
13.43 @2-) Fo4p4-1 0.043 0.0057
Fo+p+2 <0.5 <0.45
Fo¥4-p+1 <0.5 <22
13.51 1+ © (as 13.19) 7.3 0.14
0.046 0.009
0.0005 0.006
13.68 04 Fo+4-p+4-0 23 0.16
F4-p4-1 ~0.05 ’ ~0.0021
Fal24-p4-2 <0.01 <0.014
13.70 2— as 13.43) 1.1 0.022
<0.002 <0.001
0.57 0.040
13.76 14 (as 13.19) 14 0.0066
3.0 0.075
<0.020 <0.01
14.15 2— (as 13.43) 0.3 0.001
0.3 0.014
) 0.6 0.0037
14.17 2— (as 13.43) 2.5 0.0079
0.7 0.029
14 0.0084
14.22 1+ (as 13.19) 124 0.014
2.2 0.0084
<0.035 <0.0017
Ne2t 7.62 - Ne?+n-+41 14 0.009 Co59
7.98 - Ne?+n4-1 6 0.003 Si58
8.00 - Ne?-tn+41 32 0.016
8.06 @+ NeX+4n-+2 9) 0.015
8.30 - Ne?-+n+1 27 0.012
8.36 + Ne®-+n--2 10 0.012
8.60 -+ Ne?+n-+-2 32 0.03
8.66 3— NeX+n-+1 48 0.02
Na?t 4.18 - Ne24-p4-1 169 0.32
4.31 + Ne2o+p-4-2 6 0.048 Ha55a
4.49 -+ Ne?+-p-+4-2 16 0.095 Ha3Sb
5.48 + Nex+-p+4-0 84 0.026
NeX-+-p+4-2 21 0.72
5.85 3— Ne?+-p4-1 20 0.0083
Nex-+p4-1(3) 4 0.0072(0.48)
6.10 G, - Ne2-p+3 0.23 0.0012
Ne#-+p+1(3) 6 0.0072(0.36)
6.53 & 9+ Ne®+p4-2 ~140 ~0.0835
Ne#+p40 3 0.0036

a All uncertain entries are bracketed ( ).

b In extracting the dimensionless reduced widths, a radius of 1.45(41/34-1) X107 cm was used throughout. X i .

o For a given nucleus the references usually apply to several levels. As a rule, references are given only when they are not mentioned in the ‘published
compilations (En54, En57).

d Sixty-six levels are reported in the excitation energy range 7.7 to 8,2 Mev [C. T. Hibdon, Phys. Rev. 114, 179 (1959)].
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TABLE XIII.—Continued.

Obs channel
Compound Excitation Spin and Channel: residual width (kev in
nucleus in Mev parity nucleus-+nucleon -/ center of mass) Obs value of §2b Reference®
Na2 6.96 (2—-) Na?4-n-(0) 0.40 0.0024 Ly58
7.01 3— Na®--n-4-1 0.78 0.015
7.15 1(=) Na#®+n+ (1) 5 0.016 Ne55
0.040 BI56
7.16 0(—) Na®+4n-+(1) 14 0.017
7.19 1 2( ) Na®+n+ (1) 7
7.24 Na’3+n+0 4 0.0022
7.33 1( ) Na#®-n+ (1) 22 0.030
7.39 Na®+n+(1,2) 0 (0.011, 0.11)
747 (l-l—) Na”-l—n-i—(O) 37 0.015
Mg Ne54
11.983 2— Na®4p-4-1 £0.8 <250 St54a
12.177 1+ Na®--p-4-0 £0.8 <04 St54b
12.256 3—(2-) Naz+p+41 ~32 ~2 SeS53
12.334 3+ Na®+4-p-+42 <1 <4 Ba56b
12.382 0— Na®-4-p-+1 ~ ~1.2 Pr56
12.451 1— Na®+4p-+1 ~A4 ~0.4 EnS57
12.468 2+ Na®4-»-4-0 ~3 ~0.06
12.501 Naz+4-p-+42 s1 0.7
12.527 1+(2+) Naz+4-p4-0 ~8 <0.12
12,571 Na2+p+4-0 ~3 ~0.04
12.657 3+(2+) NaB4p+1 <0.8 <0.02
Na,#+4p-1 0.02 0.026
12.666 2— Na%-+tp+41 6 0.24
12.734 24 Na®-+p-+40 <79 <0.05
Na,®4-p-+4-0 0.012 0.002
12.804 1—(24) NaB+p+0 <1.2 <0.015
Na,®+p-+4-0 0.06 0.009
12.814 1+ Na®4-p4-0 1.6 0.007
12.844 2-) Na®+p-+1 <0.3 <0.004
12.849 @+) Na#4p-+2 0.3 0.03
12.893 1+ Na®--p-+4-0 0.3 0.001
Na,®+p4-0 0.03 0.018
12.921 1— Na%4-p+1 7 0.05
12.953 34 Na®-+p-+4-2 <21 <0.1
12.996 0— Na2+4-p4-1 <12 <0.007
13.028 34 Na%-| ?-|—2 0.35 0.01
Na,®-+p4-0 0.021 0.0003
13.048 4+ Na®+p4-2 <0.3 <0.01
13.087 3— Na®-+p-+1 9 0.04
Na,®+4p41 0.43 0.014
Mg?2s 7.40 G3-) Mg%#+4n+1 8 0.080 NeS5
7.58 31— Mg#+4-n+1 ~80 ~0.17 BI56
1.73 - Mg¥+n+1 ~30 ~0.038 Ta56
Al 3.08 $— Mg+ p+1 1.5 0.19
3.72 - Mg#+p+3 0.3 0.23
3.85 i Mg+ p+1 36 0.16 Cr56b
3.88 B Mg2+p+42 0.1 0.004 Ag56,
4.22 3+ Mg¥+p+2 ~0.17 ~0.002 Li56
Mg+p+0 ~0.04 ~0.016
4.60 5+ Mg} p+2 ~0.21 ~0.002
Mg2+p+0 ~0.27 ~0.004
5.31 3— Mg2-p+1 <200 <0.12
5.80 CEE) Mg#+p+(2) s10 $0.011
Al2sd Al27+n+ (1)
Al'n+0
A4+ (0)
Si% 8.66 3+ Si?8+n+4-0 ~80 0.058 NeS$§
8.92 3— Siz8+n-4-1 ~15 0.014
P2 433 - Siz8+4-p4-1 50 0.45 Ne56
Se2 10.688 1—- p+p+1 <24 £0.16 Go54
10.820 1— pi+p+1 <24 £0.12 Pa55b
10.910 1— pi+p+1 <5 £0.02
S 8.753 3+ S®2-+n+40 18 0.018
8.841 (39— S2+4n4-(1) 22) EO .006)
8.910 (3 3)— S24-n+4-(1) 3) 0.006)

8.926 & - S2+n+(1) (©) (0.006)
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TaBLE XIII.—Continued.
Obs channel
Compound Excitation Spin and Channel: residual width (kev in
nucleus in Mev parity nucleus +nucleon +7 center of mass) Obs value of §2b Reference®
S 9.000 i+ S2+7+0 12 0.006
9.312 &) Setnt(2) ) 0.011) La56
9.320 - S=4n+t0 12 0.005
9.348 L (3)— S#4nt1 5 0.004
9.365 1®- S 4nt1 5 0.004
CI» 4.13 - So®-p+1 8 0.064 GoS55a
4.52 - Se2+p+1 55 0.18
478 I— Se+4p+3 0.25 0.014 En57
5.01 - {So”+j)+1 6 0.009 0158
Si®24-p+1 ~0.0015 ~A0.7
5.09 Se®2+p+1 360 0.51
5.10 3,%) Se2+p+3 <0.5 <0.014
Si®+p41 ~0.001 ~0.014
5.11 3+ Se2+p+2 1.5 0.006
S24-p1-0 ~0.0018 ~0.0024
5.28 2— Se2+p43 0.29 0.006
Si¥2+p+1 0.05 0.15
5.38 5+ So¥2+-p+2 0.43 . 0.0012
. Se®2+p+0 0.01 0.0035
5.46 i+ S¢2+p-+0 32 0.020
Si24-p+2 <0.01 <0.015
5.56 F— Se®2+p+3 0.40 0.0045
Si¥+p+1 0.60 0.15
5.66 §— S¢B2+p+1 100 0.082
Si2+p+1 <0.08 <0.012
5.75 i+ Se®2+p+0 40 0.020
Si24-p+2 <0.01 <0.0015
5.89 - Se®4-p+3 0.84 0.0063
Si¥2+p+1 0.66 0.028

In Na2, Al%5, P® and CI®, there is a §— state with
large width; this is interpreted on the shell model as
the single-particle 2p; state which is predicted to have
62=0,2. On the strong-coupling model, the state is a
member of a K=%— band from the (2p, 1f) states and
6= (w| j)?30,2 The factor {(w|j)* depends on the extent
of the deformation and the type (oblate or prolate) of
deformation. From consideration of level spectra, the
deformation in the case of Al?® has been estimated as
B8=0.25. This predicts that 62~0.13 6,2 which compares
favorably with the observed value ?=0.19 (Li56, Li58).
In the case of Al®S, the 23— state (at 3.08 Mev) is a
member of a K=% rotational band with other members
at 3.73 Mev (%—) and 3.85 Mev (3—). The observed
widths of these are §2=0.23, 0.16, respectively, and the
predicted values are 2=0.17 6,2, 0.04 6,7

Also in Al%, there are states at 3.88 (5+), 4.22 (§4),
and 4.60 (3-+). The first has been assigned to a k=34
particle band and the second and third to a K=3
particle band. Theoretical widths for these levels are:
6?=0.05, 0.5, and 0.02, respectively. These are much
larger than the observed values. This suggests that the
intrinsic nature of the last two states is not simply a
closed shell (Mg?) plus a w=$- particle, but rather it
involves excitation of the closed shells. For example, the
least tightly bound state in Mg* is w=$-; a nucleon
may be raised from this state to the w=% state making
a pair of w=4%- particles and leaving a w=3$+ hole.
Rotational states based on such an intrinsic state have
zero reduced width. This agrees well with the very small

observed values and also with various branching ratios
(Li58). The strong coupling model gives good agreement
with the reduced widths of bound levels of Mg? (Li58)
and Si® (Br57) as obtained from stripping yields. Lither-
land also has found agreement with the widths of the
bound states of the odd-odd nucleus Al?® (Sh56b).

(d) Alpha-Particle Channels

At present, the only alpha-particle widths reported
in nuclei of the mass range 16 <A4 <40 are of states in
the nuclei O, F'8, Ne® Mg*. These values, given in
Table XTIV, are characterized by their extreme spread
from the largest value 62, 0.7, down to the smallest
value some 10 less. As we have seen in the earlier dis-
cussion of the theoretical prediction of alpha widths,
there is plenty of scope for such large variations arising
from the various factors that enter the theoretical
expression for 62

(e) Photon Channels

In Table XV we list the radiation widths that are
known at present. In estimating the dimensionless
ratios A2, we have calculated the single-particle widths
from the formulas of Table III assuming 2p — 1d for
E1 transitions, 1d — 14 for E2 transitions, and 6=1.90
X 1078 cm (El55a). In several cases where both M1 and
E2 radiation is possible between the two given states,
we assume that M1 radiation dominates. For certain
transitions in Al%%, the ratio between the two types of
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TABLE XIV. Alpha-particle widths of states of nuclei in the mass range 16<4 <40.

561

Obs channel width

Compound Excitation Spin and Channel: residual (kev in center of Obs value
nucleus in Mev parity nucleus g mass) of 642 Reference
(02 8.05 1— Ci4-1 <5 <0.04
8.22 24 C1+-2 1.2 0.014 Wes8
8.29 3— Cu4-3 6.9 0.30
F18 6.26 2,3,4—)e N1+ (3) <19 <1 He58a
6.27 14) N+ (0) <3 <0.05
6.58 (3, 4, 5+) N+ (4) <0.8 <1
6.66 1— N44-1 93 1.08
6.83 2— Nu44-1 85 0.75 Bass
adoa
Ne2 6.738 04 0140 24 0.33 BaS5c
';.182 3— 8‘2-}-(3) lg 315% We5S
218 0+ 104 )
78 2L ot3 % 0000
13.18 14 0:16+3 2.8 0.28
051642 0.016 10.016
04641 0.075 0.11
13.43 2-) 0:16+2 37 0.46
Ogtt-+1 <0.1 <0.008
041642 <0.1 <0.08
13.51 1+ 041643 0.11 0.0038
041642 10.0004 71075
04641 0.025 0.0041
13.68 0+ 01640 0.033 8.5 107
0,140 0.005 1.1X107
13.70 2—- 021942 2.4 0.016
0g1-+1 10.85 10.022
0416+2 0.30 0.051
13.76 1+ 0213 2.8 0.049
051842 0.100 0.0051
046+1 0.78 0.036
14.148 2— 01642 1.8 0.0054
031041 0.45 0.003
04042 1.05 0.031
14.173 2— 01642 9.1 0.022
051041 0.84 0.0044
041642 0.52 0.011
14.221 1+ 0:1+3
051642 <0.04 <0.2
02041
Mg 12.226 1;—— 2-) Ne”—!—ii» ~A0.2 ~0.0063
12.451 - Ne2 - ~1 ~0.0049
i%ggS 24 Ne20+2 ~2 ~0.018
571 24 Ne20+42 2 0.015
12.657 3—(2+) Ne2+1 0.011 0.033 Ne54
t
12.734 2+ Ne,?4-0 0.006 0.0056 Ba56d
Pr56
12.777 Nez+4-0 30
12.804 1—-(2+) Ne, 2041 0.053 0.055
12.893 1+ Ne, 42 0.027 0.036
12.921 1-) Ne, 2041 0.021 0.0009
13.028 3+ Ne20+42 <0.0006 <0.0002
13.087 3— Ne®+1 0.007 0.009

s All uncertain entries are bracketed ( ).

b In extracting the dimensionless reduced widths, a radius of 1.45(41/84-1) X10718 cm was used throughout.

eFor a given nucleus the references usually apply to several levels. As a rule, references are given only when they are not mentioned in the published

compilations (En54, En57).

radiation has been measured. In general, E2 radiation
is much less than M1 but, on occasion, it may compete
favorably with it. For each of the three types of radi-
ation E1, M1, and E2, the values of A? for the various
transitions in Al?® vary by at least a factor of 100.

We have already discussed the E2 transitions in OV
and F¥ in Sec. III. 3(a). The smallness of the E1 radia-
tion width in F¥ is somewhat surprising because the

interpretation of — state as a 1p3— holes (Ch54) would,
in general, allow the transition. Since the structure of
the ground states of Ne® and F¥ involve both 2s and
1d particles, one explanation could be a cancellation
between the two contributions 2s — 1p, 1d — 1.

One curious feature of the M1 radiation observed in
Ne? is that it prefers to go to the first excited state
rather than the ground state. The shell model could
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TasLE XV. Radiation widths of states of nuclei in the mass range 16<4 <40.

Initial Spin and Final Spin and Type of Obs width

Nucleus state parity state parity radiation® : in ev A2X1040 Referenced
o 0.872 3+ 0 24 E2 2.6X10°¢6 3000
F1e 0.110 31— 0 i+ E1l ~7X1077 ~30 ElS5a
Bab5a
0.197 5+ 0 3+ E2 ~8X10 ~15 000
Ne2® 1.63 24 0 0+ E2 0.87X1073 45 000 De56
13.19 1+ 1.64 24- (M1) <1.6 <160 BaS5a
BaS5c
13.43 2—)» 1.64 2+ E1l <15 <1000
13.50 14 {0 04 (M1) 2.2 200
1.64 2+ (1) <0.02 <1
13.70 2— 1.64 24 E1l ~1 ~50
13.76 1+ 1.64 24 1) ~1 ~90
14.15 2— 1.64 24 E1l <2 <70
14.17 2— 1.64 2+ E1l ~3 ~100
14.23 1+ 1.64 24 1) 4.5 350
Na2 0.44 G+) 0 3+ E2 5.2X107¢ 19 000 He54
M1 <7X107 <12 000
>7X10™ >1200 Kr56
Mg 1.37 2+ 0 0+ E2 1.8X10™ 22 000 Co55
12.000 2— 1.37 24 E1l 0.044 24 Ne54
4.23 24 E1l 0.066 9.3 Ba56b
5.23 2(—) (M1) 0.015 4.9 Pr56
12.197 1+ 1.37 24 (M1) 0.089 11
4.23 2+ (M1) 0.022 6.7
12.271 3— 1.37 24 El 0.027 14
4.23 2 E1l 0.051 6.5
5.23 3(-) (M1) 0.016 7.1
12.354 3+ 1.37 24 (M1) 0.033 3.8
423 2 (M1) 0.13 37
5.23 3(-) (E1) 0.063 15
12.829 1—-(24) 0 04 E1l 0.5 16
1.37 24 E1l 0.4 17
12.935 3-) 1.37 24 (E1) 0.14 6
423 2 (E1) 0.43 43
5.23 3(—) (M1) 0.57 1900
13.043 3+ 1.37 2+ (M1) 0.7 70
4.23 2 (M1) 0.14 31
5.23 3(-) (E1) 2.0 270
13.102 B-) 1.37 24 (E1)
4.23 2+ (E1)
5.23 3(=) (1)
Al 2.51 3+ 0 >+ E2 £0.0002 £1200
0.45 + M1 ~0.012 ~210
0.95 + (M1) ~0.0017 ~T71 Cr56b
2.70 24 0 + M1 ~0.0037 ~29 Ag56
E2 ~8X1078 ~350 Li56
0.45 + (M1) ~0.004 ~54
0.95 - (M1) £0.0002 <6
1.81 + (M) 0.0056 1220
3.09 5— 0 + E1l 0.014 34
{0.45 + E1l 0.084 330
0.95 + E1l 0.010 73
3.44 9/2+ 0 + E2 0.00045 550
1.61 + M1 0.0045 110
E2 0.00013 3700
3.72 i— 0 24 E1l 0.0036 5
11.61 i+ E1l £0.0001 0.8
1.81 + E1l 0.0084 87
3.85 3— 0.45 + E1l 0.15 270
10.95 i+ E1l 0.30 890
2.51 1+ E1l 0.075 2200

& All uncertain entries are bracketed ( ). .
bWhen both M1 and E2 radiation are possible and no measurement of the relative contributions has been made, we assume that M1 radiation pre-

dominates and enter M1 in brackets in column 6. .
o In extracting the dimensionless quantities A2(=I'/T'p) of column 8, the single-particle widths T'» were estimated as described in the text.
dFor a given nucleus the references usually apply to several levels. As a rule, references are only given when they are not mentioned in the published

compilations (En54, En57).
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TaBLE XV—(Continued)
it . - . T : d
Nucleus Istgégl ngaliiatl;d Stlatil sglzrri%;ld rad};g(?ignb Ob?nwelvtkl A2X104 0 Referenced
Alzs 3.88 5+ 0 5+ M1 0.0040 11
. E2 0.0013 900
0.45 + E2 0.0033 3700
0.95 -+ M1 0.037 230
+ E2 5.2X1075 140
2.70 + (M1) 0.0058 60
4.22 34 0 + M1) £0.01 <20
0.45 34 M1 0.18 520
E2 0.0026 1700
0.95 3+ M1 0.16 710
E2 0.0004 750
4.60 24 0 -+ (M1) $0.001 st
0.45 + E2 20.02 <10 000
0.95 -+ M1) ~0.063 ~200
Al 6.96 3— 0.42 3+ E1l 0.16 40 Gr56b
1.76 24 E1 0.22 100 EnS57
7.00 3— 0.42 34 E1l 0.02 3
2.08 24 E1 0.2 100
3.16 2,3+ E1l <0.02 <10
4.55 24 E1l 0.14 700
7.06 2,3— 0.42 3+ E1 0.012 3
2.08 2+ E1l 0.15 70
3.16 2,3+ El 0.24 200
7.21 1— 0.23 0+ E1 0.35 50
2.08 24 E1l 0.17 80
7.23 2,3— 2.08 24 El 0.48 200
Al 0.031 24 0 3+ M1 0.2X10°¢ 1200
Si28 1.78 24 0 04 E2 <7.3X10™4 <2.5X10¢ De56
or - or
>2.2X1072 >7.5X108
P2 4.30 3— 0 i+ E1l 1.73 1640 Se56
pa 5.88 2— 0 1+ E1 - ~0.012 4 Va58
0.71 1+ E1l ~0.0014 0.7
1.45 24 E1l ~0.0007 0.5
5.96 1— 0 1+ E1l 0.0047 1.5
0.68 0+ E1l 0.070 30
1.45 24 E1l 0.0008 0.6
2.94 24 El 0.0024 6
6.23 1— 0 1+ E1l 0.0012 0.3
0.71 1+ E1l 0.0012 0.5
1.45 24 El 0.0012 0.7
1.97 E1l 0.021 20
2.54 El 0.012 16
2.72 E1 0.019 30
2.84 E1l 0.0054 9
6.27 3— 2,94 2+ E1l 0.014 27
4.18 24 E1l 0.007 50
i 7.78 3+ 0 + M1, E2 0.015 En57
1.26 + M1, E2 0.010
2.23 + M1, E2 0.0015
7.90 3 0 L+ M1 or E1 0.9
1.26 -+ M1, E2or E1 0.015
7.94 24 0 L+ M1, E2 0.004
1.26 -+ M1, E2 0.004
8.03 34 0 + M1, E2 0.0012
1.26 -+ M1, E2 0.0066
2.23 + M1, E2 0.0012
8.04 2+ 0 + M1, E2 0.03
1.26 + M1, E2 0.001
: 2.23 + M1, E2 0.0005
8.10 (3, 31+) 1.26 3+ M1, E2 0.03
Se2 9.65 1 0 0+ El, M1 0.12 Pa55b
En57
9.94 1 0 0+ El1, M1 0.63
10.06 2(+) 0 0+ 2 0.048 320
2.25 24 E2, M1 0.92
10.69 1— 0 0+ E1l 12.0 780
10.78 1 0 0+ El, M1 4.4
10.82 1— 0 04 E1l 8.7 560
1091 1— 0 0+ El 1.3 84
11.10 1 0 0+ E1, M1 6.7
11.12 1 0 0+ El, M1 21.0
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provide a ready explanation for this, namely, that the
ground state of Ne? is a closed (2s3)* shell so that, from
the nature of the M1 operator, all M1 transitions to this
state are forbidden because a change in orbit must be
involved. The observed £1 radiations in Ne* are weak
and this might be ascribed to operation of the isotopic
spin selection rule (Wi53b), assuming the emitting
states to be fairly pure T'=0 states. Such purity would
be surprising considering that states of the same J, 7
have spacings of the order of only hundreds of kev near
the emitting states.

Several radiation widths are implicitly contained in
measurements of thermal-neutron cross sections in the
present mass region. These have been discussed ex-
haustively in the literature (KiS4).

The values of A? for £2 transitions between low-lying
states may be analyzed in terms of the strong-coupling
model. The observed transitions are:

F@: 0.197(3+) —0(3+), I'=8.5X10"0ev, A2=2.0,
Net: 1.63 (24) — 0(0+), T=0.87X10-3 ev, A2=5.1,
Na®: 0.44 (§+) = 0(3+), I'=2.1X10"%ev, A2=8.8,
Mg: 1.37(2+) — 0(0+), T~18X10~¢ev, A~2.6,
Si%: 1.78 (24) — 0(0+), I'S7.3X10%ev, A2X28.

The experimental values are all derived from lifetime
measurements or Coulomb excitation. It is significant
that all the values of A? (except possibly Si?8) are >1
and therefore suggest the applicability of the strong-
coupling model. This is especially true of Na2 where A2
has the very large value of 8.8. (The values quoted for
A? depend somewhat upon our conventional choice of
single-particle transition, #iz., that for a 1d — 1d proton
transition. If 2s— 1d or 14— 2s had been used, the
values of A2 would be smaller by a factor 7/20 or greater
by a factor 7/4.) From the formula of Sec. II. 3(b), we
may extract values of Q¢? for the above transitions. In
(barns)?, they are Q¢*=0.17, 0.45, 0.48, ~0.23, £0.26,
respectively. By taking the mean nuclear radius a as
1.3 A¥X1078 cm, the corresponding values of 8 are
—0.5, 0.7, 0.6, ~0.4, and £0.3.
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