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I. SURVEY AND SUMMARY
A. Particles—Their Production and Decay

ITHIN the last few years our knowledge of ele-
mentary particles has increased greatly. There

are indications that we are approaching a leveling off
in the discovery of new particles, and also some under-
standing of their behavior. In the first chart (Fig. 1),
and in Table I, the mass levels of the various elementary
particles (of nonzero rest mass) known today and their
decay modes are represented. The particles may be
grouped into three main categories in order of increasing
mass: (1) light fermions or leptons which comprise the
electron and muon; (2) the middleweight bosons or
mesons which comprise the mass triplet of pions at
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ELEMENTARY PARTICLES AND SYMMETRY PRINCIPLES
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Fic. 1. System of decays of the elementary particles. Only “particles” are indicated except for the “anti-
particles” e* and u* and (in spite of the breakdown of charge-conjugation invariance in weak interactions) it
is believed on the basis of the CPT theorem that there occur in nature exact charge-conjugate reactions of all
those indicated, with antiparticles replacing particles. All established decay modes of the indicated “particles”
are shown except those of K°; these, however, parallel the six decay modes of K* except for the absence of the
u~+» mode. “Radiationless” decays (i.e., without photon or neutrino emission) are indicated by straight lines
joining decaying particle to daughter particle(s). The only three types of photon-emitting decays which cer-
tainly occur,

o yty, o ytetteT, 20— Ay,

are indicated by wavy arrows from parent to daughter particle. The neutrino-emitting decays are indicated by
a one-sided feathered arrow from parent to daughter particle(s).

about 270 electron masses, and the doublet of kayons
(K*+ and K° at about 970 electron masses; (3) the
heavy fermions or baryons ranging from the neutron-
proton doublet up through the singlet A particles, the
2 triplet, and the doublet comprising 5~ and =° (the
cascade particles).

How do we encounter all these particles? The manner
of occurrence of the older known particles, including
the muon and pion, is by now generally familiar. The
new ‘‘strange” ones are the kayons and the kyperons
(baryons heavier than nucleons). Both were first ob-
served in cosmic rays but are now produced copiously
in the laboratory. Although kayons were clearly ob-
served at least as early as 1947 (Rochester and Butler,
1948)! in the same year that the pions’ existence was
established experimentally, it was not until recently
that their complicated behavior began to become clear.
Hyperons are produced together with kayons in re-
actions in which high-energy pions, gammas, nucleons,
collide with nucleons. The reactions, some of which are
listed in detail in Table II, are of the general form

pion-+mnucleon gives hyperon-kayon(s)
gamma-+nucleon gives hyperon-kayon(s)
nucleon—+nucleon gives hyperon—+nucleonkayon(s).

As might be expected, these reactions also occur in
“partially transposed” form so that we may also have

antikayon-+-nucleon gives hyperon--pion(s).

1 References are given at the end of this article in chronological
order by year.

These reactions are fast (high transition proba-
bility), like the reactions of pion exchange which char-
acterize the nuclear forces. To visualize the speed of
these reactions we consider as a unit of time the interval
required for a particle moving nearly with the speed of

‘light to travel a distance of one nucleon “diameter,” a

distance which we define for present purposes as very
nearly the Compton wavelength of the nucleon. Such a
unit of time, of magnitude about 0.7X10~% sec we call
a flash.2 Then the times for the “strong interactions,”

TasLE II. Some production reactions for the kayons
and hyperons (N=p or n).

Calculated threshold in Gev (lab)
(on nucleon at rest)

7+p = A+K+n
—Z24+K+rn
— A+K 0.76
—24+K 0.90
— N+K+K 1.36
— 542K 2.23
p+n— A+K+N 1.57
p+p—->Z+K+N 1.80
p+n— K+K+2N 2.50
p+p— E+2K+N 3.74

2 This unit of time goes with the natural units, z=c=1, if we
measure the energy in kMev (Gev or Bev). Since one kMev
is very close to 1.6)X 1073 erg, the corresponding unit of time—
defined to be “one flash”’—is very closely 0.66X 10~% sec. To make
the relations nearly exact, we must introduce as length unit the
“modified compton”=0.943X Compton wavelength of a nucleon.
In summary: We can achieve harmony between the natural unit
system, in which Z=c¢=1, and the practical Mev system by
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by which hyperons are formed, are of the order of one
flash. It is found, however, that, once formed, all the
hyperons, with exception of the very short-lived 29,
decay to a lighter baryon plus a pion in a time roughly
of the order of 1071 sec. These, and the decays of the
kayons, we call weak decays. The basic facts, (a) the
very rapid production of hyperons in association with
at least one kayon, and (b) the relatively very slow
decay of the hyperon or kayon once formed, constitute
the basis for one of the most striking discoveries in
physics of the last five years.® This is the existence of a
new property of elementary particles, sirangeness (or
isoparity—see Sec. V), which is conserved in all fast
interactions, i.e., in all processes except weak decays.
The essence of the new concept is that it is the necessity
to violate strangeness conservation which inhibits the
decay process and makes it slow. It is worthwhile to
emphasize how very slow are the weak decays of these
newly discovered particles compared with their pro-
duction. They are produced in a flash and they decay
in a time of the order of 10* flashes. For comparison, we
note that by recent estimates the age of the universe
in seconds is 10". Or, to make another comparison: If
the scale of the constants of nature were changed so
that the time of a strong interaction was one second,
instead of a few flashes, a hyperon and kayon formed
in one second would travel through free space about a
million years before they each decayed! It is only in
these and the likewise relatively rare events of “8
decay” that there occur also parity violations.?

In the middleweight meson region, besides the fa-
miliar =— p decays, there occur the complicated
modes of decay of the kayons which have led to such
interesting developments of ideas about parity within
the last two years. In Fig. 1 we have indicated the six
well-established modes of decay of the charged kayon
(see Table I). There are also a large number of modes
for the neutral kayon which appears in two forms hav-
ing different lifetimes. Except for one of the two sub-
types of the neutral particle (see Sec. IV), which can
decay a little faster, the lifetimes of all kayons are
found to be 1078 sec. In addition, there are conjugate
modes of decay for the antiparticles of the particles
indicated. It is hard to observe these, for, by reason of
their high production energy threshold, few anti-
hyperons are found.

B. Theoretical Problems of Existence and
Behavior of Elementary Particles

After this descriptive summary, we turn to the
principal problems of understanding the existence and

measuring distance in modified comptons, time in flashes, and
energy (and mass and momentum) in kMev.

3That there exist parity violations in some basic natural proc-
esses constitutes another striking discovery of the last half-
decade. What the two discoveries have in common is that in each
case a conservation principle which holds strictly for stronger
interactions is found to be violated in “weak interactions.”
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behavior of the elementary particles. A theory of
existence is hard to come by, but we may expect that
a first step would be a rational classification. This too
would be a matter of stages. With our present phi-
losophy of nature, in which we see all physical phe-
nomena occurring in a given background of space-time,
it is natural to try a first classification of elementary

‘particles in terms of their symmetry properties in

space-time. Indeed, the tendency at the present time is
to define and classify elementary particles on the basis
of the general and precise concept of an elementary sys-
tem (cf. Newton and Wigner, 1949). An elementary
system is defined as a physical system for which every
possible state is described by a set of functions transforming
under space-time transformations according to one of the
symmetry types of the extended Poincaré group. (“Sym-
metry type” is an informal equivalent of “‘indecom-
posable-irreducible representation’ or “rep.” The “ex-
tended Poincaré group” is the full Lorentz group with
space and time translations. Both concepts are dis-
cussed in detail in Secs. IT and IV.)

A first answer to the question, “What is an ele-
mentary particle?”” would then be that an elementary
particle is a physical system which satisfies the following
conditions:

(1) Itis an elementary system.
(2) It is useful to consider it as simple and not as
composite.

The heuristic form of the second condition is evident.
Applied liberally, it leads one to the Orwellian observa-
tion imputed to Salam: “All particles are elementary,
but some particles are more elementary than others.”
We do not here discuss how the second condition might
be made more explicit, but instead refer to Newton and
Wigner’s illustrative discussion of the reasons for con-
sidering a pion to be an elementary particle, and a
hydrogen atom in the ground state not to be one,
though both are elementary systems. A classification
of the theoretically possible elementary particles upon
the basis of the classification of elementary systems is
given later in Table V. )

We turn now to the problem of understanding the
behavior of elementary particles as summarized earlier
and in Tables I and II. The initial problems for theory
fall into two main categories: We wish to understand
(a) selection rules, and (b) lifetimes or branching ratios,
and cross sections. In other words, we would like to
understand first why certain processes (decays and re-
actions) occur at all and others do not. Second, of
those processes which do occur, we would like to under-
stand why some occur more rapidly and others more
slowly; alternatively, why some processes are more
frequent and others rarer. Since, apart from intensity
and phase-space factors, the rate of a microphysical
process is proportional to the squared matrix element of
an interaction operator (Sec. I.C), we can rephrase all



ELEMENTARY PARTICLES AND SYMMETRY PRINCIPLES

these questions about rates in terms of magnitudes of
interactions.

The discussion is directed principally to the primary
problem of selection rules. As a result of the very strong
evidence now for a universal Fermi interaction (Sec. V),
some quantitative account of lifetimes also can be
given; and, in some cases, as indicated in Table I,
estimates of branching ratios may be made by isospin
and phase-space considerations. These matters are
not discussed here.

The goal is to attain a “complete selection-rule
scheme,” i.e., a theoretical scheme with the following
two properties:

(1) No interaction which is observed is completely
forbidden by the scheme.

(2) AUl interactions which remain unobserved after
being carefully sought after are accounted for as forbidden
(at least in low order).

Assuming the existence of such a complete scheme
means that one assumes the applicability of Gell-
Mann’s (1956) neototalitarian ‘principle of com-
pulsory strong interactions” which may be stated in
the form: Anything that is not forbidden is compulsory.

The terms “symmetry” and “invariance” are used
interchangeably in the literature to indicate the mean-
ing: “the property of not changing under one or more
distinguishable operations.” An (X) invariance or sym-
metry principle holds for a system if we can make a
statement of the type: All basic aspects* of the system are
invariant under (X). Various examples are those where
one can insert for (X): “translation,” ‘“rotation,” “re-
flection”—of space and/or time coordinates; ‘“permuta-
tion of particles”; “charge conjugation of fields”; etc.
(see Table III and Sec. III). Any (X) is called a
symmetry operation.

We can expect that a complete selection-rule scheme
will result from knowing all the symmetry principles
which hold for systems of interacting elementary par-
ticles. Why? An interaction is forbidden if the corre-
sponding matrix element would not be invariant under
all the symmetry operations of the system, for as a
consequence of the underlying symmetry the matrix
element should be unchanged. Specifically, suppose
that the symmetry types (behavior under transforma-
tions) of the interaction operator and of the initial and
final states in the matrix element are such that, under
a symmetry operation, the matrix element would be
changed. Such an interaction is forbidden. It is exactly
in this way, in the older problems of absorption and
emission of energy, with particle number conserved,
that symmetry or invariance principles proved of such
value for exploring the microphysical world. A some-

4 A precise definition of what we mean by “‘all basic aspects” of
a microphysical system is given in footnote 6, Sec. I.C. For the
moment we use it in a loosely defined descriptive sense to mean
the fundamental laws and building-block quantities upon which
the theory is constructed.
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what parallel application of symmetry principles can
be made to the middlesized world of classical physics
(cf. Curie, 1894; Melvin, 1949, 1956). To the older of
the symmetry principles, which were common to the
two worlds, there recently have been added some
interesting new ones, which are specifically microphysi-
cal and which govern processes in which elementary
particles are not conserved.

A very important alternative way of looking at selec-
tion rules, one which is much beloved of physicists
because it lends itself easily to intuitive formulations,
is in terms of conservation principles. When we say that
a system obeys a particular conservation principle we
instinctively think of an entity associated with the
system, which has the “substancelike” property of
keeping its magnitude constant in time. The bearing on
selection rules is that the system may evolve only into
states associated with the same value of the conserved
entity as it had initially.

That there should exist the two alternative ways of
looking at selection rules follows from a deepseated
fact which we discuss in detail in the following. Just
like the two faces of a coin which can never be sepa-
rated from each other, so with every invariance prin-
ciple of the usual type there is associated inseparably a
conservation principle. (This is not the case with re-
spect to time reversal invariance; see Sec. IIL.) In
Table III we have listed on the left all of the familiar
invariance principles and some not so familiar ones of
recent vintage. On the right we have indicated, in so
far as they are known, the corresponding conserved
quantities or “constants of motion.”

C. Survey of Theoretical Background and
Connection between Symmetry
Principles and Constants
of Motion

The association between the invariance and con-
servation points of view has its prototype in classical
Hamiltonian dynamics; this is thoroughly discussed by
Hill (1949). Here we take up the question in the con-
text of microphysical phenomena. What is a “constant
of motion” in quantum mechanics, and why is there
such an entity associated with every (usual) invariance
principle? Details of the answers are given in Sec. IIL.
In the present section we summarize the postulational
background in quantum theory, first in the approxima-
tion where particle number is conserved, and then in
the more exact quantum theory of fields. The basic
terminology is that found in Dirac’s book (1958).

It appears to be a fact that no matter what pre-
cautions are taken, the making of certain observations
upon a microphysical system disturbs it so that it is
impossible to predict certain other subsequent observa-
tions in individual detail (allowing, however, statistical
prediction). Quantum theory translates this elementary
fact, that observation disturbs microphysical systems
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quasi-unpredictably, into a mathematical structure in-
volving an oo-dimensional vector space: In this space
each vector represents a state of the system, and
mutually disturbing observations on states are related
to noncommuting operators on the vectors.

Specifically, for any physical system, every measur-
able dynamical variable is represented by a linear
operator F which is called an observable. The result A
of every measurement of the dynamical variable is an
eigenvalue of F, i.e., F—AI has no inverse. (I is the
identity operator.) If the eigenvalue is not degenerate,
the eigenvector or eigenket |\) defined by F|A\)=X[\)
is determined only up to an arbitrary complex number
factor ¢, and the mathematical entity ¢|\) is called an
eigenstate. If a given eigenvalue of a given operator is
degenerate it does not specify a corresponding eigen-
state uniquely; to specify a unique eigenstate and
thereby the condition of the system, it is necessary to
use a complete set of commuting observables Qa, Qs, *
With a definite set of eigenvalues Aq, As, - -, one from
each observable, there is then associated to the system
a definite simultaneous eigenstate ¢|Aq, As, - +). (Again
the eigenvector is not completely determined even with
unitary normalization; ¢ remains an arbitrary phase
factor.) This state describes the physical behavior of
the system in all admissible detail, yielding for example
the statistics of all possible measurements of dynamical
variables of the system. Specifically, let the system be
continually reprepared in the state |A) and repeated
measurements be made of any chosen dynamical vari-
able G. Then the magnitudes of the projections of |\)
along the eigenstates of G (i.e., unitary scalar products
of |\) with these eigenstates) yield the amplitudes for
the probabilities with which the corresponding eigen-
values of G will appear. The requirement that the
eigenvalues always be real restricts the observables to
be Hermitian operators in the space of all possible
states of the system. This state space is a Hilbert space
since (1) every linear combination of states is a state
(principle of superposition); (2) the unitary scalar
product of any pair of states is defined (probability in-
ferpretation); (3) every state is a linear combination of
the eigenstates of the commuting observables (com-
pleteness condition). (In some physical problems where
unitary scalar products do not converge, either the
concept of a Hilbert space must be extended by relax-
ing postulates (2) and (3), or the problem must be
approximated by one for a system in a “box.”)

The Hilbert space of the theory acquires specific
structure when it is assumed that for many systems
(those which have classical analogs) there is a close
analogy with the canonical coordinate formulation of
classical dynamics, commutators replacing Poisson
brackets: Every observable connected with the system
is a function of two fundamental conjugate sets of
observables, coordinates q; and momenta p;, which at

M. A. MELVIN

any particular time satisfy the commutation relations
qiPe—Peq;=1051.

For systems without a classical analog, canonical co-
ordinates and momenta as a basis for building all
observables may not exist. (It seems, however, that for
any closed sysiem with total spin zero, regarded as a
whole, canonical momenta and coordinates do exist;
see Appendix.)

In all cases, whether with a classical analog or not,
the Hilbert space is given specific structure if the fol-
lowing is assumed : There exists a basic set of not neces-
sarily Hermitian operators, in terms of which all others
may be constructed, which form a canonical set. Such
a set consists of two conjugate subsets—one of “a’s,”
one of “b’s”—equal in number, which satisfy either the
canonical commutation relations (Bose-Einstein case)

a0, —ax0;=0 ajak*—— ak*aj= 8k

ajbk—bkaj=0 a,»bkf—bk"aj=0 (1)
b;6,—5:0;=0 50,1 —0,1h;=05x
(j: k=1) 2; . )

or the canonical anticommutation relations (Fermi-Dirac
case) .
a;ax+axa;=0 ajakf+akfa,~= Ok
ajbk—i-bkaj:O ajbk"-{—bk*a,-:O (2)
B,bk-*- bkhj': 0 bjblcf"*‘ bkfbj= Ok

(j; k=12, - ')'

In the consistent development of the theory the a’s are
to be interpreted as particle destruction operators and
the b’s as antiparticle destruction operators of a quan-
tum field. The Hermitian conjugate quantities are the
corresponding creation operators. In the case of neutral
self-charge conjugate fields (see Table III), at=D,
bf=aq, and the last two lines in each set of relations
are redundant.

In any case, either that of Bose-Einstein or that of
Fermi-Dirac fields, observables obey commutation rela-
tions. This follows in the only questionable case—the
anticommuting case of Fermi-Dirac—from the fact
that all observables are bilinear combinations of “a’s”
and “b’s” (cf. Appendix 3; Fermi, 1951).

A very important theorem of uniqueness of the
operators 0; and b; holds if the following two assump-
tions are made (see Sec. IIT and the bibliographic
references to Becker and Leibfried 1946, 1948, and
Wightman and Schweber, 1955):

(i) There exists in the Hilbert space a vacuum stale
(or vacuum ket) |0) such that

al0)=0 b[0)=0,
where the zero on the right stands for the zero ket,

i.e., such that any operator on it gives the zero ket again.
(ii) There exists among the observables in the Hil-
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bert space a total particle number operator

0
N=3 a;te;
1

such that
N|0)=0.

The uniqueness theorem then states:

Provided assumptions (i) and (i3) are satisfied, an ir-
reducible® set of operators satisfying the canonical
relations (1) or (2) is delermined uwiquely up to a
similarity transformation.

More specifically, if there are two irreducible sets of
operators (a;,b;), and (a;,b;) which obey the relations
(1) or (2), then an operator U exists such that

a/=Uq;U by=UbU 3

The following two properties also follow: (a) The
operator U is defined uniquely up to a factor. (b) If U
transforms Hermitian operators into Hermitian opera-
tors and a pair of Hermitian adjoint operators into a
pair of Hermitian adjoint operators, then U can be
chosen as a unitary operator.

It is then clear that any operator A’ constructed
from the ¢ and b; in the same way as an operator A
is constructed from the @; and b; satisfies the relation
A’=UAU. In particular, we have N'=UNU-,

Between disturbing observations a microphysical
system develops causally. To formulate the theory of
the development in time of physical processes, it is
perhaps simplest to use the Heisenberg picture since it is
the one in which we can deal with relations between
operators directly without necessarily referring to
matrix elements. Also, it is closest formally to classical
Hamiltonian dynamics. The Heisenberg picture is de-
fined by the property that the eigenvectors of the com-
plete set of commuting observables at one moment of
time (the ‘“fixed time”) are chosen to be the basic
“coordinate unit vectors” in Hilbert space, the same at
all times (these other times may be called “displaced
times”). This means that all movement and oscillation
is associated with operators rather than with eigen-
vectors. The generalization of this picture to other
transformations (frame displacements) besides time
displacements is indicated in the following by the ad-
jective phrase “Heisenberg type.” One should compare
with the “Schrodinger type” picture where, in contrast
to the “objective’” emphasis of the Heisenberg type
picture, two states are called the “same” when they are
“subjectively” the same, i.e., when one appears in the
displaced frame exactly the same as the other appears
in the fixed frame.

We now consider several Hilbert-space operators each
of which exists by virtue of some space-time symmetry
principle, i.e., by the requirement of invariance of the

5 This concept is discussed in detail in Sec. IL.
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basic aspects® of a system under some redescription®® of
the space-time coordinates. Particularly important ex-
amples of such Hilbert-space operators are provided by
considering the theory of closed systems. By definition,
such systems are those in which the basic aspects de-
pend only on the relative space-time positions, relative
space orientations, and relative velocities of different
parts of the system with respect to each other. In other
words, the basic aspects do not depend on the absolute
location of the origin, or absolute orientation or absolute
velocity of the frame of reference in space-time. Such
systems, exhibiting full relativistic invariance, are ob-
tained in practice when no “external fields” act.

For simplicity it is perhaps best to describe the conse-
quences of this broad invariance in three stages, first
with respect to space-time displacements, then space
rotations, and finally, at a somewhat later point, with
respect to pure Lorentz transformations.

The fact that one may reset the zeros of time and
position without changing the basic aspects (invariance
under time-displacement and space-displacement re-
descriptions), together with the uniqueness theorem,
implies (Sec. III) that there exists a unitary “evolution-
displacement” operator U;; which relates observables
at two different space-time positions in accord with

Q(,n=U.Q(0,0)Ux,

where for simplicity we have taken one of the positions
to be the origin. Because the possible time and space
displacements can be taken continuously increasing
from the identity, there are defined four Hermitian
operators H, Py, P2, P3 such that

U,,=exp[i(tH——lel—-x2P2—x3P3)].

8 The descriptive phrase ‘‘the basic aspects” should be in-
terpreted for microphysical systems to mean explicitly:

(1) commutation or anticommutation relations of the basic a’s
and b’s out of which all observables are built,

(2) definition of the vacuum state and of the number operators.
Invariance of these two aspects is necessary for making the basic—
and all other—operators well defined (umiqueness theorem). With
operators transforming according to Eq. (3) and with eigenvectors
unchanging—*“Heisenberg type” transformation induced by space-
time redescription—observable consequences of the well-defined
operators are essentially the same in the old and new descriptions,
i.e., observable matrix elements are invariant.

If instead of the Heisenberg type the “Schrodinger type” in-
duced transformations—operators unchanging, eigenvectors trans-
forming—are considered, we should interpret ‘“basic aspects” to
mean rather the complete set of transition probabilities between
any two states. This condition, which again guarantees covariance
of observable consequences, implies (Wigner 1931, 1959) that the
Schrédinger type operator U which gives

[Y=ul)
is either unitary or antiunitary (see Sec. ILE).

6a We use the term “redescription” to emphasize the purely
passive nature of the transformation, i.e., the same aspects are
being described at the same point but in the transformed language
of the changed frame. One can hardly emphasize too much that
it is because of the uniqueness theorem that this passive redescrip-
tion in coordinate space induces an active transformation in
Hilbert space, i.e., the unitary operator which relates observables
(and state vectors) at one physical point to those at another (see
Sec. III).
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The operator H, which relates an observable Q at one
moment of time to Q at the next in accord with

Q(+dt, 1)—QN=8Q=1H Qs

is the Hilbert-space representative of infinitesimal time
displacement. It is called the Hamiltonian, and the
commutator expression s HQ] is called the “implicit
time rate of change” of Q. In systems with a classical
analogue involving a Q and an H, the commutator is
the equivalent of the Poisson bracket expression for
the rate of change of Q,

dQ 0Qdg; 9Q dp; 9QOH Q oH

dt 9y dt op; dt 3g;9p; 3p;dg;

Similarly, the operator Pj, which is called the “x;
component of linear momentum,” relates an observable
Q at one position in space to Q at a slightly translated
position in the #x; direction, in accord with

5Q/6x1 = 1I:P1,Q:|

There are two other similar expressions in which P,
and P; play the same role with respect to x5 and «;.

Independence of over-all space orientation is also in-
cluded in the concept of a closed system, i.e., the basic
aspects are invariant under redescription from a space-
rotated set of axes. In a similar way to the foregoing, it
follows that there exist three Hermitian operators
M, M., M; which are called the “angular momentum”’
operators and which relate any scalar observable Q at
one position to Q at a slightly rotated position in
accord with

d i]
(xg—— xg——‘) Q = ’L[ M 1,Q:I.
6x3 sz

There are similar expressions with 1, 2, and 3 cyclically
permuted. A somewhat more complicated expression
appears when Q is not a scalar but a general spinor (or
tensor, in special cases). This is derived in Sec. III.

Invariance under space-time displacements and space
rotations are only special examples of symmetry opera-
tions which systems may display. It is established in
Sec. III upon the basis of the uniqueness theorem that
associated with every symmetry principle there exists a
unitary operator U in Hilbert space relating state-vectors
and observables at two different “physical points.” We
call this unitary operator, or rather its ‘“Hermitian
generator” F defined by

U=-exp(ieF),
the invariance operator associated with the principle. In
cases where the parameter e can be made infinitesimal

(=é¢), F may be interpreted as an operator relating
observables Q at neighboring physical points in accord

with
0Q/se=1i[F,Q].
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As in other instances in physics, once quantities have
been introduced in particular cases in which their mean-
ing is exceptionally simple, their definitions can be ex-
tended to allow them to be recognized in other more
general situations. So with the invariance operators,
they may be considered also in cases where the corre-
sponding invariances no longer hold, and still the
operators may be defined as “displacement operators,”
etc. In such cases it is generally found that the operator
evolves in time. Furthermore, it may have an explicit
as well as an implicit time dependence. The law of mo-
tion, which may be taken as a fundamental postulate,
now states that the total rate of change with time of any
operator Q equals the sum of the implicit and explicit
rales of change with time,

dQ/dt=i[H,Q]+0Q/a:.

By definition, a “conserved quantity’ or ‘“constant
of motion” Q is an operator for which dQ/dt=0. (This
means that, amongst other matrix elements, the average
value of Q is constant during the evolution of any state
of the system; or, more particularly, if we put the
system in an eigenstate of Q, it stays in that state, and
the eigenvalue is a “good quantum number.”) Applying
the fundamental law of motion we now see that in a
closed system every one of the components of the total
linear momentum P; and angular momentum My
(k=1, 2, 3) is a constant of motion. The argument is as
follows: The existence of these operators follows from
the invariance of all processes in closed systems under
infinitesimal translation and rotation redescriptions.
These redescriptions are not time dependent and com-
mute with the time displacement redescription. Conse-
quently, the corresponding invariance operators are not
explicitly time dependent and also commute with the
Hamiltonian. This leads to the conditions

dPy/di=0 dM,/di=0,

which express the familiar principles of conservation of
linear and angular momentum.

Quite generally we can say that awy invariance
operator ¥ which is the Hilbert-space representative of a
not explicitly time dependent space-time redescription is
itself not explicitly time dependent and commutes with
the Hamiltonian. Any such F is a constant in time.

The commutation of H with the invariance operator
F and the absence of explicit time dependence in F
go together. Both conditions fail together if F is one
of the “centroidal moment” operators M, (k=1, 2, 3).
(Just as the angular momentum operators M, appear
as the Hilbert-space representatives of infinitesimal
space rotations, so the centroidal moment operators I,
appear as the Hilbert-space representatives of infinitesi-
mal space-time rotations—or pure Lorentz transforma-
tions in the three space directions 3, %3, x3; see Sec. IL.)
Here H mixes with other components of the energy-
momentum under transformation by any %, and
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lab frame

proper frame

F16. 2. Interpretation of the constancy of proper orbital cen-
troidal moment, £r=L'—Pit (k=1, 2, 3), of a system. The lad
frame orbital centroidal moment £} is the integral over all space of
the first moment of the energy density Too: £z'= S 21T 0od*s. The
energy distribution as a whole is moving to the right corresponding
to a total linear momentum Py. Therefore the lab centroidal mo-
ment has an implicit time rate of change d£;'/dt=:i[H,Lx' ]=Pk.
This just cancels the explicit time rate of change of £ so that
d81/dt=0. The case of a zero spin system, where the conserved
total moment is the orbital moment alone, has been represented.

therefore H does not commute with 9%;. However, M
is still a constant of motion because its explicit time
dependence just cancels its implicit time dependence.
Specifically, the operators N, =’ — Pt (D', Py time
independent) satisfy the nonvanishing commutator re-
lation [Ny, H]=1P:. The M} are nevertheless con-
stants of motion because

d%k/dt= i[H,ﬁTik'_]—I-ai)ﬁ,c/at: P;—P;=0.

Figure 2 shows the simple intuitive meaning of the
constancy of the operator vector I8 when its average
value is taken. It is simply the first moment of the
system in a frame at rest with respect to the center of
mass. The vector I’ which carries the implicit time
dependence is the first moment in the “lab frame” with
respect to which the system is moving with momentum
Py. Just as the constants Py indicate the “velocity’ of
the centroid of a system, so the constants )¢, indicate
its “position” (see Appendix).

D. Discrete Space-Time Symmetries. Other
Symmetries and Conservations

In the upper part of Table III are listed thé familiar
space-time invariance principles which give rise to the
conservation of energy, momentum, angular momen-
tum, and centroidal moment. The selection rules follow-
ing from these principles together with the principle of
conservation of charge indicated near the bottom of the
table are indispensable for discriminating between the
different types of particles and determining their
masses and spins. On the left side of the table is given
an intuitive interpretation of the various principles in
terms of a comparison between transformed records of
natural processes taken under various conditions, and
natural processes observed directly in nature.

The constants of motion P, (¢=0,1,2,3 corre-
sponding to H, Py), My, and I, for a closed system are
operator representatives of generators of a continuous
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group of symmetry redescriptions. Besides, there also
occurs an additional constant of motion connected with
another space-time symmetry—in this case “discrete.
This is the parity operator P, Hilbert-space repre-
sentative of the redescription reversing the handedness
of the space-frame (i.e., the signs of the three space co-
ordinates).” This unitary Hilbert-space operator relates
observables at x and at —x. For example, for a system
of particles with positions q;, momenta p;, and spins ¢,
we have

PqP-'=—q; PpP7=—p; PoP =0,
We cannot define an infinitesimal Hermitian generator
for such a discrete operator. However, P itself is Her-

mitian, for in addition to having the property
PP=PPt=],

it can be chosen so that its square equals the identity
(Sec. III)
P2=1.

Thus P=P" is a Hermitian operator as well as a unitary
one. It is itself therefore an observable. If H is even
under reflection, P commutes with it and is a constant
of motion.”

Another discrete space-time symmetry, invariance
under reversal of the sense of time, plays an important
role in the theory of many physical properties. But here
the fact that a redescription reversing the time variable
¢t induces a sign change in the canonical commutation
relations in Hilbert space means that we must use an
anttunitory rather than a unitary operator to represent
time reversal. This is more fully discussed in footnote a
of Table III and in Sec. IL.E.

The terms in Sec. A of Table III, with the one ex-
ception of charge-conjugation (or particle-antiparticle
conjugation), refer to invariance under transformations
of space-time kind only. Those in Sec. C refer in “geo-
metrical” language to invariances under transforma-
tions in isospin space—a space which used to be re-
garded by physicists merely as a formal device but
which of late is being taken much more physically. We
note with special emphasis the abortive attempt, but
actual gap, in interpretation of the first of the two con-
servation principles indicated in Sec. B of Table III.
At the present time we lack any geometrical interpreta-
tion, in either ordinary or isospin space, of the very
important and apparently universally valid ‘“baryon
conservation principle,” which may be stated as follows:
A baryon always appears or disappears in a pair with
an antibaryon. It is the baryon conservation principle—
forbidding the solo appearance of antinucleons—which
prevents the cancerous infection of matter by anti-
matter, from which the material universe might vanish

71t is now clear that this operator is not quite a constant of
motion with the same generality as the P,’s, My’s, and IMs’s. It
fails in closed weakly interacting systems, where the Hamiltonian
is not even under reflection.
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into radiation through progressive annihilation. More
subtly, this conservation principle manifests itself in
characteristic differences in behavior between, for in-
stance, an electron-proton system and an electron-
positron system even in the midst of “life’” of the
latter. The effect of the great mass difference between
proton and positron is unimportant in this respect; it
is easily allowed for by simply shifting the centroidal
position to the midpoint, and halving the reduced mass.
The much larger magnetic moment of the positron is
more important and introduces considerable fine and
hyperfine differences. These are not, however, quali-
tative differences. The really qualitative differences—
the portents of mutual destruction—are exhibited in
the positron-electron system by certain characteristic
electrodynamic effects which are absent in the proton-
electron system. These are the effects formally repre-
sentated by extra “annihilation terms.” They appear
in the energy-level system of the positronium atom (par-
ticularly for S states where the wave function for zero
distance between electron and positron does not vanish).
They appear also in the expression for ‘“Bhabha scat-
tering” of positrons from electrons.

Later (Sec. IV) we discuss the unsuccessful attempts
to find a symmetry principle associated with baryon
conservation as well as the newly clarified situation with
respect to “lepton conservation” (Sec. V).

II. GROUPS AND REPRESENTATIONS

A. Meaning of the Concepts of Transformation
and Invariance

To understand the content of all the conservation
laws it is necessary first to spell out carefully what in-
variance means. Even classically the analysis of a
symmetry situation may confuse us by its chameleon-
like aspect in which we are required to differentiate
among samenesses. Further, in modern physics, we
must go from the intuitive picture, suitable for macro-
physical experience, to a more abstract conception
adequate to interpret microphysical phenomena. For-
mally, the first step involves “group theory” and the
second “quantum field theory.” For elementary-par-
ticle physics, neither discipline can be avoided. Once
the foundations have been laid, however, in simple
situations, one can minimize the formal details of the
two disciplines and use special or approximate versions
of their methods.

First, what do we mean by a “transformation?”
Because various operations (for instance, reflection)
cannot be carried out directly on a physical system but
only on the coordinate frame, we limit ourselves to the
“passive’ interpretation of transformation. We mean
the change in description which the system undergoes
when the coordinate frame is changed while the system
remains fixed. (It is convenient to imagine this “fixture”
to be with respect to a ‘“protoframe’ which is never
altered. Any point fixed in the protoframe is a “‘physical
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point.”) Such a passive transformation is nothing but a
redescription (Sec. 1.C).

For concreteness we consider a “scalar” field ¢ in a
two-dimensional space, i.e., a function which associates
a value to each physical point. (The value can be a
number or an operator.) Let a rotation be made; we
interpret this to mean the redescription which comes
about when the space-frame is turned rigidly and the
field (i.e., the value of ¢ at each point) is regarded as
fixed. The redescription changes the space coordinate
numbers (#1,%2) of a given physical point to new values

x1’= Ry Risxs  xo'= R21x1+R22x2,
which we write in matrix-vector notation
x’=Rx;

since we are talking about rotations, R satisfies the
orthogonal-matrix condition R—=R”. Instead of the
old description, ¢(x), the field is given in the turned
frame by a new function ¢’ of the new coordinate-
numbers x'. The definition of the field as scalar requires
that at the same physical point, i.e., x'=Rx, ¢/(x’)
equals o(x) (see Fig. 3). The symbol R may be inter-
preted to mean an operator which replaces x’ by x in
whatever follows. It is still better to interpret it to
mean an operator which converts an old function to a
new one, which is then evaluated for the new coordi-
nates x'. In summary: By definition, if ¢ is a scalar, the
new function R evaluated at X' equals the original func-
tion evaluated at x,

(Ro)(x')=Ro(x)=¢'(x) = ¢(x).

These ideas can be generalized to apply to any opera-
tion which may be more abstract than rotations, but
which have meaning when applied to the argument of
the field function. We keep the notation “x” for this
argument and the name “frame” for any standard
organization of its values, and continue to use the name
“physical point” for a given value of # in the particular
fundamental frame we call the “protoframe.”

For a more general definition of a scalar field, consider
a redescription which changes the argument (or co-
ordinate numbers) x; of a given physical point to new

values
ai'=A4.(x;),

which we write symbolically as
x'=Ax.

It is not assumed that A is a linear operator but merely
that it defines the &’ in terms of the x. Now we say that
a field function ¢(x) is a “scalar under the redescription
A” when it goes over into a new function (of the new
coordinates) which, at each physical point, has the same
value as the old function:

p(x) = ¢’ ()= p(x).

Assuming that the redescription may be inverted, i.e.,
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A~ exists so that
r=A",

the condition for a scalar is equivalent to saying that
we can get ¢’ (') by taking the old functional form and
substituting for its argument the redescription by the
new coordinate numbers:

¢’ (&)= p(47%).

Examples of redescription which are physically im-
portant and which are discussed in the following are:
inhomogeneous and homogeneous Lorentz transforma-
tions of the space-time coordinates; the parity trans-
formation P consisting of reversing the handedness of
the space-frame (i.e., the signs of the three space co-
ordinates); the formal time-reversal G consisting of
reversing the sign of the time coordinate ; physical time-
reversal or “motion-reversal” T'; and charge conjuga-
tion (matter-antimatter interchange) C. An additional
nongeometrical example of a redescription is given by a
permutation operation upon the labels of a collection
of particles.

We have introduced the idea of a function which is
scalar under a given redescription. An even more im-
portant idea than “scalarity” for physics is that of
imvariance. A function ¢(x) is said to be invariant under
a redescription A when its redescription not only has
the same value at the same physical point, but also is
expressed in the prime coordinates in exactly the same
form as ¢(x); i.e., we not only have

Ro(a)=¢'(3)= (),
but also

same value,

¢ (&)= o(x),
so that we have for a function which is scaler and
invariant

¢ (@)= o(R7")= p(a'). 4)
If the function is scalar but not invariant, we have
instead

@' (&)= o(R7") # o(x'). C9)

For illustration let us consider a simple example
which is also instructive for the later discussion of the
Lorentz group: If the function )

same form,

(4 (xl,x2) =12 —x0?
is required to be only a scalar under the redescription

x1=ax)+bxs  xe=cx/+dxy’
or
x=Rx/,
we have _
@' (1 ,09") = (aw1'+bxs)2— (cay'-+duy')2.
If, besides being a scalar, the function ¢(x) is to be
invariant, this imposes a restriction on the redescription,

@A—=d—bp=1 ab—cd=0.

PRINCIPLES 489
4
Xz Xa 1o/
\ P (0=~ pR'K)
\\
‘ @
\
\ A
\ I/
\\ /
\
\ Il
\ f
\
\ !’
\ X/Ix"= Rx
\ 1
\ !
\ I
\ !/
\ !
\ II
\ ¢
\ ! _=K
\ _ ="
VS -
V| -
-~ ,‘ X

Fic. 3. Redescription of a scalar field which results
from rotating the coordinate frame,

With the help of the further requirement that the in-
verse of R exists and has the same property of leaving
¢ invariant, we find that

detR==+1 and

(0T

Note. This “two-dimensional transformation” is not
an orthogonal transformation satisfying R—=R7, but
rather what can be called a ‘“pseudo-orthogonal”
transformation satisfying

0
1)

1
R-'=0;R70; aaE(
0
The proper transformation R, with detR=+1, is,
however, symmetric: Ry=Ry7. (This symmetry, or
Hermiticity, means that it can represent a real physical
quantity. In fact, when the transformation is inter-
preted as a Lorentz transformation, the eigenvalues of
R, give the velocity.)

This example shows that, unlike the situation with
scalarity where one can define a given function to be
scalar under any redescription, here we have to do with
a more demanding and fruitful idea: We ask for the
complete set of redescriptions under which a given function
is imvariant. Such a complete set necessarily has the
properties of a mathematical group: closure under the
associative property of carrying out two redescriptions
successively, identity inclusion, and inverse inclusion.

One can abstract in a one-to-one way from the set of
redescriptions to a corresponding group of abstract
operators i, 7s, -+ defined only by their mutual
multiplicative relations. The whole abstract-group
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TABLE IV. Linear groups and subgroups of #-row matrices with complex number elements,
and some connections with physics (Det=determinant).
Dimension
(number of real Type of matrices ot the
Notation Name Type of matrices parameters) infinitesimal algebra
Ga Full linear (general linear), related to permutation groups; Nonsingular 2n? Arbitrary
theory of complex spectra
G,’ Real linear Nonsingular real n? Real
On Unimodular (special linear), #=2: two-sheeted covering Det=1 2(n2—1) Trace=0
group of proper homogeneous Lorentz group
8n Real unimodular Real, Det=1 n?—1 Real, trace=0
U, Unitary, admissible transformation groups of the Hilbert Umtar n? Anti-Hermitian
spaces of quantum theory (antiunitary transformations are (El&*-l— £k (@sxtar*=0)
admitted for time reversal) invariant)
Un Unimodular unitary, »=2: two-sheeted covering group of Unitary, Det=1 n?—1 Anti-Hermitian,
three-dimensional rotation group trace=0
R Orthogonal, #=3: rotations proper and improper Orthogonal, real n(n—1) Antisymmetric, real
(B2 82 - (@irtar=0)
invariant) 2
Tn Rotation group (proper orthogonal), n=3: rotations proper; Orthogonal real, n(n—1) Antisymmetric, real
n=23, 4: excess degeneracy in hydrogen atom, harmonic Det=1 —
oscillator and rigid rotator problems; #=4: Global sym- 2

metry theories of elementary particles

structure theory then follows, i.e., the theory of sub-
groups, invariant or ‘“normal” subgroups and factor
groups, unique dissection of a group into classes,
homomorphisms, etc. Some wide categories of these
groups, their connections with physics, and some of
their general characteristics are listed in Table IV.
With the additional development of the theory of
representations of groups by systems of matrices, we
are led to a rather deep insight and valuable methods
for classification and solution of concrete problems.

In later sections a sketch is given of some features of
continuous group theory as it bears on elementary par-
ticle physics. First, however, we introduce the inhomo-

" geneous Lorentz group; it is an important example in
itself and further, it illustrates the bearing of invariance
groups on physical systems in general. After discussing
the structure of the Lorentz group we make some re-
marks about the meaning of “irreducible” and “inde-
composable” representations of groups, and then apply
some of the resulting ideas to examples.

B. Lorentz Group

The inhomogeneous Lorentz group consists of all
those redescriptions under which the space-time in-
terval between two space-time points (%o,%1,%2,%3) and
(¥0,¥1,92,¥3) is invariant:

(21 = 1)+ (2o — 32" )24 (w5’ — 35")— (' — y0')?
= (21— y1)*+ (@2—¥2)*+ (w3—y3)*— (xo—0)%.  (6)

Here x or ¥ is the time coordinate ¢ of the point. This
equation may be put in the standard form for an in-
variant interval in a flat space,

284! — ) (wf — i) =2g" (wi—y) (xi—v5),

by introducing a metric tensor g¥/= (g¥)’. The (Latin
index) metric tensor for measuring interval in space-

time which we use is
—-g00= g11=g22= g33= —800=g11= a2 =gz = 17

constituting a diagonal matrix G. Alternatively, we
may introduce x4=x*=1x9= —12°, which goes with the
(Greek index) metric tensor

(u,v=1,2,3,4).

We state without proof a number of consequences,
the proofs of which can be worked out easily, or found
in references. With a slight generalization of notation
these results are equally true for the inhomogeneous
rotation group in # dimensions and with any metric.

Every inhomogeneous transformation L of a space-
time vector x may be decomposed into a homogeneous
transformation represented by a matrix A and a trans-
lation a,

84 = gur="0u

x'=L(a,A)a=a+Ax,
which may be written in matrix form

1 1 0 0)3(1

’
o) a1 An Ay %

:, : : : :
X4 as Mg Ags) (24

(2)-(G 2)6)

X/ \a A/\x

Here, if the Greek-index metric is used, the matrices
A satisfy the orthogonality condition; A—'=AT7 de-
rived from the defining condition that the scalar product
of two 4-vectors is invariant. (Note that the matrices
are complex and orthogonal, and therefore not unitary!)
If the real metric G is used, the homogeneous trans-

formation matrices—now real—satisfy the pseudo-
orthogonality condition

A= GATG.

or

Q)
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This is derived again from the condition that the scalar

product of two space-time vectors is invariant, i.e.,
(Ax)G(Ay)=xGy o
xATGAy=xGy or ATGA=G.

The product and inverse of transformations are given by
10 ) 1 0\ _ 1 0 )
a AJ\b M/ \a+Ab AM)’
1 0\ 1 0.
a A/ \—Ala A7

Both subsets, that of all homogeneous transformations,

<(1) 2), and of pure translations (511 2), form sub-

groups. The latter is Abelian and is an invariant sub-
group, i.e.,

1 0> 1 0\/1 0>—1_ 1 0)_

a A/\b I/\a A/ \Ab 1
The fact that inhomogeneous rotation groups have a
nontrivial Abelian invariant subgroup, and are there-
fore not “semisimple” (see footnote 15), has important

consequences for the representation theory (see the
following). It is evident from the equation

det(AA)= (detG)? det(ATA)= (detA)?=1

that the homogeneous group breaks into two discon-
nected parts, the proper subgroup with all A such that

detA=-+1 {A;},
and its improper coset consisting of all A_ such that
detA_=—1 {A_}.

A further decomposition of the homogeneous group
occurs if we remember from the physics that the A’s
must be real. Equating the matrix element in the first
row, first column on both sides of Eq. (7°), we find

>_: (Ao)P— (A= —1
or

3
A?2=14+2"(Ao)22>1.
=1

We have, therefore, two possibilities: Either
AOO 2 1’

when A is said to be in the set {A?} of future-preserving
(or “orthochronous”) transformations; or

AOO S - 1)
when A is said to be in the set {A*} of time-reversing

transformations. )
It is easy to verify (see, for example, Murnaghan,
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1938) that {A'} is an invariant subgroup of {A}, and
that the intersection, {A;t} of {A'} and {A;} is an in-
variant subgroup of both {A} and {A,}. Further, each
of the four separate pieces into which {A} breaks up is
connected within itself; i.e., each A in a piece may be
connected to a standard A within the piece by a con-
tinuous sequence of A’s lying entirely in the piece.
The scheme is as follows:

(1) {A4+1}: every A connected with I (identity)

(2) {A):every A connected with —I=1,; (strong
reflection)

(3) {A-t}: every A connected with —G=1, (space re-
flection or parity)

(4) {A-*}: every A connected with G=1I; (formal time-
: reversal).

The redescription matrix expressing the parity opera-
tion is designated P, as well as I=—G; when con-
sidered abstractly it is represented by P. Likewise, the
formal time-reversal redescription may be represented
abstractly by G.

The inhomogeneous future-preserving proper Lorentz
group {L.'} consists of all transformations of the form

x'=a}+A tx.

For short, and roughly following Wigner (1957), we
call this group the “Poincaré group.” When it is ex-
tended to include all transformations of the sets (1),
(2), (3), and (4), we call it the “extended Poincaré
group.”

C. Decomposability of Matrices to Blockdiagonal
Form. Reducibility to Semi-
blockdiagonal Form

We now introduce briefly the subject of representa-
tions of groups by systems of matrices. Some elementary
formal definitions are omitted as these can be found in
many references. Also omitted is any detailed discussion
of the properties of sets of basis vectors or functions
transforming according to matrices of a representation.
This topic, which is of great practical importance for
applications in nonrelativistic quantum theory (cf.
Wigner 1931; Melvin 1956), is largely dispensable for
our purposes. We are concerned with only the ele-
mentary principles of the relativistic theory, and even
with respect to that theory we adopt the point of view
which stresses operators rather than -eigenvectors
(Heisenberg picture). A brief introduction to the con-
cept of functions transforming according to a repre-
sentation is given at the end of Sec. IL.D. This is ade-
quate for the following. Confining ourselves then to the
matrix representations themselves, we first discuss the
meaning of “irreducible” and “indecomposable” repre-
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sentations which play such a basic role as building
blocks. Let there be a representation consisting of
matrices Ry, Rq, -+ corresponding to the group of
operators 7y, 73, * * +, i.e., to each 7; in the group there
corresponds a matrix R; with the basic representation
property that the image of a product is the product of
the images, i.e., if r#;=r%, then R;R;=R;. If we think
of the vector space on which the matrices act, it sug-
gests itself that it would be a simplification to separate
out any subspaces which go into themselves alone under
all the R’s and deal with each such subspace separately.
Algebraically, this idea of “reducing” the representation
means trying, by a single similarity transformation

M(R)M—! (M the same matrix for all R)
in the representation space, to put all R’s simultane-
ously into a simplified form which exhibits a submatrix
structure. How far can we go in this simplification?
Even in the simplest nontrivial instance, that of a
single matrix of order n)Xn (n>2), there is a distinc-
tion between the diagonalizable case and the non-
diagonalizable case. The first case occurs when the
eigenvector set is complete, i.e., when there are »

linearly independent eigenvectors, and the second when .

the eigenvector set is incomplete, numbering less than
n. (This way of stating the condition for diagonaliza-
bility, so natural for a physicist, is in line with the
diagonalizability conditions on Hermitian matrices
which quantum theory imposes in the «-dimensional
Hilbert space of state vectors.) It is easy to prove that
completeness of the eigenvector set is a necessary and
sufficient condition for diagonalizability®; sufficient be-
cause the eigenvectors themselves form the columns of
the transformation matrix which accomplishes the
diagonalization, necessary because, given that the
matrix is diagonal in a certain coordinate system, the
basis vectors of that coordinate system give the com-
plete set of eigenvectors.

Thus, for example, the best that can be done with

the matrix
atd b )
—b a—b

which has only one eigenvector, is to reduce it to the
semidiagonal form :
e 1
© )

8In the usual mathematical literature on finite matrices the
condition is stated rather in the form that all the elementary
divisors of the matrix must be simple. Since the characteristic
polynomial is the product of all the elementary divisors, this
means there must be exactly # of them. Finally, since there is a
one-to-one correspondence between elementary divisors and
eigenvectors (also not usually stated), we see how the standard
criterion for diagonalizability is related to the one we have

formulated.
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More generally, the best that can be done with a single
matrix having an incomplete eigenvector system is to
put it in the “Jordan normal form,”

L

The over-all structure of this, as we see, is block-
diagonal, but within each block the structure is only
semidiagonal.

When we come to consider the possibility of simpli-
fying an entire system of matrices simultaneously by a
single equivalence transformation, we find that some
such systems are “decomposable’ to the blockdiagonal
form

Q11" Qim |
. | 0
Am1* * * Gmn :
_____ il
| bll 'bln 1 ,
0 | .. 10
| bnl' bnn I
| |
\ o
YRRy )
. | 0
aml’ amm, :
“““““ T
| bll blﬂ | )
0 | 10
! bnll bnn, !
| - — - = = I .
| 0 5

whereas other sets can at most be simplified to the
semiblockdiagonal form

!
1
Am1* * * Amm : A ym4-1
_____ il
|b11 "bln | )
0 | o |
! bnl "bnn !
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’
a1y c G | Grmypr )
. |
’ Al
Am1 Cinm | am,m+1
______ T T T T
’ ’
| bll . 'bln | . ,
0 | .. |
I bnll bnn’ l
| [
L 0 -

with only the entries below the diagonal blocks all
definitely vanishing. A system that simplifies to only
the latter type is called ‘“indecomposable” but, if it
can truly be brought to a nontrivial semiblockdiagonal
form, we still call it “reducible” for the following good
reason. Suppose the semiblockdiagonalization of the
original total representation has been carried as far as
possible. Each of the matrices carries a vector lying en-
tirely in the uppermost m-dimensional subspace into
the same subspace. (We call this subspace the “top
invariant subspace” of the total representation space.)
Furthermore, the top block along the diagonal of R;is a
matrix which by itself also represents #; in a representa-
tion consisting solely of the set of top blocks in all the
R’s; for these top blocks are the sole effective parts of the
entire matrices in carrying the top invariant subspace into
itself. Since, by hypothesis, the reduction cannot be
carried further, the top block representation is an
“irreducible representation.” If the above-diagonal
blocks do not vanish in all the R’s of the total repre-
sentation, the total representation does not decompose
into parts; in other words, vectors lying outside the top
invariant subspace also get mixed into -this subspace.
Such a representation is #ndecomposable, or “not fully
reducible” though it is reducible. (The name reducible
is used even when the system is looked at in the original
basis, in which the semiblockdiagonal structure is not
yet in evidence.)

A simple example of such a reducible but indecom-
posable system of matrices, already in semiblock-
diagonal form, is

1

0

01 1

| |
(7]

| ;2

| J I

| I

1 0 1

This system is a representation of the Abelian group
of translations along a line

R(@:)R(02)=R(0:)R(61)=R(6:+86,).

Before the simplifying equivalence transformation was
applied, the general matrix of the system may have

looked like
1+0,'SC 0¢C2 .
—0;s* 1—8sc
s=sina, cC=cosa, a arbitrary.
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It is not fundamental that the zeros are placed “down-
stairs” in the usual representation of an indecomposable
reducible system. They could equally well have been
placed upstairs. The significance of this interchange is
merely that it is then the subspace complementary to
the top subspace that is invariant.

Further, it is of interest to remark that not only the
top block on the diagonal gives an irreducible repre-
sentation of the group, but each of the other diagonal
blocks also gives an irreducible representation since
these also have the basic representation property that
the image of a product is the product of the images.
These other blocks are, however, no longer necessarily
associated with invariant subspaces; there is such an
invariant subspace only if all blocks lying vertically -
above the given diagonal block vanish along with those
below. Thus we see that the one-to-one correspondence
between invariant subspaces and irreducible repre-
sentations which exists for decomposable—fully re-
ducible—representations is lost when we deal with
indecomposable reducible representations.

We may sum up the rather subtle relations of de-
composability and reducibility in an imaginative fig-
ure. Suppose one could say that each complete living
organism provides in itself a mapping in some sense of
a cosmic entity (analogous to a group). Then one might
say, leaning on the figure: A decomposable representa-
tion is like a mitotic ameba, whereas an indecompos-
able but reducible representation is like a young-bearing
animal. An irreducible representation (which is a fortiori
indecomposable) is like an animal which bears no young
within it.

D. Conditions for Indecomposability
and Irreducibility

Very important are Schur’s lemma (Schur, 1905),
which provides necessary conditions. for irreducibility
(sufficient for reducibility) and Schur’s theorem (Schur,
1928), which provides a necessary and sufficient condi-
tion for indecomposability.

Schur’s lemma. (@) Given two irreducible representa-
tions A(s), B(s) of a group {s} and a matrix P such that
P intertwines A and B, i.e.,

B(s)P=PA(s) (everys),
then either detP<0 or P=0.
() If B(s)=A(s), P=AL

Part (a) of the lemma states that either P is a square
nonsingular matrix and the two representations are
equivalent, or else P is identically zero. In other words,
any matrix P which intertwines two irreducible repre-
sentations is “square or nothing.”

Part (b) of the léemma gives more information on a
special case: Any matrix which intertwines an irre-
ducible representation with itself is a multiple of the
unit matrix. In other words, a representation can be
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irreducible only if every commutor? is a multiple of
the identity. )

We do not reproduce here the easily available proof
of Schur’s lemma, but remark that the arguments
which establish Schur’s lemma for finite dimensional
representations can be carried over to infinite dimen-
sional representations (cf. Bargmann, 1947).

Schur’s theorem. A representation A(s) is indecom-
posable if and only if every commutor of A(s) has all its
eigenvalues equal. Such a commutor 1is, in general, of
the form

A b2 O3

0 X 0O

.0 -

0o o0 - 0 A

The meaning of representations in defining sym-
metry types among states of physical systems was dis-
cussed in a previous paper (Melvin, 1956) and applica-
tions involving the geometrical symmetry groups were
also given. Since in all such groups and even wider
categories (see the following) indecomposability and
irreducibility go together, the two were not distin-
guished. The term ‘“‘rep” was coined to refer to these
indecomposable-irreducible representations. When one
comes to consider other groups such as the inhomo-
geneous rotation and Lorentz groups, it becomes im-
portant to make the distinction since in these cases
indecomposable but still reducible representations occur
along with more ‘“normal” ones. Here, too, an abbrevia-
tion is useful and it seems best to continue to use the
term “rep” to refer to just those normal cases where
the two properties of indecomposability and irreduci-
bility go together. It is the rep cases which play a
dominant role in physics (see next section).

Nevertheless, the question may come up: When the
two are distinguishable, which is the more relevant,
indecomposability or irreducibility? We specify a
physical system by a set of operators, some of them
Hermitian and some of them not necessarily Hermitian
(e.g., some finite symmetry operators). The observables
must be represented by Hermitian matrices and in this
case there is no difference between reducibility and de-
composability. Operators which are not Hermitian or
unitary, or more generally “normal” (i.e., Hermitian
and anti-Hermitian parts commuting), can be reducible
while indecomposable. Examples of such non-Hermitian
nonnormal operators occur commonly among spinor
transformations which correspond to space-time trans-
formations on the coordinates (i.e., finite-dimensional
representations of the Lorentz group, including the
vector representation—*“spin 1”—case itself). Reflec-

9 We call a matrix which commutes with every member of a
system of matrices a ““commutor” of the system. It seems best to
avoid the term “commutator” used, for instance, in Weyl (1946)
because it conflicts with different usages of that term in abstract
group theory and in quantum theory.
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tion suggests that in such cases the important thing is
the indecomposability property; it is this property
which permits us to describe the system as an inde-
pendent system. If a representation were decomposable
it would refer to a composite of several independent
systems. On the other hand, if a representation is inde-
composable but reducible, the contained irreducible
parts—the “young” within—cannot be considered to
be completely independent.

As a simple illustration of these ideas we consider
the “two-dimensional Lorentz group” of matrices which
we discussed in the foregoing, Eq. (5). It is easily veri-
fied that the proper subgroup (detR=-+1) has among
its commutors matrices which are more general than
the identity, i.e., matrices of the form

- 2)

x w/°

Thus, the system of proper matrices is reducible and
therefore decomposable (being Hermitian). On the other
hand, the system of improper matrices (detR=—1) has
no commutors other than multiples of the identity. Thus
it is indecomposable (Schur’s theorem). We do not yet
know whether it is also irreducible. Schur’s lemma is
not sufficient to establish irreducibility; it merely
shows that the necessary condition for irreducibility
is satisfied in this case. In fact, for the choice of pa-
rameters, b= —a, R takes the form

a —a
a —a
which upon being unitarily transformed by

(<hz 1h2)

0—‘—2a>
0o 0)

the typical indecomposable-reduced form. Thus the two-
dimensional Lorentz group has such representations,
and likewise the four-dimensional Lorentz group. We
noteagain that the possibility of such representations has
come up ounly with the consideration of the reflection
(e.g., time reversal) transformations. In fact the proper
homogeneous Lorentz group can be proved to be
“simple,” i.e., to have no nontrivial invariant subgroup
and therefore, by a theorem to be discussed in the
next section, all reducible representations are also
decomposable.

That this is far from a trivial result appears when we
realize that, as already indicated by the two-dimensional
case, none of the finite-dimensional representations of
{A} are unitary,”® and therefore do not partake of the

takes the form

10 Wigner (1939) and earlier work of Majorana (1932), Dirac
(1936), and Proca (1936). Wigner’s methods are global whereas
the earlier work is based on the study of infinitesimal generators

(see Sec. ILF).
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automatic equivalence of reducibility and decomposa-
bility which characterizes unitary representations.
Nevertheless, by the result just mentioned, they are
reps. The equivalence of reducibility and decomposa-
bility in any unitary representation follows from the
fact that every matrix represents an element R in-
verse to some other element R in the group, and for
any unitary representation R—'=Rf1, so that if all the
matrices have zeros “downstairs’ they also have zeros
““upstairs.”

We can introduce the idea of such a finite-dimensional
rep of any group of coordinate redescriptions {R;=1,
Ry, ---R,- -} also in terms of the transformation be-
havior of a basic set of functions. This might be de-
scribed as a generalization from the concept of an in-
variant function to that of a “covariant set of func-
tions” : We take a function ¢'(¢) which is scalar but not
invariant [see Eq. (4')], i.e., it transforms under the
ath member of the group to a function ¢*(£), in general
different from ¢'(£) (except in the case of the identity
redescription R;=1):

R (®)=2(8)=¢'(RE) t=Ru
R (B)=¢* ()= & (RE).

- By operating with all the elements of the group, we in
general get a set of functions of which it may happen
that only a finite subset are linearly independent. Let
these be # in number:

‘PI(E)) ¢’2(E)’ o ‘pn(E).

We then have

Re(§= % SR ®)

It is now proved that the matrices S(R) constitute a
representation of the group, i.e.,

S(R)S(R)=S(R'R).

By definition, letting I represent the identity of the
group, we have

To*(§)=*(§) = ¢'(Ra§) =§ St (D),

and for a general element R of the group we have

Re(8)= ¢1(R“‘Ra“é)=Zﬁ: SP=(R) 0#(8),

which brings out the mode of generating the representa-
tion from the original simple function ¢'. Taking
another element R’ of the group and operating, we have

R'¢f=3_ S*#(R')¢",
and
R'Rpo=5 SP=(R)R o= S(R)S?(R) "
B B.x

495

But R'R operating on ¢* gives an expansion in ¢* with
coefficients S**(R’R). Thus we have

S*5(R’)SP=(R)=S*(R'R),

and the complete set of matrices { S}, one corresponding
to each R, forms in the #-dimensional space of spinor
components ¢?(£) a representation of the group of
transformations {R}. If this representation is indecom-
posable irreducible, it is called a “rep,”” and the associ-
ated spinor a “rep spinor.” This spinor provides a basis
for the rep.

It is worthwhile to emphasize the point already in-
dicated in our proof, i.e., that to generate the whole
representation one need know how to express, in terms of
a basic set, only the transform of the original function o'
under all operations of the group. To illustrate the whole
procedure, and the last point in particular, we consider
a simple example. Let the group {R} be the two-dimen-
sional rotation group in the plane and let ¢,=cosf
where 6 is the polar angle. Then we have

R, cosb= ¢*(0)=cos(R.~0)
= 08 (0+a) = cosa cosf—sina sing.

The second basis function needed for a complete set
here is Ry cosf= ¢?(f)=sind. We then have for a
general rotation

R.¢*= ¢ (R Ry, 0) = cos (0+37+a)
= cos(a+3) cosf—sin(a+37) sind
=sina cosf-+-cosa sind,

which are the usual redescriptions which the coordi-
nates ¥=cosf and y=sind undergo when the frame is
rotated through an angle a.

E. Physical Motivation. Decomposability of
Representations of Groups :

Groups may now be surveyed from the point of view
of finding which of their indecomposable representations
are also irreducible, since such reps are of great signifi-
cance for physics. Fortunately the problem of finding
the reps is simplified greatly when we concentrate on
representations in state-vector space. The postulational
basis of quantum theory compels us (Wigner, 1931,
1959) to limit ourselves in state-vector space to unitary’
representations (or antiunitary representations—see the
following), and for these indecomposability means ir-
reducibility. In other types of representations these
two properties need not concur. Such representations
may appear when groups which are not compact or
“semisimple’ 1 are being represented since noncompact
groups have nonunitary representatiouns, and, if the
group is also not semisimple, indecomposability need
not imply irreducibility.

We can be more specific: In accord with the super-

1 See footnote 14 and the following discussion.
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position principle, probability interpretation, and com-
pleteness condition, the states of a quantum-mechanical
system are representable in a Hilbert space in which a
unitary scalar product is defined (Sec. I.C). Each state
of the physical system corresponds uniquely to a unit-
length ray, i.e., a unit vector with an arbitrary phase
factor. The arbitrariness in the phase factor comes about
in that the quantities which are physically observable
are not the state rays ¢, ¢, -+ themselves but rather
the absolute squares of their scalar products, |(e¥)|2
This square gives the probability that, the system being
in state ¥, an experiment to see whether it is also in
state ¢, gives the result “yes”’—the so-called “transition
probability.”

Suppose that we are dealing with a microphysical
system whose basic aspects are invariant under a cer-
tain group of coordinate redescriptions. We interpret
the term “basic aspects” to mean the set of all transi-
tion probabilities between states. The states themselves
are not invariant (“Schrodinger type” interpretation),
but corresponding to each redescription the new states
are given by a certain operator acting on the old states.
Wigner (1931, 1959) proved that the invariance of the
transition probability leads to the following mathe-
matical property of such mapping operators in state-
vector space:

The operator can be either one of two kinds. Either (1)
it is linear and unitary, i.e.,

U O‘ ‘P+.u¢) =U €0+“U¢7 (U ‘D:U'P) = ((P,l&) 5
or (2) it is antilinear '
A otwh) =NAo+u*Ay

norm-preserving and has an inverse, and is therefore
antiunitary, i.e.,

(Ao, Ap)= (o)*= ,0). 9)

(Included in the definitions is the requirement that all
conditions must hold for any numbers A, x and any
functions ¢, ¥.)

It is immediately established that the product of
any two antiunitary operators A and B is unitary:

(ABo,ABY)= (By,Bo)= (o).

In particular, this holds for the square of any anti-
unitary operator. An especially important subclass
occurs when this square is a scalar, i.e., a multiple of
the identity. For this case there applies the following.?
- Scalar square theorem. If \ is an antiunitary operator
whose square is o numerical multiple o of the identity,
then w==1.

2 T wish to thank L. Michel for a discussion of this theorem of
which proofs are found in Michel and Wightman’s notes and in

Wigner’s book (1959). The simple proof given here is based on
discussions with P. Erdés and R. Herndon.
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Proof. (1) The absolute magnitude of w is 1. This re-
sults immediately from the fact that V2 is unitary:

(¢,¢)= (V2¢’VZ¢) = (“"p>w¢)=w“’*(‘?;¢)7 . wwt=1,
(2) wVe=VVVo=Vuo=w*Vo, . wfwt=1,

Physical arguments were given by Wigner (1932) to
the effect that if a given type of invariance operation is
in one instance represented unitarily (antiunitarily), it
should be represented unitarily (antiunitarily) in all
representations. Furthermore, all Hilbert-space opera-
tors representing redescriptions lying in any connected
piece of the full Lorentz group must have the same
unitary or antiunitary nature (see, for instance, Barg-
mann, 1954). Wigner found, assuming positive energy
states were carried into positive energy states, that of
all the invariance operations, only those connected with
time reversal should be represented antiunitarily, all
the others unitarily (see Table III). For pure time re-
versal T (but not for the product of time reversal with
operators representing other symmetry operations!) the
“scalar square theorem’ applies since the result of re-
versing the time twice must give back the same state—
hence, the same ket up to a factor. Thus, we have

Te=t, (10)

which serves to classify physical systems into two
sharply separated classes according as their states are
even or odd under T2 (see Sec. IV and Table V).

The involutional property of T which limits T? to
+1 facilitates the development of a theory of co-
representations. This natural extension of representation
theory to groups containing an involutional antiunitary
operator is thoroughly discussed by Wigner (1959).
This is the general case, because any antiunitary
operator equals UK where U is unitary and K anti-
unitary, with K2=1 (conjugation).

The two results, that basically we must operate with
unitary representations in the state-vector space, and
that there are no finite-dimensional unitary representa-
tions of the Lorentz group, taken together mean that
the state-vector space must be an oo-dimensional
Hilbert space. This provides an affirmative answer to
the query of van der Waerden' as to whether there is
an infinity of eigenfunctions associated with every
Hamiltonian.

We return now to representations in general, not
limited to those in state-vector space. For all finite
groups, and for many infinite groups of physical in-
terest—specifically for all compact* groups or semi-

13 B. L. van der Waerden, Die Gruppentheoretische Methode in
der Quantenmechanik (Verlag Julius Springer, Berlin, 1932;
Edwards Brothers, Inc., Ann Arbor, Michigan, 1944), p. 5.

“ A “closed” or “compact” group is defined as a continuous
group where every infinite set of group elements contains at least
one limit element (“point of accumulation”) in the group. It is
remarkable that from this rather general basis there follow a
number of powerful results, i.e., there exists an invariant density
function such that integration with it over the space of group

parameters gives a finite result (the group “volume’), and this
integral is invariant under a shift in the arrangement of the group
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simple groups!>—reducibility means decomposability.
For the compact groups, all representations can be
similarity transformed to a unitary form, i.e., such that
every 7; in the group is represented by a unitary matrix
U; (with U;t=1U;7). Reducibility and decomposability
mean the same thing, i.e., upon reduction to the semi-
blockdiagonal form all elements above the diagonal
blocks also vanish. For infinite-dimensional unitary
representations in general, there is no guarantee that
they decompose into a discrete sum of reps, but instead,
a “direct integral” over a continuous infinity of reps
may be needed (Murray and von Neumann, 1936;
Mackey 1952). For all compact groups, however,
Wigner (1939) has proved on the basis of the Peter-
Weyl theorem!® that all reducible representations, finite
or infinite, are also decomposable into a sum of finite-
dimensional reps. For connected semisimple groups,
one has the theorem (Harish-Chandra 1953, 1954) that
all representations are “of type I,” i.e., they decompose
into a discrete sum of (not necessarily finite!) reps.

Groups which are more general then compact or
semisimple ones occur in physics as is obvious from the
elementary examples of the homogeneous Lorentz
group and the rotation-translation group. These have
among their indecomposable representations some which
are reducible, and we have looked at some of them in
the foregoing. Their general theory is complicated. If
however, we limit ourselves to unitary representations
a great deal can be said. (The antiunitary ones can be
dealt with by an extension of the theory; see Wigner,
1959.) Only the infinite ones present any problem. Here
Murray and von Neumann have shown that these
infinite unitary representations are always composed
out of a discrete sum of reps and ‘“continuous” repre-
sentations involving a “direct integral” over reps. For
specific groups, even though they are not compact or
semisimple, the situation may simplify further. Thus,
for example, Wigner (1939) has shown that the Poincaré
group has no “continuous” representations: all unitary
representations of the Poincaré group can be decomposed
into a discrete sum of reps.

Finally, there is the question of the arbitrary phase
factor and the possibility of fixing it consistently by a

elements by multiplication from the left or right. Further, every
continuous function can be integrated over the group. The
category of compact groups includes: the n-dimensional unitary
group and all of its subgroups, including the real-orthogonal and
the rotation groups. It does not include, for example, the two-
dimensional unimodular group g which is in 2-to-1 correspondence
with the proper homogeneous Lorentz group (see Table IV).

15 A ‘“‘semisimple” group {G} is one which has no Abelian in-
variant subgroup {F} besides the identity. This means that there
is no nontrivial {F} which commutes with all the elements of
{G}, i.e., such that {F} contains all conjugates, GFG™.:

16 Included in the Peter-Weyl (1927) theorem are the results
that the compact groups have a denumerable infinity of reps, and
functions belonging to these provide a complete orthogonal basis
for expansion of any function. A generalized version of the
orthogonality theorem was given by Wigner (1939) for the unitary
reps of an arbitrary group. Altogether, these results provide the
most general basis for the expansion methods used in physics.
[See Melvin (1956) for illustrations and applications.]
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convention, a question which is very important for
physics since it underlies analyses of “physical equiva-
lence” of similar particles, and “relative parity” of
dissimilar particles, etc.

The unitary (or antiunitary) operators which repre-
sent the Lorentz group are defined uniquely only up to
a phase factor; multiplication of a state vector by an
arbitrary phase factor makes no physical difference. The
operators form therefore a “representation up to a
factor” or a “ray representation.” One must consider
whether, by a proper selection of elements, one can con-
sistently reduce to a smaller degree this physically
irrelevant arbitrariness in the phase of the representa-
tion matrices. Following upon earlier work of Silber-
stein (1924) and Weyl (1928) on the homogeneous
Lorentz group, Wigner (1939) proved that by proper
selection of elements all the unitary ray representations
of the Poincaré group can be consistently replaced by
two-valued representations, i.e., representations up to
a == sign. This irremovable two-valuedness marks the
occurrence of spinors in quantum theory. A similar
argument in classical theory, with its purely tensorial
objects, leads to single-valued representations rather
than representations up to a sign.

Ambiguities of phase are associated with physical
state vectors in their behavior with respect to other
invariance groups besides the Lorentz groups, and thus
it is both interesting and useful that Bargmann (1954)
has generalized Wigner’s considerations to other con-
tinuous groups.

F. Lie Algebra of a Continuous Group.
Generators of the Poincaré Group

A group is said to be a connected continuous group if it
consists of a single one or higher-dimensional continuous
infinity of elements. For many connected continuous
groups the structure may be studied by considering only
a finite number of “generators” obtained from the group
elements differing infinitesimally from the identity. The
generators are such that out of them the entire group
may be constructed by iteration. Such continuous
groups, whose elements are determined by a finite
number of parameters, are called Lie groups, and the
algebra which the set of generators satisfies is called
the Lie algebra of the group. It too has a rich theory of
matrix representations and, in many groups of interest
in physics, there is a one-to-one correspondence with
representations of the group. It is often much easier to
study the representation theory for the Lie algebra,
and infer therefrom the representation theory of the
group, than to study the group directly. It should be
remarked, however, that Wigner obtained his more
general and complete account of the Lorentz groups by
direct “global” methods and not through the infinitesi-
mal method. The latter was used earlier by Majorana
(1932).

Let there be given a set of elements in which multi-
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plication by scalars from a field is defined. If, in addi-
tion, the set is closed under two composition operations,
“addition” and “multiplication,” which are distribu-
tively related, an algebra is defined. The “sum” of two
elements in a Lie algebra is to be taken in an obvious
formal sense (so that the sum maps into the usual sum
of matrices in the matrix representations of the algebra).
The “product” of two elements, on the other hand, has
to be defined as the commutator of the two elements.
(This product is nonassociative!) It is only if this is
done that we get the desired closure property, i.e., the
“product” of any two elements is always a linear com-
bination of a set of basis elements. The expressions of
the commutators of the abstract generators as linear
combinations of generators are called the “commutation
relations of the Lie algebra.” 7

The Poincaré group {L,t} is probably the most im-
portant example for physics. The group of rotations in
n-dimensional space depends on #(#—1)/2 parameters.
The translations provide another #» parameters. Thus,
in the four-dimensional Poincaré group {Lt'}, there
are 10 parameters. The corresponding 10 generators,
the kinematical significance of the associated group
elements, and the names of the dynamical representa-
tives of the generators in the o -dimensional Hermitian
representations in Hilbert space [see Sec. III and Table
III and, for a formal derivation, Pauli (1956)] are

Hermitian

Generators of the Kinematical dynamical
Poincaré group significance  representative

P~ (Py,P)(a=0,1,2,3) translations energy mo-
mentum P,
Jy=—Ji=Mj pure space angular mo-
(4,7,k=1,2,3 et cycl) rotations mentum M,

Tro=—J =My pure Lorentz centroidal

transformations moment 97

[For physical reasons, we choose 9 equal —N
of Pauli (1956).]

The commutation relations of the Lie algebra of the
generators (written not with full mathematical sym-
metry, but in a form easier to interpret kinematically
and dynamically—see Appendix) are

[(M1,M]=iM; et cycl (a)
[M1, 97 ]=0 [ M 1,91, |=[9101,M 2] (b)
=13 et cycl
[M;,P]=0 [M1,P;] =[P1,M] (@
=1P; et cycl (11)
I:m]_,mi]: —lMs et cycl (d)

[P;,Pi]=0 [M;,Pr] =iPodp  (4,k=1,2,3) (e)

[P, Pol=[M,Py]=0
[Po, ] = —iPy. ®

17 One should clearly distinguish between these generator com-
mutation relations and the additional ones that come up in the
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Looking over the commutation relations one is led
to consider the possibility of separating out from M
and 9N; a part which is responsible for the noncom-
mutation with Py, and a residual part which commutes
with Py. To avoid complicated questions of uniqueness
we do this not with the abstract generators but in a
concrete representation basis in which the P’s are
simultaneously diagonal. (Since they commute this is
possible.) In this basis dP¢=9/d P, is formally defined,
and it is easily verified by direct differentiations that
the separation is represented by the following splitting :

MkEJm,,=i(P,.aP"*—P,,.OP")+SkELk+S,,
M= J po=1(PodT*+ Prd70)+ 8= L+ 8
k, m, n=cycl (123),

where we call L the orbital part and S the spin part of
M, and similarly we call & and &= (8:8:8;) the orbital
and spin parts of M= (IM,9M;9M;3). Every orbital com-
ponent commutes with every spin component.

In any representation of the J’s, not only the one
with the diagonal momentum basis which we have just
used, the decomposition into orbital and spin parts
takes the form of a sum of two “matrices.” These may
be of discrete or continuous type—or a direct product
of the two types. For example, in the Hilbert space of
one-particle quantum mechanics with the basis in
which the space coordinates x; are diagonal, Ja has a
mixed discrete-continuous representation. The dis-
crete labeling of any matrix element is given by the
discrete indices o3, and the ‘“‘continuous matrix’ aspect
is expressed by the linear operator form. In accord
with 729F+— Xk — 0P — gy = t, Pr— —19; Po— 1o
(0,=9/09x,), we may write

M8 = (2 Pn— 20 Pn)5°0 4S8
= (%00 — D)0+ 538

M 2= (21 Po— Pyt)52P+-8,28
= i(xk60+x06k)6“ﬂ+8k“ﬂ.

The first or “orbital part” governs the infinitesimal
change in each component of the spinor field due to the
transformation. The second or “spin part” Sf is the
spinor representation matrix which governs the mixing
of components by the given rotation.

Initially the operators are to be considered abstractly
merely as generators of invariance operations in an
abstract group-theoretic sense. The commutation rela-
tions are bilinear in the P and J components and can be
interpreted as saying that, regarded as a passive object
undergoing transformation, P, behaves like a vector
and Jgs behaves like a tensor in space-time: Under
infinitesimal “rotations” and “displacements,” such as
are generated by J’s and P’s regarded actively, they
transform in the appropriate simple linear way. More
specifically, the first relations describe the fact that the

12)

quantum theory. of fields, where commutators of the field opera-
tors with each other and with the generators of the invariance
groups of the theory also make their appearance (see Sec. ITT).
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three-component generator of pure rotations transforms
like a vector in the three-dimensional spacial subspace
of space-time. The next two sets of relations describe
the fact that IR and P also transform like a vector under
purely spacial rotations. The fourth set of relations ex-
presses another interesting fact, i.e., that the commuta-
tor of two infinitesimal Lorentz transformations % and
M, is a pure infinitesimal rotation. In particular, the
commutator of € and &' is a pure L.!® Finally the last
two relations describe the invariance of space displace-
ments under space displacement, the mixing of time
and space displacements under Lorentz transformation,
and the invariance of time displacement under space
displacement and space rotation.

While the system of P, M, and 9 operators has no
finite dimensional unitary or Hermitian reps, it does
have various infinite dimensional ones. As we have
already indicated, these infinite dimensional Hermitian
representatives P, M, and I can be identified as the
dynamical observables of total linear momentum, angu-
lar momentum, and centroidal moment, respectively,
for the various possible cases of relativistically invariant
systems (see Sec. IIT and Appendix). More detailed
dynamical interpretations of the commutation relations
become possible if one takes as the system a field. Then
linear momentum, orbital angular momentum, and
centroidal moment are all expressible in terms of
integrals of a stress-energy-momentum density tensor,
and it follows that the I, can be written

Welg=9:nk'_Pkt (k= 1) 2) 3);

where Jt;’ may be interpreted as the components of the
centroidal moment in the observer’s frame. Interpreta-
tions of the commutation relations on the basis of this
connection between the It and P operators are dis-
cussed in the Appendix. The set of Egs. (11f) for ex-
ample, state, in accord with the fundamental law of
motion, that P, M, and It are all constants of motion.

We now define the 4-pseudovector W~ (W, W) by

We=21ebeda], P, (indices=0, 1, 2, 3),

where €% is the completely antisymmetric tensor of
rank four (é2°=1). The four operators Wo=W?
Wi=—WE (k=1, 2, 3), can be expressed in terms of
the basic generators in space-vector notation as follows:
W=MP;—IMXP=SPy— SXP~ (=W, —W?, —W?)

Wo=M-P=S.P.

As we .see, because of the structure of the orbital
parts, only the spin parts S and & contribute to W.
The space-vector part W may be thought of as an
“inner angular momentum” multiplied by a factor

18Tt is noteworthy that this relation can be extended to finite
transformations A, and A’. Here the “commutator’”’ must be taken
in the finite operator sense—i.e., as that operator which applied
to A’A takes it into AA’. [This operator, (A’A)"1AA’, becomes the
identity plus the vsual commutator of infinitesimal generators in
the limit of small transformations.] It can be proved that this
finite-sense commutator of two finite Lorentz transformations is a
pure finite rotation. [See, for example, Silberstein (1924), p. 167.]
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with the dimensions of energy. Because of the role it
plays in applications (Bouchiat and Michel, 1958) one
may also call W, the “polarization 4 vector.” It is
easily verified that the polarization 4 vector is Lorentz
orthogonal to P, (is therefore a spacelike vector), com-
mutes with P,, and has the same commutation relations
with J’s as P,. Finally, its different components do not
commute with each other, and we find

[:Wl,W2]=i(W3Po—'WOP3) [W,Wo]= —$WX P.
et cycl

With the help of these relations and the earlier rela-
tions, Eq. (11), we find that the operators,

Pr=—P,P=P¢—P
W= —W We=—W¢+We
=P¢S*+Py(PX &-5+8-PX &)
+(PX &)2— (P- S,

commute with all the others. Therefore, by Schur’s
lemma, in each rep each is represented by a matrix
which is a multiple of the identity I. These multipliers,
or eigenvalues, can be used to characterize the rep. In
the dynamically significant co-dimensional Hermitian
reps, the eigenvalue of P? is to be interpreted as the
square of the rest-mass magnitude m associated with
the system, and the eigenvalue of W2 is m? times the
spin squared. This can be seen by considering P? and
W? in the rest system which is defined by the property
that in it the only nonzero component of P is Py
(with eigenvalue m). Thus, in all the Hilbert-space
representations,

Pr=m?l W2=m2St=m?s(s+1)I,

and we are led to the same characterization of the reps
as Wigner (1939) has obtained by global methods. (See
Table V.) Explicit constructions of the Lorentz group
rep matrices in a basis in which M2, IR?, and M5 are
diagonal are given by Pauli (1956). There one finds also
a concise mathematical discussion of the reps of the
inhomogeneous group (Poincaré group).

III. INVARIANCE AND FIELD EQUATIONS

The earlier discussion of space-time transformations
was general and related to invariance of the space-
time interval and of transition probabilities. We now
consider the concept of invariance in the more com-
prehensive context of “quantum dynamics” which in
its most complete form, accounting for the appearance
and disappearance of particles, is quantum field theory.

We have discussed, with many ramifications, the
idea of an “invariant function.” Now in order to con-
sider the analogous but more elaborate idea of an “in-
variant set of equations” or an “invariant theory,” it
is necessary to make a generalization. In Sec. IL.A we
considered functions which were scalar and invariant;
in Sec. II.D we generalized our considerations to func-
tions which were scalar but not invariant and which,
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TaBLE V. Possible kinds of elementary particles and their behavior under space and time inversions—based on Wigner’s analysis
of the unitary reps of the inhomogeneous Lorentz group and on Michel-Wightman (unpublished). In the spinless case, in Type I ¢(p)
is still a one-component function of the momentum p, but already Types II, ITI, and IV have to be represented by two-component func-
tions. A similar doubling of dimensions for Types II, III, and IV with respect to Type I occurs with all spinors of higher rank. The
operators V() represent the inversion operators. The symbol K used in defining them represents the antiunitary operator conjugation.
The operators V (/) act on the one- or many-component functions ¢(p), and give the result of the inversion in accord with

LU0,L)¢1(p) =V (I)¢(Lp),

Iyp=—p Iip=—p Iup=p.

To get these operators for the higher rank spinors we always start with the same basic two-dimensional matrices, and insert in place of the
1’s the spinor or tensor matrices of Type I (direct product). The types have been assigned so as to make the square of the operators of a
given type for integer spin the negatives of those for half-odd integer spin. Arbitrary phase factors have been left out of the definitions.
Their values in no way affect the classification of particles into types.

Range of Range of Intrinsic ’ Occurrence
Symbol mass m  spin s parity V)1 [V V) V(I V (Lse) in nature
Massive
nUo¢ m>0 s=0 e=—+1(—1) Type I 1 1 1 K K Mesons
s(calar )
pseudoscalar, _ 1 0 0 l) 0 - 1)
Type II 1 | 0 —1 1 0 K 1 0 K ?
1 0 01 0 1
Type Il —1 b 2) (L or (oo e
1 0 0 -1 0 -

Typelv -1 -1 (} 1) ( X O)K X O)K ?

mUyg¢ m>0 s=3% Type I -1 -1 ¥ YvSK v5K Leptons

Baryons
Typell —I I O O’ K Oer*K ?
TypeIIT 1 e QL% O™k O’k ?
. TypeIV 1 O Oe™*K Oer’K ?
ml:]s‘ m>0 2s=|integer| ?

Massless

oUo¢ m=0 s=0 e=+1 ?

oUs m=0 s=% Type 1 -1 -1 ¥ Yy5K vSK Neutrino
: ?

oU:1 m=0 s=1 Type I 1 1 -G GK —K Photon

: 5 :
WUemoUesrx’ m=0 alls>0 ?

together with a set of covariant partners, served as
basis functions for reps of groups. These functions,
while they formed components of “rep spinors” were
still “coordinate-scalars,” i.e., under the coordinate
redescription £=Rx we had for each component ¢(x),

Ro(8)=¢'(§)=o(x).

We now consider functions which are not coordinate
scalars but vectors or fensors, or more generally spinors,
with respect to a change of frame. For these we have

Ry (&) =9 (§) = R*¥P ()
¥ (§)=RAYP(R7E). (13)

An important limiting case of Eq. (13) occurs when
the transformation R is a member of a family which
is continuously connected with the identity transforma-
tion. Then, setting —§¢=R-1£—¥ we have in the
neighborhood of the identity,

ReB= 5284552,

or

where de is an infinitesimal parameter corresponding to

0¢ in order of smallness. We can then write!®

ReBYB(R1E) = (6+F+-5eS*F)yP (E—58)
= (0°F+5eSP)[ (P (£) —oE- V¥P) .

For the total infinitesimal change in any component
of ¢ by any such transformation infinitesimally near the
identity, we have then

Spr=RAYP (E—08) —¢=(&)
—0E- V() +0eSHP(E).

The first term on the far right-hand side gives the change
in the component ¥* due to the change in coordinates
alone, the last term gives the change in ¥* due to the
mixing in of other components. Well-known special
cases of these infinitesimal transformations are (1)
translation by 8a in three-dimensional space: §§=4a, (2)
rotation by d¢ in three-dimensional space: 6§=dpX &.
In case (2) we refer to the first term, involving §¢ X &-V
=0¢-£XV, in Eq. (13') as the “orbital part” of the
infinitesimal rotation. We call the second part, involv-
ing S*AYB, the “spin part” of the infinitesimal rotation.

= (13"

19 The symbol V represents a generalized gradient operator.
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An expression quite similar to that for case (2) occurs
when we consider rotations in a four-dimensional space.
In fact, the resemblance of the operators acting on y#
in Eq. (13’) to the infinitesimal generators of space-
time rotations [Eq. (12)] is obvious upon inspection.

A set of equations governing physical systems is said
to be invariant under a redescription R if, when we
substitute for all independent variables and functions
of the variables their redescriptions, numerical constants
remaining unchanged, we find that the set takes exactly
the same form as it had originally. Invariance, defined
in this way, is physically important because the new
variables form as “equally good” a set as the old from
a physical point of view. This has the following conse-
quence: The redescribed solution of the original equa-
tions is just as good a solution of the original equations
as the old solution. Thus, we obtain @ new solution of
the original equations with the same numerical constants.
This solution is generally different from the original,
though in special cases it may be proportional to it.

These considerations, to the effect that every in-
variance principle yields new solutions from old, hold
equally for any classical system of equations. But in
quantum dynamics, where the field variables are opera-
tors in a Hilbert space, something additional comes out
of the existence of this invariance principle. This is an
explicit connection, independent of position, which
must exist between the field variable at one ‘“physical
point” and at another “physical point” which may be
finitely separated from it, even in cases where the trans-
Sformation connecting the two points does not belong to a
set of transformations coniinuously connected with the
identity.

Specifically, suppose that the basic abstract Hilbert-
space operators, out of which the theory is built, are
expressed as functions of coordinates A=(x). If all the
governing equations are invariant under some co-
ordinate transformation or redescription £=Rx, then
the operators must undergo some associated linear re-
description, e.g.,

A« (§)=R*8A8(x)=R*8AS(R1¥).

But here there appears the basic physical principle that
the new coordinates—and therefore the new solutions—
are just as admissible physically as the old ones. The
new solutions provide an equally admissible repre-
sentation of the basic abstract operators. This is the
invariance or “relativity” principle governing the
theory, and it has a very important consequence in
quantum dynamics.

Let the basic set of operators, in terms of which all
others may be constructed, form a canonical commuting
or anticommuting set [Egs. (1) and (2), Sec. I.C].
Every Hilbert-space representation of this set decom-
poses into a sum of continuous and discrete repre-
sentations. [Continuous representations were intro-
duced by Murray and v. Neumann (1936)—see Sec.
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IL.E. Their formal definition is discussed concisely by
Wightman and Schweber (1955). Any representation
which is not continuous is discrete.] A very important
uniqueness theorem may be proved concerning the dis-
crete representations of canonical systems: Every dis-
crete representation by bounded operators is made up of
(“decomposes” into) reps. Of all these reps there is a
unique one for which a vacuum state and a number operator
exist® In other words, in any rep the new set of opera-
tors obtained by the redescription, as described previ-
ously, is equivalent to the old. In particular, a given
pair of corresponding old and new operators 4 (¢£) and
A’ (&) may be regarded as two representatives in Hilbert
space of the same abstract operator, one being a unitary
transform of the other in accord with

A'(H=UAHU [U=U(R)].

The transformed quantities—actually functions of the
transformed coordinates—are here related to the origi-
nal quantities evaluated at the same coordinate numbers.
Thus the operator U gives a relation between the field
quantities at two different physical “‘points.”’ Describing
the situation at the two points in the same (for instance,

"new coordinate) langugage, we have, using the re-

description equations, Eq. (13),
UA=«(§)U~'=R+A%(R). (14)

Equation (14) may be called the “finite interval field
equations.”

If the redescription R belongs to a set continuously
connected with the identity then, correspondingly, R+
is continuously connected with the identity and, in the
limit of transformations infinitesimally near the iden-
tity, the quantities

0A==R*AF(R7E)— A~ (£)

are infinitesimally small. Under these conditions U is a
member of a set of unitary operators continuously con-
nected with the identity. By “Stone’s theorem” in the
theory of Hilbert space, a Hermitian operator G, the
generator of U, is then uniquely defined by the relation

U=exp(—ieG),

where € is the parameter of the set. (This is analogous
to an elementary fact about ordinary numbers: a unit-
magnitude complex number, continuously connected
with 1, uniquely determines a real number, its phase.)

20 The uniqueness theorem for a finife set of operators obeying
canonical anticommutation relations, (i.e., describing Fermi-
Dirac particles) was proved by Jordan and Wigner (1928). The
corresponding proof for a finite set obeying commutation relations
(i.e., describing Bose-Einstein particles) is included in a general
theorem of v. Neumann (1931) on representations of canonical
operators. As already discussed in Sec. I.C, Wightman and
Schweber (1955) showed that the uniqueness theorem for both
commuting and anticommuting cases can be extended to an:
infinite set of operators, such as occurs in any continuous field
theory, only if it is assumed that there exists for the given field a
no-particle (“vacuum”) state and an operator of the total number
of particles.
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We then have the differential field equations which relate
the values of state of field quantities at two neighboring
points

5A%/se=— (55/6¢) - VAS+SaP AP
=i(GA*—A*G)=iG,A=]. (15)

Evety system of natural processes is invariant under
the redescription connected with the resetting of the
zero of time (“time displacement”). This possibility of
displacement of “‘epoch” ¢ is continuous. The corre-
sponding differential field equation which relates the
values of a quantity at two neighboring moments in-
volves the Hermitian representative of the generator
Py, and we call this H, the Hamiltonian. The differen-
tial field equations then take the form of the equations
of motion,

0A%/5t=14H,A~], (16)
which as we see are consequences of the invariance
under time displacement. The fact that the operators
Q corresponding to the other invariance operations of
the Poincaré group either commute with H or in any
case give dQ/dt=0, leads to the theory of the continu-

ous-transformation constants of the motion (Sec. I.C -

and Appendix).

If the redescription R does not belong to a set con-
tinuously connected with the identity, as for instance
is the case with the space reflection operation, we still
have a ‘“finite interval field equation.” For example, in
the space reflection case the corresponding Hilbert-
space operator is called the parity P, and it satisfies

PA«(1,{)P-1= PasA(—r, 1). 17)

Interpreting P as a “Schrédinger type” operator on
kets we have in this case, just as with time reversal
(Sec. ILD), that reversing space coordinates twice
must give back the same state—hence the same ket up
to a factor. Thus, we can write

P=\21 P=)\P (P2=1).

However, P is not antiunitary, and the ‘“‘scalar square
theorem’ does not apply. Therefore Ap? is not compel-
lingly restricted to any particular values. (If normaliza-
tion is required, Ap?, and therefore Ap, must be of
absolute magnitude 1.) It can be shown, however, that
Ap can be chosen consistently to be +1. Alternatively,
by interpreting P in ‘“Heisenberg-type” manner one
arrives at the same conclusion, establishing on the way
that PPt=1. Thus, P can be chosen as a Hermitian
operator with square unity (cf. Liiders, 1955). Further
discussion of possible restrictions on the freedom of
choice of A\p under conditions of interaction will be
found in Sec. IV. We have allowed for possible phase
factors different from 41 in Table III.

Classically, connections of type analogous to Eq. (17)
do not exist when the two points cannot be joined by a
“continuous motion,” i.e., by the unfolding of a contact
transformation, and this difference between the classical
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and quantum-mechanical situations is at the basis of
the oft-quoted statement that ‘“‘parity is not a classical
concept.” In the form quoted it is misleading, because
oddness and evenness under reflection of eigenfunctions
of a classical continuum problem is certainly a good
classical concept. But for classical particle mechanics in
contrast to continuum mechanics, there is no corre-
sponding general “constant of motion” as there is in
quantum particle mechanics.

Because it does not preserve the canonical relations,
the case of time reversal is peculiar among the discrete
symmetry operations. (They are all peculiar, but in
different ways!) The analysis is indicated briefly in
Table ITI. We describe the situation here from a some-
what different point of view. The redescription of formal
time reversal, G: f(#) — f(—t), and that of infinitesimal
time displacement d; do not commute but anticommute
as is evident from the equations

LG () ]=0:f(—1)=—f"(—1)
Gof()=Gf'(O)=f'(—1).

The redescription which has the Hamiltonian as a
representative is, however, not d; but 9,. We can have
a time-reversing redescription which commutes with
19, if we combine formal time-reversal G with a complex
conjugation operation K on all ¢ numbers following:

T=GK Ti3,—10,T=0.

Correspondingly, any Hilbert-space representative
T=GK of T commutes with H. This also means that
a time-reversed operator Qr, defined by TQT, obeys
the standard equations of motion, since

T@Q/d)T*=TGEHQ])T
—dQr/dt=—i[H,QT7].

The minus sign on the left stems from the G part of T
and that on the right from the K part! The fact that
the canonical relations are not preserved—T is not
unitary—does not affect the physical validity of the
time-reversed solution. The physical results of quantum
theory are unchanged if in all fundamental equations 7
is replaced by —z.

A quantum field theory of elementary particles con-
sists of : (a) Canonical commutation or aniicommutation
relations; these are of the type of Egs. (1) or (2).
(b) Field eguations; these may be interpreted as of the
type of Egs. (15) and (16), with an explicit form for
the Hamiltonian H and other generators G. The field
equations and commutation relations may (at least in
theory) be considered for cases where particles of only
one kind are present (free fields) or for cases where
two or more kinds of interacting particles are present
(interacting fields). Once the theory has been formu-
lated, invariance principles are of great value for draw-
ing practical inferences, especially with regard to selec-
tion rules (Sec. IL.B). The way in which such invariance

becomes
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principles are developed in quantum field theory may be
described as an intellectual exploration in two stages.
In the first stage we define invariance operations for
free fields; in the second stage we fest the invariance
operations for interacting fields. As we see already from
our derivation of the equations of motion on the basis
of invariance under the Poincaré group, part of this
exploration may be carried out in a more deductive
spirit: We can first find all possible forms of free field
equations of motion by the requirement that they shall
conform to a rep of an assumed invariance group. Under
the same requirement for coupled field equations, the
possible invariant forms of coupling can be found.

The apparent over-all isotropy and homogeneity of
space-time apart from gravitation gives physicists
strong reason to start out with field equations which are
invariant under the Poincaré group, and a rather ex-
haustive list of such possible systems for free fields has
been obtained (Bargmann and Wigner, 1948). The
usefulness of assuming Poincaré group invariance for
free fields and for the couplings between them is tested
in practice by comparing inferences drawn from this
invariance with empirical observations. So far the
Poincaré group has survived every observational test
in which gravitational phenomena are unimportant (cf
all experiments which verify the theory of special rela-
tivity, including microphysical cases, e.g., dilation of
the lifetime of mesons at high velocities, energy-mo-
mentum relationship, etc.). With sufficiently detailed

experimental study circumscribing the invariances, -

even the specific form of the invariant coupling can be
determined (see Sec. V).

It appears further, that by suitable definitions a
number of other invariance operations besides those of
the Poincaré group can be set up for the free field sys-
tem. In almost every useful case thus far, these opera-
tions can be regarded as “induced” by certain relatively
simple redescriptions of the space-time coordinates
(“space-reflection,” “time-reversal,” --:), or of the
physical operators (“‘charge conjugation”) in terms of
which the system of relations was formulated. This
“induction” provides a quasi-intuitive motivation for
the definition of the invariance operation, but one
should not be confused about its heuristic nature. The
essential point is that the first stage is merely formal—
we define a redescription of the dependent variables in
the free field system such that, together with the re-
description of the independent variables, we achieve
invariance. Only in the second stage, upon ‘“switching
on” the interaction, does the real physical test of these
further invariances come.

Examples which are of fundamental interest in ele-
mentary particle physics are the following systems of
equations for free fields in space-time?:

21 With the Latin-index metric, we have
3.=9/9x* 0°=g®9y [=0%a.
The singular function A is defined by
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Spin 0 case: (O2—m*)®(x)=0 ‘
Hermitian conjugate equations
[&* ()8 (5) = — 4 (x—)
[®(%),2(y)]=0.
(¥29"+m)W (x)=0
Hermitian conjugate equations
{Wa (%), T ()} =i (ynd"—m)arA (x—7),
W (x) = — iy,
(Wa(0),Ws(9)} =0 ({4,B}=AB+B4),

where the 4’s are 4X4 Dirac matrices satisfying

(18)

Spin % case:

(19)

YeYatYaYe=28kn.

In particular, the 4’s may be chosen real and unitary
(representation of Majorana, 1937), and therefore with
Y1, T2, Y3 Symmetric and vy antisymmetric,

il =T =y = grnn,

(™) ()
o, ™) (0 7))

Spin 1 case: (02— m?)®@.(x)=0
Hermitian conjugate equations
"®,=0
[®@a(%),®0* () ]=1[gar— (1/m*)3adrJA(x—7),
[@.(x),®s(y)]=0.

System (18) is invariant under all transformations of
the Poincaré group provided ® is a function belonging
to the »,Up rep, i.e., when represented in momentum
space ® transforms under U(e,A) according to

[U(e,0)2](p) =c'*®(A'p), (21)

which is the spin 0 case of Eq. (13) rewritten for the
Poincaré group and in momentum space (see Table V).
Similarly, system (19) is invariant provided W is a
column matrix of four functions belonging to the .U}
rep, i.e., transforming according to the spin % case of
Eq. (13). In the same way, system (20) is invariant
provided the ®, are four functions belonging to the
U1 1ep, i.e., transforming according to the spin 1 case
of Eq. (13). '

When these systems are interpreted only as free
field systems, each is also invariant under the opera-
tions of space reflection P, of charge conjugation C, and
of time reversal T, respectively, as defined in Table III.
The important question for physics, as emphasized in

eg.,

(20)

(Zir)s f eik.zs“Z"xB B
and has the symmetry properties

Al ) =A(—r,8)=—A(r, —f)=—A(—r, —1).

Alx)=— w=4(B2+m2)t
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the foregoing, is whether these invariances survive the
actual interactions observed in nature.?

IV. CPT EXTENSIONS OF THE POINCARE GROUP.
BARYON CONSERVATION AND
PHYSICAL INEQUIVALENCE

The question of the persistence of the extended in-
variances is best examined in the ‘“‘interaction picture”
in which the field operators continue to obey the free
field equations and commutation relations. However,
with interaction, we have to consider also the equation
of motion of the state vector |) whose evolution is
governed by the Schrodinger equation,

0,))=H(@®]),

where H(f) is the interaction Hamiltonian, assumed to
be Hermitian. The invariance behavior of this inter-
action Hamiltonian is at question.

Examination of this question in a broad context has
recently brought about a considerable change in our
conceptions of invariance under the three operations
C, P, and T. As is well known now, Liiders (1954, 1957)
proved an important invariance theorem, to which the
ideas of Schwinger (1951, 1953), Zumino (1957), and
Pauli (1955) have contributed, both before and after
Liiders formulation. The “CPT theorem’” makes it
very likely that the product of the three operations
C, P, and T, taken together as one composite operation,
constitutes a universally valid invariance operation.
That is to say, presenting the matter somewhat pic-
turesquely: within the frame of proper-local field

. theories,® the processes seen directly in matter look ex-
actly like those in a film taken of processes in antimatter—
taken through a mirror—and run off backwards.

We naturally ask : What is the situation with respect

2 For emphasis, we quote a prophetic remark by Dirac (1949).
Writing of space reflections and of time reversals, he remarked:

“I do not believe there is any need for physical laws to be in-
variant under these reflections, although all the exact laws of
nature so far known do have this invariance. The restricted prin-
ciple of relativity arose from the requirement that the laws of
nature should be independent of the position and velocity of the
observer, and any change the observer may make in his position
and velocity, taking his coordinate system with him, will lead to a
transformation (1) of a kind that can be built up from infinitesimal
transformations and cannot involve a reflection. Thus it appears
that restricted relativity will be satisfied by the requirement that
physical laws shall be invariant under infinitesimal transforma-
tions of the coordinate system of the type (1).”

Even though this skepticism of the scope of restricted relativity
has been brilliantly vindicated, yet the situation is subtle, as
witness the CPT theorem.

2 By a ‘‘proper-local field theory” is meant one in which tke
fields are represented by covariant boson or fermion operators, and
the interactions between fields are represented by proper-invariant
local operators. More explicitly, the following two groups of prop-
erties are satisfied: (i) The basic fields on which the theory is
built transform in space-timelike tensors or spinors and, in their
role as operators which augment or deplete numbers of quanta
present, they satisfy the usual commutation and anticommutation
relations. (i1) The interactions between the fields are described by
terms in a properly symmetrized Lagrangian (or Hamiltonian)
which are invariant under the proper Lorentz group and are
“local,” i.e., they consist of a linear combination of products of
the fields and finite-order derivatives of the fields.

M. A. MELVIN

to extended symmetry operations in the actual inter-
acting fields which occur in nature? Because these are
much more restricted in form than those contemplated
in the general theorem, we might expect more than just
total CPT invariance—perhaps invariance under par-
tial groupings of the C, P, and T operations separately.

As the result of intensive analysis initiated by Lee
and Yang (1956) in connection with the puzzle of dis-
crepant modes of decay of the kayons, the situation at
the present time may be described as follows: Until
recently, on the basis of experiments upon strong inter-
actions and electromagnetic interactions, it appeared
that the true extended space-time symmetry group for
all fundamental processes in nature was a direct product
of the Poincaré group by the group of eight elements
consisting of the identity, C, P, and T and their prod-
ucts CP, CT, PT, and CPT. As a consequence of ex-
periments with weak interactions (Wu, 1957 and many
others), we are now sure that this extended space-time
group is not universally as large as this. It may consist
of only the direct product of the Poincaré group by the
two-element group (identity, CPT). On the basis of
present experiments, however, it is rather likely that the
correct extended space-time group, with which all funda-
mental interaction Hamiltonians commute, is the inter-
mediate one consisting of the direct product of the Poincaré
group by four elements: Identity, T, CP, and CPT. With
the intensive experimentation now going on we may
expect to know more of the true situation before the

‘end of another year. (See Telegdi, 1959; Clark, Robson,

and Nathans, 1959.)

It is evident that if the four-element hypothesis
about the extended space-time group should be con-
firmed, it will be desirable to have a single name for the
composite operation of space inversion and charge
conjugation. The name “‘combined inversion” has been
used. One might consider as an alternative name for
this operation, as well as for the associated quantum
number, the term ¢oparity, and the symbol II. Coparity
invariance may be described as a general ‘“pseudo-
scalarity” of all matter: Under inversion, all particle
properties (charge, baryon number, etc.) go into anti-
particle properties.

The coparity can be sharp only for a system of zero
charge. This is because, like the charge conjugation, it
only anticommutes with the charge operator though it
does (under the 4-element hypothesis) always com-
mute with the Hamiltonian. For those cases of zero
charge, where also coparity is sharp, we can obtain
useful selection rules. Some examples are 7% 77—, and
definite orbital states of systems of NN and pions of
total charge zero.

In other cases of zero charge the coparity is not
sharp, but the state of the system is a superposition of
eigenstates of coparity. These states may differ in their
physical properties. An interesting example is the case
of a beam which when freshly prepared consists of
pure K%s (strangeness +1). After a time the residual
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. F1c. 4. Picturization of Yang and Tiomno’s attempt to dis-
tinguish two kinds of spinors by their behavior under double
reflection.

beam contains K”s (strangeness —1). In effect the
state of the fresh beam may be regarded as consisting
of a superposition of coparity eigenstates

| K%)= (1/V2)(| K+ K2)),

where the even and odd coparity eigenstates, | K1) and
| K5), are defined by the equations

|K)=(ANVD(K)+IKY)
K= (VD K)-T|KY) (@] K%)==£|K?).

The component K; can decay into two pions, but K
cannot (because, as pions obey Bose statistics, a neutral
two-pion system in any definite orbital state can be in
only an even eigenstate of IT). Consequently K3, which
decays into three particles, does so a thousand times
more slowly than K; and soon dominates. Thus, while
the fresh beam had sharp strangeness and unsharp co-
parity, the residual beam has unsharp strangeness and
sharp coparity:

fresh beam, K¢’s: sharp S, unsharp IT;
residual beam, K,’s: unsharp S, sharp II.

The emergence of opposite strangeness in the beam
shows up strikingly in that the aged beam can make
hyperons upon collision with nucleons whereas the
original fresh beam could not (Gell-Mann and Pais,
1955 ; Pais-Piccioni effect, 1955).

We turn now to the question of the origin of the
baryon conservation principle. Because this has so far
not been elucidated, it is instructive to examine the
history with some care. As stated before, with every
conservation principle there is associated an invariance
principle. The question is to find it and give it expres-
sion in a geometrically or physically interesting form,
i.e., one which is not just a formal restatement of the
conservation principle itself. It was suggested by Yang
and Tiomno (1950) that the invariance principle
associated with baryon conservation is the principle of
space inversion invariance, and in the attempt to make
it work they assigned definite and different type
parities to the spinor state functions of leptons and
nucleons. We have tried to make their assignments
picturesque by ‘““absolutizing” them in Fig. 4. It is of
course a swindle to suggest, as we have, that it is possible
to observe the effect of two successive mirrorings in re-
storing the field operator of a lepton to itself and of a
baryon to minus itself, an observation which would lead
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TaBLE VI. Yangand Tiomno’s attempt to distinguish two kinds
and four type of spinors, with respect to behavior under space-
inversion. In the first kind, particle fields and antiparticle fields
are of opposite type. In the second kind, particle fields and anti-
particle fields are of the same type.

d IT

Kind I Kin
(Double reflection ~ —1) (Double reflection ~--1)

Types: A B Types: C D
Phase factor A, i —1 1 -1

Particle field: 4 B c D
Antiparticle field: B A C D

us to assign the former to “spinor parity kind” 41 and
the latter to ‘““spinor parity kind” —1 (Fig. 4 and Table
VI).2# But one seemed to infer selection-rule conse-
quences of such gedanken-behavior, which in several
cases amounted to baryon conservation. In the old way-
of thinking, which required parity conservation, this
followed because any field operator of the —1 spinor
kind necessarily goes into i=(—1)* times itself upon
inversion and the corresponding charge-conjugate field
goes into minus ¢ times itself upon inversion. Thus for
baryonlike spinors, fields and conjugate - fields have
opposite inversion behavior whereas, for leptonlike
spinors, fields and conjugate fields have the same be-
havior under inversion. Thus, for example, the inter-
action leading a neutron to 8+ decay into an antiproton
would necessarily vanish since it would not be inversion
invariant. Such an argument to develop the baryon
conservation principle, which resembles that originally
given by Yang and Tiomno, is no longer strong enough
to stand up under weak interactions in view of the
possibility of parity violation in weak interactions. But
it, or any coparity reedition of it, presents difficulties
in principle anyway for two reasons, one special and
one general.

Special reason. Certain four-fermion interactions,
such as two neutrons going over spontaneously into two
antineutrons, cannot be ruled out by any real or
imaginary type parity argument, since (&=2)*=1. This
was recognized by Yang and Tiomno in their original
paper.

General reason. There are certain far-reaching objec-
tions in principle to taking seriously the assignment of
specific relative parity types to different kinds of
fermions, assuming that they are separated by exact
conservation laws.

The possibility of =7 types, as well as =1 types, of
spinor parity was first suggested by Racah (1937).
The question of whether it is physically meaningful to
distinguish four types (Yang, Tiomno, 1950) or only
two (Caianiello, 1952; Eriksson, 1953) has been much
disputed. The most general view appears to be that of
the “Three W’s” (Wick, Wightman, and Wigner, 1952;

2 Actually, the assignments also could be taken to be the re-
verse of these which were given by Yang and Tiomno. This makes
no real difference because only relative parities are in question
(see Table VII).
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TaBLE VII. Demonstration of arbitrariness of absolute
parities of fermions.

We are allowed to make a transformation N\, — 2¥A, in the
parity phase factor A, of all particle and antiparticle fields, where
F is the fermion number (41 for fermions, —1 for antifermions).
This is admissible because in any interaction Lagrangian there
appear just as many antifermion operators as fermion operators
(fermion conservation). Under this transformation the parity
types of Table VI transform as follows:

Particle field Antiparticle field
A—D C—A4 A<D C«—4A
B—C D—B B« C D«B

A more general transformation which is equally admissible is
Ap — €¢F), where « is arbitrary.

If baryons and leptons are conserved separately, such (special
or general) transformations may be applied to the parity phase
factors of either arbitrarily. It is clear that under tﬁese circum-
stances the relative parities of baryon to lepton fields are also
arbitrary.

Wigner, 1956; Mathews, 1957), which may be stated
as follows: Since any attempt to measure relative
parities can yield only the three results ‘“same,”
“opposite,” or “undeterminable,” the only way in
which there can be different parity kinds, e.g., “real”
and “imaginary,” is when the result is ‘“undetermin-
able.” Thus, the existence of different parity kinds goes
with the existence of two classes of fermions separated
from each other by a superselection rule, i.e., not only is
spontaneous transition between the two classes im-
possible, but, further, it is impossible to induce transi-
tions by any measurable operator. But this is equivalent
to the existence of an ironclad conservation principle
preventing one class of fermions from ever transforming
into the other. From the “Three W’s” point of view,
the relative phase factor, after inversion, between the
two spinor kinds is entirely arbitrary (see Table VII).

Though it has deepened our conception of parity, and
is now generally accepted, there is one qualification
which should be made in the WWW point of view. That
concerns the possibility, in thought at least, of com-
paring the parity of two identical fermions with a
boson. For suppose that the original Majorana neutrino
theory were correct (which it apparently is not), then
processes in which the two exactly like neutrinos anni-
hilated to give a boson could occur. Though by the
well-known superselection rule separating fermion states
from boson states (WWW, 1952) the relative parity of
the individual neutrino is unobservable, one would
nevertheless decide to call the parity of the neutrino
relative to the boson imaginary (see the following).
Yang and Tiomno’s ‘“‘minimum-generality” point of
view in the matter of relative parity types would then
be partly vindicated (but not the attempt to establish
baryon conservation, since the counter arguments given
in the foregoing would still apply). The fact that these
things do not happen—conservation of leptons—makes
acceptable the WWW point of view that any arbitrary
relative phase under P may be assigned with equal
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reason to boson and lepton fields. However, a further
matter of formal convenience comes in here. If one
wishes C and P to commute in their action on fermion
fields, one should assign all fermion fields the i-type
parity (Liiders, 1955). For the Majorana neutrino
theory this assignment seems to be compelling (see
Racah, 1937; Wightman and Schwever, 1955; and the
argument in the following—next paragraph but one).
This suggests that ¢-type parity for spinors may be a
good choice to make in general. It also fits in naturally
with the way we conveniently describe inversion prop-
erties of spinors in three-dimensional space (see Sec. V).

It should be remarked that the foregoing considera-
tions by no means affect the well-known theoretical
inference that a fermion-antifermion system in an S
state has odd parity (Yang, 1950). It is important here
to distinguish clearly between .the parity behavior of
feelds and the parity behavior of states of the field. The
parity factor of a fermion field and its antifermion field
are subject only to the requirement that their product
be 41 (conservation of fermions) and are otherwise
arbitrary as is demonstrated in Table VII. On the other
hand, the product of the intrinsic parities of a one-
fermion state and the corresponding one-antifermion
state is always —1 no matter what type the field is. In
the final analysis this is due to the fact that the parity
redescription does not commute with all other redescrip-
tions of the Poincaré group (e.g., translation). There-
fore, P cannot be a multiple of the identity in any rep
(except the trivial scalar rep). Thus, for example, the
matrix vy appears as a factor in the parity transforma-
tion of spin  particles (Table III). The structure of yq

is such that it controls the signs of the phase factors in

front of particle and antiparticle states, so that they
come out Ap* and —Ap, respectively. This can be verified
most easily in the split (Dirac-Pauli) representation

(O —itrk)(k 12.3) (I ' 0)
Y= ion 0 =1, 4 Y= 0 —JI )

by studying the expansion of each field operator in
particle absorption and antiparticle emission operators.

The theoretical inference that a fermion-antifermion
system in an .S state has odd parity (behaving like a
pseudoscalar particle) has been well-verified experi-
mentally in the 1S annihilation of positronium through
the property that the two photons come off with opposite
polarization (Wu and Shaknov, 1950; Siegbahn, 1957).

We note that a system consisting of two identical
Majorana neutrinos in an S state would be a special
case of a fermion-antifermion system—therefore with
a parity —1. In the interest of maintaining continuity
of concepts, it is then hardly escapable, as has been
indicated previously, that a one-neutrino state should
as assigned the i-type parity. (Admittedly, we cannot
directly test this assignment empirically—if the funda-
mental superselection rule holds!)
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To sum up, it does not seem that the explanation of
baryon conservation can be found along the lines of a
familiar space-time symmetry, nor of a discrete sym-
metry group of any kind. An interesting possible ap-
proach has been opened up by Ferretti (1957 and pri-
vate communication) who, upon generalizing some
earlier work of Lee and Yang (1955), has analyzed the
possibility of consistently introducing a baryon ‘“‘charge-
current density” and has inferred that this makes it
necessary to introduce a neutrino field as well as a
meson field coupled to the nucleon field.

In general, it is of basic importance for elementary
particle physics to be able to decide the question: When
are two seemingly different particle theories physically
equivalent? This, for example, is much of the issue be-
tween the ‘““s-type parity” position taken by Yang and
Tiomno and the “arbitrary-parity” position taken by
Wick, Wightman, and Wigner with respect to the
relative parity of baryons and leptons.

The problem is that of finding clear formal criteria to
decide when two relativistic elementary particle theo-
ries are physically equivalent. As already emphasized,
every such theory, besides being characterized by a
Poincaré group rep made up of redescriptions in co-
ordinate space, is also associated with a Poincaré group
rep—up to a factor—in state-vector space; in other
words, the Hilbert space spanned by the state vectors
of the elementary particle described by the theory also
serves as a representation space for an «-dimensional
unitary rep of the Poincaré group (Sec. III).

The question of physical equivalence has been dis-
cussed extensively by Michel and Wightman in their
unpublished notes, where they also refer to unpublished
work of Bargmann. For a first gross classification they
consider the theories to be represented adequately by
their associated Hilbert space reps up to a factor, and
they set up criteria for “physical equivalence up to a
factor” of the latter: “Two representations up to a
factor, U and U’ are physically equivalent if there is
a one-to-one correspondence, W, between their states
Yy which (1) preserves transition probabilities:

I (1//1,1‘#2) l2= ! (¢11;¢2,) ‘2;

and (2) is invariant under Lorentz transformation: If
Yy, then U(e,A)¢ <> U’(a,A)'.” By applying the
fundamental theorem of Wigner, it follows that W can
be chosen as a unitary or antiunitary operator, and the
condition of physical equivalence reduces to that for
mathematical equivalence,

U'=WUW-,

with W unitary or antiunitary.

To refine the criterion of equivalence further, one
must look at all the observables Q. If the correspond-
ence W between states extends to a correspondence
between observables, so that for every Q we have a Q’
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such that
W)= ' QY),

then the theories are completely equivalent.

The possible physically inequivalent kinds of ele-
mentary particles (systems), based on Wigner’s analy-
sis of the inhomogeneous Lorentz group, are described
in Table V. In making this classification, including the
distinctions due to differing behaviors under the space-
time inversions, essential use is made of the scalar
square theorem on antiunitary operators (Sec. IL.E)
according to which

Ti=+1 or Ti=-—1.

This result is important because classification of a sys-
tem according to its T? eigenvalue (see Table V) leads
not to a pseudo but to a real characterization, inde-
pendent of an arbitrary change of phase in T. To see
this we set T’=Te?®, whereupon we find

(T')2=Te*Teix=Teiee~*T=T=2

The arbitrariness of the phase factor under the parity
operation P extends to particles of higher half-integral
spin. It appears possible to prove, on the basis of the
quoted criteria for physical inequivalence that the only
physically inequivalent spin j particle fields are the
four types listed in Table V, separated only by their
behavior under time-reversing transformations, [Barg-
mann (unpublished) cited by Michel and Wightman
(unpublished)].

V. OTHER CONSERVATIONS AND SYMMETRIES

We come now to those symmetries of natural proc-
esses which, while they do not appear to be directly
related to space-time symmetries, nevertheless lend
themselves to an elegant geometrical mode of descrip-
tion.?® These are the isospace symmetries. The role of
the concept of Zsospin in nuclear physics resembles
strongly the role of the concept of spin itself in atomic
physics. More exactly, a component of the isospin
which represents the total electric charge plays a role
paralleling that of the z component of spin. We recall
that, although the direct spin interaction of two par-
ticles in atomic physics is so small that it may be
neglected in first approximation, there is nevertheless a
great qualitative importance to the presence of spin in
that, with it the number of states allowed by the exclusion
principle is increased. The different new allowed states
are labeled by the different values associated with them
of the spin projection along some axis (e.g., the 2z axis)
which is preferred in a spin determining experiment.

To see the analogous role of isospin in the realm of
charge independence of nuclear interactions, compare a
system of four neutrons with a system of two neutrons
and two protons. Here, as with spin in the atomic case,

25 This is only true up to a point. Certain complications which

appear when one tries to include charge conjugation show that the
geometrical metaphor has its limits.
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the presence of charge setves merely to increase the
number of allowed states. This leads to the idea of
interpreting the charge ¢ of a nucleon as the component
T along a ““3 axis” of a spinlike property 7. To get a
neat ‘“‘charge-multiplet formula” it is necessary to add
3 to T's in the expression for ¢. The concept of isospin is
then successfully extended to the pions in which case,
instead of having an isospin doublet as with the nu-
cleons, we have an zsospin triplet. But here the relation
g=Tj3 holds. It is nice then to notice that the same
formal relation as in the doublet case can be main-
tained between charge and 3 component of isospin by
putting, instead of the 1 in the numerator of the 3, the
baryon number B, with the result that the charge-
multiplet formula, for both doublet and triplet, reads?

g=Ts+B/2.

Gell-Mann (1953, 1954, 1956) and Nishijima (1953,
1955) independently realized that one could success-
fully embrace the new unfamiliar particles, and account
for the simultaneous properties of associated production
(strong interactions) and slow decay (weak inter-
actions) by generalizing this charge-multiplet formula
still further. One had only to introduce in the numerator
of the fraction, in addition to the baryon number, the
strangeness number S: g= T3+ (B+.S)/2. While zero for
all the familiar particles, .S assumes integral values for
the new particles. What its inventors had in mind was
that while strangeness is conserved in strong and elec-
tromagnetic interactions, its nonconservation is an
inhibition which allows a process to go only by weak
decay.

By means of this restrictively conserved quantity,
strangeness, it has been possible to give a successful
account of the decay behavior and reaction behavior of
the elementary particles indicated in our first chart and
Table I. First, the strong associated production is
interpreted as a strangeness conserving reaction, i.e.,
strange particles are produced from pions and protons
(of strangeness zero) only in pairs of opposite strange-
ness. Once produced, each particle is off alone with its
strangeness. If the different types of particles have the
values of S indicated in Table I, no lone strange
particle?” can decay (subject to conservation of ¢ and
B) except by changing its strangeness by at least one
unit. This takes a long time; as we have seen, a time of
the order of 10" flashes.

26 This formula also describes antiparticles, for which ¢, T5,
and B simultaneously have reversed signs. More generally, the
same formula works for a system of particles with charge Z and
mass number B. For example, we observe a nuclear state which is
the same (except for clearly understandable differences due to
secondary electromagnetic effects) in 27+41—and not more—
different isobaric nuclei. Then we assign to this nuclear state an
isospin value T, and the different isobars are distinguished by the

value of
Ts=Z—B/2.

27 Except 29 which actually does go into A4y very fast in
accord with the condition AS=0.
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With the recognition of a new conserved quantity in
physics, the problem arises of finding a corresponding
invariance principle. Various attempts in this direction
have been made. Of these one of the more appealing
appears to be that of D’Espagnat and Prentki (1955,
1956), Racah (1956), and Murai (1956). In this in-
terpretation the strangeness number S plus baryon
number B is an isoparity index or hypercharge U,
namely, it is the exponent in that power of ¢ which
appears in front of the field function of a particle when
an inversion in isospace is carried out. The charge-
multiplet formula becomes

g=Ts+U/2.

Since B is always conserved, and U=B+4S, Gell-
Mann’s rule of conservation of strangeness in strong
and electromagnetic interactions becomes a rule of
“conservation of hypercharge.” Whereas the strange-
ness number is found to take on various values ranging
from O to 42, the hypercharge ranges only over the
values 0, &=1. The value 0 applies to isobosons (I's in-
tegral), and ==1 to ssofermions (Ts half-integral), as is
evident from the integral value of the charge. The
strangeness, and likewise the hypercharge of an anti-
particle is the negative of that for a particle.

In writing simple numbers for ¢, Ts, and U, we have
essentially been dealing with eigenvalues, or with
operators in isospace in diagonal form. We now intro-
duce the operators explicitly. We can write the isoparity
operation itself,

(22)

p=exp(EUn/2).

Here the Hermitian operator U may be considered as
the “generator” of a continuous transformation which
for the argument 7/2 is equivalent to the isoparity
operation. A corresponding interpretation also can be
given to the other physical quantities by considering
them as generators of geometrical operations in iso-
space. Just as the z component of ordinary angular
momentum generates rotations about the z axis of
ordinary space so the 3 component of isospin appears
as the generator of a turn A(a)=exp(:Tsa), through
any angle o about the 3 axis in isospace. Equation (22)
may now be interpreted as expressing the charge
operator -in the form of a “generator” of a half-turn
and inversion operation, '

PA (r)=A(m)p=exp(igr).

In other words, the charge operator is the “‘generator” of a
reflection through the equatorial plane at right angles to
the 3 axis. The inversion Y, the rotations A (a)—and all
other rotations in isospace*—are separately good sym-
metry operations for strong interactions. For electro-
magnetic interactions only p and A(a) remain. While
finally, for weak interactions, only q~A (r)p remains as
a good invariance operator. Thus, the progressive re-

28 This full rotation symmetry is the geometrical expression of
charge independence.
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NAME suggested Example: SYMBOL
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Fic. 5. The possible three-dimensional rotation and rotary-inversion groups which have one or more infinity-fold axes.

duction in symmetry which accompanies the passage
from strong interactions—to electromagnetic inter-
actions—to weak interactions may be pictured as a
reduction from the full rotary-inversion group Rs+—
to the rotating cylinder group CohP—to the simple
mirror group in isospace. The nature of the first two
groups and their place among all the possible con-
tinuous groups in a three-dimensional space is indicated
in Fig. S.

VI. RECENT HISTORY OF THE UNIVERSAL
FERMI INTERACTION

Through recent experiments it has become very
probable that weak interactions are of a universal four-
fermion type. Such an interaction is called ‘““universal”
in the sense that it underlies all, and is the same for all
parity or strangeness nonconserving processes, always
with the same coupling constant.

It appears that such a universal four-fermion inter-
action as a basis for all weak processes finally may be
established. This appealing idea, first suggested in a
discussion by Klein (1948), would endow the theory of
weak interactions with a basic simplicity analogous to
that given to the theory of electrical phenomena when
Faraday (1831) showed that all “forms of electricity”
are the same. Out of Maxwell’s formulations, via the
peregrination into space-time, it emerged later that the
primary interaction between electricity and the electro-
magnetic field is universally of the “vector” form aJ -4
where « is the dimensionless electrical coupling constant

e?/hc, J is the four vector of charge-current density,
and A4 is the four vector of electromagnetic potential.
In the present conception, all other electromagnetic
interactions (such as those involving magnetic moments)
are derivative from the primary vector interaction.

In line with the original approach of Fermi (1934)
when he first formulated a theory of beta decay, and by
generalized analogy with the electromagnetic inter-
action, one assumes that the weak interaction is one in
which any charged (fermion-antifermion) pair is
coupled to any other charged (fermion-antifermion)
pair. If certain selection rules—specifically that of
associated neutrino production described in the follow-
ing—as well as the two principles, conservation of
baryons and conservation of leptons, are always to

‘hold, then such interactions can involve only a baryon-

antibaryon pair and a lepton-antilepton pair with one
particle in each pair charged; i.e., interactions occur
only between two pairs of the general forms (BB),
(B°B), (LLY), (L°L). (For u decay we should replace
the baryon-antibaryon pair by a meson-antineutrino
pair.) Thus, for example, one of the possible forms of
the interaction might be

general form: (B°B)(I°L); special case: (7ip)(e).

The pair of fields in the first bracket has nonvanishing
matrix elements representing the disappearance of a
(neutral antibaryon-charged baryon) pair, and simi-
larly, the second bracket may represent appearance of a
(neutral lepton-charged antilepton). The way in which
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these interpretations refer to the characteristic weak
interaction of B+ decay is evident in the “special case”
form given on the right.

Since the only neutral lepton is the neutrino, it is
clear that one can immediately establish on these
general grounds what has sometimes been called the
“principle of associated neutrino production” and
which may be stated as follows: No single lepton of any
one kind, namely, an electron by itself or a muon by itself,
can ever appear in weak interactions unless accompanied
by a single antineutrino.

We turn now to the experimental indications for the
specific form of the interaction. For some time the in-
direct evidence had been accumulating, and then the
direct evidence began coming in (Herrmannsfeldt et al.
1957, 1959; Goldhaber et al. 1958) that the universal
form underlying all weak interactions is entirely vector-
axial. This characterization refers to the relativistic
tensor quantities which appear in the interaction.
These are the quantities whose scalar products (or
pseudoscalar products since only proper Lorentz in-
variance—but not parity—is conserved) represent the
interaction between the one fermion-antifermion pair
(a,b) and the other (c,d). Except for coupling constants,
these interaction terms are then the products of the
vectors, Yayss or Yevawa, and the axial vectors,
Yavs\Ws Or Yoysyaa, associated with each pair. To
establish this “pure V-4 coupling” experimentally as
the universal form of the weak interaction, it was neces-
sary to demolish the validity of such an apparently
well-established result as that of the 1955 He® recoil
experiment which seemed to imply that the interaction
in the He® Gamow-Teller type transition is pure tensor
(T) (i.e., involving the scalar or pseudoscalar product
of terms of the form ¥y, v.4s). Reasons for criticism
of the experiment were found by the experts, and with
the destructive thought concentrated on it, it soon
crumbled. '

In addition to the removal of the He® difficulty, the
situation in other respects also cleared up considerably
from that of the summer of 1957 when “for every ex-
periment there was an antiexperiment.” The two out-
standing types of parity-insensitive experiments (““classi-
cal” experiments), i.e., energy distribution and recoil
experiments, for the most part began to agree well with
pure V-4 interaction, with the squared coupling-
constant ratio estimated at

g24%/gv?=1.4240.08

(Gerhart, 1958; Winther and Kofoed-Hansen, 1958;
Sosnovskij ef al. 1958. There is some discrepancy with
the ratio evaluated from ft values; see Kistner and
Rustad, 1958). The two outstanding types of parity-
sensitive experiments have been those on (1) polariza-
tion of decay B’s; (2a) B asymmetry from polarized
nuclei; and (2b) B-y (circular polarization) angular
correlation. Both of these measure the expectation
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value of a pseudoscalar product j-P, of angular mo-
mentum j and linear momentum P, of the B particle.
From the results, inferences were drawn concerning the
neutrino helicity, i.e., its spin linear-momentum cor-
relation (or “handedness”). These inferences had to be
drawn via assumptions about the form of coupling,
which governs the correlation between neutrino mo-
mentum and electron momentum. It was very satisfying
that, to these experiments, a new type was added which
measured the helicity of the neutrino rather more
directly and therefore, in conjunction with the results
of the polarization experiments, served to determine the
form of coupling independently of the recoil experi-
ments. This new type was an e~ capture and subsequent
y-ray measurement experiment, which was suggested
independently by Page (1958), and Goldhaber et al.
(1958), and carried out by Goldhaber et al. (1958). In
that experiment successful use was made of the fact
that the emitted neutrino gives the daughter nucleus a
twist and a kick which then appears in the direction of
circular polarization and in the sign of Doppler shift
of the subsequently emitted . The results on the
Eut%?m € — Sm'%2 transition showed unequivocally that
the neutrino emitted was left-helical. That, combined
with the result of all polarization experiments showing
weak-interaction emitted 8*’s to be right-polarized, led
directly to the conceptually important result: Iz the
Europium transition the basic Gamow-Teller interaction
s axial and not tensor.

Besides the He® difficulty, which was finally com-
pletely removed, perhaps the most serious difficulty
which remained for the pure V-4 coupling was the fact
that pion-electron neutrino (wev) decay was not ob-
served,” while pion-muon neutrino (wuv) decay was
observed. Because the removal of this discrepancy by
the discovery of mev decay in just the right amount was
of considerable importance [see Gatlinburg Conference
reports, Revs. Modern Phys. 31, 782, (1959)7, we give a
brief history of the analysis of the connection between
the type of coupling and the ratio p of the mwev to the
muv decay mode.

Ruderman and Finkelstein (1949) assumed that de-
cays of this type take place via a virtual nucleon-
antinucleon pair and therefore involve the four-fermion
interaction as the slow step. (Nowadays we would
recognize this also as the parity-nonconserving step.)
They found that of the five possible types of four-
fermion interaction, the scalar (S), vector (V), and
tensor (7') types are completely forbidden. But the
pseudoscalar (P) and axial vector (4) are allowed. This
may be seen to come from the fact that the virtual pair
arises out of the pion—a pseudoscalar entity, for which

® Early investigations set an experimental upper limit to the

ratio p of #* — et4» to 7t — ut+» less than 5X 1075, More
recent work suggested that the possible value of p was less than
1075, The most recent experimental work, in which the decay is
observed, confirms the theoretically expected ratio 1.3X107* (see
the following) very closely (Fazzini ef al. 1958; Impeduglia ef al.
1958; Anderson et al. 1959).
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the only linear couplings to the nucleon-antinucleon
pair are of pseudoscalar or axial type. Determinate
values for p were obtained under somewhat restrictive
assumptions by Ruderman and Finkelstein for P and 4
coupling, respectively. The value for P was not satis-
factory, being much too high to accord with observa-
tion, thus ruling out any appreciable admixture of P in
the interaction. The general result for the 4 type of
interaction was much better. Including the density-of-
states factor which we may compute with present data
to be 5.4, the 4 interaction by their method gives p
the value
p="54(m,/m,)?=1.3X1074

This result, that in the 4 interaction the matrix element
for the wer mode is reduced by the factor m./m, com-
pared to that for the wur mode, was also obtained by
Miyazawa and Oehme (1955) without any detailed
assumptions about the intermediate state. The result
followed from a general theorem which they proved to
the following effect. Under certain generally satisfied
conditions the matrix element for the decay of spin-
zero mesons of mass 7 into two leptons of mass m; and
mg, respectively, contains only terms proportional to
my/m and ms/m. The conditions under which the gen-
eral theorem holds are satisfied whether the meson-
lepton interaction is direct or occurs via nucleon pairs
or other intermediate fields, provided only that the
lepton coupling is vector or axial vector (odd number of
v’s). It is assumed only that the pion has spin zero and
that the muon, electron, and neutrino have spin
one-half. Of course, if the further restriction is made
that the pion is pseudoscalar, decay by vector coupling
becomes completely forbidden, and the theorem is
applied to the axial coupling channel.

While the experimental evidence was still confused,
theories of pure V-4 interaction were considered by
Feynman and Gell-Mann (1958), Sudarshan and
Marshak (1958), and Sakurai (1958) following the
general pattern of “two-component theory’ which had
been initiated independently by Landau (1957), Lee
and Yang (1957), and Salam (1957). [An early anticipa-
tion of these ideas, before parity violation was known,
was discussed by Stech and Jensen (1955).] Of these
we sketch only the early development of ideas of the
first-named authors. Feynman and Gell-Mann started
with the idea that all Fermi particles should be repre-
sented by two-component spinors obtained by project-
ing the usual four-component forms with the projection
operator %(1++vs), and that all weak interactions
between such particles should be represented by direct
couplings between these spinors. They showed that the
only possible interaction then is the pure V-4 coupling
in equal strengths in the first naive approach. The ex-
clusive use of the projection operator 3(14vs) with all
fermions means that the phase difference between the
V and the 4 amplitudes is 180°; thus it is a “V minus 4
coupling.” Had the @ priori equally admissible assump-
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tion been made that the other projection operator
2(1—<s) be used with one of the fermion pairs, the
coupling would have been “V plus 4.” (This corre-
sponds to interchange of particles and antiparticles in
one of the pairs.) Experiment (Telegdi and others,
1959) appears to confirm the “V minus 4” coupling
which, because of the reality of the relative phase factor,
also satisfies time-reversal invariance. The physical
essence of the 2(1+4+s) projection is that, in all weak
interactions, lefi-polarizations for particles and right-
polarization for amtiparticles is favored, this favoring
tendency becoming absolute as the velocity of particle (or
antiparticle) approaches the velocity of light. Thus the
V-A theory automatically comprises two-component
neutrinos (specifically, purely left-helical neutrinos and
right-helical antineutrinos) as well as conservation of
leptons.

With the V-4 theory, the lifetime of the muon is
obtained to within the experimental error of 2%, Since
the magnitude of the coupling constant used is the one
obtained from the O* decay, where nucleons and their
fields of virtual pions are involved, and it is being
applied to a system where ostensibly there are no virtual
pion effects, the question comes up why the agreement
is so good. This led to some interesting suggestions as
to why the universal coupling constant (or at least the
vector part of it) should not be subject to renormaliza-
tion due to virtual mesons—a situation which resembles
that of electrodynamics. Since the time they were first
made, there have been further interesting consequences
of these suggestions (see Gatlinburg Conference re-
ports). We confine ourselves to remarking that, by
extending the universality to couplings involving a A or
2 fermion, a qualitative account is also obtained of the
weak decays of the strange particles with their parity
nonconservation.®® For example, a K* can go virtually
into an anti-A and proton by strong coupling. By the
weak decay (Ap)(pn) a virtual § and # can then form.
On annihilating, these give two or three pions.

We cannot leave the subject of a universal V-4 type
weak interaction without mentioning a third test, first
of the two-component consequence of the theory and
then of the specific form of the interaction. The shape
of the energy spectrum of the decay electron in the
u— e+v+7 process, upon the basis of a direct four-
fermion theory, involves a single parameter, the Michel
shape-parameter whose magnitude indicates how slowly
the spectrum falls off at high energies. For any two-
component theory with maximum parity nonconserva-
tion (the older ST interaction also could be given this
form) the value of this parameter is (oa)theoret=0.75.
Recent experimental values are Rosenson (1958): px

% Note added in proof. At the present time it appears that the
coupling constant for weak interactions involving a strange par-
ticle is about one-tenth as large as that for the weak interactions
of the nonstrange particles. How the difference is to be interpreted
is not known, but one is struck by the fact that a similar ratio is

encountered for the strong interactions involving strange particles
(kayons) and nonstrange particles (pions).
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=0.6724-0.05 ; Plano and LeCourtois (1959):0.79-£0.03.
From the range of the reported experimental values it
seems as though this type of measurement too may
conclude in agreement with a two-component inter-
action. Similarly, the shape of the angular distribution
of the emitted electron provides a test of the two-
component nature of the interaction. The scale for this
shape is provided by the value of the asymmetry pa-
rameter for the maximum energy. This maximum
asymmetry parameter £ should have the value 1 for
pure V-4 interaction. Both the two-component shape
and the V-4 value =1 are well confirmed by recent
experiments [Plano and LeCourtois (1959); Bardon,
Berley, and Lederman (1959)].

It appears then that we are on the verge of a uni-
versal and rather simple conception of weak interac-
tions. Since at least one new conservation principle
(lepton conservation) is involved, as well as the break-
down of two other conservations (parity and strange-
ness), one expects remarkable new invariance properties
to be somehow involved. It is likely that when these
new invariance properties are unraveled we will have
gone a long way toward understanding the nature of
weak interactions.
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VIII. APPENDIX. PHYSICAL INTERPRETATION OF
COMMUTATION RELATIONS OF THE SPACE-
TIME DISPLACEMENT GENERATORS.
DEFINABILITY OF CENTROIDAL
POSITION

In Sec. IL.F we discussed the commutation relations
of the generators of the Poincaré group in their original
abstract setting. We now interpret the Hilbert-space
representatives (Po,P), (M, J) of these generators
to have certain specific dynamical meanings. We see
that the commutation relations correspond to physical
relations which are to be expected on familiar grounds if
the quantities Po, P, My, and I, are interpreted as
total energy, linear momentum, angular momentum, and
centroidal moment of a dynamical system. In connection
with the last concept, we are led to a definition of an
operator defining the ceniroidal position of a system
which, for a one-particle system, coincides with the
position of the particle. (Position in this sense should be
distinguished clearly from the space-time coordinates
which are used as parameters in quantum field theory
and which are to be associated with measurements on
the observing apparatus rather than on the observed
system.)

The reference to “familiar grounds” in the preceding
paragraph means that it is by a “correspondence prin-
ciple” type of argument—from classical physics, or
elementary quantum theory—that we first become
confident that it is wise to define the Hilbert-space
representatives of the generators as basic dynamical
variables. Once this confidence is established, as often
happens in similar situations in physics, we drop the
relatively concrete approach of the past and introduce
the new quantities in an autonomous way. This means
iniroduction by definition, and may be confusing if one
does not know the historical motivation.

First we reproduce the commutation relations in a

somewhat modified form:

M M:]=iM; et cyc (a)
M = L, 9)?= 2} [Ml,g:)’h]: 0 [M 1,9)22]= [%1,M 2:]= 1%3 et cycl (b)

or as
M= S, M= [9%1,9]&2]: —tM;; el cycl (C)

[Ll,P1:| =O [L],Pz] =[P1,L2] =‘~’LP3

[P;,P:]=[S;P:]=[S;P:]=0
[P,Po]=[Ls+Ss, Po]=0

el cycl (d) @
[¥,Px] =P (e)
[(D%,Po] =iPys ®

(4,k=1,2,3).
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TaBLE VIII. Table of commutators of quantities constructable with generators of the Poincaré group. We start with the vector
Pa~(Po,P) and the bivector or antisymmetric tensor Jss~ (M,IR). The space vectors P, M, I are polar-odd, axial-odd, and polar-
even, respectively, where the adjective following the hyphen in each case refers to behavior under time reversal. The “outer product,”
JbcPatJeaPotJasPe=Wia=W? (a, b, ¢, d=cycl of 0123), defines the trivector or pseudovector We~ (W, — W) of which W is axial-
odd. The “inner product” Wa.P°¢ defines the bivector W A P~ (W,P— WPy, WXP), of which W,P— WP, is axial-odd and WXP is
polar-even. Other quantities are expressible in terms of these, provided suitable scalars are adjoined. For example, the “inner product”
JapP? gives the vector U~ (U,,U), where Ug=—IR-P, U=—IMMPo—MXP=—[m2IM+ WXP-+ (I -P)P]/P,. Thus, the polar-even

vector U is expressible in terms of I, WXP, and P, provided the scalar-odd coefficient IR-P= —Uj is allowed. The commutator
UrUn equals im?M,. .

Mn

Dem

Wo
Po 0 0 0 —iPn 0
Pk 0 0 iPn —iPodkm 0
M 0 iPn iMp iMn 0
DN iPg IPo0km iMn —iM, IWp
Wy 0 0 0 —iWp, 0
Wiy 0 0 W, —2Wodm . —2(WXP)x
(WoP—WP) 0 0 2(WoPr— W,Py) Z(WXP)s 2(WXP)rPo
(WXP)s 0 0 i(WXP), —1(WoPr— W,P) —3(WoPoPx— W;P?)
Uo=—M-P —ip? —%PoPn —i(MXP)m —iUp —iW,P,
Uk —iPxPy  —i(M¥im+PiPn) [UaPo— (X P)nPr]/Po —1Uodkm —iWPy
(UP —UPo)r/m* Py iPodkm i[Mat-(WXP)/m2]  —i[Mp+ (WoPn—W,Po)/m?]  —i(WoPr—WiPo)Po/m
W (WoP —WPo)m (W XP)m Uo=—9R-P
Po 0 0 0 iP?
Pk 0 0 0 iP; P
My Wy 7 (WoPr— W,,Po) 2(WXP)yn T(MXP)s
M IWobim I(WXP)n —i(WoPy— W, Pg) iU
Wo {(WXP)m —i(WXP)nPo 7 (WoPoPp— Wy, P?) WP
Wi —13(WoPr— W, Po) — [ M2W S m+ Py (WXP)m] i[m*Wodpm~+Ps (WoPpn— WmPo)] IW Py
(WoeP—WPo)r i — W uStm~+ (WXP):Pn] Im*PoW M2 P Wi, — WoPodgm | 7 (WoPoPr— W3P?)
(WXP)y —i[m*WoSim~+ (WoPr— WiP0)Pn]  —im?[ WiPm—WoPodtm ] ImM*W, Py, (WXP)iPo
Uo=—IN-P —iWoPn —3(WoPoPpn—W;,P?) —3(WXP)nPo 0
—iWPn, —i[M*WStm~+Pr(WoP—WPo)n] [ Pi(WXP)u—mWtm] ™M
—i(WoPk—WkPo)Pm/m2 i(WOPMSkm—'WmPk) IW, P i[Ur+ (WX P)rPo/m?]

In the first three sets of relations M is to be interpreted
either as L or S provided we at the same time interpret
M as L or & correspondingly. Otherwise we use M and
% in the more inclusive sense of M=L4S and
M=2L}S. In the remaining equations we have sepa-
rated out the spin and orbital parts explicitly.

A more detailed list of commutators, including those
for certain interesting quantities constructed from the
polarization pseudovector W,, is given in Table VIII.
It is worthwhile also to remark that a general formula
may be established for the commutator of It with any
function of the energy Py which is expressible as a power
series in Py, i.e.,

(Ms,f' (Po)1=if (Po)Ps. 9]

This is established by induction. First, it is easily
verified that it holds not only for f(Pg)=P,, Eq. (If),
but also for f(Po)=P¢. Then it is established that if
it holds for Py it holds also for Po* and Py,

The first two commutation relations in Eq. (If)
express the total constancy in time of Pi and M,

(neither of which has any explicit time dependence).
For the physical interpretation of the last relation we
suppose only that we are dealing with a system de-
scribable in the most general terms of a field theory. By
definition, the dynamical quantities which we have
listed are then constructable from integrals involving
the energy-momentum components of the stress-energy-
momentum density tensor T .58! With Too representing
the energy density, and Tos the & component of the
momentum density, the constructions are

energy:

H = P0= fd'l)Tou

3t The tensor Tz itself may be constructed out of field operators
on the basis of an invariant Lagrangian, following the prescrip-
tions of the “canonical formalism.” We do not, however, need this
explicit construction for the following purposes. For simplicity,
and to compare with the case illustrated in Fig. 2, we limit our-
selves in the following two paragraphs to a system with spin zero (the
canonical stress-energy-momentum tensor Tz is symmetric); the
centroidal moment, as well as the angular momentum, is then a
constant of the motion.
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Pk= fd'DTo)c

linear momenium :
orbital angular momentum: L= f do(x;Toj—x;Tos) -

orbital centroidal moment: L= f dv(xx Too—%0 T ox),

where the integration is over the total simultaneous
three-dimensional space v at time x,=¢ in a given
Lorentz frame.

The reason for calling the last quantity ‘“‘orbital
centroidal moment,” is apparent if we first discuss the
integral of the first term in the expression for ¥;. This
quantity,

= f dv %% T o, (Im

is the first moment, with respect to a “lab” coordinate
frame, of the energy density Too. A limited definition
of the “position of the centroid” of this energy dis-
tribution is possible even in quantum mechanics (see
the following), and therefore we use the term “lab
orbital centroidal moment” for &. We may now write

= — Pt (Ir’)

It is clear that the significance of & is that it is the
“proper orbital centroidal moment,” i.e., if there exists
a proper Lorentz frame—one in which the total mo-
mentum Pj vanishes—then &, are the components in
that frame of the first moment of the energy distribu-
tion. An immediate interpretation of the last commuta-
tion relation in Eq. (If) is that it expresses the net
constancy in time of ¥ in accord with the law of
motion, i.e.,

d/di=1iH,% ]+ 0%/9t=P,—P,=0.

The intuitive meaning of this result has already been
indicated in Sec. I.C and Fig. 2.

The statement that & is constant in time is of course
just another way of stating that the motion of the
system as a wholeis uniform.® Writing the last commuta-
tion relation in Eq. (If) explicitly, and using [ P+,Po]=0,
we get the result

HY/ — &' H=—iP;. (")
But by the basic law of motion this gives
A /dt=Py, I

which can be described as the field-theoretic version of

32 The “‘system as a whole” refers to some kind of centroid, defined
for instance by Eq. (VI) in the following. Equation (If”’) signifies
that all such centroids, defined in differently moving lab frames,
are at rest in the proper frame.
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the relation of velocity to momentum in a one-particle
theory,

Eiy= Py

where Z is the total energy.

We leave the interpretation of the commutation rela-

tions Eqgs. (Ia), (Ib), and (Id) simply at this—that
they express the mutual interference of measurement
(and consequent nonsimultaneous sharpness) of dif-
ferent components of angular momentum and cen-
troidal moment with each other and with linear
momentum.
- More freshly interesting interpretations, which bear
on the concept of centroidal position may be read out
of the relations (Ie) and (If). Before discussing these
interpretations we consider briefly the question of what
quantities we can add, while maintaining full space-
time covariance, to J= (M, 9) without changing any of
the commutation relations. This question, which is of
interest in itself, will be given a more detailed investiga-
tion elsewhere. Here we limit ourselves to the main
features.

To this purpose we investigate the two bivectors
which may be constructed by taking the “outer
product” of the four vector (Po,P) with the vectors
(Wo,W) and (U,,U), respectively (see Table VIII).
These bivectors are

A=(—-UxP,U,P-UP,)

These bivectors are not, however, independent of each
other and of J. It can be verified that the three are

related by the identity
A=B4m?J.

Thus, it is sufficient to consider the possibility of adding
to J a term solely in B. It is easily verified that the
only linear combination ¢J-5B which preserves all the
commutation relations involving the M part of J is the
one for which ¢=1, b=0.

This attempt having failed, we are then led to con-
sider a generalization which does not have full space-
time covariance, i.e., one involving the I part of J
alone. Naturally, we try to keep the covariance which
holds within any given Lorentz frame. We call any
three-component operator R a complete moment operator
provided it satisfies the following three postulates:

(A) Like R it is a vector under space rotations [i.e.,
it satisfies Eq. (Ib)] which is odd under space reflection
(polar) and even under time reversal.

(B) It also satisfies equations like Eqs. (Ie) and (If).
We write these as follows:

[mJ‘;P k:|=’iP 05jk
R, Pol=iP:  dRw/dt=0

(I11a)
(I1Ib)



ELEMENTARY PARTICLES AND SYMMETRY PRINCIPLES

(C) It satisfies Eq. (Ic), with the ordinary angular
momentum M on the right-hand side.

Postulate (A) requires that any moment operator be
of the same dimensions and vectorial nature as & or .
These have the structure of an energy times a distance
and are therefore odd under space reflection and even
under time reversal, in contrast with angular mo-
mentum which behaves oppositely.

Inpostulate (B), Eq. (ILIa) guarantees that the quan-
tities ¢N; “divided” by Py (see Eq. (VII) in the follow-
ing) satisfy the canonical commutation relations of
position and momentum. Equation (IIIb) states the
constancy in motion of $#—and implies that the ex-
plicit time dependence of R is the same as that of &,
ie.,, —Pt.

We do not discuss postulate (C) here, but merely
remark that if an operator satisfies only postulates (A)
and (B), we omit the adjective “complete,” denoting
it by the term moment operator.

We work within the framework of quantities con-
structable from the generators of the Poincaré group
(see Table VIII). The only independent spacial vectors,
commuting with all P, and polar with respect to space
reflections, which are available are scalar coefficients
times P and WX P, or a pseudoscalar coefficient times
W. (Other possibilities, such as the vectors WPo—W,P
and (WX P)XW, are linear combinations of P and W.
Forms such as MX P or U= —9Po—M X P—see Table
VIII—are linear combinations of WXP, P, and I,
provided we allow for the presence of the spacial scalar
M-P=—U, in front of P. Actually, we see from the
last column of Table VIII that the presence of such a
U, would spoil Egs. (III). Alternatively, from the re-
quirement—postulate (B)—that the explicit time de-
pendence of R be —Pyt, we infer that no other form
involving Pj occurs.) :

We see then that to satisfy postulates (A) and (B)
the category of moment operators is limited to those
which can be obtained by adding to 9t operators of
the form

a(mWLE; OWXP v (Wo; mW2E; )W,

where the coefficients @ and vy are functions of the indi-
cated arguments. The function « is scalar (even) under
space reflection and even under time reversal, while y
is pseudoscalar (odd) under space reflection and odd
under time reversal. To indicate the pseudoscalarity of
v we have included among its arguments the pseudo-
scalar quantity Wo=W-P/Po=M- P, of which y must
be an odd function.

For simplicity we limit the discussion in the following
to the possibility of adding the term aWXP, leaving
for elsewhere consideration of the term in W.3 It is then

8 It is not difficult to show that inclusion of the term in YW,
as well as consideration of a possible dependence of a on W¢?* does
not alter the final solution essentially.
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found, with the help of Table VIII, that imposing
postulate (C) leads to the following condition on the
function a:

W (o'P2+2aPo) = PWo(o/ Pot-20—a*m?), (IV)

where o’ is the derivative of « with respect to E.
The solution of this equation, when W is not parallel
to P, is easily found since right and left sides separately
must be zero (nonparallelism of W and P means the
“mass” m is not zero, for it can be shown that m=0
implies Wo=AP, where A=W,/P, is the longitudinal
polarization or helicity—spin in this case). The two
equations are compatible and yield the unique solution

a=—2/P==2/(E2—m?).

In the case of m=0, the equation is automatically
satisfied without any restriction on a..But of course the
additive term WX P then vanishes.

We now relinquish the requirement that postulate
(C) be satisfied and return to the consideration of
moment operators in general in order to be able ulti-
mately to define a position operator with commuting
components. We rewrite Egs. (IIIa,b) as follows:

RN;Pr— PR;= aE FE— ERi=1iP;. (III'a,b)

The symbol E has been written instead of Py for the
total energy for the following reason: we want the total
energy operaior to have an inverse. This can be assured
if it is positive definite per se, or if we limit ourselves to
the domain of Hilbert space in which it is positive
definite (or, alternatively, negative definite). This
means that great care must be exercised in applying
the following considerations to processes involving the
vacuum state. The energy operator with this limitation
we call E. As E is positive definite it has an inverse E
and this is Hermitian like E. Since E commutes with
all the Py, its inverse does likewise and we may define
the velocity operator

Vk = PkE_l = E“lPk, (V)

It is easily verified that the V) satisfy commutation
relations like those which the P satisfy except for the
following [use Eq. (I')]:

(M, Vil=1@m—ViVi).

To make a comparison with familiar ideas we intro-
duce the “centroidal position operator” vector Xj by
the following definition:

Xk = % (S.RkE_l'i- E""%k) .

V)

(VD)

It is evident from the form of Eq. (II) that in the
special case M=¢, this symmetrized, and therefore
Hermitian, operator is an approach to defining a
“center-of-mass” (or rather ‘“center-of-energy’’) of the
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system, and in this case we could call X the “orbital

position” of the centroid.
With the help of Eq. (IIIb) we have

EX;=1(ER:E+Ry)=Rr—1iV,

XiE=} @it ERE) =Rt 2iVy, (L)
from which we may infer the relations,
dX/di=i(EX;— X;E)=V,,

FEX+XE)=R:, (VI'ab)

which show again the consistency of the definitions (V)
and (VI) of the velocity and “position” operators.

By using Egs. (VI') and (IIIa), we have

XPi— P X, =[E"R;, Pi]=18;, (VII)

since the velocity. components all commute with each
other. Thus the commutation relations between a cen-
troidal position operator and the total momentum of
the field are of the canonical form of the position-
momentum commutation laws in one-particle mechanics.

Equations (Ie) show also that in field theory, just as
in one-particle mechanics, the components of P com-
mute with each other. It is not true, however, that the
components of a centroidal position operator always
commute with each other. By letting the commutator
of <My and N, be represented by —iR; (in the special
case where =M we have R;=M;), we find, when
Egs. (VI') are substituted, that

[EXI,EX2]= (XlE,X2E:|= —“’LRs et Cyd, (VIII)
where (8’ is the derivative of 8 with respect to E, and
where we have used Eq. (V’). With the help of the ex-
pression for the commutator of E and X, Eq. (VI”a),
this may be written

EE[ X, X;]=—i[ R3— (X;P;— X,P,)]
= —i Ry—E'(RP.—R.Py)].  (VIIT')
For the particular choice of the moment operator,
R=I, the bracket on the right-hand side of Eq.
(VIIT') equals

M—-E-MXP=S—-E&@XP=E"W,

where W is the “inner angular momentum,” or the
space part of the polarization 4-vector, defined in Sec.
IL.F. Thus, the components of the position operator X
defined by Eq. (VI) for the moment IR are not in
general commuting. They commute, and can serve as a
simultaneous set of observables for a system with rest
mass if the spin is zero. (From the vanishing of W2 and
of S, the vanishing of @ X P and therefore of W follows.)
For the mass zero case W, which is then proportional
to S, can vanish only if the spin is zero. We can, how-
ever, choose a modified moment R=IM+R’ so as to
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make the right side of Eq. (VIII') vanish for all cases
of nonzero mass and spin. We write R’ in the general
form SW X P where § is a function of E, m, etc., to be
determined. After a systematic calculation with the
help of Table VIII, the condition for the vanishing of
the right-hand side of Eq. (VIII") becomes

WEB' P 5 () — B

=PW [B'E+B—Fm*]. (IX)
For W parallel to P the only admissible solution is
W,=0 (zero spin), 8 arbitrary. For W not parallel to P
(m=£0), each side must vanish separately. The equa-
tions are compatible and we find that there are two
solutions,

Bir=1/m(E+m) B-=—[1/m(E—m)], (IX')
and it is noted that 8;+B_=-+a, where a was the co-
efficient of WXP in the complete moment operator
defined by Eq. (IV). The commuting position opera-
tors corresponding to the solutions (IX’) are

Q.= X+ (mE)— (E4+-m)“Wx P

~ _ )
Q_=X— (mE)(E—m)""WXP.

The commuting position operator Q, was found by
Pryce (1935, 1948) in a different manner. Such an
operator permits a “localized particle interpretation.”
Newton and Wigner (1949), making a “Schrédinger
type” analysis instead of the ‘“Heisenberg type”
analysis employed by Pryce and by us here, showed on
the basis of certain postulates for localizability of an
elementary system that the localized position operator
Q.. (for positive energy states) is unique. They gave
explicit forms for the operator and its eigenfunctions
in all cases where their analysis showed that it exists,
i.e., for massive systems with any spin and massless
systems with spin 0 and 3. Full bibliographic references
to earlier and later papers on this subject are given by
Wightman and Schweber (1955).

IX. GLOSSARY OF NOTATIONS
(Within each category in order of appearance)
(a) Scalars (Ttalic type):

A, ¢, Ao, Oy %5y 1y €, @, Rijy guvy Asjy @, B, G4, bij,
0, o, 03, ‘Pi(s): Y, ¥, i, w, q, T, B, p, pu, &.

Complex conjugates: N*, u*, N\p*.

(b) Vectors and Matrices (boldface):
N’ P, r’ x’ R’ A7 a, G, b7 P’ 0’ Is, A‘|"17 M’
A(S), B(S), I) Saﬁ(R)7 Ui’ W, 'E
Transposed matrices: R7, A7.
Hermitian conjugates: Uyt
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(c) Operators (corresponding Roman and script letters
are used for space-space and space-time parts of
six-vectors):

A’ P: Gy T7 C: £ L(G,A), Mi; Pi: N, S; S, P’
v, 3, ¥s, =

(d) Operators in Hilbert space (sans serif M, German
Iz, or last letters of Greek alphabet ®; correspond-
ing sans serif and German letters are used for space-
space and space-time parts of six-vectors):

F) l, Q) », q, 0q hr N: U’ A’ Hr Pka Mk: w}k;
P) v7 B) T) mk, 8k, @k, 6, G, K, @, ‘Pa,
q)ay w, .

Hermitian conjugates: a;f, b;t, Pt, ¥t
(e) Groups of matrices or operators:

{A+}’ {At}: {A—l-1}x {A}) {L+1}’ {G}’ {F}
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