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I. INTRODUCTION

A CCORDING to the Drude theory of metals, the
index of refraction varies with frequency in a

simple manner provided the period is much shorter
than the collision-determined relaxation time. Then

n' —1=—(o„'/oP,

whclc co„2 ls thc plasma frequency squared,

(v„'=4m(Ef) e'/nt. ,

and cVf is the number of optical electrons per cm'. If n
is real, the reflectance for a dielectric at normal inci-
dence obeys the simple Fresnel formula'

R= (n-1)2/(n+1)2.

Thus, when cv decreases until

v=~0 '=A/hE. This correspondence principle model
gives a simple way of seeing how the Drude theory
applies. At high frequencies the electric vector of the
light (and thus also each following electron) reverses
direction so rapidly that the electrons do not have their
simply periodic to-and-fro motion interrupted by col-
bsions with the potential walls at the ends of the dye
molecule. The attendant P vector generated inside the
molecular crystal considered as a dielectric is accord-
ingly virtually the same as the P vector in a material
for which the electrons are free, namdy, a metal.

An example of metallic rcQection in a molecular
crystal is aGorded by the substance, 1,5-bis-(dimethyl-
amino) pentamethinium perchlorate, henceforth referred
to as BDP,

+
Me2N=CH —CH=CH —CH=CH —NMC2, C104 .

we have n' going to zero (and then becoming imaginary)
with the result that R goes to unity and remains there.
For simple metals the theory is in particularly good
agreement in that there is quite a sudden rise in R to
almost unity as ~ approaches ~„.

In this paper it is shown how a very similar phe-
nomenon occurs with molecular crystals. The individual
"molecules" —dye cations in the case mainly considered
here —are effectively isolated from one another just as
in all molecular crystals. No tangible exchange of
electrons from one molecule to another takes place in

the excited crystal levels, even though something closely
akin to metallic reAectivity occurs.

What happens is that for some dyes co~ is reached at
such a high frequency that the pertinent relaxation
phenomenon cannot occur. The relaxation time in the
case of dye cations is the reciprocal of the frequency of
the strong first electronic transition. The reason is that,
according to a correspondence principle argument, this

time is the time for the optical electrons to go from one
end of the dye molecule to the other and back while

the particular molecule is undergoing transition:

The reQection spectrum for this substance is shown in
Fig. 1. Focusing on principal direction 1, the erst
thing that one notices is the sudden onset of very high
reQectivity going from the high-frequency region. This
reAectivity begins at a frequency remote from the
single molecule (solution) absorption (dot-dashed
curve) and continues high until it suddenly changes at
a point somewhat to the red of the solution absorption.
All this is in substantial agreement with what is
predicted by the Drude theory.

By keeping to the same simple picture we can even
derive a criterion for the occurrence of the phenomenon
of metallic reAection. According to our model, we must
have
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where now n and k are the real and imaginary parts.
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Fn. 1. Crystal reAection spectra for face 1 of 1,5-bis-(dimethyl-
amino}pentamethinium perchlorate obtained with light polarized
along principal directions 1 (—) and 2 (- —-); and the absorp-
tion spectrum of a water solution of the same compound (-~ —~ ).
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Fzo. 2. Crystal reQection spectra for one face of auramine per-
chlorate obtained with light polarized along the principal direc-
tions.

where (at the present level of explanation) &es is the
frequency found in the solution spectrum. This shows
that 1Vf must be high, which represents two confhcting
requirements. '1V is the number of molecules/cms and is
inversely proportional to dye length /. The oscillator
strength f is proportional to the transition-moment
length squared times the frequency, giving an P depend-
ence times an I ' dependence. All together then, we have
no J dependence for 1Vf. To have res high we need to
have a favorable projection of the transition moment
on a given principal direction of the crystal face being
viewed and we need to have the space inside the crystal
given over to the production of color. The substance
BDP is compact but not ideal because the perchlorate
ions lower E without raising f. As it develops, for BDP
the orientation is very favorable.

Application of the criterion to BDP requires the
computation of co» which turns out to be 5.7X10"
(circular frequency). The corresponding resonance
comes at 4.6)&10",so the criterion ~~&coo succeeds. For
the yellow dye auramine perchlorate, there is incipient
metallic reQection, but not for the face shown in Fig. 2.
Consideration of the geometry of auramine along with
the E value and single molecule intensity shows that,
according to our criterion, metalic reQection ought not
be expected, and it is seen in Fig. 2 that the reQectance
is conventional —much like the derivative of an ab-
sorption curve.

Naturally one ought not expect the Drude theory to
be the whole story, and indeed it is found that a
somewhat different appearance criterion is more funda-
mental. Also, the dispersion theory with the Lorentz-
Lorenz correction turns out to be applicable, a fact
which is in conQict with our use of the Drude theory
(which is r'elated to the Sellmeier formula). As a con-
sequence, it is better to take for r ' a frequency derived
from the single-molecule frequency after consideration
of the internal field.

A physical picture of the approach to high reQec-
tivity (from the high-frequency side) may be obtained
from dispersion theory. When co&~~, the material is a

dielectric, but as cv —+co» the wavelength inside the
dielectric gets longer and longer. Finally, when co=or~,
the light incident on a physical surface suddenly is
coupled simultaneously to all the optical electrons inside
the dielectric (in6nite phase velocity). At this point the
impedance for the currents transverse to the propaga-
tion vector becomes infinite and no light can penetrate.
This in turn fixes the boundary conditions for the
incident light so that the incident radiation becomes a
standing wave, which is equivalent to two running
waves of equal intensities, and hence total reQection.

Before considering theoretical aspects in greater
detail, we turn to the technique for obtaining a reQection
spectrum, a consideration of the peripheral experiments,
and the results. '

II. EXPERIMENTAL AND RESULTS

The spectrophotometer used consists of a mono-
chromator, beam splitter, microscope objective, target,
polarizer, and detector. The light from the mono-
chromator passes through the objective, is reQected from
the target at normal incidence, goes back through the
objective, and is directed towards the analyzing system
by the beam splitter. The target is alternately a crystal
face or a standard mirror, the two being mounted on a
sliding stage so that the detector can be set full scale
at a given wavelength with the mirror in position and
then the crystal moved into position for a reflectance
reading. The stage was kinematically designed, with
the result that reproducibility may be obtained even
using 53X magnification (perhaps it would be better
to say demagnification). The objectives are inter-
changeable, though mainly a Bausch and Lomb 53&
reflecting-refracting objective was used (Polaroid grey
design V, focal length 2.8 mm, numerical aperture 0.72).
The standard mirror is aluminum and absolute re-
Qectance was calculated using the data of Schulz and
of Strong for aluminum. ' The polarizer used in the uv
was a Gian-Thompson, with elements soaked apart and
a drop of glycerine used at the interface. The beam
splitter is a quartz Qat, homogeneously aluminized for
ca 50%%uo transmission.

The present practice in this Laboratory is to use a
quartz microscope objective (which necessitates re-
focusing as the wavelength is varied) together with a
Gian-type prism with air interface. 4 By using these
components we are able to extend the uv range to
200—210 mp.

The reQection spectrum of gold was determined as a

s J. Weigl D. Chem. Phys. 24, 577 (1956) and J. Mol. Spec-
troscopy 1, 216 (1957)g made earlier measurements of the re-
Qectance of thin balms of dyes. He noticed an undue broadening
associated with strong absorptions which he interpreted as a
strong coupling phenomenon in the sense of footnote 8.' L. G. Schulz, J. Opt. Soc. Am. 44, 357, 362 (1944); J. Strong,
Procedrsres sN Expersrseltol Physscs (Prentice-Hall, Inc. , Engle-
wood Cliffs, New Jersey, 1938).

Item 48, catalog of Karl Lambrecht, 4318 N. Lincoln Avenue,
Chicago 18, Illinois.
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check on design and procedure, and Schulz' data was
matched satisfactorily.

In addition to reflection measurements, miscellaneous
experiments were carried out; recrystallization of
samples to check initial purity and possible contami-
nation through photodecomposition, determination of
crystal density, quantitative solution absorption to find
the single-molecule frequencies and intensities, and
examination of crystal morphology.

We next consider the results. The substance pre-
dominant in the present investigation is BDP. Con-
siderable work was also done on auramine perchlorate,
but these results are mentioned only in passing. (A
report on auramine is being prepared for publication
elsewhere. ) A typical spectrum for auramine perchlorate
is shown in Fig. 2, where the reflection is recorded for
light polarized along each principal direction. The
abrupt rise and fall of the reflectance for one of the
principal directions at ca 400 mp come from a resonance
in the dispersion formula associated with the strong
electronic transition which gives auramine its yellow
color. Spectral features at 330 and again at 290 mp
diGer in that the principal direction of higher reflec-
tivity has switched. This kind of observation makes it
possible to deduce relative polarizations in the single
molecules (or ions), most easily when there is only one
molecule per unit cell, but also in many other cases of
less favorable symmetry. '
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FIG. 3. Crystal morphology and principal directions for 1,5-bis-
(dimethylamino)pentamethinium perchlorate. The faces and
principal directions in a given face have been arbitrarily desig-
nated by number. In each case, the upper angle refers to principal
direction 1, while the lower angle refers to principal direction 2.

~ A. Bree and L. E. Lyons, J. Chem. Soc. (1956) 2662.
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Fxo. 4. Crystal reflection spectra of faces 2 ( ) and 3 (———)
of 1,5-bis-(dimethylamino)pentamethinium perchlorate. For each
face, the curve which shows the metallic reflection peak (a; b)
is that obtained with light polarized along principal direction 1,
and the relatively structureless curve (c; d) is that obtained with
light polarized along principal direction 2.

Turning now to the results for BDP, we show the
reflection spectra on each of three faces, the positions
of the faces being erst recorded in Fig. 3. Figure 1 has
the spectrum on what was considered the "main face"
or face 1, plotted along with the single-molecule ab-
sorption curve. Figure 4 has the reflectance on faces 2
and 3. The main face was the largest and most tractable
and, incidentally, has the most spectacularly atypical
reflection spectrum. Work on the other faces was dif-
ficult because they are narrow and required the use of
the full microcapabilities of the spectrophotometer.
Keeping in mind the experimental difficulties, it is
concluded that faces 2 and 3 have the same reflection
spectra. This work is mainly important in that lacking
a crystal structure, we can infer a great deal about how
the single molecules (cations) are lined up, which
information is needed in connection with later inter-
pretations.

The crystal of BDP showed a fluorescence which,
according to visual determinations, using a hand spec-
troscope, went from 500—550 mp, , with a maximum at
about 525. This fluorescence is probably the same or
nearly the same as the single-molecule and is inde-

pendent of exciting wavelength from 430 to 367 as
nearly as couM be seen. Strangely enough, no sharp
cutoff could be detected (photometrically) in the
fluorescence corresponding to the abrupt change in
reflectance at 315 nor could a sudden increase in
transmittance be found.

The density of BDP was found to be 1.311~0.001
g/cm'.

The single-molecule absorption at 409 mp (24.4 kk)
has an integrated intensity corresponding to a transition
moment length

l y l
of 2.04 A. A one-dimensional oscil-

lator strength of 3.31 is computed from this length
according to



This one-dimensional oscillator strength is the quantity occurring
in the usual graft of quantum theory onto classical dispersion
theory. It 1s three times higher than the one used ln atomic spec-
troscopy wherein one compares intensities with ideal intensities
for an isotropic harmonic oscillator in its ground state. The
theoretical maximum one-dimensional oscillar strength is some-
times mistakenly considered to be two on an orbital picture (two
electrons in the originating orbital). ActuaBy, a strength as high
as 3.31 as observed here is not anomalous because the Pauli
principle makes the originating orbital have nodes: three, going
down the axis for the pentamethinium dye. What should be
compared then is the intensity of a harmonic oscillator also with
three nodes, considering the dependence of the harmonic oscillator
intensity on quantum number. We should therefore compare the
observed f=3.31 with a maximum of eight, including the factor of
two because the originating orbital is doubly occupied.

The transition moment lengths and f values for the
weak absorptions at 255 and 225 mp are 0.34 and
032 A, corresponding to f values each of 0.15.

The half-width of the single-molecule absorption at
409 mp was found to be 0.374)(10 (untts of ro, the
circular frequency). The widths of the reflection bands
may have to be characterized differently than the
widths of absorption bands owing to the way the re-
Qection coeKcicnt slowly falls oG at higher wavelengths
in accordance with the dispersion formula and the way
other transitions RGect the reQection. Such charac-
terization is of necessity somewhat arbitrary. The dif-
ference between the oP values at the onset and cessation
of strong reQection is to be used in the theoretical
analysis that follows. For face 1 of BDP, this ~' is
estimated to be 19.4& 10'0. The corresponding difference
in the co values taken at the same points is 2.98)(10".
(This width should be compared to the single-molecule
width of 0.374)& 10".)

Several substances other than SDP which show
metallic reQectivity have been examined. A particularly
interesting one, forming a true molecular crystal, is the
nonionic molecule 5-X-methylanilino-2, 4-pcntadienal.
It is a dye vinylogous to an amide,

!

—N—CH=CH —CH=CH —CH=0.

Me

The reQection spectrum is shown in Fig. 5. There is not
a simple rise on the long wavelength side, but a rise
and fall, then a secondary rise corning at ca 340 mp, . The
single-molecule absorption (in methanol) for this dye
peaks at 380 mp.

III. APPLICATION OF DISPERSION THEORY

We now consider how the results may be interpreted
according to classical dispersion theory modihed to
contain quantum oscillator strengths. The point of view
is 6rst a formal one, where we try to fit the observed
reQection spectrum, and thus verify the single-molecule
constants. When we have achieved a reasonable fit, we
return (Sec. IV) to the physical interpretation, which
involves the meaning of the damping constant.
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I'ro. 5. Crystal refIection spectrum for one face of 5-E-methyl-
anilino-2, 4-pentadienal obtained with light polarized along one
of the principal directions.

The single-molecule constants obviously cannot be
used to predict the reQectivity of any one crystal face
without prior knowledge of the crystal structure. In
fact, the transition moment could have any projected
value whatsoever. It turns out that, for BDP, having
the reQection data on three faces provides enough
structural information electively to 6x the molecular
orientation, The reQectance on all three faces has the
characteristic that the molecular transition moments
project ont:o a single principal direction (the dashed
curves ln Figs. 1 Rnd 4 Rlc tRkcn Rs showlllg essentially
no reflectance related to the 409 my transition). Thus
the molecular axis along which the transition is polarized
in a single molecule has only one orientation in the
crystal.

If the trial assumption is made that this orientation
is unconditionally parallel to face 1, and therefore 57'
from horizontal, as recorded in Fig. 3 for principal
direction 1 of face 1, one can predict the direction of
maximum reQectance in faces 2 and 3. The prediction
is that the direction be the same in both faces, 58'from
horizontal. The predicted angles and the prediction of
equality for the two faces are found to hoM within
experimental error. The trial assumption may now be
considered as correct, and as furnishing a structural
model. According to the model, the projected transition
moment squared on faces 2 and 3 is 0.87 times the
maximum. Thus the ratio off values as between face 1
and face 2 and 3 should also be 0.87. As we shall see,
the f or cd„s value approximately determines the width
(not the height, as one might expect) of the region of
high reQection. According to how the width is charac-
terized we observe a ratio of widths squared as between
face 1 and the other two faces in the range 0.83 to 0.93,
in practical agreement with the structural model. We
now have the result that the f value inferred from face
1 ought to be compared directly with the molecular f
value without any intervening trigonometric factor.

The next step is to cast the dispersion theory into a
usable form. The ever present difhculty —lack of infor-
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Fn. 6. Theoretical reflection curves for i,S-bis-(dimethyl-
amino}pentamethinium perchlorate with co~'= 32.9)&10~ and
y= 0 (———), and y= 0 361X10'~ (—). The experimental
reflection spectrum for principal direction 1 of face 1 is shown for
reference (——.).

mation about higher transitions —is not a serious one
here because of the strength of the transition at 409 mp
and the wide gap before additional transitions occur
(the next transitions are weak and do not come until
255 and 225 mp). Thus we write the dispersion formula
so that the inQuence of the higher transitions may be
taken, in first approximation, as constant

rd„'/3s2 1

e'+2 roe' —re'+iyre

There are four constants in this formula to be evaluated
from the reQection spectrum in Fig. 1. Apart from G,
one can obtain ce„' and hence the single molecule f; the
damping constant y, which turns out to be the single-
molecule vibronic band half-width; and the explicit
resonance cop, which, in simple applications of the dis-

persion theory, is the single-molecule frequency. '
Considerable labor was put into looking for a best

fit. The procedure followed was first to work on the
long wavelength dielectric region. Here one can go
from R values to values of (n' 1)/(rP—+1) by using the
simple Fresnel formula. Then with y=0, one can find

pairs of G, cop which fit the data reasonably well; one

pair for each co„value. The dashed curve in Fig. 6
shows what is found if co„'=32.9&(10", which is the
value obtained by using

(a '= 4vrXfe'/m

and substituting the observed crystal density for Ã and
the observed single-molecule value f=3.31. For this

case, G=0.25 and orp'= 30.7X10".
A G value of 0.25 is reasonable in that it implies a

residual index of refraction e= 1.4, with a corresponding
reQectance of 0.03. The cop value corresponds to ab-
sorption at 340 mp, which obviously does not coincide

6There is a certain amount of interaction between f and co0

in that to calculate f from co~' one has to decide whether to use
coo or the single-molecule frequency. This kind of ambiguity occurs
typically when second-order perturbation theory is being used.

with the single-molecule value of 409 mp. As will
eventually be shown, when the straight Lorentz-Lorenz
formula is used, cop very nearly has to be taken as the
single-molecule frequency corrected for the short-range
electrostatic resonance interaction (Vr in the notation
of Sec. V). That there is a blue shift is not unexpected
for long molecules because their sidewise repulsive
interaction occurs at a smaller distance than their end-
for-end interaction, which is attractive.

The dashed curve in Fig. 6 is too wide. The e8ect of
allowing G to increase slowly as co increases is to move
the high-frequency side of the metallic reQection region
to longer wavelengths, thus causing a narrowing. This
narrowing is brought about even more eS.ciently by
putting in the high-energy transition explicitly. Quan-
tiatative consideration of these effects shows that the
narrowing to be expected might well bring the dashed
curve into reasonable coincidence with the experimental
curve. Further consideration indicates that, in any
case, the best fitting ~„'value is greater than 26X10—",
all of which implies a wavelength (corresponding to rdp)

less than 350 mp.
All attempts to fit the data using a formula of the

Sellmeier type,

repp td +'L'r~M'
failed. This is at first sight surprising because a one-
term Lorentz-Lorenz formula can be recast into the
Sellmeier form if the explicit resonance cop' is modified.
The many-term Lorentz-Lorenz formula as approxi-
mated by the G formula above cannot, however, be
transformed into a formula of the Sellmeier type, with
an additive term representing the higher transitions.
Instead, what one finds is

Up until now we have been leaving the damping
constant out of consideration. When it is introduced,
the m values become complex and the generalized
Fresnel formulas have to be used to compute reQectance.
The eGect of varying p is essentially to vary the height
of the metallic reQectance. Thus, a somewhat di8erent
value of y could be derived from the curves for faces 2

and 3. The best fit value for face 1 is y=0.36)&10",
leading to the solid curve in Fig. 6. This is to be
compared with the half-width of the solution absorption
curve, 0.3'?X10'~, and the two values are amazingly
close. We postpone interpreting this result until Sec.
IV.

If we take G=0, p=0, we can readily obtain a
formula of the Sellmeier type,
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which has an explicit resonance at the low-frequency
boundary (the index of refraction becomes infinite),

(o—=Mp —re~ /3.

Defining a function of the index of refraction which

puts emphasis on wavelength in the medium instead of
velocity

p'=1 n',

we can change the appearance of the basic formula,

—M~

(rop +2ro& /3) oo

This has an explicit resonance at the high-frequency
boundary (the wavelength becomes infinite),

or+ roo +2oo /3.

Accordingly, we may define a width'

My 07 =Q)p ~
2 2 — 2

This shows why co„ is so important in determining the
width in an actual case. An interesting consequence is
that when G=O, the conventional explicit resonance coo'

comes -', of the way from the short-wavelength boundary
of the metallic reAection region. Having the three equa-
tions: for (n' —1)/(I'+2), for e' —1& and for p' —1, each
with its own diferent explicit resonance frequency
within the region makes one think that all frequencies
within the region are on a more or less equal footing.
Perhaps, then, any single frequency from co+ to or can
be considered as a stationary state reached in an allowed
crystal transition. This point of view is explored further
in the final section.

IV. OCCURRENCE CRITERION

We use the G=O results for the width, avoiding
unnecessary complication. Then

ro„'= (~~+re )(~+—ro ) =2roo(re+ —ro )

so that with co+—co =A@i,

Eor re~ /2(dp.

We now take as the criterion for the appearance of
metallic reQection that the width her must be sufhcient
to cause the normal dispersion curve to change in
appearance noticeably. The normal curve has a width
governed by p, which is the reciprocal lifetime of the
electronic excitation in the dielectric. The fundamental
inequality is therefore

ro„'/2roo) y.

The reverse inequality implies the absence of an e8ect.
' If it is assumed that the higher transitions can be accounted

for by using a constant G, this becomes

~+2—~ 2 ——~,2(~+G—2G2)-I

gr with g=Q, 25 ag dqtqrmjnqd jn the foregoing, co '—co '=0 9' 2

The simple inequality ~„)~0 obtained in connection
with the explanation according to the Drude theory is
not really the same thing. Thus, at the point of balance
the fundamental criterion is

so that
re~ /2roo =7=or+ or

~.= L2(M+ ~-)/—~n3«.
By reason of the connection between ~„' and width
squared, the quantity in square brackets is of the order
of unity. Thus, roughly, at the point of balance, we
have the simpler relation

with

ro„'/2cop = (4rrNfe'/m)/2«

y=2~pIyIs/A

(where e
I y I

is the magnitude of the transition moment,
m„) gives

(4~Neo
I y I')/A) v.

But 1/N is virtually the cube of the nearest-neighbor
distance D,

(1/N) =D'

so that we have the result (energy units)

4~m„'/Ds) Ay.

This bears a striking resemblance to the coupling ine-
quality'

in which it is suggested that one compare 2V, the dimer
split for a pair of neighboring molecules disposed so as
to correspond to the strongest interaction occurring in
the crystal, with 6, the single-molecule half-width, as
taken from the solution spectrum. The quantity
4m-m„'/Ds is virtually this suggested dimer split; and, as
pointed out in Sec. III, y is found empirically to be
equal within experimental error to the single-molecule
half-width (as determined experimentally from the
solution spectrum). It is evident that metallic reflection
is a strong coupling phenomenon. In fact, one immedi-
ately thinks of turning the argument around and using
Ate„'/2&op for the electronic bandwidth of a crystal in
place of the somewhat clumsy dimer split 2V.

The physical meaning of the electronic bandwidth is.
discussed in Sec. V. The physical meaning of our finding
that empirically y =6/A for face 1 is that the relaxation

' W. T. Simpson and D, L, Peterson, J. Chem, Phys. 26, 588
(1957),

CO~~GOO.

This comparison changes in the right direction on either
side of the point of balance and so could have partial
success.

Returning to the fundamental inequality, we now
transform back to the defining quantities to facilitate
interpretation. Combining
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phenomenon occurring is the trapping of the crystal
electronic excitation on a single molecule. This is fol-
lowed by other processes, e.g. , Quorescence, which,
however, do not inQuerice y. The trapping occurs
because the force constants and equilibrium con-
figuration change going from the ground to the excited
state of an isolated single molecule. Electronic excitation
in the crystal can pass freely from one molecule to
another so long as the internuclear con6guration
remains the same as for the ground state. Once the
nuclei start to oscillate as a wave packet, transition has
occurred from the crystal level. The width 5 is not to
be confused with the width of a single vibronic level in
the single molecule spectrum, this latter width being a
measure of the vibrational cascade probability, Quo-

rescence probability, etc.
It may happen that more efFicient trapping than

implied by 6 can occur through the intervention of
coupled variations involving more than one molecule;
in fact, the lower reflectance on faces 2 and 3 (higher y)
may be a sign that such a trapping process is occurring.

Figure 6 shows that the dispersion theory fails to
reproduce the observed structure. The interpretation of
the metallic reQection region as a block of levels makes
it possible to see how structure might occur. We can
imagine that the relaxation process is essentially as
described previously for face 1 provided the crystal
energy is greater than the single-molecule energy. This
applies to the part of the reQection for BDP on the
high-frequency side of 409m+ (see Fig. I). If the
crystal energy is lower than the single-molecule energy,
it may not be possible for trapping of the excitation
energy to occur exactly as pictured in the preceding.
This may be the explanation for the unusual appearance—in the case of face 1—on the long-wavelength side of
409m@. The explanation is supported by work with
other substances showing metallic reQection. For
example, the curve for 5-E-methylanilino-2, 4-penta-
dienal (Fig. 5) shows a similar change at ca 380 m',
which is the peak of the solution absor'ption for this
substance. At first thought it is surprising that the
single-molecule Quorescence could be observed upon
excitation with light at X&409mp, for BDP, but at
room temperature the Boltzmann factor is appreciable
for populating the single-molecule state from a crystal
level corresponding, say, to X=470 mp, .

In summary, the dispersion theory explains metallic
reflection from molecular crystals reasonably well. The
reQection data can be worked up to give the position,
intensity, and width for a single-molecule transition—
though there are reservations. The position may be
shifted by an electrostatic perturbation, the intensity
is indeterminate until the orientation of the single-

molecule moments is known, and the single-molecule
vibronic half-width as deduced from y may be too large
owing to the possibility that trapping need not occur
at a single molecule.

As we have seen, the theory can be recast into a form

which puts the explicit resonance at different places in
the region of high reQectivity, suggesting that we may
be dealing with a block of allowed crystal transitions.
This view is reinforced by the appearance of structure
and the promise, if not success, of an explanation in-
volving different crystal levels each with its own
damping factor. We therefore attempt a further
development of the block of levels idea.

V. QUANTUM THEORY

The theory developed in this section is patterned
after the conventional nonrelativistic calculation of the
electrostatic perturbation for molecules in weak inter-
action. The essential new point is that not only the
Coulombic interaction has to be considered but also the
field radiated by the accelerations occurring at the single
molecules. To see that the accumulated effect of this
radiation may be appreciable, we make a qualitative
comparison with the static part.

The interaction energy is proportional to the field at
a single molecule. For the static contribution, this field
is

Esggt~ply/r )

where m„ is a transition moment on a neighboring
molecule a distance r away. Integrating over all

neighbors gives an eGect

where D is a nearest-neighbor distance.
The radiation contribution drops off slowly, as r ',

E,.a e%'r.

The eAect of considering retardation is to collect many
contributions like the preceding at a representative
distance K=c/~s. Because the motion is harmonic, we

may replace ev by m„co', giving the field from a single-

neighboring molecule:

Er8s~rasQP/c X~rÃs/K .

If the integrated result is to be comparable to the static
contribution, the integration must introduce a factor
X'/D', which is the number of molecules in a cube K

on a side. This is exactly the right order of magnitude if
retardation is taken into account, a fact which en-

courages one to explore a more formal approach.
The theory presented here is less sophisticated than

recent field theoretical treatments. ' It is felt to be of
interest anyway, because it is in a form which makes a
connection between rigorous classical dispersion theory
and the widely employed hybrid in which quantum
mechanics is used for the molecules but not for the
radiation. Also, the present theory is directed particu-
larly towards an understanding of the metallic reQection
phenomenon.

' J. J. Hop6eld, Phys. Rev. 112, 1555 (1958); S. I. Pekar, J.
E'xp. Theoret. Phys. (U.S.S.R.) 36, 451 (1959), p. 314 of trans-
lation,
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We consider that the radiation is sufBciently dilute
so that solving the problem for one unit of excitation
in the molecular crystal presents the essential features
correctly. Also, we assume strong coupling. The wave
function for each member of the block of levels is a
sum of products with a p for each molecule

The location of the excitation is given by the dagger,
and v is the number of molecules. The coe@cients c, for
a plane wave being propagated along the s axis vary as

Now we ask what value would be obtained for such an
integral if the wave in the unprimed system were
translated along the s axis,

eikz ~ ~ik(z—a)
)

but also the plane in which the primed molecule in
question lies were displaced: r'/0, s'=n. The value of
the integral would naturally be unchanged (m values
are constant in a plane normal to the propagation
direction):

where s(s) is the coordinate of the sth molecule. The
perturbation operator is a sum of pairwise terms

V, o
——(—2s,so+ x,xz+y, yo) (e'/s'),

where the coordinates are local and s is along the line
of centers between the sth and tth molecule.

The expectation value is

V—
v
—1 I Q e z)zz(z)p oc Q

—
V Q ez)zz(z))I dr

u(v t

A particular V „mixes P *with P„(and P„with P„)
giving the transition moment matrix elements of the
u and () molecule as (vector) constants and requiring
the inclusion of a factor F„,which involves the distance
apart and mutual orientation of the transition moment
vectors. Thus, a typical term is

&
—le—ikz(s)m F ~ &ikz(t)

but the integral on the left is at the same time

e
—'"'m'F (r'r) me'"dr

showing that the full integrand is always the same prior
to the second integration over d7' to give V. The
matrix element is thus the volume e times the erst
integral taken, say, with respect to the origin,

V= —Xm' I F(0,r)me"*dr

We may regard the transition moment m as a dipole
moment, a point of view which leads us to define

P(0) =mE,

where P in the continuous case is treated like the clas-
sical polarization. This leads us to the result for V:

V= —m' ~F(r)P(r)dr,

Kith appropriate quali6cation, we may replace the sum where
over s and t by an integral P(r) =e""P(0).

The factor S is the number of molecules per unit
volume and is needed when the first sum is converted
into the dr integration (over all molecule like regions
paired with one at r'). The factor v/e(=1V) is the total
number of molecules divided by the total volume,
which takes care of the dr' part. This gives

V= —(N/v)
~

I e '"*
I m(r') F(r'r)m(r) e'"*drjdr'.

Let us fix our attention on a molecule in the primed
system at the origin, getting for the factor in brackets
after the first integration the value

JI m'F (O,r)me'"'dr.

This expression for V appears to be of the form

V= —m' E(0)

where E(0) is the field acting on a molecule at the
origin owing to all the other molecules in the solid
fictitiously polarized to give a polarization P. We can
now determine the function F(r) from the analogous
function in classical electromagnetic theory.

The electric field may be derived from the Hertz
vector

E= (graddiv —V') ll.

The source of the Hertz vector is the polarization

Solving by. means of the Green's function for retarded
time, we have the contribution to II from the polariza-
tion in dr ats,

H(s') = (e
—zoolo'-zl/( s' —s~ )P(s)dr,
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where kI&=&p/c. The field at the origin due to a molecule
at s is thus

E(s'=0) = (1/N) (graddiv —72) P(s)
resp. z'

)

Sr S(
s'=0

where 1/N is the volume of a molecule. However, the
field at the origin due to a dipole at 8 is the same as the
field at —s caused by the same dipole [P(s)] moved to
the origin. This latter quantity is

~
—ikp [r'—0 (

E(r' = —s) = (1/N) (graddiv —V') P (s)
ir' —pf

Dropping the prime and remembering to use only the
direction cosines of P, we thus find

E(0)= (1/N) (graddiv —&s") (e "'2"/r) P (r),

which represents the electric field at the origin coming
from an amount of polarization corresponding to a
molecule at r.

The foregoing is a classical result, so to be on the
safe side we need to calibrate the expression by calcu-
lating just the static or Coulomb's law part. This can
be carried out by omitting V' and using the graddiv
part in conjunction with the Green's function without
retardation 1/r. This procedure leads to the static
pairwise interaction provided that we connect the
transition dipole with a fictitious classical polarization
as described previously. We may therefore feel en-
couraged to calculate the radiation contribution by
retaining the V' part and using the full Green's function.
If all powers of r were retained, the calculation would
automatically give the static contribution along with
the radiation contribution. In the following, we retain
only the long-range interaction, which is simpler;
though eventually we go back to the consideration of
the static interaction as well.

The procedure of using the full Green's function
ostensibly eliminates the time from the calculation so
that it is dificult to arrive at a physical interpretation
(other than the classical one). What is implied is that
the time factors occurring in a time-dependent ex-
pression for the expectation value are based on local
time at the respective molecules and may not be
neglected. Using the Green's function for retarded times
in a sense freezes the phases of the molecules according
to their distance from the origin, an e6ect which gives
a spherical nodal pattern to be superimposed on the
ordinary pattern of planar nodes belonging to the wave
function.

We now calculate the contribution that comes from
the radiation. The plan is to calculate the steady field
at the origin that arises from the radiation and multiply
it by —m'. This vector is further assumed to point
along the y axis.

The field at the origin is the sum of contributions

The integral gives rise to half-integral Bessel functions
and the related Hankel functions"

The Green's function is

(ko/i) ho "(kI&r),

and the plane wave

e*'%%d"& -"=P (2n+1) (i)"j (kr)P„(cos8).
0

The expression for the field becomes

—z&z„Nkezz he "&(ker)

p (2n+1) (i)"j„(kr)P„(cos8)(2Pp+2P2)r2 sin8d8dpdr.

Integration over P gives 22r and over 8 gives 2 (2 jp—
2 jz),

whence all together we have

4nmsNkp'i ~hp—&'&(k-I&r) [—,
' jp(kr) ——',jz(kr)]r'dr.

By substituting

Im he &'& = cosker/ —oker, jp (kr) = sinkr/kr,

3 sinkr 3 coskr sinkr
)

kr(kr)2

and disregarding the terms (in j2) which fall off faster
than r ', this gives

p~ coskpr sinkr
«my&ko', l

— r'dr,
kpr kr

'P J. A. Stratton, E&lectromugnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), Chap. VII.

from the molecules at r, one such contribution being

(1/N) (graddiv —V') (e '%%ds "/r) P (r)

or, considering that the propagation direction is s and
the polarization y, the y component of the field is

ke2( Sin2$+1)[(e z%%dsr/—r)+. . .]pz%%dz(r&

The phase factor e'~'"' is regarded here as a coefBcient
of one of the P's and is not differentiated. The graddiv
part gives the term in —sinzg together with terms which
fall o6 as higher inverse powers of r, and these last are
not retained,

Now, integrating over all molecules, we obtain

~
—ikpr

g (0) 2&z Nkez ez%%dr esse cos28&e2 sin8d8dgdr
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where the limits are A, of macroscopic dimensions, and

a, the radius of a small sphere surrounding the molecule

or appropriate group of molecules at the origin. With
k=eko, where n is a sort of index of refraction, and

p=kor, this is
kpA

4rm„N(1/n) I sinnp cospdp.
~ t0a

Evaluation gives

4m—m„N-(rP 1)—'[cosekoA coskoA co—snkoc coskoo

+ (1/e) (sinekoA sinkoA —sinlkoa sinkoa)].

We have to know what to do about the contributions
from the upper limit A. When e(1, the main con-
tribution is from

(1/n) sinnkoA sinkDA.

When e is in the range of, say, i'0, the factor 1/(e' —1)
is sensibly —1, whereas the A contribution is not
strongly divergent. Moreover, it oscillates mark. edly as A
is changed ever so slightly (ko 10'), an effect which is
reminiscent of those found when the quantum theory
is used to describe the macroscopic part of a measure-
ment. " For this reason we may replace the oscillating
term by its average, which is zero. Probably this zero
value would be found if we were to employ standing
waves with coeKcients c, going to zero at the surfaces
in place of the infinite running waves with coefFicients
e'~'&'~. Although the situation is not wholly satis-
factory, we take as our result the field obtained by
ignoring the surface eGect and by assuming that a is
of molecular dimensions (a~10 ' cm), whence koa 0.
This gives a steady field at the origin,

arm„N(e' —1) ',

and a corresponding energy which is designated as V3,

Va= —4rmi„'N (n' —1) '.

This result must be understood as applying only at
the low (e= ~) and high (N=O) frequency boundaries
of the region of total reRection. Outside this region, the
polarization amplitude falls oG from the "resonance"
value of nz„X and the incident light passes through the
crystal (only to be extinguished by the surface charges).
Inside the region there is a second branch, so to speak,
of the field in its dependence on e; but always with
damping, which is not explicitly included here. For
example, when e ~ 1(k ~ ko), the field is represented
as approaching &~ asymptotically, but with the
damping, the radiation correction at this point is very
likely zero.

In the full calculation of the perturbation energy,
combining the static contribution with the radiation
correction, the 6nal result consists of two parts in
addition to V3. a short-range static part Vi, and a
long-range static part V2.

"D. Bohm, Quantgm Theory (Prentice-Hall, Inc. , Englewood
Clips, New Jersey, 1951), Chap, 22.

The short-range part may be calculated by summing
out to a distance of ten intermolecular distances or so
in all directions from the origin. It corresponds to the
calculation of the Davydov energy with strong coupling.
Practically, it is almost independent of ko and rt, if
these quantities stay in the range corresponding to the
experiments being described herein. Calculation of the
short-range part leads to a frequency

&so=(o+ Vi/A.

The collection of molecules having. oro as the frequency
is small enough to be considered a "single molecule" in
the evaluation of the radiation part V3, so probably
coo is the correct frequency to use for ko in the Green's
function.

The long-range static part is dificult to calculate as
an integral using a procedure analogous to the one
preceding for the radiation part. However, this has
been done for e=0 assuming the material is contained
in an infinite rectangular slab bounded by two xs planes
at diferent y values. " The field at a single molecule
turns out to be —(8/3)mNm„. The free charges on the
xs plane surfaces give a contribution —4xEm„, and if
we wish not to count this for reasons similar to the ones
discussed previously, we have to add 4~Nm„(this is
similar to adding 4n-P to E to give D). What remains is
the internal field

Eoy =-',4~mylV

leading to a red shift

V2 ———-', 4am„'S.

Incorporating Vi, V2, and Vg, we have the result (valid
at N=O and e= ~ only)

V= Vi—4sm 'N[-'+(n' —1) ']
or

V—Ui ———43m'„'N[(e'+2)/(e' —1)]= V2+ V3.

To round out the argument we should need to see
whether the result for V2 holds in the case where re-
tardation is considered and e is allowed to be diferent
from zero. The classical theory of dispersion presented
in Rosenfeld" shows that in the dielectric (as opposed
to absorptive) region, apart from surface effects and
for a cubic crystal,

ow 3 w[( + )/( )j
[Eq. (30)].If we make the substitution Po„Nm„, we-—
in effect obtain the result given previously for V2+ Va
at the boundaries of the absorptive and dielectric
regions, but now through a derivation including variable
e and retardation. The comparison establishes the
equivalence between the quantum theory and the dis-

"R. H. Fowler, Statistica/ Mechanics (Cambridge University
Press, New York, 1955), second edition, Chap. XII; B. R. A.
Nijboer and F. W. deWette, Physica 24, 422 (1958).

13I. Rosenfeld, Theory of Electrons (Interscience Publishers,
Inc. , New York, 1951), Chap. VI.
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persion theory used earlier, and in particular shows that
the explicit resonance oro already has to involve V~. The
entire treatment could be shortened by going directly
to Rosenfeld's Kq. (30), but perhaps at the cost of some
understanding.

Ke now consider V2 and V3 as providing the ex-
planation of the bounding frequencies + and ~+. In
case e= ~ (X=O), the phases of the oscillating dipoles
in succeeding planes of the crystal, normal to k, change
sign. This gives no radiation correction owing to rapid
cancellations (Vp=O if n= pp), but the conventional.
electrostatic level shift has to be supplemented by a
red shift attributable to the static internal 6eld. This
lives Rn interpretation of m Rs involving V2 only:

A(&o —(up) = —p4s.m„'S.

For BDP, the low-frequency boundary of metallic
reflection comes at 470m@, whereas the Davydov
energy shift gives ~0 corresponding to 340—350 mp. ,
well to the blue of the single-molecule band at 409 mp.

When m=O (K= pp), the phases of the oscillating
dipoles are all the same, and the contribution to the
energy from the radiation overweights the -internal field

part, Vp+ V2&0, giving a net blue shift

A((o+—(ap) =+ (Ss/3)m„'X.

The reAection edge in BDP corresponding to co+ is at
310 mp, , in qualitative agreement. The preceding for-
mulas are not in quantitative agreement with the ex-
perimental ~ values because coo was obtained as a
derived quantity from the classical dispersion theory
including the G term as representing the higher transi-
tions. The difference A(a&+ —co ), where ~+ and co are
as defined in the foregoing is 4m'„'S, the same as
found in the Sec. IV using G=O and the dispersion
theory.

The picture which emerges' is very diferent from
the conventional one (for example, Fig. 2 of reference

8 is incorrect). In the conventional picture, the vacuum
K and 8 vectors pervade the solid, interacting with a
single allowed crystal level which has almost an infinite
wavelength, and the energy of which is determined by
considering the short-range static interaction. The k
vector is supposed to coincide with the k vector of the
light and simultaneously correspond to a frequency .

AE/h, where hE is the crystal transition energy.
In the present picture when co„'52mcuo, we imagine

that there are an infinite number of allowed transitions,
with k going from 0 to ~ on the frequency boundaries.
The states reached in these transitions are themselves
lightlike, and as intermediate states are responsible for
the dispersion phenomenon. In the metallic reAection
region, the light excites a physical block of material by
interacting with the plane of incidence (to a certain
depth depending on y) and all frequencies of the hght
from one frequency boundary of the metallic reQection
region to the other are eRective.

By not including the damping, we have left the
nature of the crystal levels uncertain. The question has
even been asked whether they can be considered as
stationary states. " I.ow-temperature measurements
directed towards answering this and related questions
are currently being undertaken.
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